Mathematik I

(für Physiker und Lehramtskandidaten)

Übungsblatt 14

Aufgabe 1. Es sei $n \in \mathbb{N}$ gerade und $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ gegeben durch

$$a_{ij} = \begin{cases} 1 & \text{für } i < j, \\ 0 & \text{für } i = j, \\ -1 & \text{für } i > j. \end{cases}$$

Man zeige, daß $\det A = 1$.

Aufgabe 2. Es sei $n \in \mathbb{N}$ ungerade und $A \in K^{n \times n}$ eine Matrix mit $A^t = -A$. Zeigen Sie, daß det A = 0 oder 1 + 1 = 0 im Körper K.

Aufgabe 3. Man betrachte den euklidischen Vektorraum \mathbb{R}^3 mit dem kanonischen Skalarprodukt. Wenden Sie das Schmidtsche Orthonormalisierungsverfahren auf die Basis (1,1,0),(1,0,1),(0,1,1) an.

Aufgabe 4. Zeigen Sie mit den Methoden der Vorlesung (euklidische Vektorräume) folgende Sätze der euklidischen Geometrie in der Ebene \mathbb{R}^2 :

- (a) (Satz des Thales) Es seien A, B, C drei Punkte in der Ebene. Wenn C auf dem Kreis liegt, der die Verbindungsstrecke von A nach B als Durchmesser hat, dann hat das Dreieck ABC bei C einen rechten Winkel.
- (b) Die Seitenhalbierenden eines Dreieckes ABC (d.h. die Verbindungsstrecken von jeweils einer Ecke zum Mittelpunkt der gegenüberliegenden Seite) schneiden sich in einem Punkt, und dieser Punkt teilt die Seitenhalbierenden im Verhältnis 2:1.

Bonusaufgabe. Es sei $V = \mathbb{R}^{n \times n}$ der reelle Vektorraum der reellen $(n \times n)$ -Matrizen. Die **Spur** einer Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ ist definiert durch

$$Spur(A) = \sum_{i=1}^{n} a_{ii}.$$

 $A \in \mathbb{R}^{n \times n}$ heißt symmetrisch bzw. schiefsymmetrisch, falls $A^t = A$ bzw. $A^t = -A$. Zeigen Sie:

- (a) Die Abbildung $\Phi \colon V \times V \to \mathbb{R}$, die durch $\Phi(A, B) := \operatorname{Spur}(AB)$ gegeben ist, ist bilinear, symmetrisch und **nicht-ausgeartet**, d.h. aus $\Phi(A, B) = 0$ für alle $B \in V$ folgt A = 0.
- (b) Die Teilmengen $V_{\pm} \subset V$ der symmetrischen bzw. schiefsymmetrischen Matrizen sind Untervektorräume von V.
- (c) Es gilt

$$V = V_+ \oplus V_-,$$

und die Summe ist orthogonal, d.h.

$$\Phi(A_+, A_-) = 0 \quad \text{für } A_{\pm} \in V_{\pm}.$$

(d) Φ ist **positiv definit** auf V_+ und **negativ definit** auf V_- , d.h. es gilt

$$\Phi(A_+, A_+) > 0 \quad \text{für alle } A_+ \in V_+ \setminus \{0\},$$

und

$$\Phi(A_-, A_-) < 0$$
 für alle $A_- \in V_- \setminus \{0\}$.

Knobelaufgabe.

- (a) In wieviel Teile kann die Ebene \mathbb{R}^2 durch
 - (i) n Geraden
 - (ii) n Kreise

höchstens zerlegt werden?

- (b) In wieviel Teile kann der Raum \mathbb{R}^3 durch
 - (i) n Ebenen
 - (ii) n Sphären

höchstens zerlegt werden?

Abgabe: Montag 30.1.12, bis spätestens 14 Uhr in den Briefkästen im Keller des Mathematischen Instituts.