Differentialtopologie II

Übungsblatt 5

Aufgabe 1. Sei $f: M \to \mathbb{R}^n$ eine differenzierbare Abbildung und $N \subset \mathbb{R}^n$ eine differenzierbare Untermannigfaltigkeit. Zeigen Sie, daß es zu jedem $\varepsilon \in \mathbb{R}^+$ ein $v \in \mathbb{R}^n$ mit $||v|| < \varepsilon$ gibt, so daß die Abbildung

$$\begin{array}{ccc} M & \longrightarrow & \mathbb{R}^n \\ x & \longmapsto & f(x) + v \end{array}$$

transversal zu N ist.

Aufgabe 2. Sei $M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} P$ eine Folge von differenzierbaren Abbildungen zwischen orientierten, differenzierbaren Mannigfaltigkeiten, und sei $L \subset P$ eine orientierte Untermannigfaltigkeit. Formulieren Sie die Bedingungen, unter denen die Schnittzahl $\#(g \circ f, L)$ definiert ist. Zeigen Sie, daß dann auch die Schnittzahl $\#(f, g^{-1}(L))$ definiert ist, und daß die beiden Schnittzahlen übereinstimmen.

Aufgabe 3. Seien M, N, W geschlossene, orientierte Mannigfaltigkeiten mit dim M + dim N = dim W. Die **Schnittzahl** zweier differenzierbarer Abbildungen $f \colon M \to W$ und $g \colon N \to W$ ist definiert als

$$\#(f, g) := \#(f \times g, \Delta),$$

wobei Δ die Diagonale in $W \times W$ bezeichnet. Zeigen Sie:

- (a) Die Schnittzahl hängt nur von den Homotopieklassen von f und g ab.
- (b) Ist g eine Einbettung, so gilt #(f,g) = #(f,g(N)).
- (c) $\#(g,f) = (-1)^{\dim M \cdot \dim N} \#(f,g)$.

Aufgabe 4. (a) Zeigen Sie, daß zwei orientierte 2-dimensionale Vektorbündel über S^2 genau dann isomorph sind, wenn die Selbstschnittzahlen der Nullschnitte gleich sind.

(b) Konstruieren Sie zu jeder ganzen Zahl k ein zweidimensionales Vektorbündel über S^2 (z.B. durch Angabe von Bündelkarten), dessen Nullschnitt die Selbstschnittzahl k hat.

Bonusaufgabe. Gilt die Aussage (a) aus Aufgabe 4 auch für 2-dimensionale Vektorbündel über einer beliebigen geschlossenen Fläche?