Elementare Differentialgeometrie

Übungsblatt 3

Seien α und β zwei reguläre parametrisierte Raumkurven, definiert auf einem Intervall (a, b). Die Kurve β heißt eine **Evolvente** von α , falls für jedes $t \in (a, b)$ gilt: $\beta(t)$ liegt auf der Tangente von α in $\alpha(t)$, und die Tangenten von α und β in $\alpha(t)$ bzw. $\beta(t)$ sind orthogonal zueinander. Die Kurve β heißt eine **Evolute** von α , falls α eine Evolvente von β ist.

Aufgabe 1. Sei $\alpha(s)$ eine nach der Bogenlänge parametrisierte Raumkurve.

- (a) Zeichne qualitativ die Evolvente für eine typische ebene Kurve (siehe dazu auch (b)).
- (b) Falls β eine Evolvente von α ist, so gilt

$$\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(s) + (c - s) \mathbf{T}(s),$$

wobei c eine Konstante ist und $\mathbf{T} = \boldsymbol{\alpha}'$. Beachte: s ist i. a. nicht die Bogenlänge für $\boldsymbol{\beta}$.

(c) Unter welchen Bedingungen ist $\alpha(s)+(c-s)$ **T** eine reguläre Kurve und damit eine Evolvente von α ?

Wegen (b) ist $|\alpha - \beta|$ ein Maß für die Bogenlänge auf α . Daher läßt sich β konstruieren, indem man einen Faden von der Kurve α abwickelt.

Aufgabe 2. Die Zykloide ist die ebene Kurve

$$\begin{cases} x(t) = a(t + \sin t) \\ y(t) = a(1 - \cos t) \end{cases}$$

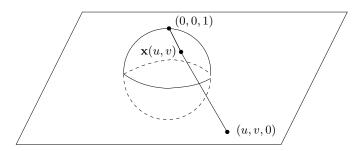
- (a) Die Zykloide ist die Kurve, die ein Punkt auf dem Rand eines Rades vom Radius a beschreibt, das auf der Gerade y = 2a abrollt, wobei für t = 0 der genannte Punkt in (x, y) = (0, 0) liegt.
- (b) Berechnen Sie die Bogenlänge der Zykloide auf dem Zeitintervall [0, t].
- (c) Berechnen Sie explizit die Evolvente der Zykloide (durch Verwendung von Aufgabe 1(b) beachten Sie, daß t nicht die Bogenlänge ist). Zeigen Sie damit explizit, daß diese Evolvente wieder eine Zykloide ist.

Bemerkung. Diese Konstruktion spielte eine wichtige Rolle in Christian Huygens' (1629 – 1695) Konstruktion einer Pendeluhr von hoher Präzision.

Aufgabe 3. Betrachten Sie die 2-Sphäre

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Die Gerade durch $(u, v, 0) \in \mathbb{R}^2 \subset \mathbb{R}^3$ und (0, 0, 1) schneidet S² in einem weiteren Punkt. Dieser sei mit $\mathbf{x}(u, v)$ bezeichnet.



Berechnen Sie $\mathbf{x}(u,v)$ und zeigen Sie, daß $\mathbf{x}\colon \mathbb{R}^2 \to \mathbb{R}^3$ ein parametrisiertes Flächenstück ist. Die zu \mathbf{x} inverse Abbildung S² \ $\{(0,0,1)\} \to \mathbb{R}^2$ heißt **stereographische Projektion**.

Aufgabe 4. Die Sphäre S^2 läßt sich durch zwei Flächenstücke vollständig beschreiben, z.B. mittels stereographischer Projektion von Nord- bzw. Südpol $(0,0,\pm 1)$. Berechnen Sie die Koordinatentransformation zwischen diesen beiden Flächenstücken und zeigen Sie damit, daß S^2 eine Fläche ist.