Geometrische Topologie

Übungsblatt 4

- **Aufgabe 1.** (a) Write the torus knot T(p,q) (see Übungsblatt 3) as the closure of a suitable braid. Use this description to show that T(2,3) and T(3,2) are isotopic to the (left- or right-handed?) trefoil knot (Kleeblattknoten). How does one obtain the other trefoil as the closure of a braid?
- (b) Give an example of a braid $b \in B_n$ with the property that $\sigma(b) \in S_n$ is a permutation of order n, but the closure $\beta(b)$ is not a knot. (There is an example with n = 6.)
- (c) Show that $b := b_1 b_2^{-1} b_3^2 b_4^{-2} b_2^{-1} b_1 \in B_5$ is a pure braid, i.e. $b \in K_5$. Write b as a product of the generators b_{ij} (and their inverses) of K_5 .

Aufgabe 2. Let $f_i, g_i: X \to X$, i = 0, 1, be homeomorphisms of a topological space X, with f_0 isotopic to f_1 , and g_0 isotopic to g_1 . Show that $f_0 \circ g_0$ is isotopic to $f_1 \circ g_1$. Use this to explain how one obtains a group structure on the set of isotopy classes of homeomorphisms $X \to X$. (In the lectures we used this, for example, to define the group H_n of isotopy classes of homeomorphisms of D^2 with n open discs removed.)

Aufgabe 3. Let p, q be coprime integers with $p \ge 2$. Regard S^3 as the unit sphere in \mathbb{C}^2 . Show the following:

(a) The map

$$\sigma(z,w) = \left(e^{2\pi i/p} z, e^{2\pi i q/p} w\right)$$

defines an action of the cyclic group \mathbb{Z}_p on S^3 with generator σ .

- (b) This action is fixed point free.
- (c) The quotient $L(p,q) := S^3/\mathbb{Z}_p$ is a 3-manifold. This manifold is called a **lens space** (Linsenraum). Notice that L(p,q) depends only on p and $q \mod p$.
- (d) The lens space L(p,q) admits a Heegaard decomposition of genus 1. Describe the gluing map of this Heegaard decomposition.
- (e) There is an orientation-reversing homeomorphism $L(p,q) \to L(p,-q)$.

Aufgabe 4. On the 2-torus $T^2 = S^1 \times S^1$ we denote the curve $S^1 \times \{*\}$ by μ , and the curve $\{*\} \times S^1$ by λ . Here * is a chosen point of S^1 . The fundamental group $\pi_1(T^2)$ with base point (*, *) can be identified with $\mathbb{Z} \oplus \mathbb{Z}$, generated by $[\mu]$ and $[\lambda]$.

- (a) Describe the effect on the fundamental group of a Dehn twist along $\mu' := S^1 \times \{-*\}$ and $\lambda' := \{-*\} \times S^1$, respectively.
- (b) Let $h \mapsto h_*$ be the map that associates with every homeomorphism of T^2 , fixing the base point (*, *), the induced homomorphism h_* on the fundamental group. Show that this defines a surjective homomorphism

$$\operatorname{Homeo}(T^2) \longrightarrow \operatorname{GL}(2,\mathbb{Z}).$$

(In fact, it can be shown that this is an isomorphism.)