Einführung in die Riemannsche, Symplektische und Kontaktgeometrie

Übungsblatt 1

Aufgabe 1. Der Vektorraum \mathcal{M} aller $(n \times n)$ -Matrizen kann mit \mathbb{R}^{n^2} identifiziert werden, der Vektorraum \mathcal{S} der *symmetrischen* $(n \times n)$ -Matrizen (d.h. Matrizen $A \in \mathcal{M}$ mit $A^{\mathfrak{t}} = A$) mit $\mathbb{R}^{n(n+1)/2}$, indem man z.B. die Einträge a_{ij} mit $i \leq j$, d.h. auf und oberhalb der Diagonale, als Koordinaten nimmt. Durch $A \mapsto A^{\mathfrak{t}}A$ ist eine Abbildung $f \colon \mathcal{M} \to \mathcal{S}$ definiert.

- (a) Zeigen Sie, daß f differenzierbar ist, und daß das Differential $d_A f$ gegeben ist durch $d_A f(h) = A^{\dagger} h + h^{\dagger} A \in \mathcal{S}$.
- (b) Sei E die $(n \times n)$ -Einheitsmatrix. Zeigen Sie, daß $d_A f \colon \mathcal{M} \to \mathcal{S}$ in jedem Punkt $A \in \mathrm{O}(n)$ der orthogonalen Gruppe $\mathrm{O}(n) := f^{-1}(E) \subset \mathcal{M}$ surjektiv ist.
- (c) Folgern Sie, daß O(n) eine Mannigfaltigkeit der Dimension n(n-1)/2 ist.
- (d) Die Matrixmultiplikation gibt O(n) eine Gruppenstruktur. Zeigen Sie, daß die Gruppenoperationen (Multiplikation und Inversenbildung) differenzierbare Abbildungen $O(n) \times O(n) \rightarrow O(n)$ bzw. $O(n) \rightarrow O(n)$ sind. Eine (differenzierbare) Mannigfaltigkeit, die gleichzeitig eine Gruppenstruktur mit dieser Differenzierbarkeitseigenschaft besitzt, nennt man **Liesche Gruppe** (nach Sophus Lie, 1842–1899).

Aufgabe 2. Wir schreiben die kartesischen Koordinaten auf dem \mathbb{R}^{n+1} als $(x^1, \dots, x^n, y) = (\mathbf{x}, y)$. Tangentialvektoren notieren wir entsprechend als $(\xi^1, \dots, \xi^n, \eta) = (\xi, \eta)$. Die **Minkowski-Metrik** m auf dem \mathbb{R}^{n+1} ist definiert durch

$$m((\boldsymbol{\xi}_1, \eta_1), (\boldsymbol{\xi}_2, \eta_2)) := \sum_{i=1}^n \xi_1^i \xi_2^i - \eta_1 \eta_2.$$

(a) Zeigen Sie, daß

$$M := \{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} \colon |\mathbf{x}|^2 - y^2 = -1, y > 0 \},$$

das 'obere Blatt' des zweiblättrigen Hyperboloids, eine Untermannigfaltigkeit des \mathbb{R}^{n+1} ist.

(b) Aus der Analysis wissen wir, daß der Tangentialraum T_pM an die Hyperfläche $M \subset \mathbb{R}^{n+1}$ gegeben ist durch das orthogonale Komplement von grad f(p) (bzgl. des Standardskalarproduktes auf dem \mathbb{R}^{n+1}), wobei f eine definierend Funktion der Hyperfläche ist, d.h. $M = \{f = 0\}$. Benutzen Sie dies, um zu zeigen:

$$T_{(\mathbf{x},y)}M = \left\{ (\boldsymbol{\xi},\eta) \in \mathbb{R}^{n+1} \colon \, m\big((\mathbf{x},y),(\boldsymbol{\xi},\eta)\big) = 0 \right\} \; \text{ für } (\mathbf{x},y) \in M.$$

- (b') Zeigen Sie die Aussage in (b) alternativ dadurch, daß Sie Kurven γ in M betrachten und eine Bedingung an deren Geschwindigkeitsvektoren $\dot{\gamma}$ herleiten.
- (c) Beachten Sie, daß die Minkowski-Metrik keine Riemannsche Metrik ist, dam nicht positiv definit ist. Zeigen Sie mittels des aus der Linearen Algebra bekannten Trägheitssatzes von Sylvester, daß die Minkowski-Metrik aber eine Riemannsche Metrik auf M induziert, d.h. die Einschränkung der symmetrischen Bilinearform m auf $T_{(\mathbf{x},y)}M$ ist in der Tat positiv definit.

Aufgabe 3. Wir betrachten die Riemannsche Mannigfaltigkeit \mathbb{E}^n , d.h. den \mathbb{R}^n mit der durch das Standardskalarprodukt gegebenen Riemannschen Metrik $g_{\mathbb{R}^n}$.

(a) Sei E(n) die Menge der reellen $((n+1)\times(n+1))$ -Matrizen der Form

$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$
,

mit $A \in O(n)$ und $b \in \mathbb{R}^n$ (aufgefaßt als Spaltenvektor). Zeigen Sie, daß E(n) eine Liesche Untergruppe der Gruppe $GL(n+1,\mathbb{R})$ der invertierbaren reellen $((n+1)\times(n+1))$ -Matrizen ist. Wir nennen E(n) die **euklidische Gruppe**.

(b) Definiere eine Abbildung $E(n) \times \mathbb{R}^n \to \mathbb{R}^n$, indem wir \mathbb{R}^n identifizieren mit

$$M := \{ (\mathbf{x}, 1) \in \mathbb{R}^{n+1} \colon \mathbf{x} \in \mathbb{R}^n \},$$

und die lineare Wirkung von E(n) auf dem \mathbb{R}^{n+1} einschränken auf die Teilmenge M. Zeigen Sie, daß dies eine differenzierbare, isometrische Wirkung auf \mathbb{E}^n definiert (d.h. jedes Element von E(n) wirkt als Isometrie bzgl. $g_{\mathbb{E}^n}$).

(c) Zeigen Sie, daß E(n) transitiv auf dem \mathbb{R}^n wirkt, und daß sich jede gegebene orthonormale Basis von Tangentialvektoren in einem Punkt $p \in \mathbb{R}^n$ auf jede andere solche Basis mittels des Differentials eines geeigneten Elementes aus dem Stabilisator $E(n)_p$ abbilden läßt, d.h. \mathbb{E}^n ist homogen und isotrop.

Aufgabe 4. Zeigen Sie, daß ein Diffeomorphismus $\varphi \colon (M_1,g_1) \to (M_2,g_2)$ genau dann eine konforme Abbildung ist, d.h. $\varphi^*g_2 = \lambda g_1$ für eine Funktion $\lambda \in C^{\infty}(M_1)$, wenn das Differential $T\varphi$ winkeltreu ist, d.h.

$$\angle_2(T_p\varphi(X),T_p\varphi(Y))=\angle_1(X,Y)$$
 für alle $p\in M_1$ und $X,Y\in T_pM_1$,

wobei \angle_i den bzgl. g_i gemessenen Winkel bezeichnet.