Funktionentheorie

Übungsblatt 5

Bitte beachten Sie die nicht-kanonische Abgabezeit aufgrund des Feiertages!

Aufgabe 1. Seien G ein Gebiet in $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ und $f \colon G \to \hat{\mathbb{C}}$ eine meromorphe Funktion mit einem Pol der Ordnung n in z_0 . Zeigen Sie, daß es dann eine Umgebung $U \subset G$ von z_0 und eine Umgebung V von ∞ gibt. so daß $f|_U$ den Wert ∞ nur in z_0 und jeden Wert in $V \setminus \{\infty\}$ genau n-mal annimmt.

Aufgabe 2. Es seien p und q komplexe Polynome ohne gemeinsame Nullstellen, so daß der Grad von p oder q mindestens 2 ist. Sei $U = \{z \in \mathbb{C} \colon q(z) \neq 0\}$. Zeigen Sie, daß die rationale Funktion f = p/q auf U nicht injektiv ist.

Aufgabe 3. Seien G ein Gebiet und $K \subset G$ eine kompakte Teilmenge mit nichtleerem Inneren Int(K). Weiter sei $f \in \mathcal{O}(G)$ eine nichtkonstante Funktion, deren Betrag |f| auf $K \setminus Int(K)$ konstant ist. Zeigen Sie, daß f eine Nullstelle in K hat.

Aufgabe 4.

- (a) Unter einem Kreis auf der 2-Sphäre S^2 verstehen wir die Schnittmenge von S^2 mit einer Ebene in \mathbb{R}^3 (sofern der Schnitt aus mehr als einem Punkt besteht). Zeigen Sie, daß unter der stereographischen Projektion jeder Kreis in S^2 auf einen Kreis oder auf eine Gerade in \mathbb{R}^2 abgebildet wird.
- (b) Die stereographische Projektion $h_+\colon S^2\setminus\{(0,0,1)\}\to\mathbb{C}$ erlaubt eine Identifikation von $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ mit S^2 , indem der Punkt ∞ mit (0,0,1) identifiziert wird. Dies definiert eine Topologie auf $\hat{\mathbb{C}}$. Zeigen Sie, daß in dieser Topologie die offenen Mengen in $\hat{\mathbb{C}}$ genau die offenen Mengen in \mathbb{C} und die Komplemente $\hat{\mathbb{C}}\setminus K$ kompakter Mengen $K\subset\mathbb{C}$ sind.

Bonusaufgabe. Gibt es eine holomorphe Funktion f, die in einer Umgebung von 0 definiert ist, so daß für fast alle natürlichen Zahlen n eine der folgenden Bedingungen gilt?

(a)
$$f(1/n) = (-1)^n 1/n$$
,

(b)
$$|f(1/n)| \le e^{-n}$$
, $f \ne 0$.