Elementare Differentialgeometrie

Übungsblatt 4

Aufgabe 1. Zeigen Sie, daß die 2-Sphäre $S^2 \subset \mathbb{R}^3$ eine Fläche im Sinne der Vorlesung ist.

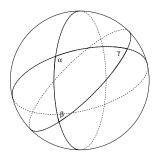
Aufgabe 2. Berechnen Sie den Flächeninhalt des Kegels

$$\{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 = z^2, 0 < x^2 + y^2 < 1, z > 0\}$$

mittels jeder der folgenden Methoden:

- (i) Flächeninhaltsformel aus der Vorlesung, mit der Parametrisierung $(x,y) \mapsto (x,y,\sqrt{x^2+y^2})$.
- (ii) Wie (i), aber mit der Parametrisierung $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi, r)$.
- (iii) 'Aufschneiden' des Kegels entlang $\{x=z\in[0,1],\,y=0\}$ und 'Ausrollen' in der Ebene; dann elementargeometrische Überlegung.

Aufgabe 3. Zeigen Sie, daß ein von drei Großkreisen auf S^2 berandetes sphärisches Dreieck mit den Winkeln α, β, γ den Flächeninhalt $\alpha + \beta + \gamma - \pi$ hat. Diese Zahl heißt der **sphärische Exzeß** des Dreiecks.



Hinweis: Wie groß ist der Flächeninhalt zwischen zwei Großkreisen? Der Flächeninhalt des Dreiecks ergibt sich dann aus einer elementargeometrischen Überlegung.

Aufgabe 4. Es sei $T^2 \subset \mathbb{R}^3$ der Torus, der durch Rotation des Kreises $(x-a)^2 + z^2 = 1$ (mit a > 1 gegeben) um die z-Achse entsteht. Zeichnen Sie eine Skizze.

(a) Zeigen Sie, daß T^2 (ohne zwei Kreise) als Bildmenge der Abbildung

$$\mathbf{x}(u,v) = ((a + \cos v)\cos u, (a + \cos v)\sin u, \sin v), \quad u \in (0, 2\pi), v \in (0, 2\pi),$$

beschrieben werden kann.

- (b) Bestimmen Sie die metrischen Koeffizienten bzgl. dieser Parametrisierung.
- (c) Berechnen Sie den Flächeninhalt von T^2 .

Bonusaufgabe. Ist der 2-Torus T^2 aus Aufgabe 4 lokal isometrisch zum \mathbb{R}^2 ?

Abgabe: Mittwoch 12.11.25 bis spätestens 18:00 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).