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CHAPTER

1
René Descartes explaining his
work to Queen Christina of
Sweden. Vector spaces are a
generalization of the
description of a plane using
two coordinates, as published
by Descartes in 1637.

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will
define vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex
numbers are investigated along with real numbers. Thus we will begin by
introducing the complex numbers and their basic properties.

We will generalize the examples of a plane and ordinary space to Rn
and Cn, which we then will generalize to the notion of a vector space. The
elementary properties of a vector space will already seem familiar to you.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).

LEARNING OBJECTIVES FOR THIS CHAPTER

basic properties of the complex numbers

Rn and Cn

vector spaces

subspaces

sums and direct sums of subspaces
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2 CHAPTER 1 Vector Spaces

1.A Rn and Cn

Complex Numbers

1.1 Definition complex numbers
� A complex number is an ordered pair .a; b/, where a; b 2 R, but

we will write this as aC bi .

� The set of all complex numbers is denoted by C:

C D faC bi W a; b 2 Rg:

� Addition and multiplication on C are defined by

.aC bi/C .c C di/ D .aC c/C .b C d/i;

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i I

here a; b; c; d 2 R.

If a 2 R, we identify aC 0i with the real number a. Thus we can think
of R as a subset of C. We also usually write 0C bi as just bi , and we usually
write 0C 1i as just i .

Using multiplication as defined above, you should verify that i2 D �1.
Do not memorize the formula for the product of two complex numbers; you
can always rederive it by recalling that i2 D �1 and then using the usual rules
of arithmetic (as given by 1.3).

1.3 Properties of complex arithmetic
commutativity

˛ C ˇ D ˇ C ˛ and ˛ˇ D ˇ˛ for all ˛; ˇ 2 C;
associativity

.˛Cˇ/C� D ˛C.ˇC�/ and .˛ˇ/� D ˛.ˇ�/ for all ˛; ˇ; � 2 C;
identities

�C 0 D � and �1 D � for all � 2 C;
additive inverse

for every ˛ 2 C, there exists a unique ˇ 2 C such that ˛ C ˇ D 0;
multiplicative inverse

for every ˛ 2 C with ˛ ¤ 0, there exists a unique ˇ 2 C such that
˛ˇ D 1;

distributive property
�.˛ C ˇ/ D �˛ C �ˇ for all �; ˛; ˇ 2 C.
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SECTION 1.A Rn and Cn 3

The properties above are proved using the familiar properties of real
numbers and the definitions of complex addition and multiplication.

1.5 Definition �˛, subtraction, 1=˛, division

Let ˛; ˇ 2 C.

� Let �˛ denote the additive inverse of ˛. Thus �˛ is the unique
complex number such that

˛ C .�˛/ D 0:

� Subtraction on C is defined by

ˇ � ˛ D ˇ C .�˛/:

� For ˛ ¤ 0, let 1=˛ denote the multiplicative inverse of ˛. Thus 1=˛
is the unique complex number such that

˛.1=˛/ D 1:

� Division on C is defined by

ˇ=˛ D ˇ.1=˛/:

So that we can conveniently make definitions and prove theorems that
apply to both real and complex numbers, we adopt the following notation:

1.6 Notation F

Throughout this book, F stands for either R or C.

Thus if we prove a theorem involving F, we will know that it holds when F is
replaced with R and when F is replaced with C.

Elements of F are called scalars. The word “scalar”, a fancy word for
“number”, is often used when we want to emphasize that an object is a number,
as opposed to a vector (vectors will be defined soon).

For ˛ 2 F and m a positive integer, we define ˛m to denote the product of
˛ with itself m times:

˛m D ˛ � � �˛„ƒ‚…
m times

:

Clearly .˛m/n D ˛mn and .˛ˇ/m D ˛mˇm for all ˛; ˇ 2 F and all positive
integers m; n.
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4 CHAPTER 1 Vector Spaces

Lists

To generalize R2 and R3 to higher dimensions, we first need to discuss the
concept of lists.

1.8 Definition list, length

Suppose n is a nonnegative integer. A list of length n is an ordered
collection of n elements (which might be numbers, other lists, or more
abstract entities) separated by commas and surrounded by parentheses. A
list of length n looks like this:

.x1; : : : ; xn/:

Two lists are equal if and only if they have the same length and the same
elements in the same order.

Thus a list of length 2 is an ordered pair, and a list of length 3 is an ordered
triple.

Sometimes we will use the word list without specifying its length. Re-
member, however, that by definition each list has a finite length that is a
nonnegative integer. Thus an object that looks like

.x1; x2; : : : /;

which might be said to have infinite length, is not a list.
A list of length 0 looks like this: . /. We consider such an object to be a

list so that some of our theorems will not have trivial exceptions.
Lists differ from sets in two ways: in lists, order matters and repetitions

have meaning; in sets, order and repetitions are irrelevant.

Fn

To define the higher-dimensional analogues of R2 and R3, we will simply
replace R with F (which equals R or C) and replace the 2 or 3 with an
arbitrary positive integer. Specifically, fix a positive integer n for the rest of
this section.

1.10 Definition Fn

Fn is the set of all lists of length n of elements of F:

Fn D f.x1; : : : ; xn/ W xj 2 F for j D 1; : : : ; ng:

For .x1; : : : ; xn/ 2 Fn and j 2 f1; : : : ; ng, we say that xj is the j th

coordinate of .x1; : : : ; xn/.
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SECTION 1.A Rn and Cn 5

If F D R and n equals 2 or 3, then this definition of Fn agrees with our
previous notions of R2 and R3.

If n � 4, we cannot visualize Rn as a physical object. Similarly, C1 can
be thought of as a plane, but for n � 2, the human brain cannot provide a
full image of Cn. However, even if n is large, we can perform algebraic
manipulations in Fn as easily as in R2 or R3. For example, addition in Fn is
defined as follows:

1.12 Definition addition in Fn

Addition in Fn is defined by adding corresponding coordinates:

.x1; : : : ; xn/C .y1; : : : ; yn/ D .x1 C y1; : : : ; xn C yn/:

Often the mathematics of Fn becomes cleaner if we use a single letter to
denote a list of n numbers, without explicitly writing the coordinates. For
example, the result below is stated with x and y in Fn even though the proof
requires the more cumbersome notation of .x1; : : : ; xn/ and .y1; : : : ; yn/.

1.13 Commutativity of addition in Fn

If x; y 2 Fn, then x C y D y C x.

If a single letter is used to denote an element of Fn, then the same letter
with appropriate subscripts is often used when coordinates must be displayed.
For example, if x 2 Fn, then letting x equal .x1; : : : ; xn/ is good notation, as
shown in the proof above. Even better, work with just x and avoid explicit
coordinates when possible.

1.14 Definition 0

Let 0 denote the list of length n whose coordinates are all 0:

0 D .0; : : : ; 0/:

Here we are using the symbol 0 in two different ways—on the left side of the
equation in 1.14, the symbol 0 denotes a list of length n, whereas on the right
side, each 0 denotes a number. This potentially confusing practice actually
causes no problems because the context always makes clear what is intended.

A picture can aid our intuition. We will draw pictures in R2 because we
can sketch this space on 2-dimensional surfaces such as paper and blackboards.
A typical element of R2 is a point x D .x1; x2/. Sometimes we think of x
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6 CHAPTER 1 Vector Spaces

not as a point but as an arrow starting at the origin and ending at .x1; x2/, as
shown here. When we think of x as an arrow, we refer to it as a vector.

When we think of vectors in R2 as arrows, we can move an arrow parallel
to itself (not changing its length or direction) and still think of it as the same
vector. With that viewpoint, you will often gain better understanding by
dispensing with the coordinate axes and the explicit coordinates and just
thinking of the vector, as shown here.

Whenever we use pictures in R2 or use the somewhat vague language of
points and vectors, remember that these are just aids to our understanding,
not substitutes for the actual mathematics that we will develop. Although we
cannot draw good pictures in high-dimensional spaces, the elements of these
spaces are as rigorously defined as elements of R2.

For example, .2;�3; 17; �;
p
2/ is an element of R5, and we may casually

refer to it as a point in R5 or a vector in R5 without worrying about whether
the geometry of R5 has any physical meaning.

Recall that we defined the sum of two elements of Fn to be the element of
Fn obtained by adding corresponding coordinates; see 1.12. As we will now
see, addition has a simple geometric interpretation in the special case of R2.

Suppose we have two vectors x and y in R2 that we want to add. Move
the vector y parallel to itself so that its initial point coincides with the end
point of the vector x, as shown here. The sum x C y then equals the vector
whose initial point equals the initial point of x and whose end point equals
the end point of the vector y, as shown here.

In the next definition, the 0 on the right side of the displayed equation
below is the list 0 2 Fn.

1.16 Definition additive inverse in Fn

For x 2 Fn, the additive inverse of x, denoted �x, is the vector �x 2 Fn
such that

x C .�x/ D 0:

In other words, if x D .x1; : : : ; xn/, then �x D .�x1; : : : ;�xn/.

For a vector x 2 R2, the additive inverse �x is the vector parallel to x and
with the same length as x but pointing in the opposite direction. The figure
here illustrates this way of thinking about the additive inverse in R2.

Having dealt with addition in Fn, we now turn to multiplication. We could
define a multiplication in Fn in a similar fashion, starting with two elements
of Fn and getting another element of Fn by multiplying corresponding coor-
dinates. Experience shows that this definition is not useful for our purposes.

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



SECTION 1.A Rn and Cn 7

Another type of multiplication, called scalar multiplication, will be central
to our subject. Specifically, we need to define what it means to multiply an
element of Fn by an element of F.

1.17 Definition scalar multiplication in Fn

The product of a number � and a vector in Fn is computed by multiplying
each coordinate of the vector by �:

�.x1; : : : ; xn/ D .�x1; : : : ; �xn/I

here � 2 F and .x1; : : : ; xn/ 2 Fn.

Scalar multiplication has a nice geometric interpretation in R2. If � is
a positive number and x is a vector in R2, then �x is the vector that points
in the same direction as x and whose length is � times the length of x. In
other words, to get �x, we shrink or stretch x by a factor of �, depending on
whether � < 1 or � > 1.

If � is a negative number and x is a vector in R2, then �x is the vector that
points in the direction opposite to that of x and whose length is j�j times the
length of x, as shown here.

Digression on Fields

A field is a set containing at least two distinct elements called 0 and 1, along
with operations of addition and multiplication satisfying all the properties
listed in 1.3. Thus R and C are fields, as is the set of rational numbers along
with the usual operations of addition and multiplication. Another example of
a field is the set f0; 1g with the usual operations of addition and multiplication
except that 1C 1 is defined to equal 0.

In this book we will not need to deal with fields other than R and C.
However, many of the definitions, theorems, and proofs in linear algebra that
work for both R and C also work without change for arbitrary fields. If you
prefer to do so, throughout Chapters 1, 2, and 3 you can think of F as denoting
an arbitrary field instead of R or C, except that some of the examples and
exercises require that for each positive integer n we have 1C 1C � � � C 1„ ƒ‚ …

n times

¤ 0.
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8 CHAPTER 1 Vector Spaces

1.B Definition of Vector Space
The motivation for the definition of a vector space comes from properties of
addition and scalar multiplication in Fn: Addition is commutative, associative,
and has an identity. Every element has an additive inverse. Scalar multiplica-
tion is associative. Scalar multiplication by 1 acts as expected. Addition and
scalar multiplication are connected by distributive properties.

We will define a vector space to be a set V with an addition and a scalar
multiplication on V that satisfy the properties in the paragraph above.

1.18 Definition addition, scalar multiplication

� An addition on a set V is a function that assigns an element uCv 2 V
to each pair of elements u; v 2 V.

� A scalar multiplication on a set V is a function that assigns an ele-
ment �v 2 V to each � 2 F and each v 2 V.

Now we are ready to give the formal definition of a vector space.

1.19 Definition vector space

A vector space is a set V along with an addition on V and a scalar multi-
plication on V such that the following properties hold:

commutativity
uC v D vC u for all u; v 2 V ;

associativity
.uC v/C w D uC .vC w/ and .ab/v D a.bv/ for all u; v;w 2 V
and all a; b 2 F;

additive identity
there exists an element 0 2 V such that vC 0 D v for all v 2 V ;

additive inverse
for every v 2 V, there exists w 2 V such that vC w D 0;

multiplicative identity
1v D v for all v 2 V ;

distributive properties
a.uC v/ D auC av and .aC b/v D avC bv for all a; b 2 F and
all u; v 2 V.
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SECTION 1.B Definition of Vector Space 9

The following geometric language sometimes aids our intuition.

1.20 Definition vector, point

Elements of a vector space are called vectors or points.

The scalar multiplication in a vector space depends on F. Thus when we
need to be precise, we will say that V is a vector space over F instead of
saying simply that V is a vector space. For example, Rn is a vector space over
R, and Cn is a vector space over C.

1.21 Definition real vector space, complex vector space

� A vector space over R is called a real vector space.

� A vector space over C is called a complex vector space.

Usually the choice of F is either obvious from the context or irrelevant.
Thus we often assume that F is lurking in the background without specifically
mentioning it.

With the usual operations of addition and scalar multiplication, Fn is a
vector space over F, as you should verify. The example of Fn motivated our
definition of vector space.

Our next example of a vector space involves a set of functions.

1.23 Notation FS

� If S is a set, then FS denotes the set of functions from S to F.

� For f; g 2 FS , the sum f C g 2 FS is the function defined by

.f C g/.x/ D f .x/C g.x/

for all x 2 S .

� For � 2 F and f 2 FS , the product �f 2 FS is the function
defined by

.�f /.x/ D �f .x/

for all x 2 S .

As an example of the notation above, if S is the interval Œ0; 1� and F D R,
then RŒ0;1� is the set of real-valued functions on the interval Œ0; 1�.
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10 CHAPTER 1 Vector Spaces

Our previous examples of vector spaces, Fn and F1, are special cases of
the vector space FS because a list of length n of numbers in F can be thought
of as a function from f1; 2; : : : ; ng to F and a sequence of numbers in F can
be thought of as a function from the set of positive integers to F. In other
words, we can think of Fn as Ff1;2;:::;ng and we can think of F1 as Ff1;2;::: g.

Soon we will see further examples of vector spaces, but first we need to
develop some of the elementary properties of vector spaces.

The definition of a vector space requires that it have an additive identity.
The result below states that this identity is unique.

1.25 Unique additive identity

A vector space has a unique additive identity.

Each element v in a vector space has an additive inverse, an element w in
the vector space such that vCw D 0. The next result shows that each element
in a vector space has only one additive inverse.

1.26 Unique additive inverse

Every element in a vector space has a unique additive inverse.

Because additive inverses are unique, the following notation now makes
sense.

1.27 Notation �v, w � v

Let v;w 2 V. Then

� �v denotes the additive inverse of v;

� w � v is defined to be wC .�v/.

Almost all the results in this book involve some vector space. To avoid
having to restate frequently that V is a vector space, we now make the
necessary declaration once and for all:

1.28 Notation V

For the rest of the book, V denotes a vector space over F.
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SECTION 1.C Subspaces 11

In the next result, 0 denotes a scalar (the number 0 2 F) on the left side of
the equation and a vector (the additive identity of V ) on the right side of the
equation.

1.29 The number 0 times a vector

0v D 0 for every v 2 V.

In the next result, 0 denotes the additive identity of V. Although their
proofs are similar, 1.29 and 1.30 are not identical. More precisely, 1.29 states
that the product of the scalar 0 and any vector equals the vector 0, whereas
1.30 states that the product of any scalar and the vector 0 equals the vector 0.

1.30 A number times the vector 0

a0 D 0 for every a 2 F.

Now we show that if an element of V is multiplied by the scalar �1, then
the result is the additive inverse of the element of V.

1.31 The number �1 times a vector

.�1/v D �v for every v 2 V.

1.C Subspaces
By considering subspaces, we can greatly expand our examples of vector
spaces.

1.32 Definition subspace

A subset U of V is called a subspace of V if U is also a vector space
(using the same addition and scalar multiplication as on V ).

The next result gives the easiest way to check whether a subset of a vector
space is a subspace.
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12 CHAPTER 1 Vector Spaces

1.34 Conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following
three conditions:

additive identity
0 2 U ;

closed under addition
u;w 2 U implies uC w 2 U ;

closed under scalar multiplication
a 2 F and u 2 U implies au 2 U.

The three conditions in the result above usually enable us to determine
quickly whether a given subset of V is a subspace of V.

The subspaces of R2 are precisely f0g, R2, and all lines in R2 through the
origin. The subspaces of R3 are precisely f0g, R3, all lines in R3 through the
origin, and all planes in R3 through the origin. To prove that all these objects
are indeed subspaces is easy—the hard part is to show that they are the only
subspaces of R2 and R3. That task will be easier after we introduce some
additional tools in the next chapter.

Sums of Subspaces

When dealing with vector spaces, we are usually interested only in subspaces,
as opposed to arbitrary subsets. The notion of the sum of subspaces will be
useful.

1.36 Definition sum of subsets

Suppose U1; : : : ; Um are subsets of V. The sum of U1; : : : ; Um, denoted
U1 C � � � C Um, is the set of all possible sums of elements of U1; : : : ; Um.
More precisely,

U1 C � � � C Um D fu1 C � � � C um W u1 2 U1; : : : ; um 2 Umg:

The next result states that the sum of subspaces is a subspace, and is in
fact the smallest subspace containing all the summands.

1.39 Sum of subspaces is the smallest containing subspace

Suppose U1; : : : ; Um are subspaces of V. Then U1 C � � � C Um is the
smallest subspace of V containing U1; : : : ; Um.
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SECTION 1.C Subspaces 13

Direct Sums

Suppose U1; : : : ; Um are subspaces of V. Every element of U1 C � � � C Um
can be written in the form

u1 C � � � C um;

where each uj is in Uj . We will be especially interested in cases where each
vector in U1 C � � � C Um can be represented in the form above in only one
way. This situation is so important that we give it a special name: direct sum.

1.40 Definition direct sum

Suppose U1; : : : ; Um are subspaces of V.

� The sum U1 C � � � C Um is called a direct sum if each element
of U1 C � � � C Um can be written in only one way as a sum
u1 C � � � C um, where each uj is in Uj .

� If U1 C � � � C Um is a direct sum, then U1 ˚ � � � ˚ Um denotes
U1 C � � � C Um, with the ˚ notation serving as an indication that
this is a direct sum.

The definition of direct sum requires that every vector in the sum have a
unique representation as an appropriate sum. The next result shows that when
deciding whether a sum of subspaces is a direct sum, we need only consider
whether 0 can be uniquely written as an appropriate sum.

1.44 Condition for a direct sum

Suppose U1; : : : ; Um are subspaces of V. Then U1 C � � � C Um is a direct
sum if and only if the only way to write 0 as a sum u1 C � � � C um, where
each uj is in Uj , is by taking each uj equal to 0.

The next result gives a simple condition for testing which pairs of sub-
spaces give a direct sum.

1.45 Direct sum of two subspaces

Suppose U and W are subspaces of V. Then U CW is a direct sum if
and only if U \W D f0g.
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CHAPTER

2
American mathematician Paul
Halmos (1916–2006), who in 1942
published the first modern linear
algebra book. The title of
Halmos’s book was the same as the
title of this chapter.

Finite-Dimensional
Vector Spaces

Let’s review our standing assumptions:

2.1 Notation F, V

� F denotes R or C.

� V denotes a vector space over F.

In the last chapter we learned about vector spaces. Linear algebra focuses
not on arbitrary vector spaces, but on finite-dimensional vector spaces, which
we introduce in this chapter.

LEARNING OBJECTIVES FOR THIS CHAPTER

span

linear independence

bases

dimension
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SECTION 2.A Span and Linear Independence 15

2.A Span and Linear Independence
We have been writing lists of numbers surrounded by parentheses, and we will
continue to do so for elements of Fn; for example, .2;�7; 8/ 2 F3. However,
now we need to consider lists of vectors (which may be elements of Fn or of
other vector spaces). To avoid confusion, we will usually write lists of vectors
without surrounding parentheses. For example, .4; 1; 6/; .9; 5; 7/ is a list of
length 2 of vectors in R3.

2.2 Notation list of vectors

We will usually write lists of vectors without surrounding parentheses.

Linear Combinations and Span

Adding up scalar multiples of vectors in a list gives what is called a linear
combination of the list. Here is the formal definition:

2.3 Definition linear combination

A linear combination of a list v1; : : : ; vm of vectors in V is a vector of
the form

a1v1 C � � � C amvm;

where a1; : : : ; am 2 F.

2.5 Definition span

The set of all linear combinations of a list of vectors v1; : : : ; vm in V is
called the span of v1; : : : ; vm, denoted span.v1; : : : ; vm/. In other words,

span.v1; : : : ; vm/ D fa1v1 C � � � C amvm W a1; : : : ; am 2 Fg:

The span of the empty list . / is defined to be f0g.

Some mathematicians use the term linear span, which means the same as
span.

2.7 Span is the smallest containing subspace

The span of a list of vectors in V is the smallest subspace of V containing
all the vectors in the list.
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16 CHAPTER 2 Finite-Dimensional Vector Spaces

2.8 Definition spans

If span.v1; : : : ; vm/ equals V, we say that v1; : : : ; vm spans V.

Now we can make one of the key definitions in linear algebra.

2.10 Definition finite-dimensional vector space

A vector space is called finite-dimensional if some list of vectors in it
spans the space.

The definition of a polynomial is no doubt already familiar to you.

2.11 Definition polynomial, P.F/

� A function p W F ! F is called a polynomial with coefficients in F
if there exist a0; : : : ; am 2 F such that

p.z/ D a0 C a1z C a2z
2
C � � � C amz

m

for all z 2 F.

� P.F/ is the set of all polynomials with coefficients in F.

With the usual operations of addition and scalar multiplication, P.F/ is a
vector space over F, as you should verify. In other words, P.F/ is a subspace
of FF , the vector space of functions from F to F.

If a polynomial (thought of as a function from F to F) is represented by
two sets of coefficients, then subtracting one representation of the polynomial
from the other produces a polynomial that is identically zero as a function
on F and hence has all zero coefficients (if you are unfamiliar with this fact,
just believe it for now; we will prove it later—see 4.7). Conclusion: the
coefficients of a polynomial are uniquely determined by the polynomial. Thus
the next definition uniquely defines the degree of a polynomial.

