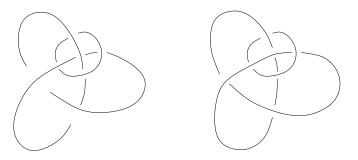
Prof. Hansjörg Geiges Tilman Becker, M.Sc. Dr. Rima Chatterjee

Geometrische Topologie

Übungsblatt 6

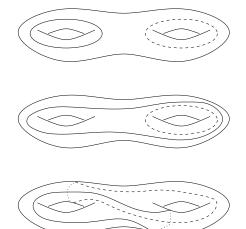
Aufgabe 1. Show that the following links (in \mathbb{R}^3 or S^3) are not isotopic, but that they do have homeomorphic complements.



Remark. According to a deep theorem of Gordon and Luecke, *knots* with homeomorphic complements are isotopic.

Aufgabe 2. On the boundary of the handlebody of genus 2, curves u_1, u_2 are chosen as shown.

Prove that the following Heegaard diagrams (each showing $f(u_1), f(u_2)$) all describe the 3-sphere.



Aufgabe 3. The meridian μ of the solid torus $S^1 \times D^2$ is the curve $\{*\} \times \partial D^2$, the longitude λ , the curve $S^1 \times \{*\}$. Here * denotes an arbitrary point in S^1 or ∂D^2 , respectively.

- (a) Give an explicit formula (for $k \in \mathbb{Z}$) of a homeomorphism of $S^1 \times D^2$ that sends μ to itself, and λ to a curve of the form $k\mu + \lambda$ (i.e. a curve in the homotopy class $(1, k) \in \mathbb{Z} \oplus \mathbb{Z} = \pi_1(S^1 \times \partial D^2)$).
- (b) Show that a homeomorphism of $\partial(S^1 \times D^2)$ extends to a homeomorphism of $S^1 \times D^2$ if and only if μ is sent to $\pm \mu$ (up to isotopy).
- (c) Remove a thin open solid torus $S^1 \times \text{Int}(D^2_{1/2})$ from $S^1 \times D^2$.
 - (i) Show that every homeomorphism f of $\partial(S^1 \times D^2)$ extends to a homeomorphism of $(S^1 \times D^2) \setminus (S^1 \times \operatorname{Int}(D^2_{1/2})).$
 - (ii) Describe a homeomorphism from the solid torus

$$S^{1} \times D^{2} = \left((S^{1} \times D^{2}_{1/2}) + (S^{1} \times D^{2}) \setminus \left(S^{1} \times \operatorname{Int}(D^{2}_{1/2}) \right) \right) / x \sim x_{1}$$

where the identification is made for $x \in \partial(S^1 \times D^2_{1/2})$, and the 3-manifold (with boundary)

$$\left(\left(S^1 \times D_{1/2}^2 \right) + \left(S^1 \times D^2 \right) \setminus \left(S^1 \times \operatorname{Int}(D_{1/2}^2) \right) \right) / x \sim f(x),$$

where f is regarded as a homeomorphism of $\partial(S^1 \times D^2_{1/2})$. Why does this not contradict (b)?

Aufgabe 4. Prove the following statements.

- (a) Every orientation-preserving homeomorphism of S^1 is isotopic to the identity.
- (b) Every homeomorphism of $S^1 \times S^1$ that sends a given meridian μ to itself, and likewise a given longitude λ (not necessarily fixing them pointwise) is isotopic to the identity.
- (c) Every Dehn twist of a surface along a simple closed curve that separates the surface (i.e. whose complement has two connected components) is isotopic to the identity.