- ロ ト - 4 回 ト - 4 □ - 4

Stochastic Interacting Particle Systems and Quantum Spin Chains

Gunter M. Schütz

Overview: Classical stochastic many-body systems and quantum spin chains (Projector)

- 1. Markov Processes, master equation, and quantum systems
- 2. Matrix product states
- 3. Symmetry and duality
- 4. Large deviations and non-hermitian Hamiltonians

Outlook: Brief comments on large-scale behaviour (Projector)

Overview: Classical stochastic many-body systems and quantum spin chains

- Unpredictable time evolution of states
- Deterministic dynamics of probability (amplitude)
- No memory (interactions local in time)

Paradigmatic example: (A)symmetric Simple Exclusion Process

• Generator (ASEP)

$$\mathcal{L}f(\mathbf{n}) = \sum_{\ell=1}^{L} \left[g_{10} n_{\ell} (1 - n_{\ell+1}) + g_{01} n_{\ell+1} (1 - n_{\ell}) \right] \left[f(\mathbf{n}^{\ell,\ell+1}) - f(\mathbf{n}) \right]$$

• Quantum Hamiltonian (XXZ chain)

$$H = -\frac{1}{2} \sum_{\ell=1}^{L} \left[\sigma_{\ell}^{\mathsf{x}} \sigma_{\ell+1}^{\mathsf{x}} + \sigma_{\ell}^{\mathsf{y}} \sigma_{\ell+1}^{\mathsf{y}} + \sigma_{\ell}^{\mathsf{z}} \sigma_{\ell+1}^{\mathsf{z}} - \mathbf{1} + ig \left(\sigma_{\ell}^{\mathsf{x}} \sigma_{\ell+1}^{\mathsf{y}} - \sigma_{\ell}^{\mathsf{y}} \sigma_{\ell+1}^{\mathsf{x}} \right) \right]$$

 $(g_{10}=1+g,g_{01}=1-g)$

Overview

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

ASEP:
$$\eta = (n_1, ..., n_L), n_\ell \in \{0, 1\}$$

Observables: $A(\eta_t)$ such as $n_{\ell}(t)$ and sums of products Probability distribution: $P(\eta, t) = \operatorname{Prob}[\eta_t = \eta]$ Expectations: $\langle A \rangle_{P(t)} = \sum_{\eta} A(\eta) P(\eta, t)$ Stationary distribution(s): $P^*(\eta)$

XXZ: Choose
$$\boldsymbol{\sigma} = (\sigma_1^z, \dots, \sigma_L^z)$$
, $\sigma_\ell^z \in \{1, -1\}$

Observables: A(t) such as $\sigma_{\ell}^{\alpha}(t)$ and hermitian sums of products Probability amplitude: $\Psi(\sigma, t)$ with $\operatorname{Prob}[\sigma_t = \sigma] = |\Psi(\sigma, t)|^2$ Expectations: $\langle A \rangle_{\Psi(t)} = \sum_{\sigma} A(\sigma) |\Psi(\sigma, t)|^2$ Stationary distribution(s): Ground state(s) $\Psi^a st(\sigma)$

More general:

Density matrix: $\rho(t)$ (= above for $\rho(t) = |\Psi(t)\rangle\langle\Psi(t)|$) Expectations: $\langle A \rangle_{\rho(t)} = \text{Tr } A\rho(t)$ Stationary distributions: Any eigenvector, ρ^* any function of H

Overview

Equilibrium and non-equilibrium systems (I)

- Stochastic equilibrium processes:
- Boltzmann weight: $P^*(oldsymbol\eta) \propto \exp\left(-eta E(oldsymbol\eta)
 ight)$
- Reversibility (e.g. detailed balance $w_{\eta,\eta'}P^*(\eta') = w_{\eta',\eta}P^*(\eta))$
- Spectrum of generator real
- Quantum systems in equilibrium:
- Density matrix: $ho^*(oldsymbol\eta) \propto \exp\left(-eta {\sf H}
 ight)$
- H is hermitian
- Spectrum real

Equilibrium and non-equilibrium systems (II)

- Stochastic non-equilibrium processes:
- Stationary distribution $P^*(\eta)$ not given in terms of energy
- No reversibility

Overview

- Spectrum usually complex
- Quantum systems out of equilibrium:
- Density matrix: $ho^*(oldsymbol\eta)
 eq \exp\left(-eta \mathcal{H}
 ight)$
- Generator is non-hermitian
- Spectrum usually complex

Markov and Quantum in a nutshell:

No direct correspondence on the level of the process, but some mathematical equivalences on the level of expectations!

A little dictionary for classical stochastic and quantum dynamics

Concept	Classical	Quantum
state	probability vector $ P(t) \rangle$ $\langle s P(t) \rangle = 1$	wave function $ \Psi(t)\rangle$ $\langle \Psi(t) \Psi(t)\rangle = 1$
time evolution	Master equation $\frac{d}{dt} P(t)\rangle = -H P(t)\rangle$ Markov generator H	Schrödinger equation i $\frac{d}{dt} \Psi(t)\rangle = -H \Psi(t)\rangle$ Quantum Hamiltonian H
observable	Diagonal operator A $\langle A(t) \rangle = \langle s A P(t) \rangle$	Hermitian operator A $\langle A(t) \rangle = \langle \Psi(t) A \Psi(t) \rangle$
stationary states	$ \mathbf{P}^{\star}\rangle = \lim_{t \to \infty} \mathbf{P}(t)\rangle$	ground state of H, eigenvectors
spectrum	(inverse) relaxation times	energy gaps

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Common techniques and questions

Common techniques:

Common questions: Many, a few will be discussed...