2.12 Definition degree of a polynomial, degp

� A polynomial p 2 P.F/ is said to have degree m if there exist
scalars a0; a1; : : : ; am 2 F with am ¤ 0 such that

p.z/ D a0 C a1z C � � � C amz
m

for all z 2 F. If p has degree m, we write degp D m.

� The polynomial that is identically 0 is said to have degree �1.
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SECTION 2.A Span and Linear Independence 17

In the next definition, we use the convention that �1 < m, which means
that the polynomial 0 is in Pm.F/.

2.13 Definition Pm.F/

For m a nonnegative integer, Pm.F/ denotes the set of all polynomials
with coefficients in F and degree at most m.

2.15 Definition infinite-dimensional vector space

A vector space is called infinite-dimensional if it is not finite-dimensional.

Linear Independence

Suppose v1; : : : ; vm 2 V and v 2 span.v1; : : : ; vm/. By the definition of span,
there exist a1; : : : ; am 2 F such that

v D a1v1 C � � � C amvm:

Consider the question of whether the choice of scalars in the equation above
is unique. Suppose c1; : : : ; cm is another set of scalars such that

v D c1v1 C � � � C cmvm:

Subtracting the last two equations, we have

0 D .a1 � c1/v1 C � � � C .am � cm/vm:

Thus we have written 0 as a linear combination of .v1; : : : ; vm/. If the only
way to do this is the obvious way (using 0 for all scalars), then each aj � cj
equals 0, which means that each aj equals cj (and thus the choice of scalars
was indeed unique). This situation is so important that we give it a special
name—linear independence—which we now define.

2.17 Definition linearly independent

� A list v1; : : : ; vm of vectors in V is called linearly independent if
the only choice of a1; : : : ; am 2 F that makes a1v1 C � � � C amvm
equal 0 is a1 D � � � D am D 0.

� The empty list . / is also declared to be linearly independent.
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18 CHAPTER 2 Finite-Dimensional Vector Spaces

The reasoning above shows that v1; : : : ; vm is linearly independent if and
only if each vector in span.v1; : : : ; vm/ has only one representation as a linear
combination of v1; : : : ; vm.

If some vectors are removed from a linearly independent list, the remaining
list is also linearly independent, as you should verify.

2.19 Definition linearly dependent

� A list of vectors in V is called linearly dependent if it is not linearly
independent.

� In other words, a list v1; : : : ; vm of vectors in V is linearly de-
pendent if there exist a1; : : : ; am 2 F, not all 0, such that
a1v1 C � � � C amvm D 0.

The lemma below will often be useful. It states that given a linearly
dependent list of vectors, one of the vectors is in the span of the previous ones
and furthermore we can throw out that vector without changing the span of
the original list.

2.21 Linear Dependence Lemma

Suppose v1; : : : ; vm is a linearly dependent list in V. Then there exists
j 2 f1; 2; : : : ; mg such that the following hold:

(a) vj 2 span.v1; : : : ; vj�1/;

(b) if the j th term is removed from v1; : : : ; vm, the span of the remain-
ing list equals span.v1; : : : ; vm/.

Choosing j D 1 in the Linear Dependence Lemma above means that
v1 D 0, because if j D 1 then condition (a) above is interpreted to mean that
v1 2 span. /; recall that span. / D f0g. Note also that the proof of part (b)
above needs to be modified in an obvious way if v1 D 0 and j D 1.

In general, the proofs in the rest of the book will not call attention to
special cases that must be considered involving empty lists, lists of length 1,
the subspace f0g, or other trivial cases for which the result is clearly true but
needs a slightly different proof. Be sure to check these special cases yourself.

Now we come to a key result. It says that no linearly independent list in V
is longer than a spanning list in V.
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SECTION 2.B Bases 19

2.23 Length of linearly independent list � length of spanning list

In a finite-dimensional vector space, the length of every linearly indepen-
dent list of vectors is less than or equal to the length of every spanning list
of vectors.

Our intuition suggests that every subspace of a finite-dimensional vector
space should also be finite-dimensional. We now prove that this intuition is
correct.

2.26 Finite-dimensional subspaces

Every subspace of a finite-dimensional vector space is finite-dimensional.

2.B Bases
In the last section, we discussed linearly independent lists and spanning lists.
Now we bring these concepts together.

2.27 Definition basis

A basis of V is a list of vectors in V that is linearly independent and
spans V.

In addition to the standard basis, Fn has many other bases. For example,
.7; 5/; .�4; 9/ and .1; 2/; .3; 5/ are both bases of F2.

The next result helps explain why bases are useful. Recall that “uniquely”
means “in only one way”.

2.29 Criterion for basis

A list v1; : : : ; vn of vectors in V is a basis of V if and only if every v 2 V
can be written uniquely in the form

2.30 v D a1v1 C � � � C anvn;

where a1; : : : ; an 2 F.

A spanning list in a vector space may not be a basis because it is not
linearly independent. Our next result says that given any spanning list, some
(possibly none) of the vectors in it can be discarded so that the remaining list
is linearly independent and still spans the vector space.
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20 CHAPTER 2 Finite-Dimensional Vector Spaces

As an example in the vector space F2, if the procedure in the proof below
is applied to the list .1; 2/; .3; 6/; .4; 7/; .5; 9/, then the second and fourth
vectors will be removed. This leaves .1; 2/; .4; 7/, which is a basis of F2.

2.31 Spanning list contains a basis

Every spanning list in a vector space can be reduced to a basis of the
vector space.

Our next result, an easy corollary of the previous result, tells us that every
finite-dimensional vector space has a basis.

2.32 Basis of finite-dimensional vector space

Every finite-dimensional vector space has a basis.

Our next result is in some sense a dual of 2.31, which said that every
spanning list can be reduced to a basis. Now we show that given any linearly
independent list, we can adjoin some additional vectors (this includes the
possibility of adjoining no additional vectors) so that the extended list is still
linearly independent but also spans the space.

2.33 Linearly independent list extends to a basis

Every linearly independent list of vectors in a finite-dimensional vector
space can be extended to a basis of the vector space.

As an example in F3, suppose we start with the linearly independent
list .2; 3; 4/; .9; 6; 8/. If we take w1;w2;w3 in the proof above to be the
standard basis of F3, then the procedure in the proof above produces the list
.2; 3; 4/; .9; 6; 8/; .0; 1; 0/, which is a basis of F3.

As an application of the result above, we now show that every subspace of
a finite-dimensional vector space can be paired with another subspace to form
a direct sum of the whole space.

2.34 Every subspace of V is part of a direct sum equal to V

Suppose V is finite-dimensional and U is a subspace of V. Then there is a
subspace W of V such that V D U ˚W.
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SECTION 2.C Dimension 21

2.C Dimension
Although we have been discussing finite-dimensional vector spaces, we have
not yet defined the dimension of such an object. How should dimension be
defined? A reasonable definition should force the dimension of Fn to equal n.
Notice that the standard basis

.1; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; : : : ; .0; : : : ; 0; 1/

of Fn has length n. Thus we are tempted to define the dimension as the length
of a basis. However, a finite-dimensional vector space in general has many
different bases, and our attempted definition makes sense only if all bases in a
given vector space have the same length. Fortunately that turns out to be the
case, as we now show.

2.35 Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length.

Now that we know that any two bases of a finite-dimensional vector space
have the same length, we can formally define the dimension of such spaces.

2.36 Definition dimension, dimV

� The dimension of a finite-dimensional vector space is the length of
any basis of the vector space.

� The dimension of V (if V is finite-dimensional) is denoted by dimV.

Every subspace of a finite-dimensional vector space is finite-dimensional
(by 2.26) and so has a dimension. The next result gives the expected inequality
about the dimension of a subspace.

2.38 Dimension of a subspace

If V is finite-dimensional and U is a subspace of V, then dimU � dimV.

To check that a list of vectors in V is a basis of V, we must, according to
the definition, show that the list in question satisfies two properties: it must
be linearly independent and it must span V. The next two results show that
if the list in question has the right length, then we need only check that it
satisfies one of the two required properties. First we prove that every linearly
independent list with the right length is a basis.
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� 7� CHAPTER 2 Finite-Dimensional Vector Spaces

2.39 Linearly independent list of the right length is a basis

Suppose V is finite-dimensional. Then every linearly independent list of
vectors in V with length dimV is a basis of V.

Now we prove that a spanning list with the right length is a basis.

2.42 Spanning list of the right length is a basis

Suppose V is finite-dimensional. Then every spanning list of vectors in V
with length dimV is a basis of V.

The next result gives a formula for the dimension of the sum of two
subspaces of a finite-dimensional vector space. This formula is analogous
to a familiar counting formula: the number of elements in the union of two
finite sets equals the number of elements in the first set, plus the number of
elements in the second set, minus the number of elements in the intersection
of the two sets.

2.43 Dimension of a sum

If U1 and U2 are subspaces of a finite-dimensional vector space, then

dim.U1 C U2/ D dimU1 C dimU2 � dim.U1 \ U2/:
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3
German mathematician Carl
Friedrich Gauss (1777–1855), who
in 1809 published a method for
solving systems of linear equations.
This method, now called Gaussian
elimination, was also used in a
Chinese book published over 1600
years earlier.

Linear Maps

So far our attention has focused on vector spaces. No one gets excited about
vector spaces. The interesting part of linear algebra is the subject to which we
now turn—linear maps.

In this chapter we will frequently need another vector space, which we will
call W, in addition to V. Thus our standing assumptions are now as follows:

3.1 Notation F, V, W

� F denotes R or C.

� V and W denote vector spaces over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

Fundamental Theorem of Linear Maps

the matrix of a linear map with respect to given bases

isomorphic vector spaces

product spaces

quotient spaces

the dual space of a vector space and the dual of a linear map
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24 CHAPTER 3 Linear Maps

3.A The Vector Space of Linear Maps

Definition and Examples of Linear Maps

Now we are ready for one of the key definitions in linear algebra.

3.2 Definition linear map

A linear map from V to W is a function T W V ! W with the following
properties:

additivity
T .uC v/ D T uC T v for all u; v 2 V ;

homogeneity
T .�v/ D �.T v/ for all � 2 F and all v 2 V.

Note that for linear maps we often use the notation T v as well as the more
standard functional notation T .v/.

3.3 Notation L.V;W /

The set of all linear maps from V to W is denoted L.V;W /.

The existence part of the next result means that we can find a linear map
that takes on whatever values we wish on the vectors in a basis. The uniqueness
part of the next result means that a linear map is completely determined by its
values on a basis.

3.5 Linear maps and basis of domain

Suppose v1; : : : ; vn is a basis of V and w1; : : : ;wn 2 W. Then there exists
a unique linear map T W V ! W such that

T vj D wj

for each j D 1; : : : ; n.

Algebraic Operations on L.V;W /

We begin by defining addition and scalar multiplication on L.V;W /.
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SECTION 3.A The Vector Space of Linear Maps 25

3.6 Definition addition and scalar multiplication on L.V;W /

Suppose S; T 2 L.V;W / and � 2 F. The sum S C T and the product
�T are the linear maps from V to W defined by

.S C T /.v/ D SvC T v and .�T /.v/ D �.T v/

for all v 2 V.

You should verify that S C T and �T as defined above are indeed linear
maps. In other words, if S; T 2 L.V;W / and � 2 F, then S C T 2 L.V;W /
and �T 2 L.V;W /.

Because we took the trouble to define addition and scalar multiplication
on L.V;W /, the next result should not be a surprise.

3.7 L.V;W / is a vector space

With the operations of addition and scalar multiplication as defined above,
L.V;W / is a vector space.

Note that the additive identity of L.V;W / is the zero linear map defined
earlier in this section.

Usually it makes no sense to multiply together two elements of a vector
space, but for some pairs of linear maps a useful product exists. We will need
a third vector space, so for the rest of this section suppose U is a vector space
over F.

3.8 Definition Product of Linear Maps

If T 2 L.U; V / and S 2 L.V;W /, then the product ST 2 L.U;W / is
defined by

.ST /.u/ D S.T u/

for u 2 U.

In other words, ST is just the usual composition S ı T of two functions,
but when both functions are linear, most mathematicians write ST instead
of S ı T. You should verify that ST is indeed a linear map from U to W
whenever T 2 L.U; V / and S 2 L.V;W /.

Note that ST is defined only when T maps into the domain of S .
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26 CHAPTER 3 Linear Maps

3.9 Algebraic properties of products of linear maps

associativity
.T1T2/T3 D T1.T2T3/

whenever T1, T2, and T3 are linear maps such that the products make
sense (meaning that T3 maps into the domain of T2, and T2 maps into the
domain of T1).

identity
TI D IT D T

whenever T 2 L.V;W / (the first I is the identity map on V, and the
second I is the identity map on W ).

distributive properties

.S1 C S2/T D S1T C S2T and S.T1 C T2/ D ST1 C ST2

whenever T; T1; T2 2 L.U; V / and S; S1; S2 2 L.V;W /.

Multiplication of linear maps is not commutative. In other words, it is not
necessarily true that ST D TS , even if both sides of the equation make sense.

3.11 Linear maps take 0 to 0

Suppose T is a linear map from V to W. Then T .0/ D 0.

3.B Null Spaces and Ranges

Null Space and Injectivity

In this section we will learn about two subspaces that are intimately connected
with each linear map. We begin with the set of vectors that get mapped to 0.

3.12 Definition null space, nullT

For T 2 L.V;W /, the null space of T, denoted nullT, is the subset of V
consisting of those vectors that T maps to 0:

nullT D fv 2 V W T v D 0g:
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SECTION 3.B Null Spaces and Ranges 27

The next result shows that the null space of each linear map is a subspace
of the domain. In particular, 0 is in the null space of every linear map.

3.14 The null space is a subspace

Suppose T 2 L.V;W /. Then nullT is a subspace of V.

As we will soon see, for a linear map the next definition is closely con-
nected to the null space.

3.15 Definition injective

A function T W V ! W is called injective if T u D T v implies u D v.

The definition above could be rephrased to say that T is injective if u ¤ v
implies that T u ¤ T v. In other words, T is injective if it maps distinct inputs
to distinct outputs.

The next result says that we can check whether a linear map is injective by
checking whether 0 is the only vector that gets mapped to 0.

3.16 Injectivity is equivalent to null space equals f0g

Let T 2 L.V;W /. Then T is injective if and only if nullT D f0g.

Range and Surjectivity

Now we give a name to the set of outputs of a function.

3.17 Definition range

For T a function from V toW, the range of T is the subset ofW consisting
of those vectors that are of the form T v for some v 2 V :

rangeT D fT v W v 2 V g:

The next result shows that the range of each linear map is a subspace of
the vector space into which it is being mapped.

3.19 The range is a subspace

If T 2 L.V;W /, then rangeT is a subspace of W.
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28 CHAPTER 3 Linear Maps

3.20 Definition surjective

A function T W V ! W is called surjective if its range equals W.

Whether a linear map is surjective depends on what we are thinking of as
the vector space into which it maps.

Fundamental Theorem of Linear Maps

The next result is so important that it gets a dramatic name.

3.22 Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and T 2 L.V;W /. Then rangeT is
finite-dimensional and

dimV D dim nullT C dim rangeT:

Now we can show that no linear map from a finite-dimensional vector
space to a “smaller” vector space can be injective, where “smaller” is measured
by dimension.

3.23 A map to a smaller dimensional space is not injective

Suppose V and W are finite-dimensional vector spaces such that
dimV > dimW. Then no linear map from V to W is injective.

The next result shows that no linear map from a finite-dimensional vector
space to a “bigger” vector space can be surjective, where “bigger” is measured
by dimension.

3.24 A map to a larger dimensional space is not surjective

Suppose V and W are finite-dimensional vector spaces such that
dimV < dimW. Then no linear map from V to W is surjective.

As we will now see, 3.23 and 3.24 have important consequences in the
theory of linear equations. The idea here is to express questions about systems
of linear equations in terms of linear maps.
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SECTION 3.C Matrices 29

3.26 Homogeneous system of linear equations

A homogeneous system of linear equations with more variables than
equations has nonzero solutions.

Example of the result above: a homogeneous system of four linear equa-
tions with five variables has nonzero solutions.

3.29 Inhomogeneous system of linear equations

An inhomogeneous system of linear equations with more equations than
variables has no solution for some choice of the constant terms.

Example of the result above: an inhomogeneous system of five linear
equations with four variables has no solution for some choice of the constant
terms.

3.C Matrices

Representing a Linear Map by a Matrix

We know that if v1; : : : ; vn is a basis of V and T W V ! W is linear, then the
values of T v1; : : : ; T vn determine the values of T on arbitrary vectors in V
(see 3.5). As we will soon see, matrices are used as an efficient method of
recording the values of the T vj ’s in terms of a basis of W.

3.30 Definition matrix, Aj;k
Letm and n denote positive integers. Anm-by-nmatrixA is a rectangular
array of elements of F with m rows and n columns:

A D

0B@ A1;1 : : : A1;n
:::

:::

Am;1 : : : Am;n

1CA :
The notation Aj;k denotes the entry in row j , column k of A. In other
words, the first index refers to the row number and the second index refers
to the column number.

Thus A2;3 refers to the entry in the second row, third column of a matrix A.
Now we come to the key definition in this section.
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3.32 Definition matrix of a linear map, M.T /

Suppose T 2 L.V;W / and v1; : : : ; vn is a basis of V and w1; : : : ;wm is
a basis of W. The matrix of T with respect to these bases is the m-by-n
matrix M.T / whose entries Aj;k are defined by

T vk D A1;kw1 C � � � C Am;kwm:

If the bases are not clear from the context, then the notation
M
�
T; .v1; : : : ; vn/; .w1; : : : ;wm/

�
is used.

The matrix M.T / of a linear map T 2 L.V;W / depends on the basis
v1; : : : ; vn of V and the basis w1; : : : ;wm ofW, as well as on T. However, the
bases should be clear from the context, and thus they are often not included in
the notation.

To remember how M.T / is constructed from T, you might write across
the top of the matrix the basis vectors v1; : : : ; vn for the domain and along the
left the basis vectors w1; : : : ;wm for the vector space into which T maps, as
follows:

v1 : : : vk : : : vn
w1

M.T / D
:::

wm

0B@ A1;k
:::

Am;k

1CA :
In the matrix above only the kth column is shown. Thus the second index

of each displayed entry of the matrix above is k. The picture above should
remind you that T vk can be computed from M.T / by multiplying each entry
in the kth column by the corresponding wj from the left column, and then
adding up the resulting vectors.

If T is a linear map from Fn to Fm, then unless stated otherwise, assume
the bases in question are the standard ones (where the kth basis vector is 1
in the kth slot and 0 in all the other slots). If you think of elements of Fm as
columns of m numbers, then you can think of the kth column of M.T / as T
applied to the kth standard basis vector.

When working with Pm.F/, use the standard basis 1; x; x2; : : : ; xm unless
the context indicates otherwise.

Addition and Scalar Multiplication of Matrices

For the rest of this section, assume that V and W are finite-dimensional and
that a basis has been chosen for each of these vector spaces. Thus for each
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linear map from V to W, we can talk about its matrix (with respect to the
chosen bases, of course). Is the matrix of the sum of two linear maps equal to
the sum of the matrices of the two maps?

Right now this question does not make sense, because although we have
defined the sum of two linear maps, we have not defined the sum of two
matrices. Fortunately, the obvious definition of the sum of two matrices has
the right properties. Specifically, we make the following definition.

3.35 Definition matrix addition

The sum of two matrices of the same size is the matrix obtained by adding
corresponding entries in the matrices:0B@ A1;1 : : : A1;n

:::
:::

Am;1 : : : Am;n

1CAC
0B@ C1;1 : : : C1;n

:::
:::

Cm;1 : : : Cm;n

1CA
D

0B@ A1;1 C C1;1 : : : A1;n C C1;n
:::

:::

Am;1 C Cm;1 : : : Am;n C Cm;n

1CA :
In other words, .AC C/j;k D Aj;k C Cj;k .

In the following result, the assumption is that the same bases are used for
all three linear maps S C T, S , and T.

3.36 The matrix of the sum of linear maps

Suppose S; T 2 L.V;W /. Then M.S C T / DM.S/CM.T /.

Still assuming that we have some bases in mind, is the matrix of a scalar
times a linear map equal to the scalar times the matrix of the linear map?
Again the question does not make sense, because we have not defined scalar
multiplication on matrices. Fortunately, the obvious definition again has the
right properties.
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3.37 Definition scalar multiplication of a matrix

The product of a scalar and a matrix is the matrix obtained by multiplying
each entry in the matrix by the scalar:

�

0B@ A1;1 : : : A1;n
:::

:::

Am;1 : : : Am;n

1CA D
0B@ �A1;1 : : : �A1;n

:::
:::

�Am;1 : : : �Am;n

1CA :
In other words, .�A/j;k D �Aj;k .

In the following result, the assumption is that the same bases are used for
both linear maps �T and T.

3.38 The matrix of a scalar times a linear map

Suppose � 2 F and T 2 L.V;W /. Then M.�T / D �M.T /.

Because addition and scalar multiplication have now been defined for
matrices, you should not be surprised that a vector space is about to appear.
We need only a bit of notation so that this new vector space has a name.

3.39 Notation Fm;n

For m and n positive integers, the set of all m-by-n matrices with entries
in F is denoted by Fm;n.

3.40 dim Fm;n D mn

Suppose m and n are positive integers. With addition and scalar multipli-
cation defined as above, Fm;n is a vector space with dimension mn.

Matrix Multiplication

Suppose, as previously, that v1; : : : ; vn is a basis of V and w1; : : : ;wm is
a basis of W. Suppose also that we have another vector space U and that
u1; : : : ; up is a basis of U.

Consider linear maps T W U ! V and S W V ! W. The composition
ST is a linear map from U to W. Does M.ST / equal M.S/M.T /? This
question does not yet make sense, because we have not defined the product of
two matrices. We will choose a definition of matrix multiplication that forces
this question to have a positive answer. Let’s see how to do this.

