WS 2022/23 Prof. Hansjörg Geiges

Chirurgie

Übungsblatt 9

Aufgabe 1. Sei (V, ω) ein symplektischer Vektorraum, d.h. ω ist eine schiefsymmetrische Bilinearform auf V, so daß zu jedem $\mathbf{v} \in V$ mit $\mathbf{v} \neq 0$ ein $\mathbf{w} \in V$ existiert mit $\omega(\mathbf{v}, \mathbf{w}) \neq 0$. Sei $U \subset V$ ein isotroper Unterraum, d.h. $\omega|_{U \times U} \equiv 0$. Zeigen Sie, daß die Dimension von V gerade ist, und U maximal die halbe Dimension von V hat.

- **Aufgabe 2.** (a) Sei α eine Kontaktform auf der Mannigfaltigkeit M. Dann gibt es ein eindeutig bestimmtes Vektorfeld R_{α} auf M, so daß $i_{R_{\alpha}}\alpha \equiv 1$ und $i_{R_{\alpha}}d\alpha \equiv 0$. Dieses Vektorfeld heißt **Reeb-Vektorfeld** zur Kontaktform α .
- (b) Sei nun M 3-dimensional. Zeigen Sie mit Hilfe des Flußbox-Theorems, daß es um jeden Punkt $p \in M$ eine Karte gibt, in der die Kontaktform die Gestalt $\alpha = dz + x dy$ annimmt. **Hinweis:** Das Flußbox-Theorem besagt, daß es bei einem nirgends verschwindenden Vektorfeld X auf einer Mannigfaltigkeit um jeden Punkt der Mannigfaltigkeit eine Karte mit Koordinaten (x_1, \ldots, x_n) gibt, so daß $X = \partial_{x_1}$.
- (c) Zeigen Sie, daß man die Kontaktform in (b) in geeigneten lokalen Koordinaten auch schreiben kann als dz + x dy y dx.

Aufgabe 3. Ein Kontaktomorphismus zwischen zwei Kontaktmannigfaltigkeiten (mit global definierten Kontaktformen) ist ein Diffeomorphismus, der die Kontaktstrukturen erhält. Er heißt **strikt**, wenn die Kontaktformen erhalten bleiben. Seien nun die Kontaktmannigfaltigkeiten $(M_0, \xi_0 = \ker \alpha_0)$ und $(M_1, \xi_1 = \ker \alpha_1)$ eingebettet in symplektische Mannigfaltigkeiten (W_0, ω_0) bzw. (W_1, ω_1) , derart, daß sie transversal sind zu Liouville-Vektorfeldern X_i . Zusätzlich gelte $\alpha_i = i_{X_i} \omega_i |_{TM_i}$.

Zeigen Sie: Wenn es einen strikten Kontaktomorphismus zwischen (M_0, α_0) und (M_1, α_1) gibt, dann erweitert dieser zu einem Symplektomorphismus kleiner Umgebungen der M_i in W_i .

Aufgabe 4. Seien $(M_0, \ker \alpha_0)$ und $(M_1, \ker \alpha_1)$ Kontaktmannigfaltigkeiten, eingebettet in die symplektische Mannigfaltigkeit (W, ω) , so daß ein Liouville-Vektorfeld X auf (W, ω) existiert, derart, daß $\alpha_i = i_X \omega|_{TM_i}$ für i = 0, 1. Des weiteren sei $\mu \colon W \to \mathbb{R}$ eine C^{∞} -Funktion mit der Eigenschaft, daß die Zeit-1-Abbildung Φ_1 des zum Vektorfeld $\mu \cdot X$ assoziierten Flusses Φ zu einem Diffeomorphismus von M_0 nach M_1 einschränkt. Zeigen Sie, daß $\Phi_1|_{M_0}$ sogar ein Kontaktomorphismus ist.

Aufgabe 5. Zeigen Sie, daß man durch Modifikation der Konstruktion aus der Vorlesung auch Chirurgien entlang von Legendre-Knoten in 3-dimensionalen Kontaktmannigfaltigkeiten mit Rahmung +1 bzgl. der Kontaktrahmung realisieren kann.

Abgabe: Mittwoch 11.1.23 in der Übung. Die Übung am 21.12.22 entfällt wegen der Adventsvorlesung.