Brief comments on large-scale behaviour

Non-linear fluctuating hydrodynamics (Spohn, 2014)

- Stochastic non-linear PDE for coarse-grained fluctuation fields
- Universal tool for translation invariant 1-d systems when
- short-range interactions, local conservation laws and currents

- slow variables relevant for long-time behavior = long-wavelength Fourier components of the conserved densities

 \Longrightarrow Hamiltonian dynamics, anharmonic chains, stochastic lattice gases, \ldots

• Quadratic non-linear terms leading, cubic terms only marginally relevant (and only if quadratic terms are absent), quartic and higher order irrelevant in RG sense.

Starting point

- Conservation law, LLN, local stationarity, Onsager-type symmetry
- \implies Euler scale: Hyperbolic system of conservation laws

$$rac{\partial}{\partial t}ec{
ho}(x,t)+\mathbf{ar{J}}rac{\partial}{\partial x}ec{
ho}(x,t)=0$$

with current Jacobian $\mathbf{\bar{J}}(x,t) = \mathbf{J}(\vec{
ho}(x,t))$

- Expand around stationary solution $ho^\lambda(x,t)=
 ho^\lambda+u^\lambda(x,t)$
- Transform to normal modes $\vec{\phi} = \mathbf{R}\vec{u}$ where $\mathbf{RJR}^{-1} = \operatorname{diag}(v_{\alpha})$ for $\mathbf{J} \equiv \mathbf{J}(\vec{\rho})$ and R normalized such that $\mathbf{RKR}^T = \mathbb{1}$
- \implies Coupled Burgers equations

$$\partial_t \phi^{\alpha} = -\partial_x \left(\mathbf{v}_{\alpha} \phi^{\alpha} + \langle \vec{\phi}, \mathbf{G}^{\alpha} \vec{\phi} \rangle \right)$$

First and second order in ϕ^{α}

• First order only: Travelling waves $\phi^{\alpha}(x,t) = \phi_0^{\alpha}(x-v_{\alpha}t)$ with initial data $\phi^{\alpha}(x,0) = \phi_0^{\alpha}(x)$

 \implies v_{α} = cms velocity of fluctuation field α

• Second order nonlinearity:

Mode coupling matrices $\mathbf{G}^{\alpha} = \frac{1}{2} \sum_{\lambda} R_{\alpha\lambda} (\mathbf{R}^{-1})^{T} \mathbf{H}^{\lambda} \mathbf{R}^{-1}$

Mode-coupling coefficients $G^{\alpha}_{\beta\gamma}$ determined by the current Hessians \mathbf{H}^{λ} with $\mathbf{H}^{\lambda}_{\alpha\beta} = \frac{\partial^2}{\partial \rho^{\alpha} \partial \rho^{\beta}} j^{\lambda}$

 \implies Coarse-grained evolution equation fully determined by macroscopic stationary current and compressibility!

Fluctuations

- System of conservation laws deterministic
- Add phenomenological diffusion term and noise to current:

 \implies Coupled noisy Burgers equations

$$\partial_t \phi^{\alpha} = -\partial_x \left(\mathbf{v}_{\alpha} \phi^{\alpha} + \langle \vec{\phi}, \mathbf{G}^{\alpha} \vec{\phi} \rangle - \partial_x (\mathbf{D} \vec{\phi})^{\alpha} + \xi^{\alpha} \right)$$

 \bullet equivalent to coupled KPZ equations with $\phi^{\alpha}=\partial_{\rm x} h^{\alpha}$

 $\star\star$ Basis for discussing dynamical structure functions

$$\mathcal{S}^{lphaeta}(x,t)=\langle\,\phi^lpha(x,t)\phi^eta(0,0)\,
angle$$

in generic one-dimensional conservative systems with short-range interactions and local conservation laws and currents $\star\star$

Mode-coupling theory

- Postulate Gaussian stationary distribution for height variables (can be proved on discretized level for "trilinear relation" $G^{\alpha}_{\beta\gamma} = G^{\beta}_{\alpha\gamma}) \Longrightarrow$ Wick theorem
- \bullet Consider strictly hyperbolic case (non-degenerate ${\bf J})$
- \implies Off-diagonal $S^{lphaeta}$ as well as products $S^{lphalpha}S^{etaeta}$ decay quickly
- \Longrightarrow One-loop mode coupling equation for $S_lpha\equiv S^{lphalpha}$

 $\partial_t S_{\alpha}(x,t) = \hat{D}_{\alpha} S_{\alpha}(x,t) + \int_0^t \mathrm{d}s \int_{-\infty}^\infty \mathrm{d}y \, S_{\alpha}(x-y,t-s) M_{\alpha}(y,s)$

