Differentialtopologie

Übungsblatt 12

Aufgabe 1. Sei M_i eine zusammenhängende m-dimensionale Mannigfaltigkeit und $f_i \colon \mathbb{R}^m \to M_i$ eine Einbettung, i = 1, 2. Zeigen Sie, daß die verbundene Summe $M_1 \# M_2(f_1, f_2)$ diffeomorph ist zu der Randverheftung

$$(M_1 \setminus f_1(\frac{1}{2}\operatorname{Int}(D^m))) \cup_{\varphi} (M_2 \setminus f_2(\frac{1}{2}\operatorname{Int}(D^m))),$$

wobei

$$\varphi \colon \quad f_1(\frac{1}{2}\partial D^m) \quad \longrightarrow \quad f_2(\frac{1}{2}\partial D^m)$$

$$x \quad \longmapsto \quad f_2 \circ f_1^{-1}(x).$$

Aufgabe 2. Läßt sich die verbundene Summe einer endlichen Anzahl von Kopien von \mathbb{R}^n in den \mathbb{R}^n einbetten?

Aufgabe 3. (a) Zeigen Sie, daß der reell projektive Raum $\mathbb{R}P^n$ genau dann orientierbar ist, wenn n ungerade ist.

(b) Sei n ungerade und M eine zusammenhängende Mannigfaltigkeit der Dimension n. Zeigen Sie, daß der Diffeomorphietyp von $\mathbb{R}P^n\#M$ unabhängig von der Wahl der Orientierungen auf den beiden Summanden ist.

Aufgabe 4. Sei (E, π, M) ein differenzierbares Vektorbündel vom Rang k, d.h. die Dimension der Fasern E_p , $p \in M$, ist k. Bezeichne mit P(E) die Menge der 1-dimensionalen Teilräume der Fasern von E. Schreibe $[v] \in P(E)$ für den durch $v \in E_p \setminus \{0\}$ repräsentierten Teilraum der Faser E_p . Die natürliche Projektion $P(E) \to M$, $[v] \mapsto \pi(v)$ sei mit π_P bezeichnet.

Zeigen Sie:

- (a) P(E) trägt in natürlicher Weise die Struktur einer differenzierbaren Mannigfaltigkeit. Die Projektion π_P gibt P(E) die Struktur eines Bündels über M mit Faser $\mathbb{R}P^{k-1}$.
- (b) Durch

$$\eta(E) := \{ ([v], \lambda v) \in P(E) \times E \colon v \in E \setminus \{\text{Nullschnitt}\}, \lambda \in \mathbb{R} \}$$

und die Projektion

$$\begin{array}{cccc} \pi_{\eta} \colon & \eta(E) & \longrightarrow & P(E) \\ & \left([v], \lambda v \right) & \longmapsto & [v] \end{array}$$

ist ein Geradenbündel über P(E) definiert, das sogenannte kanonische Geradenbündel (vergl. Übungsblatt 8).

(c) Durch die kanonische Abbildung

$$\begin{array}{ccc} \eta(E) & \longrightarrow & E \\ \left([v], \lambda v\right) & \longmapsto & \lambda v \end{array}$$

ist ein Diffeomorphismus

$$\eta(E) \setminus \{\text{Nullschnitt}\} \longrightarrow E \setminus \{\text{Nullschnitt}\}$$

gegeben; das Urbild des Nullschnittes $M \subset E$ unter dieser kanonischen Abbildung ist P(E). Man sagt: $\eta(E)$ entsteht aus E durch Aufblasen des Nullschnittes.