Algebraische Topologie

Übungsblatt 13

Hinweis: Die Bearbeitung dieses Übungsblattes ist freiwillig. Allfällige Abgaben gehen als Bonus in die Berechnung des Übungsschnittes ein.

Aufgabe 1. Sei ω eine geschlossene p-Form auf einer differenzierbaren Mannigfaltigkeit M mit $\int_c \omega = 0$ für jeden glatten p-Zykel c in M. Zeigen Sie, daß ω exakt ist.

Aufgabe 2. (a) Sei $\omega = f(x) dx$ eine 1-Form auf dem Intervall [0,1] mit f(0) = f(1). Zeigen Sie, daß es eine reelle Zahl a und eine Funktion g auf [0,1] mit g(0) = g(1) gibt, so daß

$$\omega = a \, \mathrm{d}x + \mathrm{d}q.$$

(b) Sei ω eine geschlossene 1-Form auf $\mathbb{R}^2 \setminus \{0\}$ und η die Windungsform

$$\eta = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

Zeigen Sie, daß d $\eta = 0$ und daß es eine reelle Zahl a und eine Funktion $g: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ gibt, so daß

$$\omega = a \, \eta + \mathrm{d}g.$$

Es folgt, daß $[\eta]$ ein Erzeuger von $H^1_{\Omega}(\mathbb{R}^2 \setminus \{0\})$ ist.

Hinweis: Man betrachte die zurückgezogenen Formen $f^*\omega$, $f^*\eta$ unter der Polarkoordinatenabbildung $f(r,\theta)=(r\cos\theta,r\sin\theta)$ und wende (a) auf den d θ -Anteil an. Alternativ, betrachte den 1-Zykel $T(\theta)=(\cos\theta,\sin\theta)$, $\theta\in[0,2\pi]$.

Aufgabe 3. Sei $\eta = a_1 dx_1 + a_2 dx_2 + a_3 dx_3$ eine 1-Form auf dem \mathbb{R}^3 , und

$$\omega = b_1 dx_2 \wedge dx_3 + b_2 dx_3 \wedge dx_1 + b_3 dx_1 \wedge dx_2$$

eine 2-Form.

- (a) Berechnen Sie $d\eta$ und $d\omega$ und stellen Sie eine Beziehung auf zu Divergenz und Rotation von (differenzierbaren) Vektorfeldern auf \mathbb{R}^3 her. (Unter der kanonischen Identifikation des Tangentialraumes $T_x\mathbb{R}^3$ mit \mathbb{R}^3 für jedes $x \in \mathbb{R}^3$ ist ein Vektorfeld auf $U \subset \mathbb{R}^3$ einfach eine Abbildung $\mathbf{F} \colon U \to \mathbb{R}^3$.)
- (b) Folgern Sie aus dem Satz von de Rham, daß für jede offene Teilmenge $U \subset \mathbb{R}^3$ mit $H_2(U) = 0$ gilt: Ist \mathbf{F} ein inkompressibles Vektorfeld auf U, d.h. div $\mathbf{F} = 0$, dann $\mathbf{F} = \operatorname{rot} \mathbf{G}$ für ein geeignetes Vektorfeld \mathbf{G} auf U.

(c) Betrachte den singulären 2-Quader

$$T \colon [0,\pi] \times [0,2\pi] \to S^2 \subset \mathbb{R}^3 \setminus \{0\}$$

definiert durch

$$T(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta),$$

sowie die 2-Form

$$\omega = \frac{1}{|x|^3} \left(x_1 \, dx_2 \wedge dx_3 + x_2 \, dx_3 \wedge dx_1 + x_3 \, dx_1 \wedge dx_2 \right),$$

auf $\mathbb{R}^3 \setminus \{0\}$ mit $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

- (i) Zeigen Sie, daß $d\omega = 0$ und $\partial T = 0$.
- (ii) Berechnen Sie $\int_T \omega$.
- (iii) Folgern Sie aus (i) und (ii): $[\omega] \neq 0$ in $H^2_{\Omega}(\mathbb{R}^3 \setminus \{0\})$ und $[T] \neq 0$ in $H_2(\mathbb{R}^3 \setminus \{0\})$.
- (d) Sei **F** ein inkompressibles Vektorfeld auf $\mathbb{R}^3 \setminus \{0\}$. Zeigen Sie, daß es eine reelle Zahl a und ein Vektorfeld **G** auf $\mathbb{R}^3 \setminus \{0\}$ gibt mit

$$\mathbf{F} = \text{rot } \mathbf{G} + \frac{a}{|x|^3} (x_1, x_2, x_3).$$

Aufgabe 4. In dieser Aufgabe soll ein alternativer Beweis des Brouwerschen Fixpunktsatzes mittels Differentialformen gegeben werden. Angenommen, $F \colon D^n \to S^{n-1} = \partial D^n \subset \mathbb{R}^n$ ist eine glatte Retraktion, $F = (F_1, \dots, F_n)$.

(a) Man zeige, daß das Gleichungssystem

$$J_F^t(x) \cdot \mathbf{v} = 0$$

für jedes $x \in D^n$ eine nichttriviale Lösung $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$ hat. Hier bezeichnet $J_F^t(x)$ die transponierte Jacobische Matrix von F. Es folgt det $J_F(x) = 0$.

(b) Setze $\omega = F_1 dF_2 \wedge ... \wedge dF_n$. zeigen Sie durch Betrachtung der Integrale $\int_{S^{n-1}} \omega$ und $\int_{D^n} d\omega$, daß die Annahme der Existenz von F zu einem Widerspruch führt.

Aufgabe 5. Die Standard-Flächenform auf $S^2 \subset \mathbb{R}^3$ läßt sich schreiben als

$$\omega = x \, \mathrm{d}y \wedge \mathrm{d}z + y \, \mathrm{d}z \wedge \mathrm{d}x + z \, \mathrm{d}x \wedge \mathrm{d}y.$$

Zeigen Sie, daß diese 2-Form, zurückgezogen auf den \mathbb{R}^2 unter (der Inversen) der stereographischen Projektion die Gestalt

$$\frac{2r\,\mathrm{d}r\wedge\mathrm{d}\theta}{(1+r^2)^2}$$

annimmt.