Topologie

Übungsblatt 2

Aufgabe 1. (a) Die Menge der reellen $(n \times n)$ -Matrizen $\mathcal{M}(n \times n, \mathbb{R})$ kann in kanonischer Weise mit \mathbb{R}^{n^2} identifiziert werden. Dies induziert eine Topologie auf der Gruppe der invertierbaren $(n \times n)$ -Matrizen $\mathrm{GL}(n) \subset \mathcal{M}(n \times n, \mathbb{R})$. Zeigen Sie, daß $\mathrm{GL}(n)$ mit dieser Topologie eine topologische Gruppe ist.

(b) Zeigen Sie, daß die Gruppe der orthogonalen $(n \times n)$ -Matrizen O(n) mit der durch die Inklusion $O(n) \subset GL(n)$ induzierten Topologie eine kompakte topologische Gruppe ist. Dazu genügt es zu zeigen, daß O(n) unter der in (a) beschriebenen Identifikation eine beschränkte und abgeschlossene Teilmenge von \mathbb{R}^{n^2} ist.

Aufgabe 2. Ein *Isomorphismus* von topologischen Gruppen G_1 und G_2 ist ein Homöomorphismus $G_1 \to G_2$, der gleichzeitig ein Gruppenisomorphismus ist.

Mit SO(n) sei die *spezielle orthogonale Gruppe* bezeichnet, d.h. die Gruppe der orthogonalen $(n \times n)$ -Matrizen mit Determinante 1.

Zeigen Sie:

- (a) Die multiplikative Gruppe $S^1 \subset \mathbb{C}$ ist isomorph zu SO(2).
- (b) O(n) ist homöomorph zu $SO(n) \times \mathbb{Z}_2$. Sind diese beiden topologischen Gruppen isomorph?

Aufgabe 3. Die Quaternionen sind definiert als 4-dimensionaler reeller Vektorraum

$$\mathbb{H} := \{ a = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} : a_0, a_1, a_2, a_3 \in \mathbb{R} \},\$$

auf dem eine Multiplikation durch die Regel

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$$

und Distributivität erklärt ist. Die Topologie auf \mathbb{H} ist durch die Identifikation mit \mathbb{R}^4 gegeben. Die euklidische Norm ist $|a| = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2}$, und das zu $a \in \mathbb{H}$ konjugierte Element sei

$$\bar{a} = a_0 - a_1 \mathbf{i} - a_2 \mathbf{j} - a_3 \mathbf{k} .$$

Zeigen Sie:

- (a) $\mathbf{i}\mathbf{j} = \mathbf{k} \text{ und } \mathbf{j}\mathbf{i} = -\mathbf{k}.$
- (b) $\overline{ab} = \overline{b}\overline{a}$.
- (c) Für $a \neq 0$ ist $\bar{a}/|a|^2$ das inverse Element zu a bezüglich der Multiplikation in \mathbb{H} .
- (d) |ab| = |a||b|.
- (e) Die Einheitssphäre $S^3\subset \mathbb{H}$ mit der von \mathbb{H} induzierten Topologie und Multiplikation ist eine topologische Gruppe.

Aufgabe 4. (a) Beschreiben Sie eine Operation von \mathbb{Z} auf $\mathbb{R} \times [0,1]$, die das Möbiusband als Orbitraum hat.

- (b) Beschreiben Sie eine Operation von \mathbb{Z}_2 auf dem Torus, die den Zylinder als Orbitraum hat.
- (c) Wenn $K \subset \mathbb{R}^3$ den Kreis in der xz-Ebene um den Punkt (0,0,1) vom Radius 1/2 bezeichne, dann ist eine Einbettung des 2-Torus in den \mathbb{R}^3 durch Rotation von K um die x-Achse gegeben. Begründen Sie anschaulich, daß die Operation von \mathbb{Z}_2 auf dem Torus, die durch Rotation um 180° um die z-Achse definiert ist, einen Orbitraum hat, der homöomorph zur 2-Sphäre ist.