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Overview: Classical stochastic many-body systems and
quantum spin chains

• Unpredictable time evolution of states

• Deterministic dynamics of probability (amplitude)

• No memory (interactions local in time)
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Paradigmatic example: (A)symmetric Simple Exclusion Process
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• Quantum Hamiltonian (XXZ chain)
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(g10 = 1 + g , g01 = 1− g)
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ASEP: η = (n1, . . . , nL), n` ∈ {0, 1}

Observables: A(ηt) such as n`(t) and sums of products
Probability distribution: P(η, t) = Prob [ηt = η ]
Expectations: 〈A 〉P(t) =

∑
η A(η)P(η, t)

Stationary distribution(s): P∗(η)

XXZ: Choose σ = (σz1 , . . . , σ
z
L), σz` ∈ {1,−1}

Observables: A(t) such as σα` (t) and hermitian sums of products
Probability amplitude: Ψ(σ, t) with Prob [σt = σ ] = |Ψ(σ, t)|2
Expectations: 〈A 〉Ψ(t) =

∑
σ A(σ)|Ψ(σ, t)|2

Stationary distribution(s): Ground state(s) Ψast(σ)

More general:

Density matrix: ρ(t) (= above for ρ(t) = |Ψ(t) 〉〈Ψ(t) |)
Expectations: 〈A 〉ρ(t) = TrAρ(t)
Stationary distributions: Any eigenvector, ρ∗ any function of H
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Equilibrium and non-equilibrium systems (I)

• Stochastic equilibrium processes:
- Boltzmann weight: P∗(η) ∝ exp (−βE (η))
- Reversibility (e.g. detailed balance wη,η′P∗(η′) = wη′,ηP

∗(η))
- Spectrum of generator real

• Quantum systems in equilibrium:

- Density matrix: ρ∗(η) ∝ exp (−βH)
- H is hermitian
- Spectrum real
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Equilibrium and non-equilibrium systems (II)

• Stochastic non-equilibrium processes:
- Stationary distribution P∗(η) not given in terms of energy
- No reversibility
- Spectrum usually complex

• Quantum systems out of equilibrium:

- Density matrix: ρ∗(η) 6= exp (−βH)
- Generator is non-hermitian
- Spectrum usually complex

Markov and Quantum in a nutshell:

No direct correspondence on the level of the process, but some
mathematical equivalences on the level of expectations!
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A little dictionary for classical stochastic and quantum dynamics
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Common techniques and questions

Common techniques:

and more ...

Common questions: Many, a few will be discussed...
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Brief comments on large-scale behaviour

Non-linear fluctuating hydrodynamics (Spohn, 2014)

• Stochastic non-linear PDE for coarse-grained fluctuation fields

• Universal tool for translation invariant 1-d systems when

− short-range interactions, local conservation laws and currents

− slow variables relevant for long-time behavior = long-wavelength
Fourier components of the conserved densities

=⇒ Hamiltonian dynamics, anharmonic chains, stochastic lattice
gases, ...

• Quadratic non-linear terms leading, cubic terms only marginally
relevant (and only if quadratic terms are absent), quartic and
higher order irrelevant in RG sense.
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Starting point

• Conservation law, LLN, local stationarity, Onsager-type symmetry

=⇒ Euler scale: Hyperbolic system of conservation laws

∂

∂t
~ρ(x , t) + J̄

∂

∂x
~ρ(x , t) = 0

with current Jacobian J̄(x , t) = J(~ρ(x , t))

• Expand around stationary solution ρλ(x , t) = ρλ + uλ(x , t)

• Transform to normal modes ~φ = R~u where RJR−1 = diag(vα)
for J ≡ J(~ρ) and R normalized such that RKRT = 1

=⇒ Coupled Burgers equations

∂tφ
α = −∂x

(
vαφ

α + 〈~φ,Gα~φ〉
)
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First and second order in φα

