Mathematik II

(für Physiker und Lehramtskandidaten)

Übungsblatt 9

Aufgabe 1. (a) Verwenden Sie die Beziehung zwischen Differentialgleichungen der Ordnung n auf \mathbb{R} und Differentialgleichungen erster Ordnung auf \mathbb{R}^n um zu zeigen, daß sich der Lösungsansatz für inhomogene lineare Differentialgleichungen auf \mathbb{R}^n wie folgt in ein Lösungsverfahren der inhomogenen Gleichung

$$x^{(n)} + a_{n-1}x^{(n-1)} + \ldots + a_1\dot{x} + a_0x = b(t)$$
 (*)

übersetzt, wobei $a_0, \ldots, a_{n-1} \in \mathbb{R}$ und $b \in C^0(\mathbb{R})$ gegeben seien:

Ist α_1,\dots,α_n ein Lösungsfundamentalsystem der zugehörigen homogenen Gleichung

$$x^{(n)} + a_{n-1}x^{(n-1)} + \ldots + a_1\dot{x} + a_0x = 0,$$

so ist $\alpha_1 u_1 + \ldots + \alpha_n u_n$ eine Lösung von (\star) , wobei die Funktionen $u_i \in C^1(\mathbb{R})$ mittels der Gleichung

$$\begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ \dot{\alpha}_1 & \dots & \dot{\alpha}_n \\ \vdots & & \vdots \\ \alpha_1^{(n-1)} & \dots & \alpha_n^{(n-1)} \end{pmatrix} \begin{pmatrix} \dot{u}_1 \\ \vdots \\ \dot{u}_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b \end{pmatrix}$$

gefunden werden.

(b) Finden Sie mittels des in (a) beschriebenen Verfahrens eine Lösung der Differentialgleichung

$$\ddot{x} + \omega^2 x = A e^{i\omega_0 t}.$$

wobei $A, \omega, \omega_0 \in \mathbb{R}^+$ gegeben seien. Beschreiben Sie das unterschiedliche qualitative Verhalten der Lösung, je nachdem ob $\omega_0 = \omega$ oder $\omega_0 \neq \omega$.

Aufgabe 2. Die Funktionen $f,g: \mathbb{R}^3 \to \mathbb{R}$ seien wie folgt definiert:

$$f(x, y, z) = x^{2} + xy - y - z,$$

$$q(x, y, z) = 2x^{2} + 3xy - 2y - 3z.$$

Zeigen Sie, daß

$$C := \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = g(x, y, z) = 0\}$$

eine eindimensionale Untermannigfaltigkeit des \mathbb{R}^3 ist, und daß durch $t\mapsto (t,t^2,t^3),\ t\in\mathbb{R}$, eine globale Karte von C gegeben ist.

b.w.

Aufgabe 3. Seien $a \in \mathbb{R}^+$ und $b \in \mathbb{R}$ gegeben. Ein System aus zwei Massepunkten im festen Abstand a möge sich im \mathbb{R}^2 so bewegen, daß die Position $x = (x_1, x_2)$ des ersten Massepunktes immer die Gleichung $x_1^2 - x_2^2 = b$ erfüllt.

Beschreiben Sie den Konfigurationsraum M des Systems als Teilmenge von $\mathbb{R}^2 \times \mathbb{R}^2$, und bestimmen Sie, für welche $b \in \mathbb{R}$ der Konfigurationsraum M eine Untermannigfaltigkeit von $\mathbb{R}^2 \times \mathbb{R}^2$ ist.

Aufgabe 4. Sei $f: \mathbb{R}^n \to \mathbb{R}^{n-k}$ eine differenzierbare Abbildung. Ein Wert $c \in \mathbb{R}^{n-k}$ heißt **regulär**, falls die Jacobische Matrix $J_f(a)$ in allen Punkten $a \in f^{-1}(c)$ den maximalen Rang n-k hat, mit anderen Worten, wenn das Differential $d_a f$ surjektiv ist für alle $a \in f^{-1}(c)$. Unter dieser Bedingung ist $f^{-1}(c)$, sofern dieses Urbild von c nicht die leere Menge ist, eine k-dimensionale Untermannigfaltigkeit des \mathbb{R}^n . In dieser Aufgabe wollen wir zeigen, daß die orthogonale Gruppe O(n) eine Mannigfaltigkeit der Dimension n(n-1)/2 ist.

Sei dazu $\mathbb{R}^{n \times n}$ der Vektorraum der reellen $(n \times n)$ -Matrizen und \mathcal{S} die Menge der symmetrischen reellen $(n \times n)$ -Matrizen.

- (a) Zeigen Sie, daß S ein reeller Vektorraum der Dimension n(n+1)/2 ist.
- (b) Betrachte die Abbildung

$$f \colon \quad \mathbb{R}^{n \times n} \quad \longrightarrow \quad \mathcal{S}$$

$$A \quad \longmapsto \quad AA^t.$$

Zeigen Sie, daß diese Abbildung differenzierbar ist, und daß ihr Differential $d_A f$ beschrieben wird durch

$$d_A f(h) = Ah^t + hA^t$$
 für $h \in \mathbb{R}^{n \times n}$.

(c) Zeigen Sie, daß für $A \in O(n) = f^{-1}(E)$ dieses Differential surjektiv ist. Bestimmen Sie dazu für $B \in \mathcal{S}$ explizit eine Matrix $h \in \mathbb{R}^{n \times n}$, für die $Ah^t + hA^t = B$ gilt.

Man kann auch zeigen, daß die Gruppenoperationen (Multiplikation und Inversenbildung) differenzierbare Abbildungen sind. Eine (differenzierbare) Mannigfaltigkeit, die gleichzeitig eine Gruppenstruktur mit dieser Differenzierbarkeitseigenschaft besitzt, nennt man *Liesche Gruppe* (nach Sophus Lie, 1842–1899).

Aufgabe 5. Die für die spezielle Relativitätstheorie bedeutsame Lorentz-Gruppe O(3,1) ist die Gruppe der reellen (4×4) -Matrizen A, die der Gleichung $A^tDA = D$ genügen, wobei D die Diagonalmatrix mit Diagonaleinträgen (1,1,1,-1) ist. Zeigen Sie mit Methoden wie in der vorangegangenen Aufgabe, daß O(3,1) eine 6-dimensionale Untermannigfaltigkeit von $\mathbb{R}^{4\times 4}$ ist.

Abgabe: Freitag 8.6.12, bis spätestens 14 Uhr in den Briefkästen im Keller des Mathematischen Instituts.