6. Blatt zur Analysis I

Abgabe: 28.11.–30.11.11 in den Übungen

1. Aufgabe (4 Punkte)

Sei $k \in \mathbb{N}$ und seien a > 0 und $x_1 > 0$ reelle Zahlen. Die Folge $(x_n)_{n \in \mathbb{N}}$ werde rekursiv definiert durch

 $x_{n+1} = \frac{1}{k} \left((k-1)x_n + \frac{a}{x_n^{k-1}} \right), \ n \in \mathbb{N}.$

Zeige, dass die Folge konvergent ist, und berechne ihren Grenzwert.

2. Aufgabe (2 Punkte)

Berechne die Häufungswerte der Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ definiert durch

$$a_n = \frac{n}{n+1} \sin\left(\frac{n\pi}{2}\right)$$
 , $b_n = \left(1 + \frac{\cos(n\pi)}{n}\right)^n$.

3. Aufgabe (6 Punkte)

Berechne

(a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{3^k}$$
 , (b) $\sum_{k=2}^{\infty} \frac{1}{4^{k-1}}$, (c) $\sum_{k=1}^{\infty} \frac{4}{5^k}$, (d) $\sum_{k=1}^{\infty} \frac{k^2 + 2k + 5}{k!}$.

Zeige

(e)
$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2}$$
 , (f) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)} = \frac{1}{4}$.

Zusatzaufgabe (+ 4 Punkte)

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine beliebige Folge und $(b_n)_{n\in\mathbb{N}}$ eine monoton steigende Folge mit $\lim_{n\to\infty}b_n=\infty$. Zeige: Existiert $\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ in $\overline{\mathbb{R}}$, dann existiert $\lim_{n\to\infty}\frac{a_n}{b_n}$ in $\overline{\mathbb{R}}$ und $\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$.
- (b) Studiere mit Hilfe von (a) die Konvergenz der Folgen:
 - (i) $\left(\frac{a^n}{n}\right)_{n\in\mathbb{N}}$, $a\geqslant 0$ fest;
 - (ii) $\left(\frac{1^p + 2^p + \ldots + n^p}{n^{p+1}}\right)_{n \in \mathbb{N}}, p \in \mathbb{N} \text{ fest};$
 - (iii) $\left(\frac{x_1+x_2+\ldots+x_n}{n}\right)_{n\in\mathbb{N}}$, wobei $(x_n)_{n\in\mathbb{N}}$ einen Grenzwert in $\overline{\mathbb{R}}$ besitzt.