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



SECTION 3.C Matrices 33

Suppose M.S/ D A and M.T / D C . For 1 � k � p, we have

.ST /uk D S
� nX
rD1

Cr;kvr
�

D

nX
rD1

Cr;kSvr

D

nX
rD1

Cr;k

mX
jD1

Aj;rwj

D

mX
jD1

� nX
rD1

Aj;rCr;k
�
wj :

Thus M.ST / is the m-by-p matrix whose entry in row j , column k, equals
nX
rD1

Aj;rCr;k :

Now we see how to define matrix multiplication so that the desired equation
M.ST / DM.S/M.T / holds.

3.41 Definition matrix multiplication

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then AC is
defined to be the m-by-p matrix whose entry in row j , column k, is given
by the following equation:

.AC/j;k D

nX
rD1

Aj;rCr;k :

In other words, the entry in row j , column k, of AC is computed by
taking row j of A and column k of C , multiplying together corresponding
entries, and then summing.

Note that we define the product of two matrices only when the number of
columns of the first matrix equals the number of rows of the second matrix.

Matrix multiplication is not commutative. In other words, AC is not nec-
essarily equal to CA even if both products are defined. Matrix multiplication
is distributive and associative.

In the following result, the assumption is that the same basis of V is used
in considering T 2 L.U; V / and S 2 L.V;W /, the same basis of W is used
in considering S 2 L.V;W / and ST 2 L.U;W /, and the same basis of U is
used in considering T 2 L.U; V / and ST 2 L.U;W /.
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3.43 The matrix of the product of linear maps

If T 2 L.U; V / and S 2 L.V;W /, then M.ST / DM.S/M.T /.

The proof of the result above is the calculation that was done as motivation
before the definition of matrix multiplication.

In the next piece of notation, note that as usual the first index refers to a
row and the second index refers to a column, with a vertically centered dot
used as a placeholder.

3.44 Notation Aj;� , A�;k
Suppose A is an m-by-n matrix.

� If 1 � j � m, then Aj;� denotes the 1-by-n matrix consisting of
row j of A.

� If 1 � k � n, then A�;k denotes the m-by-1 matrix consisting of
column k of A.

The product of a 1-by-n matrix and an n-by-1 matrix is a 1-by-1 matrix.
However, we will frequently identify a 1-by-1 matrix with its entry.

Our next result gives another way to think of matrix multiplication: the
entry in row j , column k, of AC equals (row j of A) times (column k of C ).

3.47 Entry of matrix product equals row times column

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

.AC/j;k D Aj;� C�;k

for 1 � j � m and 1 � k � p.

The next result gives yet another way to think of matrix multiplication. It
states that column k of AC equals A times column k of C .

3.49 Column of matrix product equals matrix times column

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then

.AC/�;k D AC�;k

for 1 � k � p.
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We give one more way of thinking about the product of an m-by-n matrix
and an n-by-1 matrix.

3.52 Linear combination of columns

Suppose A is an m-by-n matrix and c D

0B@ c1
:::

cn

1CA is an n-by-1 matrix.

Then
Ac D c1A�;1 C � � � C cnA�;n:

In other words, Ac is a linear combination of the columns of A, with the
scalars that multiply the columns coming from c.

3.D Invertibility and Isomorphic Vector
Spaces

Invertible Linear Maps

We begin this section by defining the notions of invertible and inverse in the
context of linear maps.

3.53 Definition invertible, inverse

� A linear map T 2 L.V;W / is called invertible if there exists a
linear map S 2 L.W; V / such that ST equals the identity map on
V and TS equals the identity map on W.

� A linear map S 2 L.W; V / satisfying ST D I and TS D I is
called an inverse of T (note that the first I is the identity map on V
and the second I is the identity map on W ).

3.54 Inverse is unique

An invertible linear map has a unique inverse.

Now that we know that the inverse is unique, we can give it a notation.
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3.55 Notation T �1

If T is invertible, then its inverse is denoted by T �1. In other words, if
T 2 L.V;W / is invertible, then T �1 is the unique element of L.W; V /
such that T �1T D I and T T �1 D I.

The following result characterizes the invertible linear maps.

3.56 Invertibility is equivalent to injectivity and surjectivity

A linear map is invertible if and only if it is injective and surjective.

Isomorphic Vector Spaces

The next definition captures the idea of two vector spaces that are essentially
the same, except for the names of the elements of the vector spaces.

3.58 Definition isomorphism, isomorphic

� An isomorphism is an invertible linear map.

� Two vector spaces are called isomorphic if there is an isomorphism
from one vector space onto the other one.

Think of an isomorphism T W V ! W as relabeling v 2 V as T v 2 W. This
viewpoint explains why two isomorphic vector spaces have the same vector
space properties. The terms “isomorphism” and “invertible linear map” mean
the same thing. Use “isomorphism" when you want to emphasize that the two
spaces are essentially the same.

3.59 Dimension shows whether vector spaces are isomorphic

Two finite-dimensional vector spaces over F are isomorphic if and only if
they have the same dimension.

The previous result implies that each finite-dimensional vector space V is
isomorphic to Fn, where n D dimV.
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If v1; : : : ; vn is a basis of V and w1; : : : ;wm is a basis of W, then for each
T 2 L.V;W /, we have a matrix M.T / 2 Fm;n. In other words, once bases
have been fixed for V and W, M becomes a function from L.V;W / to Fm;n.
Notice that 3.36 and 3.38 show that M is a linear map. This linear map is
actually invertible, as we now show.

3.60 L.V;W / and Fm;n are isomorphic

Suppose v1; : : : ; vn is a basis of V and w1; : : : ;wm is a basis of W.
Then M is an isomorphism between L.V;W / and Fm;n.

Now we can determine the dimension of the vector space of linear maps
from one finite-dimensional vector space to another.

3.61 dimL.V;W / D .dimV /.dimW /

Suppose V and W are finite-dimensional. Then L.V;W / is finite-
dimensional and

dimL.V;W / D .dimV /.dimW /:

Linear Maps Thought of as Matrix Multiplication

Previously we defined the matrix of a linear map. Now we define the matrix
of a vector.

3.62 Definition matrix of a vector, M.v/

Suppose v 2 V and v1; : : : ; vn is a basis of V. The matrix of v with
respect to this basis is the n-by-1 matrix

M.v/ D

0B@ c1
:::

cn

1CA ;
where c1; : : : ; cn are the scalars such that

v D c1v1 C � � � C cnvn:

The matrix M.v/ of a vector v 2 V depends on the basis v1; : : : ; vn of V,
as well as on v. However, the basis should be clear from the context and thus
it is not included in the notation.
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Occasionally we want to think of elements of V as relabeled to be n-by-1
matrices. Once a basis v1; : : : ; vn is chosen, the function M that takes v 2 V
to M.v/ is an isomorphism of V onto Fn;1 that implements this relabeling.

Recall that if A is an m-by-n matrix, then A�;k denotes the kth column of
A, thought of as an m-by-1 matrix. In the next result, M.T vk/ is computed
with respect to the basis w1; : : : ;wm of W.

3.64 M.T /�;k DM.T vk/.

Suppose T 2 L.V;W / and v1; : : : ; vn is a basis of V and w1; : : : ;wm is
a basis of W. Let 1 � k � n. Then the kth column of M.T /, which is
denoted by M.T /�;k , equals M.T vk/.

The next result shows how the notions of the matrix of a linear map, the
matrix of a vector, and matrix multiplication fit together.

3.65 Linear maps act like matrix multiplication

Suppose T 2 L.V;W / and v 2 V. Suppose v1; : : : ; vn is a basis of V and
w1; : : : ;wm is a basis of W. Then

M.T v/ DM.T /M.v/:

Eachm-by-nmatrixA induces a linear map from Fn;1 to Fm;1, namely the
matrix multiplication function that takes x 2 Fn;1 to Ax 2 Fm;1. The result
above can be used to think of every linear map (from one finite-dimensional
vector space to another finite-dimensional vector space) as a matrix multi-
plication map after suitable relabeling via the isomorphisms given by M.
Specifically, if T 2 L.V;W / and we identify v 2 V with M.v/ 2 Fn;1, then
the result above says that we can identify T v with M.T /M.v/.

Because the result above allows us to think (via isomorphisms) of each
linear map as multiplication on Fn;1 by some matrix A, keep in mind that the
specific matrix A depends not only on the linear map but also on the choice
of bases. One of the themes of many of the most important results in later
chapters will be the choice of a basis that makes the matrix A as simple as
possible.

In this book, we concentrate on linear maps rather than on matrices. How-
ever, sometimes thinking of linear maps as matrices (or thinking of matrices
as linear maps) gives important insights that we will find useful.
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Operators

Linear maps from a vector space to itself are so important that they get a
special name and special notation.

3.67 Definition operator, L.V /

� A linear map from a vector space to itself is called an operator.

� The notation L.V / denotes the set of all operators on V. In other
words, L.V / D L.V; V /.

A linear map is invertible if it is injective and surjective. For an operator,
you might wonder whether injectivity alone, or surjectivity alone, is enough
to imply invertibility. On infinite-dimensional vector spaces, neither condition
alone implies invertibility.

In view of the example above, the next result is remarkable—it states
that for operators on a finite-dimensional vector space, either injectivity or
surjectivity alone implies the other condition. Often it is easier to check that
an operator on a finite-dimensional vector space is injective, and then we get
surjectivity for free.

3.69 Injectivity is equivalent to surjectivity in finite dimensions

Suppose V is finite-dimensional and T 2 L.V /. Then the following are
equivalent:

(a) T is invertible;

(b) T is injective;

(c) T is surjective.

3.E Products and Quotients of Vector Spaces

Products of Vector Spaces

As usual when dealing with more than one vector space, all the vector spaces
in use should be over the same field.
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3.71 Definition product of vector spaces

Suppose V1; : : : ; Vm are vector spaces over F.

� The product V1 � � � � � Vm is defined by

V1 � � � � � Vm D f.v1; : : : ; vm/ W v1 2 V1; : : : ; vm 2 Vmg:

� Addition on V1 � � � � � Vm is defined by

.u1; : : : ; um/C .v1; : : : ; vm/ D .u1 C v1; : : : ; um C vm/:

� Scalar multiplication on V1 � � � � � Vm is defined by

�.v1; : : : ; vm/ D .�v1; : : : ; �vm/:

The next result should be interpreted to mean that the product of vector
spaces is a vector space with the operations of addition and scalar multiplica-
tion as defined above.

3.73 Product of vector spaces is a vector space

Suppose V1; : : : ; Vm are vector spaces over F. Then V1 � � � � � Vm is a
vector space over F.

Note that the additive identity of V1 � � � � � Vm is .0; : : : ; 0/, where
the 0 in the j th slot is the additive identity of Vj . The additive inverse
of .v1; : : : ; vm/ 2 V1 � � � � � Vm is .�v1; : : : ;�vm/.

3.76 Dimension of a product is the sum of dimensions

Suppose V1; : : : ; Vm are finite-dimensional vector spaces. Then
V1 � � � � � Vm is finite-dimensional and

dim.V1 � � � � � Vm/ D dimV1 C � � � C dimVm:

Products and Direct Sums

In the next result, the map � is surjective by the definition of U1 C � � � C Um.
Thus the last word in the result below could be changed from “injective” to
“invertible”.
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3.77 Products and direct sums

Suppose that U1; : : : ; Um are subspaces of V. Define a linear map
� W U1 � � � � � Um ! U1 C � � � C Um by

�.u1; : : : ; um/ D u1 C � � � C um:

Then U1 C � � � C Um is a direct sum if and only if � is injective.

3.78 A sum is a direct sum if and only if dimensions add up

Suppose V is finite-dimensional andU1; : : : ; Um are subspaces of V. Then
U1 C � � � C Um is a direct sum if and only if

dim.U1 C � � � C Um/ D dimU1 C � � � C dimUm:

In the special case m D 2, an alternative proof that U1 C U2 is a direct
sum if and only if dim.U1 C U2/ D dimU1 C dimU2 can be obtained by
combining 1.45 and 2.43.

Quotients of Vector Spaces

We begin our approach to quotient spaces by defining the sum of a vector and
a subspace.

3.79 Definition vC U

Suppose v 2 V and U is a subspace of V. Then vC U is the subset of V
defined by

vC U D fvC u W u 2 U g:

3.81 Definition affine subset, parallel

� An affine subset of V is a subset of V of the form vC U for some
v 2 V and some subspace U of V.

� For v 2 V and U a subspace of V, the affine subset vC U is said to
be parallel to U.
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3.83 Definition quotient space, V=U

Suppose U is a subspace of V. Then the quotient space V=U is the set of
all affine subsets of V parallel to U. In other words,

V=U D fvC U W v 2 V g:

Our next goal is to make V=U into a vector space. To do this, we will
need the following result.

3.85 Two affine subsets parallel to U are equal or disjoint

Suppose U is a subspace of V and v;w 2 V. Then the following are
equivalent:

(a) v � w 2 U ;

(b) vC U D wC U ;

(c) .vC U/ \ .wC U/ ¤ ¿.

Now we can define addition and scalar multiplication on V=U.

3.86 Definition addition and scalar multiplication on V=U

Suppose U is a subspace of V. Then addition and scalar multiplication
are defined on V=U by

.vC U/C .wC U/ D .vC w/C U

�.vC U/ D .�v/C U

for v;w 2 V and � 2 F.

As part of the proof of the next result, we will show that the definitions
above make sense.

3.87 Quotient space is a vector space

Suppose U is a subspace of V. Then V=U, with the operations of addition
and scalar multiplication as defined above, is a vector space.

The next concept will give us an easy way to compute the dimension
of V=U.
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3.88 Definition quotient map, �

Suppose U is a subspace of V. The quotient map � is the linear map
� W V ! V=U defined by

�.v/ D vC U

for v 2 V.

The reader should verify that � is indeed a linear map. Although �
depends on U as well as V, these spaces are left out of the notation because
they should be clear from the context.

3.89 Dimension of a quotient space

Suppose V is finite-dimensional and U is a subspace of V. Then

dimV=U D dimV � dimU:

Each linear map T on V induces a linear map QT on V=.nullT /, which we
now define.

3.90 Definition QT

Suppose T 2 L.V;W /. Define QT W V=.nullT /! W by

QT .vC nullT / D T v:

To show that the definition of QT makes sense, suppose u; v 2 V are such
that u C nullT D v C nullT. By 3.85, we have u � v 2 nullT. Thus
T .u � v/ D 0. Hence T u D T v. Thus the definition of QT indeed makes
sense.

3.91 Null space and range of QT

Suppose T 2 L.V;W /. Then

(a) QT is a linear map from V=.nullT / to W ;

(b) QT is injective;

(c) range QT D rangeT ;

(d) V=.nullT / is isomorphic to rangeT.
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3.F Duality

The Dual Space and the Dual Map

Linear maps into the scalar field F play a special role in linear algebra, and
thus they get a special name:

3.92 Definition linear functional

A linear functional on V is a linear map from V to F. In other words, a
linear functional is an element of L.V;F/.

The vector space L.V;F/ also gets a special name and special notation:

3.94 Definition dual space, V 0

The dual space of V, denoted V 0, is the vector space of all linear
functionals on V. In other words, V 0 D L.V;F/.

3.95 dimV 0 D dimV

Suppose V is finite-dimensional. Then V 0 is also finite-dimensional and
dimV 0 D dimV.

In the following definition, 3.5 implies that each 'j is well defined.

3.96 Definition dual basis

If v1; : : : ; vn is a basis of V, then the dual basis of v1; : : : ; vn is the list
'1; : : : ; 'n of elements of V 0, where each 'j is the linear functional on V
such that

'j .vk/ D

(
1 if k D j;
0 if k ¤ j:

The next result shows that the dual basis is indeed a basis. Thus the
terminology “dual basis” is justified.

3.98 Dual basis is a basis of the dual space

Suppose V is finite-dimensional. Then the dual basis of a basis of V is a
basis of V 0.
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In the definition below, note that if T is a linear map from V to W then T 0

is a linear map from W 0 to V 0.

3.99 Definition dual map, T 0

If T 2 L.V;W /, then the dual map of T is the linear map T 0 2 L.W 0; V 0/
defined by T 0.'/ D ' ı T for ' 2 W 0.

If T 2 L.V;W / and ' 2 W 0, then T 0.'/ is defined above to be the
composition of the linear maps ' and T. Thus T 0.'/ is indeed a linear map
from V to F; in other words, T 0.'/ 2 V 0.

The verification that T 0 is a linear map from W 0 to V 0 is easy:

� If '; 2 W 0, then

T 0.' C  / D .' C  / ı T D ' ı T C  ı T D T 0.'/C T 0. /:

� If � 2 F and ' 2 W 0, then

T 0.�'/ D .�'/ ı T D �.' ı T / D �T 0.'/:

The first two bullet points in the result below imply that the function that
takes T to T 0 is a linear map from L.V;W / to L.W 0; V 0/.

In the third bullet point below, note the reversal of order from ST on the
left to T 0S 0 on the right (here we assume that U is a vector space over F).

3.101 Algebraic properties of dual maps

� .S C T /0 D S 0 C T 0 for all S; T 2 L.V;W /.

� .�T /0 D �T 0 for all � 2 F and all T 2 L.V;W /.

� .ST /0 D T 0S 0 for all T 2 L.U; V / and all S 2 L.V;W /.

The Null Space and Range of the Dual of a Linear Map

Our goal in this subsection is to describe nullT 0 and rangeT 0 in terms of
rangeT and nullT. To do this, we will need the following definition.

3.102 Definition annihilator, U 0

For U � V, the annihilator of U, denoted U 0, is defined by

U 0 D f' 2 V 0 W '.u/ D 0 for all u 2 U g:
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For U � V, the annihilator U 0 is a subset of the dual space V 0. Thus U 0

depends on the vector space containing U, so a notation such as U 0V would be
more precise. However, the containing vector space will always be clear from
the context, so we will use the simpler notation U 0.

3.105 The annihilator is a subspace

Suppose U � V. Then U 0 is a subspace of V 0.

The next result shows that dimU 0 is the difference of dimV and dimU.

3.106 Dimension of the annihilator

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU C dimU 0 D dimV:

The proof of part (a) of the result below does not use the hypothesis that
V and W are finite-dimensional.

3.107 The null space of T 0

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then

(a) nullT 0 D .rangeT /0;

(b) dim nullT 0 D dim nullT C dimW � dimV.

The next result can be useful because sometimes it is easier to verify that
T 0 is injective than to show directly that T is surjective.

3.108 T surjective is equivalent to T 0 injective

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then T is
surjective if and only if T 0 is injective.

3.109 The range of T 0

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then

(a) dim rangeT 0 D dim rangeT ;

(b) rangeT 0 D .nullT /0.
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The next result should be compared to 3.108.

3.110 T injective is equivalent to T 0 surjective

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then T is
injective if and only if T 0 is surjective.

The Matrix of the Dual of a Linear Map

We now define the transpose of a matrix.

3.111 Definition transpose, At

The transpose of a matrix A, denoted At, is the matrix obtained from
A by interchanging the rows and columns. More specifically, if A is an
m-by-n matrix, then At is the n-by-m matrix whose entries are given by
the equation

.At/k;j D Aj;k :

The transpose has nice algebraic properties: .A C C/t D At C C t and
.�A/t D �At for all m-by-n matrices A;C and all � 2 F.

The next result shows that the transpose of the product of two matrices is
the product of the transposes in the opposite order.

3.113 The transpose of the product of matrices

If A is an m-by-n matrix and C is an n-by-p matrix, then

.AC/t D C tAt:

The setting for the next result is the assumption that we have a basis
v1; : : : ; vn of V, along with its dual basis '1; : : : ; 'n of V 0. We also have a
basis w1; : : : ;wm of W, along with its dual basis  1; : : : ;  m of W 0. Thus
M.T / is computed with respect to the bases just mentioned of V and W,
and M.T 0/ is computed with respect to the dual bases just mentioned of W 0

and V 0.

3.114 The matrix of T 0 is the transpose of the matrix of T

Suppose T 2 L.V;W /. Then M.T 0/ D
�
M.T /

�t.
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The Rank of a Matrix

We begin by defining two nonnegative integers that are associated with each
matrix.

3.115 Definition row rank, column rank

Suppose A is an m-by-n matrix with entries in F.

� The row rank of A is the dimension of the span of the rows of A in
F1;n.

� The column rank of A is the dimension of the span of the columns
of A in Fm;1.

Notice that no bases are in sight in the statement of the next result. Al-
though M.T / in the next result depends on a choice of bases of V and W,
the next result shows that the column rank of M.T / is the same for all such
choices (because rangeT does not depend on a choice of basis).

3.117 Dimension of rangeT equals column rank of M.T /

Suppose V and W are finite-dimensional and T 2 L.V;W /. Then
dim rangeT equals the column rank of M.T /.

3.118 Row rank equals column rank

Suppose A 2 Fm;n. Then the row rank of A equals the column rank of A.

The last result allows us to dispense with the terms “row rank” and “column
rank” and just use the simpler term “rank”.

3.119 Definition rank

The rank of a matrix A 2 Fm;n is the column rank of A.
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4
Statue of Persian
mathematician and poet
Omar Khayyám
(1048–1131), whose
algebra book written in
1070 contained the first
serious study of cubic
polynomials.

Polynomials

This short chapter contains material on polynomials that we will need to
understand operators. Many of the results in this chapter will already be
familiar to you from other courses; they are included here for completeness.

Because this chapter is not about linear algebra, your instructor may go
through it rapidly. You may not be asked to scrutinize all the proofs. Make
sure, however, that you at least read and understand the statements of all the
results in this chapter—they will be used in later chapters.

The standing assumption we need for this chapter is as follows:

4.1 Notation F

F denotes R or C.

LEARNING OBJECTIVES FOR THIS CHAPTER

Division Algorithm for Polynomials

factorization of polynomials over C
factorization of polynomials over R
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Complex Conjugate and Absolute Value

Before discussing polynomials with complex or real coefficients, we need to
learn a bit more about the complex numbers.

4.2 Definition Re z, Im z

Suppose z D aC bi , where a and b are real numbers.

� The real part of z, denoted Re z, is defined by Re z D a.

� The imaginary part of z, denoted Im z, is defined by Im z D b.

Thus for every complex number z, we have

z D Re z C .Im z/i:

4.3 Definition complex conjugate, Nz, absolute value, jzj

Suppose z 2 C.

