Geometrische Topologie

Übungsblatt 4

Aufgabe 1. (a) Write the torus knot $T(p, q)$ (see Übungsblatt 3) as the closure of a suitable braid. Use this description to show that $T(2,3)$ and $T(3,2)$ are isotopic to the (left- or righthanded?) trefoil knot (Kleeblattknoten). How does one obtain the other trefoil as the closure of a braid?
(b) Give an example of a braid $b \in B_{n}$ with the property that $\sigma(b) \in S_{n}$ is a permutation of order n, but the closure $\beta(b)$ is not a knot. (There is an example with $n=6$.)
(c) Show that $b:=b_{1} b_{2}^{-1} b_{3}^{2} b_{4}^{-2} b_{2}^{-1} b_{1} \in B_{5}$ is a pure braid, i.e. $b \in K_{5}$. Write b as a product of the generators $b_{i j}$ (and their inverses) of K_{5}.

Aufgabe 2. Let $f_{i}, g_{i}: X \rightarrow X, i=0,1$, be homeomorphisms of a topological space X, with f_{0} isotopic to f_{1}, and g_{0} isotopic to g_{1}. Show that $f_{0} \circ g_{0}$ is isotopic to $f_{1} \circ g_{1}$. Use this to explain how one obtains a group structure on the set of isotopy classes of homeomorphisms $X \rightarrow X$. (In the lectures we used this, for example, to define the group H_{n} of isotopy classes of homeomorphisms of D^{2} with n open discs removed.)

Aufgabe 3. Let p, q be coprime integers with $p \geq 2$. Regard S^{3} as the unit sphere in \mathbb{C}^{2}. Show the following:
(a) The map

$$
\sigma(z, w)=\left(\mathrm{e}^{2 \pi \mathrm{i} / p} z, \mathrm{e}^{2 \pi \mathrm{i} q / p} w\right)
$$

defines an action of the cyclic group \mathbb{Z}_{p} on S^{3} with generator σ.
(b) This action is fixed point free.
(c) The quotient $L(p, q):=S^{3} / \mathbb{Z}_{p}$ is a 3-manifold. This manifold is called a lens space (Linsenraum). Notice that $L(p, q)$ depends only on p and $q \bmod p$.
(d) The lens space $L(p, q)$ admits a Heegaard decomposition of genus 1. Describe the gluing map of this Heegaard decomposition.
(e) There is an orientation-reversing homeomorphism $L(p, q) \rightarrow L(p,-q)$.

Aufgabe 4. On the 2-torus $T^{2}=S^{1} \times S^{1}$ we denote the curve $S^{1} \times\{*\}$ by μ, and the curve $\{*\} \times S^{1}$ by λ. Here $*$ is a chosen point of S^{1}. The fundamental group $\pi_{1}\left(T^{2}\right)$ with base point $(*, *)$ can be identified with $\mathbb{Z} \oplus \mathbb{Z}$, generated by $[\mu]$ and $[\lambda]$.
(a) Describe the effect on the fundamental group of a Dehn twist along $\mu^{\prime}:=S^{1} \times\{-*\}$ and $\lambda^{\prime}:=\{-*\} \times S^{1}$, respectively.
(b) Let $h \mapsto h_{*}$ be the map that associates with every homeomorphism of T^{2}, fixing the base point $(*, *)$, the induced homomorphism h_{*} on the fundamental group. Show that this defines a surjective homomorphism

$$
\operatorname{Homeo}\left(T^{2}\right) \longrightarrow \mathrm{GL}(2, \mathbb{Z})
$$

(In fact, it can be shown that this is an isomorphism.)

