Elementare Differentialgeometrie

Übungsblatt 11

Aufgabe 1. Gegeben sei eine C^k -Kurve $\alpha \colon I \to \mathbb{R}^2 \setminus \{0\}, \ k \geq 1$, wobei $I \subset \mathbb{R}$ ein Intervall bezeichnet. Wir schreiben

$$\alpha(t) = (\alpha_1(t), \alpha_2(t)) = r(t)(\cos\theta(t), \sin\theta(t))$$

mit r(t) > 0. Für jedes $t \in I$ kann ein $\theta(t)$ gewählt werden, eindeutig bis auf Addition ganzzahliger Vielfacher von 2π . Ziel dieser Aufgabe ist es, nur mit den Methoden aus der Anfängervorlesung zu zeigen, daß θ als C^k -Funktion (eindeutig bis auf Addition eines Vielfachen von 2π) gewählt werden kann.

Zunächst beobachten wir, daß r durch $r(t) = |\alpha(t)|$ festgelegt ist und wegen $\alpha \neq 0$ von der Klasse C^k ist. Daher können wir im weiteren o.E. $r \equiv 1$ annehmen (indem wir zur Kurve α/r übergehen).

(a) (Eindeutigkeit) Sei $\alpha = (\alpha_1, \alpha_2)$ geschrieben als $\alpha(t) = (\cos \theta(t), \sin \theta(t))$ mit einer C^k Funktion θ . Sei $t_0 \in I$ und $\theta_0 := \theta(t_0)$. Zeigen Sie, daß

$$\theta(t) = \theta_0 + \int_{t_0}^t \left(\alpha_1(s)\dot{\alpha}_2(s) - \dot{\alpha}_1(s)\alpha_2(s)\right) ds.$$

(b) (Existenz) Gegeben sei $\alpha = (\alpha_1, \alpha_2)$. Definiere θ mittels der Gleichung aus (a), wobei θ_0 so gewählt sei, daß $\alpha(t_0) = (\cos \theta_0, \sin \theta_0)$. Setze $(\beta_1, \beta_2) := (\cos \theta, \sin \theta)$. Zeigen Sie, daß (α_1, α_2) und (β_1, β_2) Lösungen ein und desselben linearen Differentialgleichungssystems erster Ordnung sind (mit gleichen Anfangswerten). Folgern Sie mittels des Satzes von Picard-Lindelöf, daß $(\alpha_1, \alpha_2) = (\beta_1, \beta_2)$.

Aufgabe 2. Sei \mathcal{E} eine Ellipse mit großer Halbachse a und Exzentrizität e. Bis auf eine Isometrie der euklidischen Ebene können wir annehmen, daß \mathcal{E} im Ursprung zentriert ist und die Brennpunkte (-ea,0) und (ea,0) hat. Zeigen Sie, daß die Ellipse dann beschrieben wird durch

$$\mathcal{E} = \left\{ (x, y) \in \mathbb{R}^2 \colon \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\},$$

wobei $b = a\sqrt{1 - e^2}$.

Gehen Sie dazu von der Ellipsengleichung $r + \langle \mathbf{e}, \mathbf{r} \rangle = a(1 - e^2)$ aus, wobei \mathbf{r} der Positionsvektor bezüglich des Brennpunktes (ea, 0) ist.

Aufgabe 3. Wir betrachten die Schnittkurve des Kegels

$$\{(x,y,z) \in \mathbb{R}^3 \colon x^2 + y^2 - z^2 = 0\}$$

mit der affinen Ebene

$$E := \{(x, y, z) \in \mathbb{R}^3 \colon z = my + c\},\$$

wobei c, m reelle Zahlen seien mit c > 0 und $0 \le m < 1$.

- (a) Geben Sie eine Gleichung für diese Schnittkurve an.
- (b) In affinen Ebenen im \mathbb{R}^3 können wir Längen mittels der Einschränkung des Standardskalarproduktes auf dem \mathbb{R}^3 (d.h. der ersten Fundamentalform) messen. Zeigen Sie, daß es eine längenerhaltende Abbildung $E \to \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ gibt, die die Schnittkurve auf eine Ellipse in Standardform $\{x^2/a^2 + y^2/b^2 = 1\}$ (analog zu Aufgabe 2) abbildet. Bestimmen Sie die Halbachsen a und b explizit.

Aufgabe 4. In dieser Aufgabe betrachten wir Lichtstrahlen in der Ebene und ihre Reflexion in einem Spiegel, der durch eine glatte Kurve \mathcal{S} beschrieben ist. Insbesondere soll dann die Spiegelungseigenschaft der Ellipse beschrieben werden.

- (a) Sei S eine Gerade in der Ebene, und A, B seien Punkte auf der selben Seite von S. Zeigen Sie, daß der kürzeste Weg von A nach B via eines Punktes P auf S derjenige ist, bei dem die Geradensegmente AP und PB den gleichen Winkel mit S bilden.
- (b) Seien A, B zwei Punkte in der Ebene, und betrachte die Funktion f(P) := |AP| + |PB|, $P \in \mathbb{R}^2 \setminus \{A, B\}$. Zeigen Sie, daß grad f(P) gleich der Summe der Einheitsvektoren von A in Richtung von P und von B in Richtung von P ist.
- (c) Folgern Sie mit dem Satz über Lagrange-Multiplikatoren, daß die kritischen Punkte von f bezüglich der Nebenbedingung $P \in \mathcal{S}$, wobei \mathcal{S} eine beliebige glatte Kurve in der Ebene ist, diejenigen sind, wo AP und PB den gleichen Winkel mit der Tangente an \mathcal{S} in P bilden.
- (d) Zeigen Sie, daß ein Lichtstrahl, der von einem Brennpunkt einer Ellipse ausgeht, an der Ellipse so reflektiert wird, daß er durch den anderen Brennpunkt läuft.

Bonusaufgabe. Verifizieren Sie die Formel

$$\frac{d}{dt}\left(\frac{\mathbf{r}}{r}\right) = \frac{\mathbf{c} \times \mathbf{r}}{r^3}$$

für eine beliebige C^1 -Abbildung $\mathbf{r} \colon I \to \mathbb{R}^3 \setminus \{0\}.$