� The complex conjugate of z 2 C, denoted Nz, is defined by

Nz D Re z � .Im z/i:

� The absolute value of a complex number z, denoted jzj, is defined
by

jzj D

q
.Re z/2 C .Im z/2:

Note that jzj is a nonnegative number for every z 2 C.
The real and imaginary parts, complex conjugate, and absolute value have

the following properties:
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4.5 Properties of complex numbers

Suppose w; z 2 C. Then

sum of z and Nz
z C Nz D 2Re z;

difference of z and Nz
z � Nz D 2.Im z/i ;

product of z and Nz
z Nz D jzj2;

additivity and multiplicativity of complex conjugate
wC z D NwC Nz and wz D Nw Nz;

conjugate of conjugate
Nz D z;

real and imaginary parts are bounded by jzj
jRe zj � jzj and j Im zj � jzj

absolute value of the complex conjugate
j Nzj D jzj;

multiplicativity of absolute value
jwzj D jwj jzj;

Triangle Inequality
w + z

z

w

jwC zj � jwj C jzj.

Uniqueness of Coefficients for Polynomials

Recall that a function p W F ! F is called a polynomial with coefficients in F
if there exist a0; : : : ; am 2 F such that

4.6 p.z/ D a0 C a1z C a2z
2
C � � � C amz

m

for all z 2 F.

4.7 If a polynomial is the zero function, then all coefficients are 0

Suppose a0; : : : ; am 2 F. If

a0 C a1z C � � � C amz
m
D 0

for every z 2 F, then a0 D � � � D am D 0.
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The result above implies that the coefficients of a polynomial are uniquely
determined (because if a polynomial had two different sets of coefficients,
then subtracting the two representations of the polynomial would give a
contradiction to the result above).

Recall that if a polynomial p can be written in the form 4.6 with am ¤ 0,
then we say that p has degree m and we write degp D m.

The degree of the 0 polynomial is defined to be �1. When necessary, use
the obvious arithmetic with�1. For example,�1 < m and�1Cm D �1
for every integer m.

The Division Algorithm for Polynomials

If p and s are nonnegative integers, with s ¤ 0, then there exist nonnegative
integers q and r such that

p D sq C r

and r < s. Think of dividing p by s, getting quotient q with remainder r . Our
next task is to prove an analogous result for polynomials.

The result below is often called the Division Algorithm for Polynomials,
although as stated here it is not really an algorithm, just a useful result.

Recall that P.F/ denotes the vector space of all polynomials with co-
efficients in F and that Pm.F/ is the subspace of P.F/ consisting of the
polynomials with coefficients in F and degree at most m.

The next result can be proved without linear algebra, but the proof given
here using linear algebra is appropriate for a linear algebra textbook.

4.8 Division Algorithm for Polynomials

Suppose that p; s 2 P.F/, with s ¤ 0. Then there exist unique
polynomials q; r 2 P.F/ such that

p D sq C r

and deg r < deg s.

Zeros of Polynomials

The solutions to the equation p.z/ D 0 play a crucial role in the study of a
polynomial p 2 P.F/. Thus these solutions have a special name.
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4.9 Definition zero of a polynomial

A number � 2 F is called a zero (or root) of a polynomial p 2 P.F/ if

p.�/ D 0:

4.10 Definition factor

A polynomial s 2 P.F/ is called a factor of p 2 P.F/ if there exists a
polynomial q 2 P.F/ such that p D sq.

We begin by showing that � is a zero of a polynomial p 2 P.F/ if and
only if z � � is a factor of p.

4.11 Each zero of a polynomial corresponds to a degree-1 factor

Suppose p 2 P.F/ and � 2 F. Then p.�/ D 0 if and only if there is a
polynomial q 2 P.F/ such that

p.z/ D .z � �/q.z/

for every z 2 F.

Now we can prove that polynomials do not have too many zeros.

4.12 A polynomial has at most as many zeros as its degree

Suppose p 2 P.F/ is a polynomial with degree m � 0. Then p has at
most m distinct zeros in F.

Factorization of Polynomials over C

So far we have been handling polynomials with complex coefficients and
polynomials with real coefficients simultaneously through our convention that
F denotes R or C. Now we will see some differences between these two cases.
First we treat polynomials with complex coefficients. Then we will use our
results about polynomials with complex coefficients to prove corresponding
results for polynomials with real coefficients.

The next result, although called the Fundamental Theorem of Algebra,
uses analysis in its proof. The short proof presented here uses tools from
complex analysis. If you have not had a course in complex analysis, this
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proof will almost certainly be meaningless to you. In that case, just accept
the Fundamental Theorem of Algebra as something that we need to use but
whose proof requires more advanced tools that you may learn in later courses.

4.13 Fundamental Theorem of Algebra

Every nonconstant polynomial with complex coefficients has a zero.

Although the proof given above is probably the shortest proof of the
Fundamental Theorem of Algebra, a web search can lead you to several other
proofs that use different techniques. All proofs of the Fundamental Theorem
of Algebra need to use some analysis, because the result is not true if C is
replaced, for example, with the set of numbers of the form c C di where c; d
are rational numbers.

Remarkably, mathematicians have proved that no formula exists for the
zeros of polynomials of degree 5 or higher. But computers and calculators
can use clever numerical methods to find good approximations to the zeros of
any polynomial, even when exact zeros cannot be found.

For example, no one will ever be able to give an exact formula for a zero
of the polynomial p defined by

p.x/ D x5 � 5x4 � 6x3 C 17x2 C 4x � 7:

However, a computer or symbolic calculator can find approximate zeros of
this polynomial.

The Fundamental Theorem of Algebra leads to the following factorization
result for polynomials with complex coefficients. Note that in this factoriza-
tion, the numbers �1; : : : ; �m are precisely the zeros of p, for these are the
only values of z for which the right side of the equation in the next result
equals 0.

4.14 Factorization of a polynomial over C

If p 2 P.C/ is a nonconstant polynomial, then p has a unique factoriza-
tion (except for the order of the factors) of the form

p.z/ D c.z � �1/ � � � .z � �m/;

where c; �1; : : : ; �m 2 C.
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Factorization of Polynomials over R

A polynomial with real coefficients may have no real zeros. For example, the
polynomial 1C x2 has no real zeros.

To obtain a factorization theorem over R, we will use our factorization
theorem over C. We begin with the following result.

4.15 Polynomials with real coefficients have zeros in pairs

Suppose p 2 P.C/ is a polynomial with real coefficients. If � 2 C is a
zero of p, then so is N�.

We want a factorization theorem for polynomials with real coefficients.
First we need to characterize the polynomials of degree 2 with real coefficients
that can be written as the product of two polynomials of degree 1 with real
coefficients.

4.16 Factorization of a quadratic polynomial

Suppose b; c 2 R. Then there is a polynomial factorization of the form

x2 C bx C c D .x � �1/.x � �2/

with �1; �2 2 R if and only if b2 � 4c.

The next result gives a factorization of a polynomial over R. The idea of
the proof is to use the factorization 4.14 of p as a polynomial with complex
coefficients. Complex but nonreal zeros of p come in pairs; see 4.15. Thus
if the factorization of p as an element of P.C/ includes terms of the form
.x � �/ with � a nonreal complex number, then .x � N�/ is also a term in the
factorization. Multiplying together these two terms, we get�

x2 � 2.Re�/x C j�j2
�
;

which is a quadratic term of the required form.
The idea sketched in the paragraph above almost provides a proof of the

existence of our desired factorization. However, we need to be careful about
one point. Suppose � is a nonreal complex number and .x � �/ is a term in
the factorization of p as an element of P.C/. We are guaranteed by 4.15 that
.x � N�/ also appears as a term in the factorization, but 4.15 does not state that
these two factors appear the same number of times, as needed to make the
idea above work. However, the proof works around this point.
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In the next result, either m or M may equal 0. The numbers �1; : : : ; �m
are precisely the real zeros of p, for these are the only real values of x for
which the right side of the equation in the next result equals 0.

4.17 Factorization of a polynomial over R

Suppose p 2 P.R/ is a nonconstant polynomial. Then p has a unique
factorization (except for the order of the factors) of the form

p.x/ D c.x � �1/ � � � .x � �m/.x
2
C b1x C c1/ � � � .x

2
C bMx C cM /;

where c; �1; : : : ; �m; b1; : : : ; bM ; c1; : : : ; cM 2 R, with bj 2 < 4cj for
each j .
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Statue of Italian mathematician
Leonardo of Pisa (1170–1250,
approximate dates), also known as
Fibonacci.

Eigenvalues, Eigenvectors, and
Invariant Subspaces

Linear maps from one vector space to another vector space were the objects
of study in Chapter 3. Now we begin our investigation of linear maps from
a finite-dimensional vector space to itself. Their study constitutes the most
important part of linear algebra.

Our standing assumptions are as follows:

5.1 Notation F, V

� F denotes R or C.

� V denotes a vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

invariant subspaces

eigenvalues, eigenvectors, and eigenspaces

each operator on a finite-dimensional complex vector space has an
eigenvalue and an upper-triangular matrix with respect to some
basis
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5.A Invariant Subspaces
In this chapter we develop the tools that will help us understand the structure
of operators. Recall that an operator is a linear map from a vector space to
itself. Recall also that we denote the set of operators on V by L.V /; in other
words, L.V / D L.V; V /.

Let’s see how we might better understand what an operator looks like.
Suppose T 2 L.V /. If we have a direct sum decomposition

V D U1 ˚ � � � ˚ Um;

where each Uj is a proper subspace of V, then to understand the behavior of
T, we need only understand the behavior of each T jUj

; here T jUj
denotes

the restriction of T to the smaller domain Uj . Dealing with T jUj
should be

easier than dealing with T because Uj is a smaller vector space than V.
However, if we intend to apply tools useful in the study of operators (such

as taking powers), then we have a problem: T jUj
may not map Uj into itself;

in other words, T jUj
may not be an operator on Uj . Thus we are led to

consider only decompositions of V of the form above where T maps each Uj
into itself.

The notion of a subspace that gets mapped into itself is sufficiently impor-
tant to deserve a name.

5.2 Definition invariant subspace

Suppose T 2 L.V /. A subspace U of V is called invariant under T if
u 2 U implies T u 2 U.

In other words, U is invariant under T if T jU is an operator on U.
Must an operator T 2 L.V / have any invariant subspaces other than f0g

and V ? Later we will see that this question has an affirmative answer if V is
finite-dimensional and dimV > 1 (for F D C) or dimV > 2 (for F D R/;
see 5.21 and 9.8.

Although nullT and rangeT are invariant under T, they do not necessarily
provide easy answers to the question about the existence of invariant subspaces
other than f0g and V , because nullT may equal f0g and rangeT may equal
V (this happens when T is invertible).
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Eigenvalues and Eigenvectors

We will return later to a deeper study of invariant subspaces. Now we turn to an
investigation of the simplest possible nontrivial invariant subspaces—invariant
subspaces with dimension 1.

Take any v 2 V with v ¤ 0 and let U equal the set of all scalar multiples
of v:

U D f�v W � 2 Fg D span.v/:

Then U is a 1-dimensional subspace of V (and every 1-dimensional subspace
of V is of this form for an appropriate choice of v). If U is invariant under an
operator T 2 L.V /, then T v 2 U, and hence there is a scalar � 2 F such that

T v D �v:

Conversely, if T v D �v for some � 2 F, then span.v/ is a 1-dimensional
subspace of V invariant under T.

The equation
T v D �v;

which we have just seen is intimately connected with 1-dimensional invariant
subspaces, is important enough that the vectors v and scalars � satisfying it
are given special names.

5.5 Definition eigenvalue

Suppose T 2 L.V /. A number � 2 F is called an eigenvalue of T if
there exists v 2 V such that v ¤ 0 and T v D �v.

The comments above show that T has a 1-dimensional invariant subspace
if and only if T has an eigenvalue.

In the definition above, we require that v ¤ 0 because every scalar � 2 F
satisfies T 0 D �0.

5.6 Equivalent conditions to be an eigenvalue

Suppose V is finite-dimensional, T 2 L.V /, and � 2 F . Then the
following are equivalent:

(a) � is an eigenvalue of T ;

(b) T � �I is not injective;

(c) T � �I is not surjective;

Recall that I 2 L.V / is the iden-
tity operator defined by I v D v for
all v 2 V.

(d) T � �I is not invertible.
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5.7 Definition eigenvector

Suppose T 2 L.V / and � 2 F is an eigenvalue of T. A vector v 2 V is
called an eigenvector of T corresponding to � if v ¤ 0 and T v D �v.

Because T v D �v if and only if .T ��I/v D 0, a vector v 2 V with v ¤ 0
is an eigenvector of T corresponding to � if and only if v 2 null.T � �I/.

Now we show that eigenvectors corresponding to distinct eigenvalues are
linearly independent.

5.10 Linearly independent eigenvectors

Let T 2 L.V /. Suppose �1; : : : ; �m are distinct eigenvalues of T and
v1; : : : ; vm are corresponding eigenvectors. Then v1; : : : ; vm is linearly
independent.

The corollary below states that an operator cannot have more distinct
eigenvalues than the dimension of the vector space on which it acts.

5.13 Number of eigenvalues

Suppose V is finite-dimensional. Then each operator on V has at most
dimV distinct eigenvalues.

Restriction and Quotient Operators

If T 2 L.V / and U is a subspace of V invariant under T, then U determines
two other operators T jU 2 L.U / and T=U 2 L.V=U / in a natural way, as
defined below.

5.14 Definition T jU and T=U

Suppose T 2 L.V / and U is a subspace of V invariant under T.

� The restriction operator T jU 2 L.U / is defined by

T jU .u/ D T u

for u 2 U.

� The quotient operator T=U 2 L.V=U / is defined by

.T=U /.vC U/ D T vC U

for v 2 V.
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For both the operators defined above, it is worthwhile to pay attention
to their domains and to spend a moment thinking about why they are well
defined as operators on their domains. First consider the restriction operator
T jU 2 L.U /, which is T with its domain restricted to U, thought of as
mapping into U instead of into V. The condition that U is invariant under T
is what allows us to think of T jU as an operator on U, meaning a linear map
into the same space as the domain, rather than as simply a linear map from
one vector space to another vector space.

To show that the definition above of the quotient operator makes sense,
we need to verify that if vC U D wC U, then T vC U D TwC U. Hence
suppose vCU D wCU. Thus v� w 2 U (see 3.85). Because U is invariant
under T, we also have T .v�w/ 2 U, which implies that T v�Tw 2 U, which
implies that T vC U D TwC U, as desired.

Suppose T is an operator on a finite-dimensional vector space V and U is
a subspace of V invariant under T, with U ¤ f0g and U ¤ V. In some sense,
we can learn about T by studying the operators T jU and T=U, each of which
is an operator on a vector space with smaller dimension than V.

5.B Eigenvectors and Upper-Triangular
Matrices

Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which map a vector
space into itself) than for more general linear maps is that operators can be
raised to powers.

If T 2 L.V /, then T T makes sense and is also in L.V /. We usually write
T 2 instead of T T. More generally, we have the following definition.

5.16 Definition Tm

Suppose T 2 L.V / and m is a positive integer.

� Tm is defined by
Tm D T � � �T„ƒ‚…

m times

:

� T 0 is defined to be the identity operator I on V.

� If T is invertible with inverse T �1, then T �m is defined by

T �m D .T �1/
m
:
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You should verify that if T is an operator, then

TmT n D TmCn and .Tm/
n
D Tmn;

where m and n are allowed to be arbitrary integers if T is invertible and
nonnegative integers if T is not invertible.

5.17 Definition p.T /

Suppose T 2 L.V / and p 2 P.F/ is a polynomial given by

p.z/ D a0 C a1z C a2z
2
C � � � C amz

m

for z 2 F. Then p.T / is the operator defined by

p.T / D a0I C a1T C a2T
2
C � � � C amT

m:

This is a new use of the symbol p because we are applying it to operators,
not just elements of F.

If we fix an operator T 2 L.V /, then the function from P.F/ to L.V /
given by p 7! p.T / is linear, as you should verify.

5.19 Definition product of polynomials

If p; q 2 P.F/, then pq 2 P.F/ is the polynomial defined by

.pq/.z/ D p.z/q.z/

for z 2 F.

Any two polynomials of an operator commute, as shown below.

5.20 Multiplicative properties

Suppose p; q 2 P.F/ and T 2 L.V /.
Then
(a) .pq/.T / D p.T /q.T /;

(b) p.T /q.T / D q.T /p.T /.

Part (a) holds because when ex-
panding a product of polynomials
using the distributive property, it
does not matter whether the sym-
bol is z or T.

Existence of Eigenvalues

Now we come to one of the central results about operators on complex vector
spaces.
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5.21 Operators on complex vector spaces have an eigenvalue

Every operator on a finite-dimensional, nonzero, complex vector space
has an eigenvalue.

Upper-Triangular Matrices

In Chapter 3 we discussed the matrix of a linear map from one vector space
to another vector space. That matrix depended on a choice of a basis of each
of the two vector spaces. Now that we are studying operators, which map a
vector space to itself, the emphasis is on using only one basis.

5.22 Definition matrix of an operator, M.T /

Suppose T 2 L.V / and v1; : : : ; vn is a basis of V. The matrix of T with
respect to this basis is the n-by-n matrix

M.T / D

0B@ A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1CA
whose entries Aj;k are defined by

T vk D A1;kv1 C � � � C An;kvn:

If the basis is not clear from the context, then the notation
M
�
T; .v1; : : : ; vn/

�
is used.

Note that the matrices of operators are square arrays, rather than the more
general rectangular arrays that we considered earlier for linear maps.

If T is an operator on Fn and no basis is specified, assume that the basis
in question is the standard one (where the j th basis vector is 1 in the j th slot
and 0 in all the other slots). You can then think of the j th column of M.T /

as T applied to the j th basis vector.
A central goal of linear algebra is to show that given an operator T 2 L.V /,

there exists a basis of V with respect to which T has a reasonably simple
matrix. To make this vague formulation a bit more precise, we might try to
choose a basis of V such that M.T / has many 0’s.

If V is a finite-dimensional complex vector space, then we already know
enough to show that there is a basis of V with respect to which the matrix of
T has 0’s everywhere in the first column, except possibly the first entry. In
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64 CHAPTER 5 Eigenvalues, Eigenvectors, and Invariant Subspaces

other words, there is a basis of V with respect to which the matrix of T looks
like 0BBB@

�

0 �

:::

0

1CCCA I
here the � denotes the entries in all the columns other than the first column.
To prove this, let � be an eigenvalue of T (one exists by 5.21) and let v be a
corresponding eigenvector. Extend v to a basis of V. Then the matrix of T
with respect to this basis has the form above.

Soon we will see that we can choose a basis of V with respect to which
the matrix of T has even more 0’s.

5.24 Definition diagonal of a matrix

The diagonal of a square matrix consists of the entries along the line from
the upper left corner to the bottom right corner.

5.25 Definition upper-triangular matrix

A matrix is called upper triangular if all the entries below the diagonal
equal 0.

Typically we represent an upper-triangular matrix in the form0B@ �1 �

: : :

0 �n

1CA I
the 0 in the matrix above indicates that all entries below the diagonal in

this n-by-n matrix equal 0. Upper-triangular matrices can be considered
reasonably simple—for n large, almost half its entries in an n-by-n upper-
triangular matrix are 0.

The following proposition demonstrates a useful connection between
upper-triangular matrices and invariant subspaces.
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5.26 Conditions for upper-triangular matrix

Suppose T 2 L.V / and v1; : : : ; vn is a basis of V. Then the following are
equivalent:

(a) the matrix of T with respect to v1; : : : ; vn is upper triangular;

(b) T vj 2 span.v1; : : : ; vj / for each j D 1; : : : ; n;

(c) span.v1; : : : ; vj / is invariant under T for each j D 1; : : : ; n.

Now we can prove that for each operator on a finite-dimensional complex
vector space, there is a basis of the vector space with respect to which the
matrix of the operator has only 0’s below the diagonal. In Chapter 8 we will
improve even this result.

Sometimes more insight comes from seeing more than one proof of a
theorem. Thus two proofs are presented of the next result. Use whichever
appeals more to you.

5.27 Over C, every operator has an upper-triangular matrix

Suppose V is a finite-dimensional complex vector space and T 2 L.V /.
Then T has an upper-triangular matrix with respect to some basis of V.

How does one determine from looking at the matrix of an operator whether
the operator is invertible? If we are fortunate enough to have a basis with
respect to which the matrix of the operator is upper triangular, then this
problem becomes easy, as the following proposition shows.

5.30 Determination of invertibility from upper-triangular matrix

Suppose T 2 L.V / has an upper-triangular matrix with respect to some
basis of V. Then T is invertible if and only if all the entries on the diagonal
of that upper-triangular matrix are nonzero.

Unfortunately no method exists for exactly computing the eigenvalues of
an operator from its matrix. However, if we are fortunate enough to find a
basis with respect to which the matrix of the operator is upper triangular, then
the problem of computing the eigenvalues becomes trivial, as the following
proposition shows.
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5.32 Determination of eigenvalues from upper-triangular matrix

Suppose T 2 L.V / has an upper-triangular matrix with respect to some
basis of V. Then the eigenvalues of T are precisely the entries on the
diagonal of that upper-triangular matrix.

Once the eigenvalues of an operator on Fn are known, the eigenvectors
can be found easily using Gaussian elimination.

5.C Eigenspaces and Diagonal Matrices

5.34 Definition diagonal matrix

A diagonal matrix is a square matrix that is 0 everywhere except possibly
along the diagonal.

Obviously every diagonal matrix is upper triangular. In general, a diagonal
matrix has many more 0’s than an upper-triangular matrix.

If an operator has a diagonal matrix with respect to some basis, then the
entries along the diagonal are precisely the eigenvalues of the operator; this
follows from 5.32 (or find an easier proof for diagonal matrices).

5.36 Definition eigenspace, E.�; T /

Suppose T 2 L.V / and � 2 F. The eigenspace of T corresponding to �,
denoted E.�; T /, is defined by

E.�; T / D null.T � �I/:

In other words, E.�; T / is the set of all eigenvectors of T corresponding
to �, along with the 0 vector.

