Elementare Differentialgeometrie

Übungsblatt 2

Aufgabe 1. Eine **Helix** war definiert als reguläre Kurve α im \mathbb{R}^3 mit k > 0, für die ein $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^3$ existiert mit $\langle \mathbf{T}, \mathbf{u} \rangle = \text{konst.}$ Eine **Kreis-Helix** ist eine Helix, deren Projektion auf eine Ebene orthogonal zu \mathbf{u} ein Kreis ist.

Zeigen Sie: α ist eine Kreis-Helix genau dann, wenn $\tau = \text{konst.}$ und k = konst. > 0 gilt.

Aufgabe 2. Sei α eine nach der Bogenlänge parametrisierte Raumkurve mit $k \neq 0$. Finden Sie eine vektorwertige Funktion **w**, so daß

$$T' = w \times T$$

$$N' = w \times N,$$

$$\mathbf{B}' = \mathbf{w} \times \mathbf{B}.$$

Bemerkung: \mathbf{w} heißt $\mathbf{Darboux\text{-}Vektor}$. Jean Gaston Darboux (1842 – 1917) untersuchte Kurven unter einem kinematischen Gesichtspunkt. Wenn ein starrer Körper mit Einheitsgeschwindigkeit entlang einer Kurve läuft, so beschreibt \mathbf{T} die infinitesimale Translation des Körpers und \mathbf{w} die infinitesimale Rotation.

Aufgabe 3. Sei α eine nach der Bogenlänge parametrisierte Raumkurve mit $k \neq 0$. Die von $\mathbf{T}(s)$ und $\mathbf{N}(s)$ aufgespannte Ebene durch $\alpha(s)$ heißt die **Schmiegebene** von α in $\alpha(s)$. Zeigen Sie, daß α genau dann in einer Ebene liegt, wenn es einen Punkt \mathbf{x}_0 in \mathbb{R}^3 gibt, so daß jede Schmiegebene durch \mathbf{x}_0 geht.

Aufgabe 4. Sei α eine nach der Bogenlänge parametrisierte Kurve mit $k(s) \neq 0$, $k'(s) \neq 0$ und $\tau(s) \neq 0$ für alle s. Zeigen Sie, daß die Spur von α genau dann auf einer Sphäre liegt, wenn $\rho^2 + (\rho'\sigma)^2 = \text{konst} > 0$, wobei $\rho := 1/k$ und $\sigma := 1/\tau$.

Hinweis: Für die Hin-Richtung, drücke $\alpha(s)$ – \mathbf{m} als Linearkombination von $\mathbf{N}(s)$ und $\mathbf{B}(s)$ aus, wobei \mathbf{m} den Mittelpunkt der Sphäre bezeichnet. Dies liefert dann auch den gewünschten Ansatz für die Rück-Richtung.