Elementare Differentialgeometrie

Übungsblatt 1

Aufgabe 1. Zeigen Sie mit einem Ansatz von der Form

$$(a\cos\varphi, b\sin\varphi, 0) + \lambda(p, q, r), \lambda \in \mathbb{R},$$

daß das einschalige Hyperboloid

$$\left\{ (x,y,z) \in \mathbb{R}^3 \colon \, \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \right\}$$

auf zwei Arten als Regelfläche dargestellt werden kann.

Aufgabe 2. Die **Tangente** an eine reguläre Kurve α im \mathbb{R}^n im Punkt $t=t_0$ ist die Gerade

$$\{\mathbf{w} \in \mathbb{R}^n \colon \mathbf{w} = \boldsymbol{\alpha}(t_0) + \lambda \mathbf{T}(t_0), \ \lambda \in \mathbb{R}\}.$$

- (a) Sei $g: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion und α die durch $\alpha(t) = (t, g(t))$, $t \in \mathbb{R}$, gegebene ebene Kurve. Bestimmen Sie die Tangente an α in $t = t_0$ und vergleichen Sie dies mit der aus der Analysis I bekannten Tangente an einen Graphen.
- (b) Zeigen Sie, daß $\alpha(t) = (\sin 3t \cos t, \sin 3t \sin t)$ eine reguläre Kurve ist und bestimmen Sie die Gleichung der Tangente in $t = \pi/3$.
- (c) Bestimmen Sie die Gleichung der Tangente an die Helix $\alpha(t) = (r\cos t, r\sin t, ht)$ (mit r, h > 0 gegeben) in $t = t_0$. Zeigen Sie, daß der Winkel zwischen $\dot{\alpha}$ und dem Vektor (0,0,1) konstant ist. Was bedeutet dies geometrisch?

Aufgabe 3. Zeigen Sie, daß

$$\alpha(s) = \frac{1}{2} \left(s + \sqrt{s^2 + 1}, \left(s + \sqrt{s^2 + 1} \right)^{-1}, \sqrt{2} \log \left(s + \sqrt{s^2 + 1} \right) \right)$$

nach der Bogenlänge parametrisiert ist.

Aufgabe 4. Sei $\alpha(s) = (x(s), y(s))$ nach der Bogenlänge parametrisiert. Zeigen Sie, daß dann die Krümmung von α gegeben ist durch

$$k(s) = |x'(s)y''(s) - x''(s)y'(s)|.$$

Abgabe: Mittwoch 22.10.25

bis spätestens 18:00 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).

Lösungen sind individuell abzugeben, nicht als Gruppenabgaben.