For T 2 L.V / and � 2 F, the eigenspace E.�; T / is a subspace of V
(because the null space of each linear map on V is a subspace of V ). The
definitions imply that � is an eigenvalue of T if and only if E.�; T / ¤ f0g.

If � is an eigenvalue of an operator T 2 L.V /, then T restricted to
E.�; T / is just the operator of multiplication by �.

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



SECTION 5.C Eigenspaces and Diagonal Matrices 67

5.38 Sum of eigenspaces is a direct sum

Suppose V is finite-dimensional and T 2 L.V /. Suppose also that
�1; : : : ; �m are distinct eigenvalues of T. Then

E.�1; T /C � � � CE.�m; T /

is a direct sum. Furthermore,

dimE.�1; T /C � � � C dimE.�m; T / � dimV:

5.39 Definition diagonalizable

An operator T 2 L.V / is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V.

5.41 Conditions equivalent to diagonalizability

Suppose V is finite-dimensional and T 2 L.V /. Let �1; : : : ; �m denote
the distinct eigenvalues of T. Then the following are equivalent:

(a) T is diagonalizable;

(b) V has a basis consisting of eigenvectors of T ;

(c) there exist 1-dimensional subspacesU1; : : : ; Un of V, each invariant
under T, such that

V D U1 ˚ � � � ˚ UnI

(d) V D E.�1; T /˚ � � � ˚E.�m; T /;

(e) dimV D dimE.�1; T /C � � � C dimE.�m; T /.

Unfortunately not every operator is diagonalizable. This sad state of affairs
can arise even on complex vector spaces.

The next result shows that if an operator has as many distinct eigenvalues
as the dimension of its domain, then the operator is diagonalizable.

5.44 Enough eigenvalues implies diagonalizability

If T 2 L.V / has dimV distinct eigenvalues, then T is diagonalizable.
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68 CHAPTER 5 Eigenvalues, Eigenvectors, and Invariant Subspaces

The converse of 5.44 is not true. For example, the operator T defined on
the three-dimensional space F3 by

T .z1; z2; z3/ D .4z1; 4z2; 5z3/

has only two eigenvalues (4 and 5), but this operator has a diagonal matrix
with respect to the standard basis.

In later chapters we will find additional conditions that imply that certain
operators are diagonalizable.

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



CHAPTER

6
Woman teaching
geometry, from a
fourteenth-century
edition of Euclid’s
geometry book.

Inner Product Spaces

In making the definition of a vector space, we generalized the linear structure
(addition and scalar multiplication) of R2 and R3. We ignored other important
features, such as the notions of length and angle. These ideas are embedded
in the concept we now investigate, inner products.

Our standing assumptions are as follows:

6.1 Notation F, V

� F denotes R or C.

� V denotes a vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

Cauchy–Schwarz Inequality

Gram–Schmidt Procedure

linear functionals on inner product spaces

calculating minimum distance to a subspace
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70 CHAPTER 6 Inner Product Spaces

6.A Inner Products and Norms

Inner Products

To motivate the concept of inner product, think of vectors in R2 and R3 as
arrows with initial point at the origin. The length of a vector x in R2 or R3
is called the norm of x, denoted kxk. Thus for x D .x1; x2/ 2 R2, we have
kxk D

p
x12 C x22.

Similarly, if x D .x1; x2; x3/ 2 R3, then kxk D
p
x12 C x22 C x32.

Even though we cannot draw pictures in higher dimensions, the gener-
alization to Rn is obvious: we define the norm of x D .x1; : : : ; xn/ 2 Rn
by

kxk D
p
x12 C � � � C xn2:

The norm is not linear on Rn. To inject linearity into the discussion, we
introduce the dot product.

6.2 Definition dot product

For x; y 2 Rn, the dot product of x and y, denoted x � y, is defined by

x � y D x1y1 C � � � C xnyn;

where x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/.

Note that the dot product of two vectors in Rn is a number, not a vector.
Obviously x � x D kxk2 for all x 2 Rn. The dot product on Rn has the
following properties:

� x � x � 0 for all x 2 Rn;

� x � x D 0 if and only if x D 0;

� for y 2 Rn fixed, the map from Rn to R that sends x 2 Rn to x � y is
linear;

� x � y D y � x for all x; y 2 Rn.

An inner product is a generalization of the dot product. At this point you
may be tempted to guess that an inner product is defined by abstracting the
properties of the dot product discussed in the last paragraph. For real vector
spaces, that guess is correct. However, so that we can make a definition that
will be useful for both real and complex vector spaces, we need to examine
the complex case before making the definition.

Recall that if � D aC bi , where a; b 2 R, then
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� the absolute value of �, denoted j�j, is defined by j�j D
p
a2 C b2;

� the complex conjugate of �, denoted N�, is defined by N� D a � bi ;

� j�j2 D � N�.

See Chapter 4 for the definitions and the basic properties of the absolute value
and complex conjugate.

For z D .z1; : : : ; zn/ 2 Cn, we define the norm of z by

kzk D

q
jz1j2 C � � � C jznj2:

The absolute values are needed because we want kzk to be a nonnegative
number. Note that

kzk2 D z1z1 C � � � C znzn:

We want to think of kzk2 as the inner product of z with itself, as we
did in Rn. The equation above thus suggests that the inner product of
w D .w1; : : : ;wn/ 2 Cn with z should equal

w1z1 C � � � C wnzn:

If the roles of the w and z were interchanged, the expression above would
be replaced with its complex conjugate. In other words, we should expect
that the inner product of w with z equals the complex conjugate of the inner
product of z with w. With that motivation, we are now ready to define an
inner product on V, which may be a real or a complex vector space.

Two comments about the notation used in the next definition:

� If � is a complex number, then the notation � � 0 means that � is real
and nonnegative.

� We use the common notation hu; vi, with angle brackets denoting an
inner product. Some people use parentheses instead, but then .u; v/
becomes ambiguous because it could denote either an ordered pair or
an inner product.
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6.3 Definition inner product

An inner product on V is a function that takes each ordered pair .u; v/ of
elements of V to a number hu; vi 2 F and has the following properties:

positivity
hv; vi � 0 for all v 2 V ;

definiteness
hv; vi D 0 if and only if v D 0;

additivity in first slot
huC v;wi D hu;wi C hv;wi for all u; v;w 2 V ;

homogeneity in first slot
h�u; vi D �hu; vi for all � 2 F and all u; v 2 V ;

conjugate symmetry
hu; vi D hv; ui for all u; v 2 V.

Every real number equals its complex conjugate. Thus if we are dealing
with a real vector space, then in the last condition above we can dispense with
the complex conjugate and simply state that hu; vi D hv; ui for all v;w 2 V.

6.5 Definition inner product space

An inner product space is a vector space V along with an inner product
on V.

The most important example of an inner product space is Fn with the
Euclidean inner product given by part (a) of the last example. When Fn is
referred to as an inner product space, you should assume that the inner product
is the Euclidean inner product unless explicitly told otherwise.

So that we do not have to keep repeating the hypothesis that V is an inner
product space, for the rest of this chapter we make the following assumption:

6.6 Notation V

For the rest of this chapter, V denotes an inner product space over F.

Note the slight abuse of language here. An inner product space is a vector
space along with an inner product on that vector space. When we say that
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a vector space V is an inner product space, we are also thinking that an
inner product on V is lurking nearby or is obvious from the context (or is the
Euclidean inner product if the vector space is Fn).

6.7 Basic properties of an inner product

(a) For each fixed u 2 V, the function that takes v to hv; ui is a linear
map from V to F.

(b) h0; ui D 0 for every u 2 V.

(c) hu; 0i D 0 for every u 2 V.

(d) hu; vC wi D hu; vi C hu;wi for all u; v;w 2 V.

(e) hu; �vi D N�hu; vi for all � 2 F and u; v 2 V.

Norms

Our motivation for defining inner products came initially from the norms of
vectors on R2 and R3. Now we see that each inner product determines a
norm.

6.8 Definition norm, kvk

For v 2 V, the norm of v, denoted kvk, is defined by

kvk D
p
hv; vi:

6.10 Basic properties of the norm

Suppose v 2 V.

(a) kvk D 0 if and only if v D 0.

(b) k�vk D j�j kvk for all � 2 F.

The proof above of part (b) illustrates a general principle: working with
norms squared is usually easier than working directly with norms.

Now we come to a crucial definition.
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6.11 Definition orthogonal

Two vectors u; v 2 V are called orthogonal if hu; vi D 0.

In the definition above, the order of the vectors does not matter, because
hu; vi D 0 if and only if hv; ui D 0. Instead of saying that u and v are
orthogonal, sometimes we say that u is orthogonal to v.

We begin our study of orthogonality with an easy result.

6.12 Orthogonality and 0

(a) 0 is orthogonal to every vector in V.

(b) 0 is the only vector in V that is orthogonal to itself.

For the special case V D R2, the next theorem is over 2,500 years old. Of
course, the proof below is not the original proof.

6.13 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V. Then

kuC vk2 D kuk2 C kvk2:

Suppose u; v 2 V, with v ¤ 0. We would like to write u as a scalar
multiple of v plus a vector w orthogonal to v, as suggested in the next picture.

w

u

0

cv

v

An orthogonal decomposition.
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To discover how to write u as a scalar multiple of v plus a vector orthogonal
to v, let c 2 F denote a scalar. Then

u D cvC .u � cv/:

Thus we need to choose c so that v is orthogonal to .u � cv/. In other words,
we want

0 D hu � cv; vi D hu; vi � ckvk2:

The equation above shows that we should choose c to be hu; vi=kvk2. Making
this choice of c, we can write

u D
hu; vi
kvk2

vC
�
u �
hu; vi
kvk2

v
�
:

As you should verify, the equation above writes u as a scalar multiple of v
plus a vector orthogonal to v. In other words, we have proved the following
result.

6.14 An orthogonal decomposition

Suppose u; v 2 V, with v ¤ 0. Set c D
hu; vi
kvk2

and w D u�
hu; vi
kvk2

v. Then

hw; vi D 0 and u D cvC w:

The orthogonal decomposition 6.14 will be used in the proof of the Cauchy–
Schwarz Inequality, which is our next result and is one of the most important
inequalities in mathematics.

6.15 Cauchy–Schwarz Inequality

Suppose u; v 2 V. Then

jhu; vij � kuk kvk:

This inequality is an equality if and only if one of u; v is a scalar multiple
of the other.

The next result, called the Triangle Inequality, has the geometric interpreta-
tion that the length of each side of a triangle is less than the sum of the lengths
of the other two sides.

Note that the Triangle Inequality implies that the shortest path between
two points is a line segment.
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6.18 Triangle Inequality

Suppose u; v 2 V. Then

kuC vk � kuk C kvk:

This inequality is an equality if and only if one of u; v is a nonnegative
multiple of the other.

The next result is called the parallelogram equality because of its geometric
interpretation: in every parallelogram, the sum of the squares of the lengths
of the diagonals equals the sum of the squares of the lengths of the four sides.

u + v

u - v

u

u

v v

The parallelogram equality.

6.22 Parallelogram Equality

Suppose u; v 2 V. Then

kuC vk2 C ku � vk2 D 2.kuk2 C kvk2/:

6.B Orthonormal Bases

6.23 Definition orthonormal

� A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list.

� In other words, a list e1; : : : ; em of vectors in V is orthonormal if

hej ; eki D

(
1 if j D k,
0 if j ¤ k.
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Orthonormal lists are particularly easy to work with, as illustrated by the
next result.

6.25 The norm of an orthonormal linear combination

If e1; : : : ; em is an orthonormal list of vectors in V, then

ka1e1 C � � � C amemk
2
D ja1j

2
C � � � C jamj

2

for all a1; : : : ; am 2 F.

The result above has the following important corollary.

6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.

6.27 Definition orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is
also a basis of V.

For example, the standard basis is an orthonormal basis of Fn.

6.28 An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dimV is an orthonormal
basis of V.

In general, given a basis e1; : : : ; en of V and a vector v 2 V, we know that
there is some choice of scalars a1; : : : ; an 2 F such that

v D a1e1 C � � � C anen:

Computing the numbers a1; : : : ; an that satisfy the equation above can be
difficult for an arbitrary basis of V. The next result shows, however, that this
is easy for an orthonormal basis—just take aj D hv; ej i.

6.30 Writing a vector as linear combination of orthonormal basis

Suppose e1; : : : ; en is an orthonormal basis of V and v 2 V. Then

v D hv; e1ie1 C � � � C hv; enien

and
kvk2 D jhv; e1ij2 C � � � C jhv; enij2:
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Now that we understand the usefulness of orthonormal bases, how do
we go about finding them? For example, does Pm.R/, with inner product
given by integration on Œ�1; 1�? The next result will lead to answers to these
questions.

The algorithm used in the next proof is called the Gram–Schmidt Pro-
cedure. It gives a method for turning a linearly independent list into an
orthonormal list with the same span as the original list.

6.31 Gram–Schmidt Procedure

Suppose v1; : : : ; vm is a linearly independent list of vectors in V. Let
e1 D v1=kv1k. For j D 2; : : : ; m, define ej inductively by

ej D
vj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1
kvj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1k

:

Then e1; : : : ; em is an orthonormal list of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for j D 1; : : : ; m.

Now we can answer the question about the existence of orthonormal bases.

6.34 Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Sometimes we need to know not only that an orthonormal basis exists, but
also that every orthonormal list can be extended to an orthonormal basis. In
the next corollary, the Gram–Schmidt Procedure shows that such an extension
is always possible.

6.35 Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors
in V can be extended to an orthonormal basis of V.

Recall that a matrix is called upper triangular if all entries below the
diagonal equal 0. In other words, an upper-triangular matrix looks like this:
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: : :

0 �

1CA ;
where the 0 in the matrix above indicates that all entries below the diagonal
equal 0, and asterisks are used to denote entries on and above the diagonal.

In the last chapter we showed that if V is a finite-dimensional complex
vector space, then for each operator on V there is a basis with respect to
which the matrix of the operator is upper triangular (see 5.27). Now that we
are dealing with inner product spaces, we would like to know whether there
exists an orthonormal basis with respect to which we have an upper-triangular
matrix.

The next result shows that the existence of a basis with respect to which
T has an upper-triangular matrix implies the existence of an orthonormal
basis with this property. This result is true on both real and complex vector
spaces (although on a real vector space, the hypothesis holds only for some
operators).

6.37 Upper-triangular matrix with respect to orthonormal basis

Suppose T 2 L.V /. If T has an upper-triangular matrix with respect to
some basis of V, then T has an upper-triangular matrix with respect to
some orthonormal basis of V.

The next result is an important application of the result above.

6.38 Schur’s Theorem

Suppose V is a finite-dimensional complex vector space and T 2 L.V /.
Then T has an upper-triangular matrix with respect to some orthonormal
basis of V.

Linear Functionals on Inner Product Spaces

Because linear maps into the scalar field F play a special role, we defined a
special name for them in Section 3.F. That definition is repeated below in
case you skipped Section 3.F.

6.39 Definition linear functional

A linear functional on V is a linear map from V to F. In other words, a
linear functional is an element of L.V;F/.
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If u 2 V, then the map that sends v to hv; ui is a linear functional on V.
The next result shows that every linear functional on V is of this form.

6.42 Riesz Representation Theorem

Suppose V is finite-dimensional and ' is a linear functional on V. Then
there is a unique vector u 2 V such that

'.v/ D hv; ui

for every v 2 V.

6.C Orthogonal Complements and
Minimization Problems

Orthogonal Complements

6.45 Definition orthogonal complement, U?

If U is a subset of V, then the orthogonal complement of U, denoted U?,
is the set of all vectors in V that are orthogonal to every vector in U :

U? D fv 2 V W hv; ui D 0 for every u 2 U g:

For example, if U is a line in R3, then U? is the plane containing the
origin that is perpendicular to U. If U is a plane in R3, then U? is the line
containing the origin that is perpendicular to U.

6.46 Basic properties of orthogonal complement

(a) If U is a subset of V, then U? is a subspace of V.

(b) f0g? D V.

(c) V ? D f0g.

(d) If U is a subset of V, then U \ U? � f0g.

(e) If U and W are subsets of V and U � W, then W ? � U?.
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Recall that if U;W are subspaces of V, then V is the direct sum of U and
W (written V D U ˚W ) if each element of V can be written in exactly one
way as a vector in U plus a vector in W (see 1.40).

The next result shows that every finite-dimensional subspace of V leads to
a natural direct sum decomposition of V.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

V D U ˚ U?:

Now we can see how to compute dimU? from dimU.

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU? D dimV � dimU:

The next result is an important consequence of 6.47.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

U D .U?/?:

We now define an operator PU for each finite-dimensional subspace of V.

6.53 Definition orthogonal projection, PU

Suppose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator PU 2 L.V / defined as follows:
For v 2 V, write v D uC w, where u 2 U and w 2 U?. Then PU v D u.

The direct sum decomposition V D U ˚ U? given by 6.47 shows that
each v 2 V can be uniquely written in the form v D uC w with u 2 U and
w 2 U?. Thus PU v is well defined.
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6.55 Properties of the orthogonal projection PU

Suppose U is a finite-dimensional subspace of V and v 2 V. Then

(a) PU 2 L.V / ;

(b) PUu D u for every u 2 U ;

(c) PUw D 0 for every w 2 U?;

(d) rangePU D U ;

(e) nullPU D U?;

(f) v � PU v 2 U?;

(g) PU
2
D PU ;

(h) kPU vk � kvk;

(i) for every orthonormal basis e1; : : : ; em of U,

PU v D hv; e1ie1 C � � � C hv; emiem:

Minimization Problems

The following problem often arises: given a subspace U of V and a point
v 2 V, find a point u 2 U such that kv � uk is as small as possible. The
next proposition shows that this minimization problem is solved by taking
u D PU v.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of V, v 2 V, and u 2 U. Then

kv � PU vk � kv � uk:

Furthermore, the inequality above is an equality if and only if u D PU v.
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0

v

P vU

U

PU v is the closest point in U to v.

The last result is often combined with the formula 6.55(i) to compute
explicit solutions to minimization problems.
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7
Isaac Newton
(1642–1727), as
envisioned by British
poet and artist William
Blake in this 1795
painting.

Operators on Inner Product
Spaces

The deepest results related to inner product spaces deal with the subject
to which we now turn—operators on inner product spaces. By exploiting
properties of the adjoint, we will develop a detailed description of several
important classes of operators on inner product spaces.

A new assumption for this chapter is listed in the second bullet point below:

7.1 Notation F, V

� F denotes R or C.

� V and W denote finite-dimensional inner product spaces over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

adjoint

Spectral Theorem

positive operators

isometries

Polar Decomposition

Singular Value Decomposition
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7.A Self-Adjoint and Normal Operators

Adjoints

7.2 Definition adjoint, T �

Suppose T 2 L.V;W /. The adjoint of T is the function T � W W ! V

such that
hT v;wi D hv; T �wi

for every v 2 V and every w 2 W.

To see why the definition above makes sense, suppose T 2 L.V;W /. Fix
w 2 W. Consider the linear functional on V that maps v 2 V to hT v;wi; this
linear functional depends on T and w. By the Riesz Representation Theorem
(6.42), there exists a unique vector in V such that this linear functional is
given by taking the inner product with it. We call this unique vector T �w. In
other words, T �w is the unique vector in V such that hT v;wi D hv; T �wi for
every v 2 V.

The proofs of the next two results use a common technique: flip T � from
one side of an inner product to become T on the other side.

7.5 The adjoint is a linear map

If T 2 L.V;W /, then T � 2 L.W; V /.

7.6 Properties of the adjoint

(a) .S C T /� D S� C T � for all S; T 2 L.V;W /;

(b) .�T /� D N�T � for all � 2 F and T 2 L.V;W /;

(c) .T �/� D T for all T 2 L.V;W /;

(d) I� D I, where I is the identity operator on V ;

(e) .ST /� D T �S� for all T 2 L.V;W / and S 2 L.W;U / (here U
is an inner product space over F).

The next result shows the relationship between the null space and the range
of a linear map and its adjoint. The symbol() used in the proof means “if
and only if”; this symbol could also be read to mean “is equivalent to”.
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7.7 Null space and range of T �

Suppose T 2 L.V;W /. Then

(a) nullT � D .rangeT /?;

(b) rangeT � D .nullT /?;

(c) nullT D .rangeT �/?;

(d) rangeT D .nullT �/?.

7.8 Definition conjugate transpose

The conjugate transpose of an m-by-n matrix is the n-by-m matrix ob-
tained by interchanging the rows and columns and then taking the complex
conjugate of each entry.

The next result shows how to compute the matrix of T � from the matrix
of T.

Caution: Remember that the result below applies only when we are dealing
with orthonormal bases. With respect to nonorthonormal bases, the matrix of
T � does not necessarily equal the conjugate transpose of the matrix of T.

7.10 The matrix of T �

Let T 2 L.V;W /. Suppose e1; : : : ; en is an orthonormal basis of V and
f1; : : : ; fm is an orthonormal basis of W. Then

M
�
T �; .f1; : : : ; fm/; .e1; : : : ; en/

�
is the conjugate transpose of

M
�
T; .e1; : : : ; en/; .f1; : : : ; fm/

�
:

Self-Adjoint Operators

Now we switch our attention to operators on inner product spaces. Thus
instead of considering linear maps from V toW, we will be focusing on linear
maps from V to V ; recall that such linear maps are called operators.
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7.11 Definition self-adjoint

An operator T 2 L.V / is called self-adjoint if T D T �. In other words,
T 2 L.V / is self-adjoint if and only if

hT v;wi D hv; Twi

for all v;w 2 V.

You should verify that the sum of two self-adjoint operators is self-adjoint
and that the product of a real scalar and a self-adjoint operator is self-adjoint.

A good analogy to keep in mind (especially when F D C) is that the
adjoint on L.V / plays a role similar to complex conjugation on C. A complex
number z is real if and only if z D Nz; thus a self-adjoint operator (T D T �)
is analogous to a real number.

We will see that the analogy discussed above is reflected in some important
properties of self-adjoint operators, beginning with eigenvalues in the next
result.

If F D R, then by definition every eigenvalue is real, so the next result is
interesting only when F D C.

7.13 Eigenvalues of self-adjoint operators are real

Every eigenvalue of a self-adjoint operator is real.

