Elementare Differentialgeometrie

Übungsblatt 3

Aufgabe 1. Gegeben seien die offenen Mengen

$$V = \left\{ (\theta, \varphi) \in \mathbb{R}^2 \colon \ 0 < \theta < \pi/2, \ 0 < \varphi < 2\pi \right\},$$

$$U = \left\{ (u^1, u^2) \in \mathbb{R}^2 \colon \ (u^1)^2 + (u^2)^2 < 1, \ u^1 < 0 \ \text{ für } \ u^2 = 0 \right\}.$$

- (a) Begründen Sie, warum durch $f(\theta, \varphi) := (\sin \theta \cos \varphi, \sin \theta \sin \varphi)$ eine Bijektion $V \to U$ definiert ist.
- (b) Zeigen Sie, daß f ein Diffeomorphismus ist, indem Sie
 - (i) (lokal) eine Umkehrfunktion angeben, (ii) die Jacobische von f berechnen.

Aufgabe 2. Seien α und β zwei reguläre parametrisierte Raumkurven, definiert auf einem Intervall (a,b). Die Kurve β heißt eine **Evolvente** von α , falls für jedes $t \in (a,b)$ gilt: $\beta(t)$ liegt auf der Tangente von α in $\alpha(t)$, und die Tangenten von α und β in $\alpha(t)$ bzw. $\beta(t)$ sind orthogonal zueinander. Die Kurve β heißt eine **Evolute** von α , falls α eine Evolvente von β ist.

- (a) Zeichnen Sie qualitativ die Evolvente für eine typische ebene Kurve (siehe dazu auch (b)).
- (b) Zeigen Sie, daß für eine Evolvente β einer nach der Bogenlänge parametrisierten Kurve α

$$\boldsymbol{\beta}(s) = \boldsymbol{\alpha}(s) + (c-s) \mathbf{T}(s)$$

gilt, wobei c eine Konstante ist und $\mathbf{T} = \alpha'$. Beachte: s ist i. a. nicht die Bogenlänge für β .

(c) Unter welchen Bedingungen ist $\alpha(s)+(c-s)$ **T** eine reguläre Kurve und damit eine Evolvente von α ?

Wegen (b) ist $|\alpha - \beta|$ ein Maß für die Bogenlänge auf α . Daher läßt sich β konstruieren, indem man einen Faden von der Kurve α abwickelt.

Aufgabe 3. Zeigen Sie, daß die Krümmung k einer regulären Raumkurve $t\mapsto \boldsymbol{\beta}(t)$ gegeben ist durch

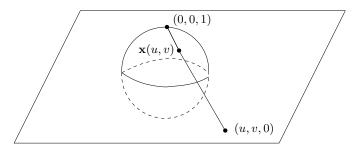
$$k = \frac{|\dot{\boldsymbol{\beta}} \times \ddot{\boldsymbol{\beta}}|}{|\dot{\boldsymbol{\beta}}|^3}.$$

Hinweis: Schreiben Sie dazu $\beta(t) = \alpha(s(t))$, wobei $s \mapsto \alpha(s)$ die Parametrisierung nach Bogenlänge ist. Dann gilt beispielsweise $\dot{\beta} = \alpha' \cdot \dot{s}$.

Aufgabe 4. Betrachten Sie die 2-Sphäre

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Die Gerade durch $(u, v, 0) \in \mathbb{R}^2 \subset \mathbb{R}^3$ und (0, 0, 1) schneidet S^2 in einem weiteren Punkt. Dieser sei mit $\mathbf{x}(u, v)$ bezeichnet.



- (a) Berechnen Sie $\mathbf{x}(u, v)$ und zeigen Sie, daß $\mathbf{x} \colon \mathbb{R}^2 \to \mathbb{R}^3$ ein parametrisiertes Flächenstück ist. Die zu \mathbf{x} inverse Abbildung $S^2 \setminus \{(0, 0, 1)\} \to \mathbb{R}^2$ heißt **stereographische Projektion**.
- (b) Sei $\mathbf{y} \colon \mathbb{R}^2 \to \mathbb{R}^3$ analog definiert, indem man statt (0,0,1) den Punkt (0,0,-1) verwendet. Bestimmen Sie die Abbildung $\mathbf{y}^{-1} \circ \mathbf{x}$ explizit und verifizieren Sie, daß diese Abbildung differenzierbar ist. Was ist der maximale Definitionsbereich dieser Abbildung?

Bonusaufgabe. Die Zykloide ist die durch

$$\begin{cases} x(t) = a(t + \sin t) \\ y(t) = a(1 - \cos t) \end{cases}$$

für $t \in \mathbb{R}$ definierte ebene Kurve.

- (a) Zeigen Sie, daß die Zykloide die Kurve ist, die ein Punkt auf dem Rand eines Rades vom Radius a beschreibt, das auf der Gerade y=2a abrollt, wobei für t=0 der genannte Punkt in (x,y)=(0,0) liegt.
- (b) Berechnen Sie die Bogenlänge der Zykloide auf dem Zeitintervall [0,t] für $0 \le t \le \pi$.
- (c) Berechnen Sie explizit die Evolvente der Zykloide durch Verwendung von Aufgabe 2 (b) mit c=0— beachten Sie, daß t nicht die Bogenlänge ist. Zeigen Sie damit explizit, daß diese Evolvente wieder eine Zykloide ist.

Bemerkung: Diese Konstruktion spielte eine wichtige Rolle in Christian Huygens' (1629–1695) Konstruktion einer Pendeluhr von hoher Präzision.

Abgabe: Mittwoch 5.11.25 bis spätestens 18:00 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).