Geometrische Topologie

Übungsblatt 10

Aufgabe 1. Show that surgery along a knot $K \subset S^{3}$ with surgery coefficient $r \in \mathbb{Q}$ yields the same 3-manifold up to diffeomorphism as surgery along the mirror image of K with coefficient $-r$.

Aufgabe 2. (a) Verify that the linking number of the two unknots shown below is 0 .
(b) Compute the Jones polynomial of this link in order to show that the two unknots link nontrivially.

Aufgabe 3. Show that the following two surgery diagrams (with $n \in \mathbb{Z}$ and $r \in \mathbb{Q} \cup\{\infty\}$) are equivalent:

To do so, proceed as follows. Let M be the manifold obtained from S^{3} by surgery along K_{2} only. Let T be the solid torus glued in to carry out this surgery. Show that K_{1} is isotopic in M to the soul $S^{1} \times\{0\} \subset S^{1} \times D^{2}$ of this solid torus T (here you need that $n \in \mathbb{Z}$). Thus, the further surgery along K_{1} is equivalent to cutting out T and regluing it. It remains to show that this new regluing corresponds to the coefficient $n-1 / r$. For this you need to work out what the meridian and parallel of K_{1} in M are, expressed in terms of meridian and longitude of T.

Abgabe: Mittwoch 22.6.22
bis spätestens 17:00 Uhr im Raum 206/7 des MI