The next result is false for real inner product spaces. As an example,
consider the operator T 2 L.R2/ that is a counterclockwise rotation of 90ı

around the origin; thus T .x; y/ D .�y; x/. Obviously T v is orthogonal to v
for every v 2 R2, even though T ¤ 0.

7.14 Over C, T v is orthogonal to v for all v only for the 0 operator

Suppose V is a complex inner product space and T 2 L.V /. Suppose

hT v; vi D 0

for all v 2 V. Then T D 0.

The next result is false for real inner product spaces, as shown by consider-
ing any operator on a real inner product space that is not self-adjoint.
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7.15 Over C, hT v; vi is real for all v only for self-adjoint operators

Suppose V is a complex inner product space and T 2 L.V /. Then T is
self-adjoint if and only if

hT v; vi 2 R

for every v 2 V.

On a real inner product space V, a nonzero operator T might satisfy
hT v; vi D 0 for all v 2 V. However, the next result shows that this cannot
happen for a self-adjoint operator.

7.16 If T D T � and hT v; vi D 0 for all v, then T D 0

Suppose T is a self-adjoint operator on V such that

hT v; vi D 0

for all v 2 V. Then T D 0.

Normal Operators

7.18 Definition normal

� An operator on an inner product space is called normal if it com-
mutes with its adjoint.

� In other words, T 2 L.V / is normal if

T T � D T �T:

Obviously every self-adjoint operator is normal, because if T is self-adjoint
then T � D T.

In the next section we will see why normal operators are worthy of special
attention.

The next result provides a simple characterization of normal operators.

7.20 T is normal if and only if kT vk D kT �vk for all v

An operator T 2 L.V / is normal if and only if

kT vk D kT �vk

for all v 2 V.
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7.21 For T normal, T and T � have the same eigenvectors

Suppose T 2 L.V / is normal and v 2 V is an eigenvector of T with
eigenvalue �. Then v is also an eigenvector of T � with eigenvalue N�.

Because every self-adjoint operator is normal, the next result applies in
particular to self-adjoint operators.

7.22 Orthogonal eigenvectors for normal operators

Suppose T 2 L.V / is normal. Then eigenvectors of T corresponding to
distinct eigenvalues are orthogonal.

7.B The Spectral Theorem
Recall that a diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal. Recall also that an operator on V has a diagonal
matrix with respect to a basis if and only if the basis consists of eigenvectors
of the operator (see 5.41).

The nicest operators on V are those for which there is an orthonormal
basis of V with respect to which the operator has a diagonal matrix. These
are precisely the operators T 2 L.V / such that there is an orthonormal basis
of V consisting of eigenvectors of T. Our goal in this section is to prove the
Spectral Theorem, which characterizes these operators as the normal operators
when F D C and as the self-adjoint operators when F D R. The Spectral
Theorem is probably the most useful tool in the study of operators on inner
product spaces.

Because the conclusion of the Spectral Theorem depends on F, we will
break the Spectral Theorem into two pieces, called the Complex Spectral
Theorem and the Real Spectral Theorem. As is often the case in linear algebra,
complex vector spaces are easier to deal with than real vector spaces. Thus
we present the Complex Spectral Theorem first.

The Complex Spectral Theorem

The key part of the Complex Spectral Theorem (7.24) states that if F D C
and T 2 L.V / is normal, then T has a diagonal matrix with respect to some
orthonormal basis of V.

In the next result, the equivalence of (b) and (c) is easy (see 5.41). Thus
we prove only that (c) implies (a) and that (a) implies (c).
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7.24 Complex Spectral Theorem

Suppose F D C and T 2 L.V /. Then the following are equivalent:

(a) T is normal.

(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal basis
of V.

The Real Spectral Theorem

We will need a few preliminary results, which apply to both real and complex
inner product spaces, for our proof of the Real Spectral Theorem.

You could guess that the next result is true and even discover its proof
by thinking about quadratic polynomials with real coefficients. Specifically,
suppose b; c 2 R and b2 < 4c. Let x be a real number. Then

x2 C bx C c D
�
x C

b

2

�2
C

�
c �

b2

4

�
> 0:

In particular, x2 C bx C c is an invertible real number (a convoluted way
of saying that it is not 0). Replacing the real number x with a self-adjoint
operator (recall the analogy between real numbers and self-adjoint operators),
we are led to the result below.

7.26 Invertible quadratic expressions

Suppose T 2 L.V / is self-adjoint and b; c 2 R are such that b2 < 4c.
Then

T 2 C bT C cI

is invertible.

We know that every operator, self-adjoint or not, on a finite-dimensional
nonzero complex vector space has an eigenvalue (see 5.21). Thus the next
result tells us something new only for real inner product spaces.

7.27 Self-adjoint operators have eigenvalues

Suppose V ¤ f0g and T 2 L.V / is a self-adjoint operator. Then T has
an eigenvalue.
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The next result shows that if U is a subspace of V that is invariant under
a self-adjoint operator T, then U? is also invariant under T. Later we will
show that the hypothesis that T is self-adjoint can be replaced with the weaker
hypothesis that T is normal (see 9.30).

7.28 Self-adjoint operators and invariant subspaces

Suppose T 2 L.V / is self-adjoint and U is a subspace of V that is
invariant under T. Then

(a) U? is invariant under T ;

(b) T jU 2 L.U / is self-adjoint;

(c) T jU? 2 L.U?/ is self-adjoint.

We can now prove the next result, which is one of the major theorems in
linear algebra.

7.29 Real Spectral Theorem

Suppose F D R and T 2 L.V /. Then the following are equivalent:

(a) T is self-adjoint.

(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal basis
of V.

If F D C, then the Complex Spectral Theorem gives a complete descrip-
tion of the normal operators on V. A complete description of the self-adjoint
operators on V then easily follows (they are the normal operators on V whose
eigenvalues all are real).

If F D R, then the Real Spectral Theorem gives a complete description
of the self-adjoint operators on V. In Chapter 9, we will give a complete
description of the normal operators on V (see 9.34).
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7.C Positive Operators and Isometries

Positive Operators

7.31 Definition positive operator

An operator T 2 L.V / is called positive if T is self-adjoint and

hT v; vi � 0

for all v 2 V.

If V is a complex vector space, then the requirement that T is self-adjoint
can be dropped from the definition above (by 7.15).

7.33 Definition square root

An operator R is called a square root of an operator T if R2 D T.

The characterizations of the positive operators in the next result correspond
to characterizations of the nonnegative numbers among C. Specifically, a
complex number z is nonnegative if and only if it has a nonnegative square
root, corresponding to condition (c). Also, z is nonnegative if and only if it has
a real square root, corresponding to condition (d). Finally, z is nonnegative if
and only if there exists a complex number w such that z D Nww, corresponding
to condition (e).

7.35 Characterization of positive operators

Let T 2 L.V /. Then the following are equivalent:

(a) T is positive;

(b) T is self-adjoint and all the eigenvalues of T are nonnegative;

(c) T has a positive square root;

(d) T has a self-adjoint square root;

(e) there exists an operator R 2 L.V / such that T D R�R.

Each nonnegative number has a unique nonnegative square root. The next
result shows that positive operators enjoy a similar property.
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7.36 Each positive operator has only one positive square root

Every positive operator on V has a unique positive square root.

Isometries

Operators that preserve norms are sufficiently important to deserve a name:

7.37 Definition isometry

� An operator S 2 L.V / is called an isometry if

kSvk D kvk

for all v 2 V.

� In other words, an operator is an isometry if it preserves norms.

For example, �I is an isometry whenever � 2 F satisfies j�j D 1.
The next result provides several conditions that are equivalent to being an

isometry. The equivalence of (a) and (b) shows that an operator is an isometry
if and only if it preserves inner products. The equivalence of (a) and (c) [or
(d)] shows that an operator is an isometry if and only if the list of columns of
its matrix with respect to every [or some] basis is orthonormal.

7.42 Characterization of isometries

Suppose S 2 L.V /. Then the following are equivalent:

(a) S is an isometry;

(b) hSu; Svi D hu; vi for all u; v 2 V ;

(c) Se1; : : : ; Sen is orthonormal for every orthonormal list of vectors
e1; : : : ; en in V ;

(d) there exists an orthonormal basis e1; : : : ; en of V such that
Se1; : : : ; Sen is orthonormal;

(e) S�S D I ;

(f) SS� D I ;

(g) S� is an isometry;

(h) S is invertible and S�1 D S�.
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The previous result shows that every isometry is normal [see (a), (e), and
(f) of 7.42]. Thus characterizations of normal operators can be used to give
descriptions of isometries. We do this in the next result in the complex case
and in Chapter 9 in the real case (see 9.36).

7.43 Description of isometries when F D C

Suppose V is a complex inner product space and S 2 L.V /. Then the
following are equivalent:

(a) S is an isometry.

(b) There is an orthonormal basis of V consisting of eigenvectors of S
whose corresponding eigenvalues all have absolute value 1.

7.D Polar Decomposition and Singular
Value Decomposition

Polar Decomposition

Recall our analogy between C and L.V /. Under this analogy, a complex
number z corresponds to an operator T, and Nz corresponds to T �. The real
numbers (z D Nz) correspond to the self-adjoint operators (T D T �), and the
nonnegative numbers correspond to the (badly named) positive operators.

Another distinguished subset of C is the unit circle, which consists of the
complex numbers z such that jzj D 1. The condition jzj D 1 is equivalent
to the condition Nzz D 1. Under our analogy, this would correspond to the
condition T �T D I, which is equivalent to T being an isometry (see 7.42).
In other words, the unit circle in C corresponds to the isometries.

Continuing with our analogy, note that each complex number z except 0
can be written in the form

z D
� z
jzj

�
jzj D

� z
jzj

�p
Nzz;

where the first factor, namely, z=jzj, is an element of the unit circle. Our
analogy leads us to guess that each operator T 2 L.V / can be written as an
isometry times

p
T �T . That guess is indeed correct, as we now prove after

defining the obvious notation, which is justified by 7.36.
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7.44 Notation
p
T

If T is a positive operator, then
p
T denotes the unique positive square

root of T.

Now we can state and prove the Polar Decomposition, which gives a
beautiful description of an arbitrary operator on V. Note that T �T is a
positive operator for every T 2 L.V /, and thus

p
T �T is well defined.

7.45 Polar Decomposition

Suppose T 2 L.V /. Then there exists an isometry S 2 L.V / such that

T D S
p
T �T :

The Polar Decomposition (7.45) states that each operator on V is the
product of an isometry and a positive operator. Thus we can write each
operator on V as the product of two operators, each of which comes from
a class that we can completely describe and that we understand reasonably
well. The isometries are described by 7.43 and 9.36; the positive operators
are described by the Spectral Theorem (7.24 and 7.29).

Specifically, consider the case F D C, and suppose T D S
p
T �T is a

Polar Decomposition of an operator T 2 L.V /, where S is an isometry. Then
there is an orthonormal basis of V with respect to which S has a diagonal
matrix, and there is an orthonormal basis of V with respect to which

p
T �T

has a diagonal matrix. Warning: there may not exist an orthonormal basis
that simultaneously puts the matrices of both S and

p
T �T into these nice

diagonal forms. In other words, S may require one orthonormal basis and
p
T �T may require a different orthonormal basis.

Singular Value Decomposition

The eigenvalues of an operator tell us something about the behavior of the
operator. Another collection of numbers, called the singular values, is also
useful. Recall that eigenspaces and the notation E are defined in 5.36.

7.49 Definition singular values

Suppose T 2 L.V /. The singular values of T are the eigenvalues
of
p
T �T , with each eigenvalue � repeated dimE.�;

p
T �T / times.
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96 CHAPTER 7 Operators on Inner Product Spaces

The singular values of T are all nonnegative, because they are the eigen-
values of the positive operator

p
T �T .

Each T 2 L.V / has dimV singular values, as can be seen by applying
the Spectral Theorem and 5.41 [see especially part (e)] to the positive (hence
self-adjoint) operator

p
T �T .

The next result shows that every operator on V has a clean description in
terms of its singular values and two orthonormal bases of V.

7.51 Singular Value Decomposition

Suppose T 2 L.V / has singular values s1; : : : ; sn. Then there exist
orthonormal bases e1; : : : ; en and f1; : : : ; fn of V such that

T v D s1hv; e1if1 C � � � C snhv; enifn

for every v 2 V.

The Singular Value Decomposition allows us a rare opportunity to make
good use of two different bases for the matrix of an operator. To do this,
suppose T 2 L.V /. Let s1; : : : ; sn denote the singular values of T, and let
e1; : : : ; en and f1; : : : ; fn be orthonormal bases of V such that the Singular
Value Decomposition 7.51 holds. Because Tej D sjfj for each j , we have

M
�
T; .e1; : : : ; en/; .f1; : : : ; fn/

�
D

0B@ s1 0
: : :

0 sn

1CA :
In other words, every operator on V has a diagonal matrix with respect

to some orthonormal bases of V, provided that we are permitted to use two
different bases rather than a single basis as customary when working with
operators.

To compute numeric approximations to the singular values of an operator
T, first compute T �T and then compute approximations to the eigenvalues
of T �T (good techniques exist for approximating eigenvalues of positive
operators). The nonnegative square roots of these (approximate) eigenvalues
of T �T will be the (approximate) singular values of T. In other words, the
singular values of T can be approximated without computing the square root
of T �T. The next result helps justify working with T �T instead of

p
T �T .

7.52 Singular values without taking square root of an operator

Suppose T 2 L.V /. Then the singular values of T are the nonnegative
square roots of the eigenvalues of T �T, with each eigenvalue � repeated
dimE.�; T �T / times.
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CHAPTER

8
Hypatia, the 5th century Egyptian
mathematician and philosopher, as
envisioned around 1900 by Alfred
Seifert.

Operators on Complex
Vector Spaces

In this chapter we delve deeper into the structure of operators, with most of
the attention on complex vector spaces. An inner product does not help with
this material, so we return to the general setting of a finite-dimensional vector
space. To avoid some trivialities, we will assume that V ¤ f0g. Thus our
assumptions for this chapter are as follows:

8.1 Notation F, V

� F denotes R or C.

� V denotes a finite-dimensional nonzero vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

generalized eigenvectors and generalized eigenspaces

characteristic polynomial and the Cayley–Hamilton Theorem

decomposition of an operator

minimal polynomial

Jordan Form
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98 CHAPTER 8 Operators on Complex Vector Spaces

8.A Generalized Eigenvectors and Nilpotent
Operators

Null Spaces of Powers of an Operator

We begin this chapter with a study of null spaces of powers of an operator.

8.2 Sequence of increasing null spaces

Suppose T 2 L.V /. Then

f0g D nullT 0 � nullT 1 � � � � � nullT k � nullT kC1 � � � � :

The next result says that if two consecutive terms in this sequence of
subspaces are equal, then all later terms in the sequence are equal.

8.3 Equality in the sequence of null spaces

Suppose T 2 L.V /. Suppose m is a nonnegative integer such that
nullTm D nullTmC1. Then

nullTm D nullTmC1 D nullTmC2 D nullTmC3 D � � � :

The proposition above raises the question of whether there exists a non-
negative integer m such that nullTm D nullTmC1. The proposition below
shows that this equality holds at least when m equals the dimension of the
vector space on which T operates.

8.4 Null spaces stop growing

Suppose T 2 L.V /. Let n D dimV. Then

nullT n D nullT nC1 D nullT nC2 D � � � :

Unfortunately, it is not true that V D nullT ˚ rangeT for each T 2 L.V /.
However, the following result is a useful substitute.

8.5 V is the direct sum of nullT dimV and rangeT dimV

Suppose T 2 L.V /. Let n D dimV. Then

V D nullT n ˚ rangeT n:
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Generalized Eigenvectors

Unfortunately, some operators do not have enough eigenvectors to lead to
a good description. Thus in this subsection we introduce the concept of
generalized eigenvectors, which will play a major role in our description of
the structure of an operator.

To understand why we need more than eigenvectors, let’s examine the
question of describing an operator by decomposing its domain into invariant
subspaces. Fix T 2 L.V /. We seek to describe T by finding a “nice” direct
sum decomposition

V D U1 ˚ � � � ˚ Um;

where each Uj is a subspace of V invariant under T. The simplest possible
nonzero invariant subspaces are 1-dimensional. A decomposition as above
where each Uj is a 1-dimensional subspace of V invariant under T is possible
if and only if V has a basis consisting of eigenvectors of T (see 5.41). This
happens if and only if V has an eigenspace decomposition

8.8 V D E.�1; T /˚ � � � ˚E.�m; T /;

where �1; : : : ; �m are the distinct eigenvalues of T (see 5.41).
The Spectral Theorem in the previous chapter shows that if V is an inner

product space, then a decomposition of the form 8.8 holds for every normal
operator if F D C and for every self-adjoint operator if F D R because
operators of those types have enough eigenvectors to form a basis of V (see
7.24 and 7.29).

Sadly, a decomposition of the form 8.8 may not hold for more general
operators, even on a complex vector space. Generalized eigenvectors and
generalized eigenspaces, which we now introduce, will remedy this situation.

8.9 Definition generalized eigenvector

Suppose T 2 L.V / and � is an eigenvalue of T. A vector v 2 V is called
a generalized eigenvector of T corresponding to � if v ¤ 0 and

.T � �I/j v D 0

for some positive integer j .

Although j is allowed to be an arbitrary integer in the equation

.T � �I/j v D 0

in the definition of a generalized eigenvector, we will soon prove that every
generalized eigenvector satisfies this equation with j D dimV.
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100 CHAPTER 8 Operators on Complex Vector Spaces

8.10 Definition generalized eigenspace, G.�; T /

Suppose T 2 L.V / and � 2 F. The generalized eigenspace of T corre-
sponding to �, denoted G.�; T /, is defined to be the set of all generalized
eigenvectors of T corresponding to �, along with the 0 vector.

Because every eigenvector of T is a generalized eigenvector of T (take
j D 1 in the definition of generalized eigenvector), each eigenspace is
contained in the corresponding generalized eigenspace. In other words, if
T 2 L.V / and � 2 F, then

E.�; T / � G.�; T /:

The next result implies that if T 2 L.V / and � 2 F, then G.�; T / is a
subspace of V (because the null space of each linear map on V is a subspace
of V ).

8.11 Description of generalized eigenspaces

Suppose T 2 L.V / and � 2 F. Then G.�; T / D null.T � �I/dimV.

We saw earlier (5.10) that eigenvectors corresponding to distinct eigenval-
ues are linearly independent. Now we prove a similar result for generalized
eigenvectors.

8.13 Linearly independent generalized eigenvectors

Let T 2 L.V /. Suppose �1; : : : ; �m are distinct eigenvalues of T and
v1; : : : ; vm are corresponding generalized eigenvectors. Then v1; : : : ; vm
is linearly independent.

Nilpotent Operators

8.16 Definition nilpotent

An operator is called nilpotent if some power of it equals 0.

The next result shows that we never need to use a power higher than the
dimension of the space.
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SECTION 8.B Decomposition of an Operator 101

8.18 Nilpotent operator raised to dimension of domain is 0

Suppose N 2 L.V / is nilpotent. Then N dimV D 0.

Given an operator T on V, we want to find a basis of V such that the
matrix of T with respect to this basis is as simple as possible, meaning that
the matrix contains many 0’s.

The next result shows that if N is nilpotent, then we can choose a basis of
V such that the matrix of N with respect to this basis has more than half of
its entries equal to 0. Later in this chapter we will do even better.

8.19 Matrix of a nilpotent operator

Suppose N is a nilpotent operator on V. Then there is a basis of V with
respect to which the matrix of N has the form0B@ 0 �

: : :

0 0

1CA I
here all entries on and below the diagonal are 0’s.

8.B Decomposition of an Operator

Description of Operators on Complex Vector Spaces

We saw earlier that the domain of an operator might not decompose into
eigenspaces, even on a finite-dimensional complex vector space. In this
section we will see that every operator on a finite-dimensional complex vector
space has enough generalized eigenvectors to provide a decomposition.

8.20 The null space and range of p.T / are invariant under T

Suppose T 2 L.V / and p 2 P.F/. Then nullp.T / and rangep.T / are
invariant under T.

The following major result shows that every operator on a complex vector
space can be thought of as composed of pieces, each of which is a nilpotent
operator plus a scalar multiple of the identity. Actually we have already done
the hard work in our discussion of the generalized eigenspaces G.�; T /, so at
this point the proof is easy.
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8.21 Description of operators on complex vector spaces

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m be
the distinct eigenvalues of T. Then

(a) V D G.�1; T /˚ � � � ˚G.�m; T /;

(b) each G.�j ; T / is invariant under T ;

(c) each .T � �j I /jG.�j ;T / is nilpotent.

As we know, an operator on a complex vector space may not have enough
eigenvectors to form a basis of the domain. The next result shows that on a
complex vector space there are enough generalized eigenvectors to do this.

8.23 A basis of generalized eigenvectors

Suppose V is a complex vector space and T 2 L.V /. Then there is a basis
of V consisting of generalized eigenvectors of T.

Multiplicity of an Eigenvalue

If V is a complex vector space and T 2 L.V /, then the decomposition of V
provided by 8.21 can be a powerful tool. The dimensions of the subspaces
involved in this decomposition are sufficiently important to get a name.

8.24 Definition multiplicity

� Suppose T 2 L.V /. The multiplicity of an eigenvalue � of T
is defined to be the dimension of the corresponding generalized
eigenspace G.�; T /.

� In other words, the multiplicity of an eigenvalue � of T equals
dim null.T � �I/dimV.

The second bullet point above is justified by 8.11.

8.26 Sum of the multiplicities equals dimV

Suppose V is a complex vector space and T 2 L.V /. Then the sum of the
multiplicities of all the eigenvalues of T equals dimV.
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The terms algebraic multiplicity and geometric multiplicity are used in
some books. In case you encounter this terminology, be aware that the
algebraic multiplicity is the same as the multiplicity defined here and the
geometric multiplicity is the dimension of the corresponding eigenspace. In
other words, if T 2 L.V / and � is an eigenvalue of T, then

algebraic multiplicity of � D dim null.T � �I/dimV
D dimG.�; T /;

geometric multiplicity of � D dim null.T � �I/ D dimE.�; T /:

Note that as defined above, the algebraic multiplicity also has a geometric
meaning as the dimension of a certain null space. The definition of multiplicity
given here is cleaner than the traditional definition that involves determinants;
10.25 implies that these definitions are equivalent.

