Mathematik I

(für Physiker und Lehramtskandidaten)

Übungsblatt 12

Aufgabe 1.

(a) Bestimmen Sie den Durchschnitt $U \cap V$ und die Summe U + V der beiden Unterräume $U = \text{Lin}(u_1, u_2)$ und $V = \text{Lin}(v_1, v_2)$ des \mathbb{R}^3 , wobei

$$u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

- (b) Zeigen Sie, daß $(u'_1 := 2u_1 + 3u_2, u'_2 := u_1 + u_2)$ und $(v'_1 := 2v_1 + v_2, v'_2 := 3v_1 + 2v_2)$ Basen von U bzw. V sind.
- (c) Sei $f: U \to V$ die lineare Abbildung, die durch $f(u_1) = v_1 + v_2$ und $f(u_2) = v_1 v_2$ bestimmt ist. Geben Sie die Matrix dieser linearen Abbildung bezüglich der Basen (u'_1, u'_2) bzw. (v'_1, v'_2) an.

Aufgabe 2. Sei A eine reelle $m \times n$ Matrix.

- (a) Addieren Sie, für vorgegebene $i \neq j \in \{1, ..., n\}$ und $\lambda \in \mathbb{R}$, zur *i*-ten Spalte das λ -fache der j-ten. Zeigen Sie, daß die so abgeänderte Matrix, aufgefaßt als Abbildung $\mathbb{R}^n \to \mathbb{R}^m$, das gleiche Bild wie A hat.
- (b) Addieren Sie, für vorgegebene $i \neq j \in \{1, ..., m\}$ und $\lambda \in \mathbb{R}$, zur *i*-ten Zeile das λ -fache der *j*-ten. Zeigen Sie, daß die so abgeänderte Matrix, aufgefaßt als Abbildung $\mathbb{R}^n \to \mathbb{R}^m$, den gleichen Kern wie A hat.

Aufgabe 3.

(a) Geben Sie für folgende lineare Abbildungen $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ jeweils eine Basis von Kern(f) und Bild(f) an, bestimmen Sie $f \circ f$ und, falls die Umkehrabbildung existiert, f^{-1} .

(i)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto \begin{pmatrix} 2x_1 + x_2 \\ -6x_1 - 3x_2 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longmapsto \begin{pmatrix} 3x_1 + 5x_2 \\ 2x_1 + 3x_2 \end{pmatrix}$$

- (b) Geben Sie jeweils die reelle 2×2 Matrix an, die die folgende lineare Abbildung $\mathbb{R}^2\to\mathbb{R}^2$ beschreibt:
 - (i) Spiegelung am Ursprung (0,0),
 - (ii) Spiegelung an der x_1 -Achse,
 - (iii) Spiegelung an der Hauptdiagonalen $\{x_1 = x_2\}$.

Aufgabe 4. Seien $a,b \in \mathbb{R},\ a < b.$ Auf dem Vektorraum $V := C^0([a,b])$ betrachte man die Abbildung

Man zeige: Φ ist linear, injektiv, aber nicht surjektiv. Daraus folgere man, daß V unendlichdimensional ist.

Bonusaufgabe. (a) Es sei V ein K-Vektorraum und $f: V \to V$ eine lineare Abbildung mit $f \circ f = f$. Zeigen Sie, daß $V = \text{Kern}(f) \oplus \text{Bild}(f)$.

(b) Es seien $V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$ lineare Abbildungen zwischen endlich-dimensionalen K-Vektorräumen. Zeigen Sie, daß

$$\operatorname{Rang}(f) + \operatorname{Rang}(g) \leq \operatorname{Rang}(g \circ f) + \dim V_2.$$

Knobelaufgabe.

(a) Es gibt unendlich viele Primzahlen.

Hinweis: Seien p_1, \ldots, p_n die ersten n Primzahlen. Was können Sie dann über die Primfaktoren von

$$p_1 \cdot \ldots \cdot p_n + 1$$

aussagen?

- (b) \mathbb{R} ist ein unendlich-dimensionaler \mathbb{Q} -Vektorraum. Hinweis: Betrachte Ausdrücke der Form $\lambda_1 \log p_1 + \cdots + \lambda_n \log p_n$ mit $\lambda_i \in \mathbb{Z}$ und $p_i \in \mathbb{N}$ Primzahl.
- (c) Eine Q-lineare Abbildung $f \colon \mathbb{R} \to \mathbb{R}$ ist eine lineare Abbildung von \mathbb{R} als Q-Vektorrraum, d.h. eine Abbildung $f \colon \mathbb{R} \to \mathbb{R}$ mit

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$
 für alle $x, y \in \mathbb{R}$ und $\lambda, \mu \in \mathbb{Q}$.

Beschreiben Sie explizit eine \mathbb{Q} -lineare Abbildung $\mathbb{R} \to \mathbb{R}$, die injektiv, aber nicht surjektiv ist.

Abgabe: Montag 16.1.12, bis spätestens 14 Uhr in den Briefkästen im Keller des Mathematischen Instituts.