Analysis III

Übungsblatt 2

Aufgabe 1. Sei \mathcal{A} der Mengenring der endlichen Vereinigungen von beschränkten Intervallen in \mathbb{R} . Zeigen Sie, daß die von \mathcal{A} erzeugte σ -Algebra $\mathcal{M}(\mathcal{A})$ die Borelalgebra von \mathbb{R} ist.

Aufgabe 2. Sei X ein abzählbarer Meßraum. Zeigen Sie, daß man X derart als disjunkte Vereinigung von abzählbar (endlich oder unendlich) vielen meßbaren Teilmengen A_n schreiben kann, daß A_n keine meßbaren Teilmengen außer A_n und der leeren Menge enthält.

Aufgabe 3. Sei (X, \mathcal{A}) ein Mengenring mit einem Prämaß μ . Es sei μ^* das induzierte äußere Maß auf der Potenzmenge von X. Es sei Y eine Teilmenge von X, zu der eine Menge $S \in \mathcal{A}$ existiert mit $Y \subset S$, $\mu(S) < \infty$, und

$$\mu(S) = \mu^*(Y) + \mu^*(S \setminus Y).$$

Zeigen Sie, daß Y dann μ^* -meßbar ist.

Aufgabe 4. (a) Es sei μ eine für alle achsenparallelen Rechtecke $Q \subset \mathbb{R}^2$ (mit oder ohne eines Teils der Randpunkte) erklärte nichtnegative reellwertige Funktion mit folgenden Eigenschaften:

- (i) Ist Q in Q_1 und Q_2 zerlegt, so gilt $\mu(Q) = \mu(Q_1) + \mu(Q_2)$.
- (ii) $\mu(\mathbf{x} + Q) = \mu(Q)$ für jedes $\mathbf{x} \in \mathbb{R}^2$.
- (iii) $\mu([0,1] \times [0,1]) = 1$.

Zeigen Sie

$$\mu([a_1,b_1]\times[a_2,b_2])=(b_1-a_1)\cdot(b_2-a_2).$$

Hinweis: Betrachten Sie die Funktion

$$f(x) := \mu([0, x] \times [0, 1]),$$

und stellen Sie eine Funktionalgleichung für f auf, aus der Sie f(x) = x folgern können.

(b) Auf dem \mathbb{R}^2 betrachten wir den Mengenring der endlichen Vereinigungen beschränkter achsenparalleler Rechtecke wie in (a), mit dem durch den gewöhnlichen Flächeninhalt gegebenen Prämaß μ . Bestimmen Sie das äußere Maß μ^* des Dreiecks

$$\Delta := \{ (x, y) \in \mathbb{R}^2 \colon 0 < x < a, 0 < y < x \}.$$

(c) Mit μ wie in (b), zeigen Sie, daß $\mathbb{R} \subset \mathbb{R}^2$ eine μ^* -meßbare Teilmenge ist mit $\mu^*(\mathbb{R}) = 0$.

b.w.

Bonusaufgabe. Zeigen Sie, daß eine additive Funktion $\mu: \mathcal{M} \to [0, \infty]$ auf einer σ -Algebra genau dann σ -additiv ist, wenn sie eine der folgenden Eigenschaften hat:

(i) Für jede beliebige Folge (A_n) in \mathcal{M} gilt

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) \le \sum_{n=1}^{\infty} \mu(A_n).$$

(ii) Für jede aufsteigende Folge $A_1\subset A_2\subset \ldots$ in ${\mathcal M}$ gilt

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n).$$

Die 'dann'-Richtung wurde schon in der Vorlesung diskutiert.

Bonusaufgabe. Gegeben sei ein Mengenring \mathcal{A} auf einer nicht-leeren Menge X. Auf \mathcal{A} sei ein Prämaß μ gegeben. In der Vorlesung hatten wir gesehen, daß durch

$$\mu^*(M) = \inf \sum_{n=1}^{\infty} \mu(A_n)$$

ein äußeres Maß auf der Potenzmenge $\mathcal{P}(X)$ definiert wird, wobei für $M \subset X$ das Infimum über Folgen (A_n) in \mathcal{A} mit $M \subset \cup_n A_n$ genommen wird.

Man könnte auf die Idee kommen, folgende Definition von einem 'inneren Maß' zu geben:

$$\mu_*(M) = \sup \sum_{n=1}^{\infty} \mu(A_n),$$

wobei das Supremum über Folgen (A_n) paarweise disjunkter Mengen in \mathcal{A} mit $\cup_n A_n \subset M$ genommen wird. Eine Teilmenge $M \subset X$ könnte dann meßbar heißen, wenn $\mu_*(M) = \mu^*(M)$ gilt, und dieser gemeinsame Wert von innerem und äußerem Maß von M wäre dann das Maß dieser Menge.

Sei nun $X = [0,1] \subset \mathbb{R}$ und \mathcal{A} der Mengenring der endlichen Vereinigungen von Teilintervallen von [0,1]. Zeigen Sie, daß der obige Zugang für $M_1 := [0,1] \cap \mathbb{Q}$ wie erwartet $\mu_*(M_1) = \mu^*(M_1) = 0$ liefert, für $M_2 := [0,1] \setminus \mathbb{Q}$ dagegen $\mu_*(M_2) = 0$ und $\mu^*(M_2) = 1$. Damit wäre M_2 nicht meßbar, und insbesondere erhielte man keine σ -Algebra von meßbaren Mengen.

Abgabe: Mittwoch, 11.11.15 bis spätestens 18 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).