Block Diagonal Matrices

To interpret our results in matrix form, we make the following definition,
generalizing the notion of a diagonal matrix.

If each matrix Aj in the definition below is a 1-by-1 matrix, then we
actually have a diagonal matrix.

8.27 Definition block diagonal matrix

A block diagonal matrix is a square matrix of the form0B@ A1 0
: : :

0 Am

1CA ;
where A1; : : : ; Am are square matrices lying along the diagonal and all
the other entries of the matrix equal 0.

Note that in the next result we get many more zeros in the matrix of T
than are needed to make it upper triangular.
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104 CHAPTER 8 Operators on Complex Vector Spaces

8.29 Block diagonal matrix with upper-triangular blocks

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m be
the distinct eigenvalues of T, with multiplicities d1; : : : ; dm. Then there is
a basis of V with respect to which T has a block diagonal matrix of the
form 0B@ A1 0

: : :

0 Am

1CA ;
where each Aj is a dj -by-dj upper-triangular matrix of the form

Aj D

0B@ �j �

: : :

0 �j

1CA :
When we discuss the Jordan Form in Section 8.D, we will see that we can

find a basis with respect to which an operator T has a matrix with even more
0’s than promised by 8.29. However, 8.29 and its equivalent companion 8.21
are already quite powerful. For example, in the next subsection we will use
8.21 to show that every invertible operator on a complex vector space has a
square root.

Square Roots

Recall that a square root of an operator T 2 L.V / is an operator R 2 L.V /
such that R2 D T (see 7.33). Every complex number has a square root, but
not every operator on a complex vector space has a square root.

8.31 Identity plus nilpotent has a square root

Suppose N 2 L.V / is nilpotent. Then I CN has a square root.

The previous lemma is valid on real and complex vector spaces. However,
the next result holds only on complex vector spaces. For example, the operator
of multiplication by�1 on the 1-dimensional real vector space R has no square
root.

8.33 Over C, invertible operators have square roots

Suppose V is a complex vector space and T 2 L.V / is invertible. Then
T has a square root.
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SECTION 8.C Characteristic and Minimal Polynomials 105

By imitating the techniques in this section, you should be able to prove
that if V is a complex vector space and T 2 L.V / is invertible, then T has a
kth root for every positive integer k.

8.C Characteristic and Minimal Polynomials

The Cayley–Hamilton Theorem

The next definition associates a polynomial with each operator on V if F D C.
For F D R, the corresponding definition will be given in the next chapter.

8.34 Definition characteristic polynomial

Suppose V is a complex vector space and T 2 L.V /. Let �1; : : : ; �m
denote the distinct eigenvalues of T, with multiplicities d1; : : : ; dm. The
polynomial

.z � �1/
d1 � � � .z � �m/

dm

is called the characteristic polynomial of T.

8.36 Degree and zeros of characteristic polynomial

Suppose V is a complex vector space and T 2 L.V /. Then

(a) the characteristic polynomial of T has degree dimV ;

(b) the zeros of the characteristic polynomial of T are the eigenvalues
of T.

Most texts define the characteristic polynomial using determinants (the
two definitions are equivalent by 10.25). The approach taken here, which
is considerably simpler, leads to the following easy proof of the Cayley–
Hamilton Theorem. In the next chapter, we will see that this result also holds
on real vector spaces (see 9.24).

8.37 Cayley–Hamilton Theorem

Suppose V is a complex vector space and T 2 L.V /. Let q denote the
characteristic polynomial of T. Then q.T / D 0.
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The Minimal Polynomial

In this subsection we introduce another important polynomial associated with
each operator. We begin with the following definition.

8.38 Definition monic polynomial

A monic polynomial is a polynomial whose highest-degree coefficient
equals 1.

8.40 Minimal polynomial

Suppose T 2 L.V /. Then there is a unique monic polynomial p of
smallest degree such that p.T / D 0.

The last result justifies the following definition.

8.43 Definition minimal polynomial

Suppose T 2 L.V /. Then the minimal polynomial of T is the unique
monic polynomial p of smallest degree such that p.T / D 0.

The proof of the last result shows that the degree of the minimal polynomial
of each operator on V is at most .dimV /2. The Cayley–Hamilton Theorem
(8.37) tells us that if V is a complex vector space, then the minimal polynomial
of each operator on V has degree at most dimV. This remarkable improvement
also holds on real vector spaces, as we will see in the next chapter.

Suppose you are given the matrix (with respect to some basis) of an
operator T 2 L.V /. You could program a computer to find the minimal
polynomial of T as follows: Consider the system of linear equations

8.44 a0M.I /C a1M.T /C � � � C am�1M.T /m�1 D �M.T /m

for successive values of m D 1; 2; : : : until this system of equations has a
solution a0; a1; a2; : : : ; am�1. The scalars a0; a1; a2; : : : ; am�1; 1 will then
be the coefficients of the minimal polynomial of T. All this can be com-
puted using a familiar and fast (for a computer) process such as Gaussian
elimination.

The next result completely characterizes the polynomials that when applied
to an operator give the 0 operator.
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8.46 q.T / D 0 implies q is a multiple of the minimal polynomial

Suppose T 2 L.V / and q 2 P.F/. Then q.T / D 0 if and only if q is a
polynomial multiple of the minimal polynomial of T.

The next result is stated only for complex vector spaces, because we have
not yet defined the characteristic polynomial when F D R. However, the
result also holds for real vector spaces, as we will see in the next chapter.

8.48 Characteristic polynomial is a multiple of minimal polynomial

Suppose F D C and T 2 L.V /. Then the characteristic polynomial of T
is a polynomial multiple of the minimal polynomial of T.

We know (at least when F D C) that the zeros of the characteristic
polynomial of T are the eigenvalues of T (see 8.36). Now we show that the
minimal polynomial has the same zeros (although the multiplicities of these
zeros may differ).

8.49 Eigenvalues are the zeros of the minimal polynomial

Let T 2 L.V /. Then the zeros of the minimal polynomial of T are
precisely the eigenvalues of T.

8.D Jordan Form
We know that if V is a complex vector space, then for every T 2 L.V / there
is a basis of V with respect to which T has a nice upper-triangular matrix (see
8.29). In this section we will see that we can do even better—there is a basis
of V with respect to which the matrix of T contains 0’s everywhere except
possibly on the diagonal and the line directly above the diagonal.

For the matrix interpretation of the next result, see the first part of the
proof of 8.60.

8.55 Basis corresponding to a nilpotent operator

Suppose N 2 L.V / is nilpotent. Then there exist vectors v1; : : : ; vn 2 V
and nonnegative integers m1; : : : ; mn such that

(a) Nm1v1; : : : ; N v1; v1; : : : ; Nmnvn; : : : ; N vn; vn is a basis of V ;

(b) Nm1C1v1 D � � � D NmnC1vn D 0.
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In the next definition, the diagonal of each Aj is filled with some eigen-
value �j of T, the line directly above the diagonal of Aj is filled with 1’s, and
all other entries in Aj are 0 (to understand why each �j is an eigenvalue of
T, see 5.32). The �j ’s need not be distinct. Also, Aj may be a 1-by-1 matrix
.�j / containing just an eigenvalue of T.

8.59 Definition Jordan basis

Suppose T 2 L.V /. A basis of V is called a Jordan basis for T if with
respect to this basis T has a block diagonal matrix0B@ A1 0

: : :

0 Ap

1CA ;
where each Aj is an upper-triangular matrix of the form

Aj D

0BBBB@
�j 1 0

: : :
: : :

: : : 1

0 �j

1CCCCA :

8.60 Jordan Form

Suppose V is a complex vector space. If T 2 L.V /, then there is a basis
of V that is a Jordan basis for T.
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9
Euclid explaining
geometry (from The
School of Athens,
painted by Raphael
around 1510).

Operators on Real Vector Spaces

In the last chapter we learned about the structure of an operator on a finite-
dimensional complex vector space. In this chapter, we will use our results
about operators on complex vector spaces to learn about operators on real
vector spaces.

Our assumptions for this chapter are as follows:

9.1 Notation F, V

� F denotes R or C.

� V denotes a finite-dimensional nonzero vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

complexification of a real vector space

complexification of an operator on a real vector space

operators on finite-dimensional real vector spaces have an
eigenvalue or a 2-dimensional invariant subspace

characteristic polynomial and the Cayley–Hamilton Theorem

description of normal operators on a real inner product space

description of isometries on a real inner product space
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9.A Complexification

Complexification of a Vector Space

As we will soon see, a real vector space V can be embedded, in a natural way,
in a complex vector space called the complexification of V. Each operator
on V can be extended to an operator on the complexification of V. Our
results about operators on complex vector spaces can then be translated to
information about operators on real vector spaces.

We begin by defining the complexification of a real vector space.

9.2 Definition complexification of V, VC

Suppose V is a real vector space.

� The complexification of V, denoted VC , equals V � V. An element
of VC is an ordered pair .u; v/, where u; v 2 V, but we will write
this as uC iv.

� Addition on VC is defined by

.u1 C iv1/C .u2 C iv2/ D .u1 C u2/C i.v1 C v2/

for u1; v1; u2; v2 2 V.

� Complex scalar multiplication on VC is defined by

.aC bi/.uC iv/ D .au � bv/C i.avC bu/

for a; b 2 R and u; v 2 V.

Motivation for the definition above of complex scalar multiplication comes
from usual algebraic properties and the identity i2 D �1. If you remember
the motivation, then you do not need to memorize the definition above.

We think of V as a subset of VC by identifying u 2 V with u C i0.
The construction of VC from V can then be thought of as generalizing the
construction of Cn from Rn.

9.3 VC is a complex vector space.

Suppose V is a real vector space. Then with the definitions of addition
and scalar multiplication as above, VC is a complex vector space.

Note that the additive identity of VC is 0C i0, which we write as just 0.
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Probably everything that you think should work concerning complexifica-
tion does work, usually with a straightforward verification, as illustrated by
the next result.

9.4 Basis of V is basis of VC

Suppose V is a real vector space.

(a) If v1; : : : ; vn is a basis of V (as a real vector space), then v1; : : : ; vn
is a basis of VC (as a complex vector space).

(b) The dimension of VC (as a complex vector space) equals the dimen-
sion of V (as a real vector space).

Complexification of an Operator

Now we can define the complexification of an operator.

9.5 Definition complexification of T, TC

Suppose V is a real vector space and T 2 L.V /. The complexification of
T, denoted TC , is the operator TC 2 L.VC/ defined by

TC.uC iv/ D T uC iT v

for u; v 2 V.

You should verify that if V is a real vector space and T 2 L.V /, then TC
is indeed in L.VC/. The key point here is that our definition of complex scalar
multiplication can be used to show that TC

�
�.uC iv/

�
D �TC.uC iv/ for

all u; v 2 V and all complex numbers �.
The next result makes sense because 9.4 tells us that a basis of a real vector

space is also a basis of its complexification. The proof of the next result
follows immediately from the definitions.

9.7 Matrix of TC equals matrix of T

Suppose V is a real vector space with basis v1; : : : ; vn and T 2 L.V /.
Then M.T / DM.TC/, where both matrices are with respect to the basis
v1; : : : ; vn.
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112 CHAPTER 9 Operators on Real Vector Spaces

Complexification of an operator could have been defined using matrices,
but the approach taken here is more natural because it does not depend on the
choice of a basis.

We know that every operator on a nonzero finite-dimensional complex vec-
tor space has an eigenvalue (see 5.21) and thus has a 1-dimensional invariant
subspace.

9.8 Every operator has an invariant subspace of dimension 1 or 2

Every operator on a nonzero finite-dimensional vector space has an
invariant subspace of dimension 1 or 2.

The Minimal Polynomial of the Complexification

Suppose V is a real vector space and T 2 L.V /. Repeated application of the
definition of TC shows that

9.9 .TC/
n.uC iv/ D T nuC iT nv

for every positive integer n and all u; v 2 V.
Notice that the next result implies that the minimal polynomial of TC has

real coefficients.

9.10 Minimal polynomial of TC equals minimal polynomial of T

Suppose V is a real vector space and T 2 L.V /. Then the minimal
polynomial of TC equals the minimal polynomial of T.

Eigenvalues of the Complexification

Now we turn to questions about the eigenvalues of the complexification of an
operator. Again, everything that we expect to work indeed works easily.

We begin with a result showing that the real eigenvalues of TC are precisely
the eigenvalues of T. We give two different proofs of this result. The first
proof is more elementary, but the second proof is shorter and gives some
useful insight.

9.11 Real eigenvalues of TC

Suppose V is a real vector space, T 2 L.V /, and � 2 R. Then � is an
eigenvalue of TC if and only if � is an eigenvalue of T.
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Our next result shows that TC behaves symmetrically with respect to an
eigenvalue � and its complex conjugate N�.

9.12 TC � �I and TC � N�I

Suppose V is a real vector space, T 2 L.V /, � 2 C, j is a nonnegative
integer, and u; v 2 V. Then

.TC � �I/
j .uC iv/ D 0 if and only if .TC � N�I/

j .u � iv/ D 0:

An important consequence of the result above is the next result, which
states that if a number is an eigenvalue of TC , then its complex conjugate is
also an eigenvalue of TC .

9.16 Nonreal eigenvalues of TC come in pairs

Suppose V is a real vector space, T 2 L.V /, and � 2 C. Then � is an
eigenvalue of TC if and only if N� is an eigenvalue of TC .

By definition, the eigenvalues of an operator on a real vector space are
real numbers. Thus when mathematicians sometimes informally mention the
complex eigenvalues of an operator on a real vector space, what they have in
mind is the eigenvalues of the complexification of the operator.

Recall that the multiplicity of an eigenvalue is defined to be the dimension
of the generalized eigenspace corresponding to that eigenvalue (see 8.24). The
next result states that the multiplicity of an eigenvalue of a complexification
equals the multiplicity of its complex conjugate.

9.17 Multiplicity of � equals multiplicity of N�

Suppose V is a real vector space, T 2 L.V /, and � 2 C is an eigenvalue
of TC . Then the multiplicity of � as an eigenvalue of TC equals the
multiplicity of N� as an eigenvalue of TC .

9.19 Operator on odd-dimensional vector space has eigenvalue

Every operator on an odd-dimensional real vector space has an eigenvalue.
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Characteristic Polynomial of the Complexification

In the previous chapter we defined the characteristic polynomial of an operator
on a finite-dimensional complex vector space (see 8.34). The next result is
a key step toward defining the characteristic polynomial for operators on
finite-dimensional real vector spaces.

9.20 Characteristic polynomial of TC

Suppose V is a real vector space and T 2 L.V /. Then the coefficients of
the characteristic polynomial of TC are all real.

Now we can define the characteristic polynomial of an operator on a
finite-dimensional real vector space to be the characteristic polynomial of its
complexification.

9.21 Definition Characteristic polynomial

Suppose V is a real vector space and T 2 L.V /. Then the characteristic
polynomial of T is defined to be the characteristic polynomial of TC .

In the next result, the eigenvalues of T are all real (because T is an operator
on a real vector space).

9.23 Degree and zeros of characteristic polynomial

Suppose V is a real vector space and T 2 L.V /. Then

(a) the coefficients of the characteristic polynomial of T are all real;

(b) the characteristic polynomial of T has degree dimV ;

(c) the eigenvalues of T are precisely the real zeros of the characteristic
polynomial of T.

In the previous chapter, we proved the Cayley–Hamilton Theorem (8.37)
for complex vector spaces. Now we can also prove it for real vector spaces.

9.24 Cayley–Hamilton Theorem

Suppose T 2 L.V /. Let q denote the characteristic polynomial of T.
Then q.T / D 0.

We can now prove another result that we previously knew only in the
complex case.
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9.26 Characteristic polynomial is a multiple of minimal polynomial

Suppose T 2 L.V /. Then

(a) the degree of the minimal polynomial of T is at most dimV ;

(b) the characteristic polynomial of T is a polynomial multiple of the
minimal polynomial of T.

9.B Operators on Real Inner Product Spaces
We now switch our focus to the context of inner product spaces. We will give
a complete description of normal operators on real inner product spaces; a
key step in the proof of this result (9.34) requires the result from the previous
section that an operator on a finite-dimensional real vector space has an
invariant subspace of dimension 1 or 2 (9.8).

Normal Operators on Real Inner Product Spaces

The Complex Spectral Theorem (7.24) gives a complete description of normal
operators on complex inner product spaces. In this subsection we will give a
complete description of normal operators on real inner product spaces.

9.27 Normal but not self-adjoint operators

Suppose V is a 2-dimensional real inner product space and T 2 L.V /.
Then the following are equivalent:

(a) T is normal but not self-adjoint.

(b) The matrix of T with respect to every orthonormal basis of V has
the form �

a �b

b a

�
;

with b ¤ 0.

(c) The matrix of T with respect to some orthonormal basis of V has
the form �

a �b

b a

�
;

with b > 0.
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The next result tells us that a normal operator restricted to an invariant
subspace is normal. This will allow us to use induction on dimV when we
prove our description of normal operators (9.34).

9.30 Normal operators and invariant subspaces

Suppose V is an inner product space, T 2 L.V / is normal, and U is a
subspace of V that is invariant under T. Then

(a) U? is invariant under T ;

(b) U is invariant under T �;

(c) .T jU /
� D .T �/jU ;

(d) T jU 2 L.U / and T jU? 2 L.U?/ are normal operators.

Our next result shows that normal operators on real inner product spaces
come close to having diagonal matrices. Specifically, we get block diagonal
matrices, with each block having size at most 2-by-2.

We cannot expect to do better than the next result, because on a real inner
product space there exist normal operators that do not have a diagonal matrix
with respect to any basis. For example, the operator T 2 L.R2/ defined by
T .x; y/ D .�y; x/ is normal (as you should verify) but has no eigenvalues;
thus this particular T does not have even an upper-triangular matrix with
respect to any basis of R2.

9.34 Characterization of normal operators when F D R

Suppose V is a real inner product space and T 2 L.V /. Then the follow-
ing are equivalent:

(a) T is normal.

(b) There is an orthonormal basis of V with respect to which T has a
block diagonal matrix such that each block is a 1-by-1 matrix or a
2-by-2 matrix of the form �

a �b

b a

�
;

with b > 0.

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



SECTION 9.B Operators on Real Inner Product Spaces 117

Isometries on Real Inner Product Spaces

The next result shows that every isometry on a real inner product space is
composed of pieces that are rotations on 2-dimensional subspaces, pieces that
equal the identity operator, and pieces that equal multiplication by �1.

9.36 Description of isometries when F D R

Suppose V is a real inner product space and S 2 L.V /. Then the following
are equivalent:

(a) S is an isometry.

(b) There is an orthonormal basis of V with respect to which S has
a block diagonal matrix such that each block on the diagonal is a
1-by-1 matrix containing 1 or �1 or is a 2-by-2 matrix of the form�

cos � � sin �
sin � cos �

�
;

with � 2 .0; �/.
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CHAPTER

10
British mathematician and pioneer
computer scientist Ada Lovelace
(1815–1852), as painted by Alfred
Chalon in this 1840 portrait.

Trace and Determinant

Throughout this book our emphasis has been on linear maps and operators
rather than on matrices. In this chapter we pay more attention to matrices as
we define the trace and determinant of an operator and then connect these
notions to the corresponding notions for matrices. The book concludes with
an explanation of the important role played by determinants in the theory of
volume and integration.

Our assumptions for this chapter are as follows:

10.1 Notation F, V

� F denotes R or C.

� V denotes a finite-dimensional nonzero vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

change of basis and its effect upon the matrix of an operator

trace of an operator and of a matrix

determinant of an operator and of a matrix

determinants and volume
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SECTION 10.A Trace 119

10.A Trace
For our study of the trace and determinant, we will need to know how the
matrix of an operator changes with a change of basis. Thus we begin this
chapter by developing the necessary material about change of basis.

Change of Basis

With respect to every basis of V, the matrix of the identity operator I 2 L.V /
is the diagonal matrix with 1’s on the diagonal and 0’s elsewhere. We also use
the symbol I for the name of this matrix, as shown in the next definition.

10.2 Definition identity matrix, I

Suppose n is a positive integer. The n-by-n diagonal matrix0B@ 1 0
: : :

0 1

1CA
is called the identity matrix and is denoted I.

Note that we use the symbol I to denote the identity operator (on all vector
spaces) and the identity matrix (of all possible sizes). You should always be
able to tell from the context which particular meaning of I is intended. For
example, consider the equation M.I / D I I on the left side I denotes the
identity operator, and on the right side I denotes the identity matrix.

If A is a square matrix (with entries in F, as usual) with the same size as I,
then AI D IA D A, as you should verify.

10.3 Definition invertible, inverse, A�1

A square matrix A is called invertible if there is a square matrix B of
the same size such that AB D BA D I ; we call B the inverse of A and
denote it by A�1.

The same proof as used in 3.54 shows that if A is an invertible square
matrix, then there is a unique matrix B such that AB D BA D I (and thus
the notation B D A�1 is justified).

In Section 3.C we defined the matrix of a linear map from one vector space
to another with respect to two bases—one basis of the first vector space and

Linear Algebra Abridged is generated from Linear Algebra Done Right (by Sheldon Axler, third edition)
by excluding all proofs, examples, and exercises, along with most comments. The full version of Linear
Algebra Done Right is available at springer.com and amazon.com in both printed and electronic forms.



120 CHAPTER 10 Trace and Determinant

another basis of the second vector space. When we study operators, which are
linear maps from a vector space to itself, we almost always use the same basis
for both vector spaces (after all, the two vector spaces in question are equal).
Thus we usually refer to the matrix of an operator with respect to a basis and
display at most one basis because we are using one basis in two capacities.

The next result is one of the unusual cases in which we use two different
bases even though we have operators from a vector space to itself. It is just a
convenient restatement of 3.43 (with U and W both equal to V ), but now we
are being more careful to include the various bases explicitly in the notation.
The result below holds because we defined matrix multiplication to make it
true—see 3.43 and the material preceding it.