Linear diffusion operator $\hat{D}_{lpha}=-v_{lpha}\partial_{x}+D_{lpha}\partial_{x}^{2}$

Nonlinear memory kernel $M_{\alpha}(y,s) = 2\partial_y^2 \sum_{\beta} \left(\mathcal{G}_{\beta\beta}^{\alpha} \mathcal{S}_{\beta}(y,s) \right)^2$

Fibonacci universality classes

Define the set $\mathbb{I}_{\alpha} := \{\beta : G^{\alpha}_{\beta\beta} \neq 0\}$ of modes β that give rise to a non-linear term in the time-evolution of mode α

Theorem (Popkov, Schadschneider, Schmidt, GMS, 2016)

a) Scaling solution of mode coupling equation for |p| > 0:

• Case 1: $\mathbb{I}_{\alpha} = \emptyset \Longrightarrow$ Dynamical exponent $z_{\alpha} = 2$, Scaling form $\hat{S}_{\alpha}(p,t) = \frac{1}{\sqrt{2\pi}} e^{-iv_{\alpha}pt - D_{\alpha}p^{2}t}$ (Diffusion)

• Case 2: $\alpha \notin \mathbb{I}_{\alpha}, \mathbb{I}_{\alpha} \neq \emptyset \Longrightarrow$ Dynamical exponents satisfy nonlinear recursion $z_{\alpha} = \min_{\beta \in \mathbb{I}_{\alpha}} \left[\left(1 + \frac{1}{z_{\beta}} \right) \right]$, Scaling form $\hat{S}_{\alpha}(p, t) = \frac{1}{\sqrt{2\pi}} e^{\left(-iv_{\alpha}pt - E_{\alpha}|p|^{z_{\alpha}}t\left[1 - iA_{\alpha}\tan\left(\frac{\pi z_{\alpha}}{2}\right) \operatorname{sgn}(p) \right] \right)}$ (Lévy)

 A_{α}, E_{α} : Determined by mode coupling coefficients and diffusion constants

Theorem (cont')

Case 3a: $\alpha \in \mathbb{I}_{\alpha}$, no diffusive mode $\beta \in \mathbb{I}_{\alpha} \Longrightarrow$ Dynamical exponent $z_{\alpha} = 3/2$

Case 3b: $\alpha \in \mathbb{I}_{\alpha}$, at least one diffusive mode $\beta \in \mathbb{I}_{\alpha} \Longrightarrow$ Dynamical exponent $z_{\alpha} = 3/2$

b) Unique solution of non-linear recursion for dynamical exponents: Kepler ratios of Fibonacci numbers $z_{\alpha} = F_{i+1}/F_i$ for some $i(\alpha)$, starting from z = 2 (coupling to diffusive mode), or z = 3/2(coupling to KPZ mode) or Golden mean $\phi = (1 + \sqrt{5})/2$ (else)

Numerically well-founded conjectures:

- Case 3a: Scaling form: Prähofer-Spohn function (KPZ), Case 3b: Scaling form: Unknown (modified KPZ) [Spohn, Stoltz (2015)]
- Fibonacci exponents exact, scaling forms universal

Fluctuating quantum hydrodynamics?

Consider only one conservation law and only steady state:

- Hydrodynamic (large-scale) theory for classical systems (one conservation law): Local equilibrium at density *ρ*(*x*)
- → Stationary current J and density profile ρ(x) determined by D and boundary densities ρ[±] via stationary diffusion equation

 $\partial_x \left[D(\rho(x)) \ \partial_x \rho(x) \right] = 0$

- Fluctuating Hydrodynamics (Spohn, 1983):
- → Long-range stationary density correlations

Example: Symmetric simple exclusion process $r = l = D(\rho)$

 $J = -D (\rho^{+} - \rho^{-})/L, \quad \rho(x) = \rho^{-} - J/D x \quad C(x,y) = -1/L x (1-y) (\rho^{+} - \rho^{-})^{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Boundary-driven XXZ-chain:

Maximal driving in XXZ quantum chain $\theta = \pi$:

Maximal driving in $\pm x$ -direction, rotation-invariant around *x*-axis, [Prosen (2011) and Buca and Prosen (2016)]

- Currents: $J^{x} = 4\pi^{2}/N^{2}$, $J^{y} = 0$ $J^{z} = 0$
- · Magnetization profiles and correlations:

$$m^{x}(u) = \cos(\pi u), \quad m^{y}(u) = m^{z}(u) = 0$$

$$C^{xx}(u_{1}, u_{2}) = -\frac{1}{N} \frac{u_{1}(1 - u_{2})}{u_{2}} \pi^{2} C^{\text{perp}}(u_{1}, u_{2}) \implies SSEP \text{ correlation}$$

$$C^{zz}(u_{1}, u_{2}) = C^{yy}(u_{1}, u_{2}) = : C^{\text{perp}}(u_{1}, u_{2}) = \frac{1}{2} \sin(\pi u_{1}) \sin(\pi u_{2})$$

 \Rightarrow Many open questions ...