Geometrische Topologie

Übungsblatt 5

Aufgabe 1. Let L(p,q) be a lens space as defined on Übungsblatt 4.

- (a) Use the theorem of Seifert–van-Kampen to show that $\pi_1(L(p,q)) \cong \mathbb{Z}_p$.
- (b) Give an alternative proof of this fact, using the covering $S^3 \to L(p,q)$. To this end, convince yourself that $\pi_1(L(p,q))$ is generated by the homotopy class of the loop $t \mapsto (e^{2\pi i t/p}, 0), t \in [0, 1]$.
- **Aufgabe 2.** (a) Let σ be a generator of the cyclic group \mathbb{Z}_p . Show that for any $q' \in \mathbb{N}$ coprime with p, the element $\sigma^{q'}$ is likewise a generator of \mathbb{Z}_p .
- (b) Let $q, q' \in \mathbb{N}$ with $qq' \equiv \pm 1 \mod p$. Show that L(p,q) and L(p,q') are homeomorphic
 - (i) with the help of part (a) and Aufgabe 3, Übungsblatt 4;
 - (ii) with the description of L(p,q) via a Heegaard splitting. (Hint: exchange the roles of the two solid tori.)

Remark. More generally, the following is true:

1. L(p,q) is homeomorphic to L(p,q') if and only if

 $\pm q' \equiv q^{\pm 1} \mod p.$

(The direction " \Leftarrow " follows from the considerations above.)

2. L(p,q) is homotopy equivalent to L(p,q') if and only if $\pm qq'$ is a quadratic residue modulo p, that is, $\pm qq' \equiv m^2 \mod p$ for some integer m.

For instance, L(7,1) and L(7,2) have the same homotopy type, but they are not homeomorphic.

SS 2022

Aufgabe 3. Let D^3 be the closed unit ball in \mathbb{R}^3 , and let p, q be as in Aufgabe 1. Identify each point on the lower hemisphere ($z \leq 0$) of ∂D^3 with the point on the upper hemisphere obtained by a rotation through $2\pi q/p$ about the z-axis and reflection in the xy-plane. Let M(p,q) be the resulting 3-manifold.

(a) Show that the cylinder

$$Z = D^3 \cap \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 \le 1/2\}$$

becomes a solid torus under this identification.

- (b) Cut the complement $D^3 \setminus Z$ suitably into p pieces to recognize this complement, after the boundary identification, as another solid torus.
- (c) Deduce that M(p,q) = L(p,q).

Aufgabe 4. Think of the 3-torus T^3 as the manifold obtained by identifying opposite sides of a cube in \mathbb{R}^3 . Show that T^3 has a Heegaard decomposition of genus 3.