10.4 The matrix of the product of linear maps

Suppose u1; : : : ; un and v1; : : : ; vn and w1; : : : ;wn are all bases of V.
Suppose S; T 2 L.V /. Then

M
�
ST; .u1; : : : ; un/; .w1; : : : ;wn/

�
D

M
�
S; .v1; : : : ; vn/; .w1; : : : ;wn/

�
M
�
T; .u1; : : : ; un/; .v1; : : : ; vn/

�
:

The next result deals with the matrix of the identity operator I with
respect to two different bases. Note that the kth column of the matrix
M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
consists of the scalars needed to write uk

as a linear combination of v1; : : : ; vn.

10.5 Matrix of the identity with respect to two bases

Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then the matrices
M
�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
and M

�
I; .v1; : : : ; vn/; .u1; : : : ; un/

�
are invertible, and each is the inverse of the other.

Now we can see how the matrix of T changes when we change bases. In
the result below, we have two different bases of V. Recall that the notation
M
�
T; .u1; : : : ; un/

�
is shorthand for M

�
T; .u1; : : : ; un/; .u1; : : : ; un/

�
10.7 Change of basis formula

Suppose T 2 L.V /. Let u1; : : : ; un and v1; : : : ; vn be bases of V. Let
A DM

�
I; .u1; : : : ; un/; .v1; : : : ; vn/

�
. Then

M
�
T; .u1; : : : ; un/

�
D A�1M

�
T; .v1; : : : ; vn/

�
A:
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Trace: A Connection Between Operators and Matrices

Suppose T 2 L.V / and � is an eigenvalue of T. Let n D dimV. Re-
call that we defined the multiplicity of � to be the dimension of the gen-
eralized eigenspace G.�; T / (see 8.24) and that this multiplicity equals
dim null.T � �I/n (see 8.11). Recall also that if V is a complex vector
space, then the sum of the multiplicities of all the eigenvalues of T equals n
(see 8.26).

In the definition below, the sum of the eigenvalues “with each eigenvalue
repeated according to its multiplicity” means that if �1; : : : ; �m are the distinct
eigenvalues of T (or of TC if V is a real vector space) with multiplicities
d1; : : : ; dm, then the sum is

d1�1 C � � � C dm�m:

Or if you prefer to list the eigenvalues with each repeated according to its
multiplicity, then the eigenvalues could be denoted �1; : : : ; �n (where the
index n equals dimV ) and the sum is

�1 C � � � C �n:

10.9 Definition trace of an operator

Suppose T 2 L.V /.

� If F D C, then the trace of T is the sum of the eigenvalues of T,
with each eigenvalue repeated according to its multiplicity.

� If F D R, then the trace of T is the sum of the eigenvalues of TC ,
with each eigenvalue repeated according to its multiplicity.

The trace of T is denoted by traceT.

The trace has a close connection with the characteristic polynomial. Sup-
pose �1; : : : ; �n are the eigenvalues of T (or of TC if V is a real vector space)
with each eigenvalue repeated according to its multiplicity. Then by definition
(see 8.34 and 9.21), the characteristic polynomial of T equals

.z � �1/ � � � .z � �n/:

Expanding the polynomial above, we can write the characteristic polynomial
of T in the form

10.11 zn � .�1 C � � � C �n/z
n�1
C � � � C .�1/n.�1 � � ��n/:

The expression above immediately leads to the following result.
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122 CHAPTER 10 Trace and Determinant

10.12 Trace and characteristic polynomial

Suppose T 2 L.V /. Let n D dimV. Then traceT equals the negative of
the coefficient of zn�1 in the characteristic polynomial of T.

Most of the rest of this section is devoted to discovering how to compute
traceT from the matrix of T (with respect to an arbitrary basis).

10.13 Definition trace of a matrix

The trace of a square matrix A, denoted traceA, is defined to be the sum
of the diagonal entries of A.

Now we have defined the trace of an operator and the trace of a square
matrix, using the same word “trace” in two different contexts. This would be
bad terminology unless the two concepts turn out to be essentially the same.
As we will see, it is indeed true that traceT D traceM

�
T; .v1; : : : ; vn/

�
,

where v1; : : : ; vn is an arbitrary basis of V. We will need the following result
for the proof.

10.14 Trace of AB equals trace of BA

If A and B are square matrices of the same size, then

trace.AB/ D trace.BA/:

Now we can prove that the sum of the diagonal entries of the matrix of
an operator is independent of the basis with respect to which the matrix is
computed.

10.15 Trace of matrix of operator does not depend on basis

Let T 2 L.V /. Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then

traceM
�
T; .u1; : : : ; un/

�
D traceM

�
T; .v1; : : : ; vn/

�
:

The result below, which is the most important result in this section, states
that the trace of an operator equals the sum of the diagonal entries of the
matrix of the operator. This theorem does not specify a basis because, by the
result above, the sum of the diagonal entries of the matrix of an operator is
the same for every choice of basis.
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10.16 Trace of an operator equals trace of its matrix

Suppose T 2 L.V /. Then traceT D traceM.T /.

We can use 10.16 to give easy proofs of some useful properties about
traces of operators by shifting to the language of traces of matrices, where
certain properties have already been proved or are obvious. The proof of the
next result is an example of this technique. The eigenvalues of S C T are not,
in general, formed from adding together eigenvalues of S and eigenvalues of
T. Thus the next result would be difficult to prove without using 10.16.

10.18 Trace is additive

Suppose S; T 2 L.V /. Then trace.S C T / D traceS C traceT.

The techniques we have developed have the following curious consequence.
A generalization of this result to infinite-dimensional vector spaces has impor-
tant consequences in modern physics, particularly in quantum theory.

10.19 The identity is not the difference of ST and TS

There do not exist operators S; T 2 L.V / such that ST � TS D I.

10.B Determinant

Determinant of an Operator

Now we are ready to define the determinant of an operator. Notice that the
definition below mimics the approach we took when defining the trace, with
the product of the eigenvalues replacing the sum of the eigenvalues.

10.20 Definition determinant of an operator, detT

Suppose T 2 L.V /.

� If F D C, then the determinant of T is the product of the eigenvalues
of T, with each eigenvalue repeated according to its multiplicity.

� If F D R, then the determinant of T is the product of the eigenvalues
of TC , with each eigenvalue repeated according to its multiplicity.

The determinant of T is denoted by detT.
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If �1; : : : ; �m are the distinct eigenvalues of T (or of TC if V is a real
vector space) with multiplicities d1; : : : ; dm, then the definition above implies

detT D �d1

1 � � ��
dm
m :

Or if you prefer to list the eigenvalues with each repeated according to its
multiplicity, then the eigenvalues could be denoted �1; : : : ; �n (where the
index n equals dimV ) and the definition above implies

detT D �1 � � ��n:

The determinant has a close connection with the characteristic polynomial.
Suppose �1; : : : ; �n are the eigenvalues of T (or of TC if V is a real vector
space) with each eigenvalue repeated according to its multiplicity. Then the
expression for the characteristic polynomial of T given by 10.11 gives the
following result.

10.22 Determinant and characteristic polynomial

Suppose T 2 L.V /. Let n D dimV. Then detT equals .�1/n times the
constant term of the characteristic polynomial of T.

Combining the result above and 10.12, we have the following result.

10.23 Characteristic polynomial, trace, and determinant

Suppose T 2 L.V /. Then the characteristic polynomial of T can be
written as

zn � .traceT /zn�1 C � � � C .�1/n.detT /:

We turn now to some simple but important properties of determinants.
Later we will discover how to calculate detT from the matrix of T (with
respect to an arbitrary basis).

The crucial result below has an easy proof due to our definition.

10.24 Invertible is equivalent to nonzero determinant

An operator on V is invertible if and only if its determinant is nonzero.

Some textbooks take the result below as the definition of the characteristic
polynomial and then have our definition of the characteristic polynomial as a
consequence.
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10.25 Characteristic polynomial of T equals det.zI � T /

Suppose T 2 L.V /. Then the characteristic polynomial of T equals
det.zI � T /.

Determinant of a Matrix

Our next task is to discover how to compute detT from the matrix of T (with
respect to an arbitrary basis). Let’s start with the easiest situation. Suppose
V is a complex vector space, T 2 L.V /, and we choose a basis of V as in
8.29. With respect to that basis, T has an upper-triangular matrix with the
diagonal of the matrix containing precisely the eigenvalues of T, each repeated
according to its multiplicity. Thus detT equals the product of the diagonal
entries of M.T / with respect to that basis.

When dealing with the trace in the previous section, we discovered that the
formula (trace = sum of diagonal entries) that worked for the upper-triangular
matrix given by 8.29 also worked with respect to an arbitrary basis. Could that
also work for determinants? In other words, is the determinant of an operator
equal to the product of the diagonal entries of the matrix of the operator with
respect to an arbitrary basis?

Unfortunately, the determinant is more complicated than the trace. In
particular, detT need not equal the product of the diagonal entries of M.T /

with respect to an arbitrary basis.
For each square matrix A, we want to define the determinant of A, de-

noted detA, so that detT D detM.T / regardless of which basis is used to
compute M.T /.

10.27 Definition permutation, permn

� A permutation of .1; : : : ; n/ is a list .m1; : : : ; mn/ that contains
each of the numbers 1; : : : ; n exactly once.

� The set of all permutations of .1; : : : ; n/ is denoted permn.

For example, .2; 3; 4; 5; 1/ 2 perm 5. You should think of an element of
permn as a rearrangement of the first n integers.
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10.30 Definition sign of a permutation

� The sign of a permutation .m1; : : : ; mn/ is defined to be 1 if the
number of pairs of integers .j; k/ with 1 � j < k � n such that
j appears after k in the list .m1; : : : ; mn/ is even and �1 if the
number of such pairs is odd.

� In other words, the sign of a permutation equals 1 if the natural
order has been changed an even number of times and equals �1 if
the natural order has been changed an odd number of times.

The next result shows that interchanging two entries of a permutation
changes the sign of the permutation.

10.32 Interchanging two entries in a permutation

Interchanging two entries in a permutation multiplies the sign of the
permutation by �1.

10.33 Definition determinant of a matrix, detA

Suppose A is an n-by-n matrix

A D

0B@ A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1CA :
The determinant of A, denoted detA, is defined by

detA D
X

.m1;:::;mn/2permn

�
sign.m1; : : : ; mn/

�
Am1;1 � � �Amn;n:

To make sure you understand this process, you should now find the formula
for the determinant of an arbitrary 3-by-3matrix using just the definition given
above.

Suppose V is a complex vector space, T 2 L.V /, and we choose a basis
of V as in 8.29. With respect to that basis, T has an upper-triangular matrix
with the diagonal of the matrix containing precisely the eigenvalues of T, each
repeated according to its multiplicity.

Our goal is to prove that detT D detM.T / for every basis of V, not just
the basis from 8.29. To do this, we will need to develop some properties of
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determinants of matrices. The result below is the first of the properties we
will need.

10.36 Interchanging two columns in a matrix

Suppose A is a square matrix and B is the matrix obtained from A by
interchanging two columns. Then

detA D � detB:

If T 2 L.V / and the matrix of T (with respect to some basis) has two
equal columns, then T is not injective and hence detT D 0. Although this
comment makes the next result plausible, it cannot be used in the proof,
because we do not yet know that detT D detM.T / for every choice of basis.

10.37 Matrices with two equal columns

If A is a square matrix that has two equal columns, then detA D 0.

Recall from 3.44 that if A is an n-by-n matrix

A D

0B@ A1;1 : : : A1;n
:::

:::

An;1 : : : An;n

1CA ;
then we can think of the kth column of A as an n-by-1 matrix denoted A�;k:

A�;k D

0B@ A1;k
:::

An;k

1CA :
Note that Aj;k , with two subscripts, denotes an entry of A, whereas A�;k ,

with a dot as a placeholder and one subscript, denotes a column of A. This
notation allows us to write A in the form

. A�;1 : : : A�;n /;

which will be useful.
The next result shows that a permutation of the columns of a matrix

changes the determinant by a factor of the sign of the permutation.
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128 CHAPTER 10 Trace and Determinant

10.38 Permuting the columns of a matrix

Suppose A D . A�;1 : : : A�;n / is an n-by-n matrix and .m1; : : : ; mn/
is a permutation. Then

det. A�;m1
: : : A�;mn

/ D
�
sign.m1; : : : ; mn/

�
detA:

The next result about determinants will also be useful.

10.39 Determinant is a linear function of each column

Suppose k; n are positive integers with 1 � k � n. Fix n-by-1 matrices
A�;1; : : : ; A�;n except A�;k . Then the function that takes an n-by-1 column
vector A�;k to

det. A�;1 : : : A�;k : : : A�;n /

is a linear map from the vector space of n-by-1 matrices with entries in F
to F.

Now we are ready to prove one of the key properties about determinants
of square matrices. This property will enable us to connect the determinant
of an operator with the determinant of its matrix. Note that this proof is
considerably more complicated than the proof of the corresponding result
about the trace (see 10.14).

10.40 Determinant is multiplicative

Suppose A and B are square matrices of the same size. Then

det.AB/ D det.BA/ D .detA/.detB/:

Now we can prove that the determinant of the matrix of an operator is
independent of the basis with respect to which the matrix is computed.

10.41 Determinant of matrix of operator does not depend on basis

Let T 2 L.V /. Suppose u1; : : : ; un and v1; : : : ; vn are bases of V. Then

detM
�
T; .u1; : : : ; un/

�
D detM

�
T; .v1; : : : ; vn/

�
:

The result below states that the determinant of an operator equals the
determinant of the matrix of the operator. This theorem does not specify a
basis because, by the result above, the determinant of the matrix of an operator
is the same for every choice of basis.
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10.42 Determinant of an operator equals determinant of its matrix

Suppose T 2 L.V /. Then detT D detM.T /.

If we know the matrix of an operator on a complex vector space, the result
above allows us to find the product of all the eigenvalues without finding any
of the eigenvalues.

We can use 10.42 to give easy proofs of some useful properties about
determinants of operators by shifting to the language of determinants of
matrices, where certain properties have already been proved or are obvious.
We carry out this procedure in the next result.

10.44 Determinant is multiplicative

Suppose S; T 2 L.V /. Then

det.ST / D det.TS/ D .detS/.detT /:

The Sign of the Determinant

We proved the basic results of linear algebra before introducing determinants
in this final chapter. Although determinants have value as a research tool in
more advanced subjects, they play little role in basic linear algebra (when the
subject is done right).

Determinants do have one important application in undergraduate mathe-
matics, namely, in computing certain volumes and integrals. In this subsection
we interpret the meaning of the sign of the determinant on a real vector space.
Then in the final subsection we will use the linear algebra we have learned to
make clear the connection between determinants and these applications. Thus
we will be dealing with a part of analysis that uses linear algebra.

We will begin with some purely linear algebra results that will also be
useful when investigating volumes. Our setting will be inner product spaces.
Recall that an isometry on an inner product space is an operator that preserves
norms. The next result shows that every isometry has determinant with
absolute value 1.

10.45 Isometries have determinant with absolute value 1

Suppose V is an inner product space and S 2 L.V / is an isometry. Then
jdetS j D 1.
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130 CHAPTER 10 Trace and Determinant

The Real Spectral Theorem 7.29 states that a self-adjoint operator T on a
real inner product space has an orthonormal basis consisting of eigenvectors.
With respect to such a basis, the number of times each eigenvalue appears on
the diagonal of M.T / is its multiplicity. Thus detT equals the product of its
eigenvalues, counting multiplicity (of course, this holds for every operator,
self-adjoint or not, on a complex vector space).

Recall that if V is an inner product space and T 2 L.V /, then T �T
is a positive operator and hence has a unique positive square root, denoted
p
T �T (see 7.35 and 7.36). Because

p
T �T is positive, all its eigenvalues

are nonnegative (again, see 7.35), and hence det
p
T �T � 0.

Volume

The next result will be a key tool in our investigation of volume.

10.47 jdetT j D det
p
T �T

Suppose V is an inner product space and T 2 L.V /. Then

jdetT j D det
p
T �T :

Now we turn to the question of volume in Rn. Fix a positive integer n for
the rest of this subsection. We will consider only the real inner product space
Rn, with its standard inner product.

We would like to assign to each subset � of Rn its n-dimensional volume
(when n D 2, this is usually called area instead of volume). We begin with
boxes, where we have a good intuitive notion of volume.

10.48 Definition box

A box in Rn is a set of the form

f.y1; : : : ; yn/ 2 Rn W xj < yj < xj C rj for j D 1; : : : ; ng;

where r1; : : : ; rn are positive numbers and .x1; : : : ; xn/ 2 Rn. The num-
bers r1; : : : ; rn are called the side lengths of the box.

You should verify that when n D 2, a box is a rectangle with sides parallel
to the coordinate axes, and that when n D 3, a box is a familiar 3-dimensional
box with sides parallel to the coordinate axes.

The next definition fits with our intuitive notion of volume, because we
define the volume of a box to be the product of the side lengths of the box.
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10.49 Definition volume of a box

The volume of a box B in Rn with side lengths r1; : : : ; rn is defined to
be r1 � � � rn and is denoted by volumeB .

To define the volume of an arbitrary set � � Rn, the idea is to write � as
a subset of a union of many small boxes, then add up the volumes of these
small boxes. As we approximate � more accurately by unions of small boxes,
we get a better estimate of volume�.

10.50 Definition volume

Suppose � � Rn. Then the volume of �, denoted volume�, is defined
to be the infimum of

volumeB1 C volumeB2 C � � � ;

where the infimum is taken over all sequences B1; B2; : : : of boxes in Rn
whose union contains �.

We will work only with an intuitive notion of volume. Our purpose in this
book is to understand linear algebra, whereas notions of volume belong to
analysis (although volume is intimately connected with determinants, as we
will soon see). Thus for the rest of this section we will rely on intuitive notions
of volume rather than on a rigorous development, although we shall maintain
our usual rigor in the linear algebra parts of what follows. Everything said
here about volume will be correct if appropriately interpreted—the intuitive
approach used here can be converted into appropriate correct definitions,
correct statements, and correct proofs using the machinery of analysis.

10.51 Notation T .�/

For T a function defined on a set �, define T .�/ by

T .�/ D fT x W x 2 �g:

For T 2 L.Rn/ and � � Rn, we seek a formula for volumeT .�/ in
terms of T and volume�. We begin by looking at positive operators.

10.52 Positive operators change volume by factor of determinant

Suppose T 2 L.Rn/ is a positive operator and � � Rn. Then

volumeT .�/ D .detT /.volume�/:
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132 CHAPTER 10 Trace and Determinant

Our next tool is the following result, which states that isometries do not
change volume.

10.53 An isometry does not change volume

Suppose S 2 L.Rn/ is an isometry and � � Rn. Then

volumeS.�/ D volume�:

Now we can prove that an operator T 2 L.Rn/ changes volume by a factor
of jdetT j. Note the huge importance of the Polar Decomposition in the proof.

10.54 T changes volume by factor of jdetT j

Suppose T 2 L.Rn/ and � � Rn. Then

volumeT .�/ D jdetT j.volume�/:

The result that we just proved leads to the appearance of determinants in
the formula for change of variables in multivariable integration. To describe
this, we will again be vague and intuitive.

Throughout this book, almost all the functions we have encountered have
been linear. Thus please be aware that the functions f and � in the material
below are not assumed to be linear.

The next definition aims at conveying the idea of the integral; it is not
intended as a rigorous definition.

10.55 Definition integral,
R
� f

If � � Rn and f is a real-valued function on �, then the integral of f
over�, denoted

R
� f or

R
� f .x/ dx, is defined by breaking� into pieces

small enough that f is almost constant on each piece. On each piece,
multiply the (almost constant) value of f by the volume of the piece, then
add up these numbers for all the pieces, getting an approximation to the
integral that becomes more accurate as � is divided into finer pieces.

Actually, � in the definition above needs to be a reasonable set (for
example, open or measurable) and f needs to be a reasonable function (for
example, continuous or measurable), but we will not worry about those
technicalities. Also, notice that the x in

R
� f .x/ dx is a dummy variable and

could be replaced with any other symbol.
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Now we define the notions of differentiable and derivative. Notice that
in this context, the derivative is an operator, not a number as in one-variable
calculus.

10.56 Definition differentiable, derivative, � 0.x/

Suppose � is an open subset of Rn and � is a function from � to Rn.
For x 2 �, the function � is called differentiable at x if there exists an
operator T 2 L.Rn/ such that

lim
y!0

k�.x C y/ � �.x/ � Tyk

kyk
D 0:

If � is differentiable at x, then the unique operator T 2 L.Rn/ satisfying
the equation above is called the derivative of � at x and is denoted by
� 0.x/.

The idea of the derivative is that for x fixed and kyk small,

�.x C y/ � �.x/C
�
� 0.x/

�
.y/I

because � 0.x/ 2 L.Rn/, this makes sense.
Suppose � is an open subset of Rn and � is a function from � to Rn. We

can write
�.x/ D

�
�1.x/; : : : ; �n.x/

�
;

where each �j is a function from � to R. The partial derivative of �j
with respect to the kth coordinate is denoted Dk�j . Evaluating this partial
derivative at a point x 2 � givesDk�j .x/. If � is differentiable at x, then the
matrix of � 0.x/ with respect to the standard basis of Rn contains Dk�j .x/ in
row j , column k (this is left as an exercise). In other words,

10.57 M
�
� 0.x/

�
D

0B@ D1�1.x/ : : : Dn�1.x/
:::

:::

D1�n.x/ : : : Dn�n.x/

1CA :
Now we can state the change of variables integration formula. Some

additional mild hypotheses are needed for f and � 0 (such as continuity or
measurability), but we will not worry about them because the proof below is
really a pseudoproof that is intended to convey the reason the result is true.

The result below is called a change of variables formula because you can
think of y D �.x/ as a change of variables.
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134 CHAPTER 10 Trace and Determinant

10.58 Change of variables in an integral

Suppose � is an open subset of Rn and � W �! Rn is differentiable at
every point of �. If f is a real-valued function defined on �.�/, thenZ

�.�/

f .y/ dy D

Z
�

f
�
�.x/

�
jdet � 0.x/j dx:

The key point when making a change of variables is that the factor of
jdet � 0.x/j must be included when making a substitution y D f .x/, as in the
right side of 10.58.
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sum, see addition
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transpose of a matrix, 47
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vector space, 8
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