Elementare Differentialgeometrie

Übungsblatt 9

Aufgabe 1. In einer isothermen Parametrisierung mit metrischen Koeffizienten

$$(g_{ij}) = \left(\begin{array}{cc} \lambda^2 & 0\\ 0 & \lambda^2 \end{array}\right),\,$$

wobei $\lambda = \lambda(u^1, u^2) > 0$, gilt

$$K = \frac{\lambda_1^2 + \lambda_2^2}{\lambda^4} - \frac{\lambda_{11} + \lambda_{22}}{\lambda^3}.$$

Aufgabe 2.

- (a) Sei M eine Fläche, die durch Koordinatenumgebungen U_1 , U_2 überdeckt wird. Nehmen Sie an, $U_1 \cap U_2$ hat zwei Zusammenhangskomponenten W_1 , W_2 , und daß die Jacobische Matrix des Koordinatenwechsels positive Determinante in W_1 hat und negative Determinante in W_2 . Zeigen Sie, daß M nicht orientierbar ist.
- (b) M_2 sei eine orientierbare Fläche und $\varphi \colon M_1 \to M_2$ eine differenzierbare Abbildung, die ein lokaler Diffeomorphismus ist bei jedem $p \in M_1$. Zeigen Sie, daß M_1 orientierbar ist.

Aufgabe 3. Ein n—gon ist eine stückweise glatte, reguläre Kurve auf einer Fläche M, deren n glatte Segmente Geodätische sind und die eine Scheibe in M berandet.

- (a) Sei M eine Fläche mit $K \leq 0$. Zeigen Sie, daß es kein n-gon für n = 0, 1, 2 gibt. (Ein 0-gon ist eine geschlossene Geodätische, die eine Scheibe in M berandet.)
- (b) Finden Sie ein Beispiel einer Fläche mit K < 0, auf der eine geschlossene Geodätische existiert.

Aufgabe 4. Betrachten Sie die Poincaré-Scheibe, d.h. $U=\left\{(u,v)\in\mathbb{R}^2\colon\,u^2+v^2<1\right\}$ mit der Metrik

$$(g_{ij}(u,v)) = \begin{pmatrix} \frac{4}{(1-u^2-v^2)^2} & 0\\ 0 & \frac{4}{(1-u^2-v^2)^2} \end{pmatrix}.$$

Dies ist wiederum ein Beispiel für eine abstrakt definierte Fläche, d.h. es gibt keine Fläche $\mathbf{x} \colon U \to \mathbb{R}^3$, so daß $g_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ die erste Fundamentalform ist. (U, g_{ij}) ist ein Modell für die hyperbolische Ebene.

- (a) Bestimmen Sie Christoffelsymbole und Gaußkrümmung.
- (b) Zeigen Sie, daß Durchmesser von U und Kreisbögen, die den Einheitskreis $u^2 + v^2 = 1$ orthogonal schneiden, Geodätische sind, und daß jede Geodätische von dieser Form ist.
- (c) Bestimmen Sie den Flächeninhalt eines n-gons, dessen Ecken auf dem Einheitskreis liegen.