Let (M^{2n}, ω) be a compact symplectic manifold of dimension 2n. Assume that a (n-1)-dimensional torus T^{n-1} acts effectively on (M^{2n}, ω) in a Hamiltonian fashion with moment map $\phi: M^{2n} \to \text{Lie}^*(T^{n-1})$. Then $(M^{2n}, \omega, T^{n1}, \phi)$ is called a complexity one space.

In this talk, we focus on a specific class of complexity one spaces, namely those which are tall and monotone. We give a complete classification of these spaces for n = 3 and show that the T^2 -action can be extended to an effective Hamiltonian T^3 -action in that case. This talk is based on joint work with Silvia Sabatini and Daniele Sepe.