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Overview

Overview: Classical stochastic many-body systems and
quantum spin chains

e Unpredictable time evolution of states
e Deterministic dynamics of probability (amplitude)
e No memory (interactions local in time)

Stochastic lattice gas with particle hopping
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Paradigmatic example: (A)symmetric Simple Exclusion Process
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e Generator (ASEP)
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e Quantum Hamiltonian (XXZ chain)
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ASEP: i = (n1,...,n), np € {0,1}
Observables: A(m,) such as n(t) and sums of products

Probability distribution: P(n,t) = Prob[n, =n]

Expectations: (A)p,) = >, A(m)P(n, t)
Stationary distribution(s): P*(n)

XXZ: Choose o = (0%,...,07), 0] € {1,-1}

Observables: A(t) such as o(t) and hermitian sums of products
Probability amplitude: W(e, t) with Prob[o; = o] = |V (0, t)|?
Expectations: (A)yy) = 2, Alo)|V(o, t)|?

Stationary distribution(s): Ground state(s) Wast(o)

More general:

Density matrix: p(t) (= above for p(t) = |W(t) )(W(t)])
Expectations: (A) ) = Tr Ap(t)
Stationary distributions: Any eigenvector, p* any function of H
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Equilibrium and non-equilibrium systems (1)

e Stochastic equilibrium processes:

- Boltzmann weight: P*(n) o exp (—BE(n))

- Reversibility (e.g. detailed balance w;, . P*(n") = wyy n P*(17))
- Spectrum of generator real

e Quantum systems in equilibrium:

- Density matrix: p*(n) o exp (—SH)
- H is hermitian
- Spectrum real
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Equilibrium and non-equilibrium systems (I1)

e Stochastic non-equilibrium processes:

- Stationary distribution P*(n) not given in terms of energy
- No reversibility

- Spectrum usually complex

e Quantum systems out of equilibrium:

- Density matrix: p*(n) # exp (—5H)
- Generator is non-hermitian
- Spectrum usually complex

Markov and Quantum in a nutshell:

No direct correspondence on the level of the process, but some
mathematical equivalences on the level of expectations!
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A little dictionary for classical stochastic and quantum dynamics

Concept Classical
state probability vector | P(t)
s|P®)) =1

Master equation

d
time evolution at [P@) =-H |P@)

Markov generator H

Diagonal operator A

observable
(A®M)) =(s|A|P()
stationary states P*) :t[i>rr1m P(t)

spectrum (inverse) relaxation times
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Common techniques and questions

Common techniques:

One-dimensional systems

/ Bethe ansatz \
Stochastic \ —=— | Free-fermion techniques | — -
\ lattice gas |

/ ~—— [ symmetries (SU(n) etc.) | —
DMRG, MPA, . ... /

and more ...

Common questions: Many, a few will be discussed...
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Brief comments on large-scale behaviour

Non-linear fluctuating hydrodynamics (Spohn, 2014)

e Stochastic non-linear PDE for coarse-grained fluctuation fields
e Universal tool for translation invariant 1-d systems when
— short-range interactions, local conservation laws and currents

— slow variables relevant for long-time behavior = long-wavelength
Fourier components of the conserved densities

= Hamiltonian dynamics, anharmonic chains, stochastic lattice
gases, ...

e Quadratic non-linear terms leading, cubic terms only marginally
relevant (and only if quadratic terms are absent), quartic and
higher order irrelevant in RG sense.
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Starting point

e Conservation law, LLN, local stationarity, Onsager-type symmetry

= Euler scale: Hyperbolic system of conservation laws

o 0
ap()g t)+Jap(X7 t) =0

with current Jacobian J(x, t) = J(j(x, t))
e Expand around stationary solution p*(x, t) = p* + v (x, t)

e Transform to normal modes (E: Ri7 where RJR™! = diag(v,,)
for J = J(p) and R normalized such that RKR” =1

= Coupled Burgers equations

0 = ~0, (vad” + (6, 6°9))
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First and second order in ¢©

e First order only: Travelling waves ¢*(x, t) = ¢ (x — vqt) with
initial data ¢*(x, 0) = ¢§(x)

= v,, = cms velocity of fluctuation field «

e Second order nonlinearity:

Mode coupling matrices G* = £ >~ Ry (R7}) THAR ™!
Mode-coupling coefficients g‘,y determined by the current Hessians
HY with H), = 525

