Funktionentheorie

Übungsblatt 11

Aufgabe 1. Es sei G ein beschränktes Gebiet, und \overline{G} bezeichne dessen Abschluß. Es sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen $f_n\colon \overline{G}\to\mathbb{C}$, die auf G holomorph und auf \overline{G} stetig sind. Zeigen Sie: Falls die Folge auf $\overline{G}\setminus G$ gleichmäßig konvergiert, dann konvergiert die Folge sogar gleichmäßig auf ganz \overline{G} . Zeigen Sie außerdem, daß in diesem Fall die Grenzfunktion wieder holomorph auf G und stetig auf \overline{G} ist.

Aufgabe 2. Zeigen Sie, daß die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{z^{2^n} - z^{-2^n}}$$

auf $\mathbb{C}^* \setminus \{|z| = 1\}$ lokal gleichmäßig konvergiert, und bestimmen Sie die Grenzfunktion.

Hinweis: Schreiben Sie den Quotienten $1/(z^{2^n}-z^{-2^n})$ in geeigneter Weise als Differenz, so daß sich für die Partialsummen eine Teleskopsumme ergibt.

Aufgabe 3. Nach dem Satz von Hurwitz (Satz 7.2) kann die Anzahl der Nullstellen im Grenzwert einer lokal gleichmäßig konvergenten Folge nicht zunehmen. Das heißt, ist $(f_n)_{n\in\mathbb{N}}$ eine Folge holomorpher Funktionen auf einem Gebiet G, die lokal gleichmäßig gegen $f \in \mathcal{O}(G)$ konvergiert, und hat jede der Funktionen f_n höchstens m Nullstellen in G, so hat auch f höchstens m Nullstellen (oder ist identisch 0).

Umgekehrt kann die Anzahl der Nullstellen beim Übergang zur Grenzfunktion aber durchaus abnehmen. Konstruieren Sie dazu für jede Zahl $k \in \mathbb{N} \cup \{\infty\}$ ein Beispiel einer Folge (f_n) holomorpher Funktionen auf der offenen Einheitskreisscheibe $D_1(0)$, die lokal gleichmäßig gegen eine holomorphe Funktion f konvergiert, mit der Eigenschaft, daß jede Funktion f_n genau k Nullstellen besitzt (mit Vielfachheit gezählt), die Grenzfunktion f aber keine Nullstellen hat.

Aufgabe 4.* Zeigen Sie, daß für Rez > 1 durch

$$\zeta(z) := \sum_{n=1}^{\infty} \frac{1}{n^z}$$

eine holomorphe Funktion definiert ist, wobei $n^z := \exp(z \log n)$. Diese Funktion heißt **Riemann-sche Zetafunktion** und spielt u.a. in der Zahlentheorie eine wichtige Rolle. Finden Sie eine Reihendarstellung für die Ableitung $\zeta'(z)$.

* Die gesternten Aufgaben werden nicht korrigiert oder bepunktet. In der Folgewoche erhalten Sie aber dennoch eine Lösungsskizze, so daß diese Aufgaben der Selbstkontrolle (oder dem reinen mathematischen Vergnügen) dienen.