• First order only: Travelling waves φα(x , t) = φα0 (x − vαt) with
initial data φα(x , 0) = φα0 (x)

=⇒ vα = cms velocity of fluctuation field α

• Second order nonlinearity:

Mode coupling matrices Gα = 1
2

∑
λ Rαλ(R−1)THλR−1

Mode-coupling coefficients Gα
βγ determined by the current Hessians

Hλ with Hλ
αβ = ∂2

∂ρα∂ρβ
jλ

=⇒ Coarse-grained evolution equation fully determined by
macroscopic stationary current and compressibility!
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Fluctuations

• System of conservation laws deterministic

• Add phenomenological diffusion term and noise to current:

=⇒ Coupled noisy Burgers equations

∂tφ
α = −∂x

(
vαφ

α + 〈~φ,Gα~φ〉 − ∂x(D~φ)α + ξα
)

• equivalent to coupled KPZ equations with φα = ∂xh
α

?? Basis for discussing dynamical structure functions

Sαβ(x , t) = 〈φα(x , t)φβ(0, 0) 〉

in generic one-dimensional conservative systems with short-range
interactions and local conservation laws and currents ??
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Mode-coupling theory

• Postulate Gaussian stationary distribution for height variables
(can be proved on discretized level for “trilinear relation”

Gα
βγ = Gβ

αγ) =⇒ Wick theorem

• Consider strictly hyperbolic case (non-degenerate J)

=⇒ Off-diagonal Sαβ as well as products SααSββ decay quickly

=⇒ One-loop mode coupling equation for Sα ≡ Sαα

∂tSα(x , t) = D̂αSα(x , t) +

∫ t

0
ds

∫ ∞
−∞

dy Sα(x − y , t − s)Mα(y , s)

Linear diffusion operator D̂α = −vα∂x + Dα∂
2
x

Nonlinear memory kernel Mα(y , s) = 2∂2
y

∑
β

(
Gα
ββSβ(y , s)

)2
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Fibonacci universality classes

Define the set Iα := {β : Gα
ββ 6= 0} of modes β that give rise to a

non-linear term in the time-evolution of mode α

Theorem (Popkov, Schadschneider, Schmidt, GMS, 2016)

a) Scaling solution of mode coupling equation for |p| > 0:

• Case 1: Iα = ∅ =⇒ Dynamical exponent zα = 2, Scaling form
Ŝα(p, t) = 1√

2π
e−ivαpt−Dαp2t (Diffusion)

• Case 2: α /∈ Iα, Iα 6= ∅ =⇒ Dynamical exponents satisfy

nonlinear recursion zα = minβ∈Iα

[(
1 + 1

zβ

)]
, Scaling form

Ŝα(p, t) = 1√
2π
e(−ivαpt−Eα|p|zα t[1−iAα tan (πzα

2 )sgn(p)]) (Lévy)

Aα,Eα: Determined by mode coupling coefficients and diffusion
constants
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Theorem (cont’)

Case 3a: α ∈ Iα, no diffusive mode β ∈ Iα =⇒ Dynamical
exponent zα = 3/2

Case 3b: α ∈ Iα, at least one diffusive mode β ∈ Iα =⇒
Dynamical exponent zα = 3/2

b) Unique solution of non-linear recursion for dynamical exponents:
Kepler ratios of Fibonacci numbers zα = Fi+1/Fi for some i(α),
starting from z = 2 (coupling to diffusive mode), or z = 3/2
(coupling to KPZ mode) or Golden mean φ = (1 +

√
5)/2 (else)

Numerically well-founded conjectures:

• Case 3a: Scaling form: Prähofer-Spohn function (KPZ), Case
3b: Scaling form: Unknown (modified KPZ) [Spohn, Stoltz (2015)]

• Fibonacci exponents exact, scaling forms universal
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Fluctuating quantum hydrodynamics?

Consider only one conservation law and only steady state:
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Boundary-driven XXZ-chain:

⇒ Many open questions ...
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