= Coarse-grained evolution equation fully determined by
macroscopic stationary current and compressibility!
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Fluctuations

e System of conservation laws deterministic
e Add phenomenological diffusion term and noise to current:

= Coupled noisy Burgers equations
00" = =0, (vad” + (6,6") — (D" + ¢°)

e equivalent to coupled KPZ equations with ¢% = 9, h“

*x Basis for discussing dynamical structure functions

59 (x, 1) = (¢°(x, 1)¢"(0,0))

in generic one-dimensional conservative systems with short-range
interactions and local conservation laws and currents *x
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Mode-coupling theory

e Postulate Gaussian stationary distribution for height variables
(can be proved on discretized level for “trilinear relation”
By = G,) = Wick theorem

e Consider strictly hyperbolic case (non-degenerate J)
— Off-diagonal S®? as well as products $%*S%# decay quickly

—> One-loop mode coupling equation for S, = S*¢

t 00
O:Sa(x, t) = DuSa(x, t) + / ds / dy Sa(x —y,t —s)My(y,s)
JO J—00

N

Linear diffusion operator D, = —v,0x + D, 82

2
Nonlinear memory kernel M,(y,s) = 28}% >8 (Gg‘BS;;(y,s))
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Fibonacci universality classes

Define the set I, := {3 : Gjz # 0} of modes J that give rise to a
non-linear term in the time-evolution of mode «

Theorem (Popkov, Schadschneider, Schmidt, GMS, 2016)

a) Scaling solution of mode coupling equation for |p| > 0:

e Case 1: 1, = () = Dynamical exponent z,, = 2, Scaling form
Sa(p, t) = \/%e_“’“”t_D"pzt (Diffusion)

e Case 2: o ¢ 1.1, # ) = Dynamical exponents satisfy
nonlinear recursion z, = mingey, [(1 =+ Z%ﬂ Scaling form

N

S&(Pq t) _ \/%e(fivupthu\pFﬂ t[lfiAa tan(%)sgn(p)]) (Le’vy)

An, Eo: Determined by mode coupling coefficients and diffusion
constants
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Theorem (cont’)

Case 3a: « € 1, no diffusive mode 3 € I, = Dynamical
exponent z, = 3/2

Case 3b: a €1, at least one diffusive mode 3 € 1, —
Dynamical exponent z, = 3/2

b) Unique solution of non-linear recursion for dynamical exponents:
Kepler ratios of Fibonacci numbers z, = Fiy1/F; for some i(«),
starting from z = 2 (coupling to diffusive mode), or z = 3/2
(coupling to KPZ mode) or Golden mean ¢ = (1 ++/5)/2 (else)

Numerically well-founded conjectures:

e Case 3a: Scaling form: Prahofer-Spohn function (KPZ), Case
3b: Scaling form: Unknown (modified KPZ) (spohn, stoltz (2015)]

e Fibonacci exponents exact, scaling forms universal
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Fluctuating quantum hydrodynamics?

Consider only one conservation law and only steady state:

* Hydrodynamic (large-scale) theory for classical systems (one conservation law):
Local equilibrium at density p(x)

=> Stationary current J and density profile p(x) determined by D and
boundary densities p* via stationary diffusion equation

9, [D(p(x)) 9, p(x)] =0
* Fluctuating Hydrodynamics (Spohn, 1983):
=» Long-range stationary density correlations

Example: Symmetric simple exclusion process r = [ = D(p)

l r 1 r
NV A 7\ R\
t L 2 t t 9 —©O t t

J=-D(p* -p )L, p@x)=p —JDx Clxy)=-1ULx(I-y)(p* - p P
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Boundary-driven XXZ-chain:

Maximal driving in XXZ quantum chain 8 =x:

Maximal driving in +x-direction, rotation-invariant around x-axis,
[Prosen (2011) and Buca and Prosen (2016)]
e Currents: F=4m/N, P=0 J=0
* Magnetization profiles and correlations:
m*(u) = cos(wu), m’(u)=m4(u)=0
C*(uy,uy) = — 1/N uy(1 — u,) 72 C*®(u,,u,) = SSEP correlation

C(uy,uy) = C¥(uy,uy) =: CPP(u,,u,) = % sin(mw u,) sin(w u,)

= Many open questions ...
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