Sekretariat
- Sabine Bröders
 Room 223, Phone 0221-470 5759,
 email: broeders at math
Ehemalige Mitarbeiter
- Dipl.-Math. Yvonne Deuster
Doktorarbeiten:
- 
F. Pasquotto, On the geography of symplectic manifolds,
 Leiden (2004).
 
- 
K. Niederkrüger, Compact Lie group actions on contact manifolds,
 Köln (2005).
 
- 
O. van Koert, Open books for contact five-manifolds and applications of
 contact homology, Köln (2005).
 
- 
I. Wieck, Explicit symplectic packings: Symplectic tunnelling and
 new maximal constructions, Köln (2008).
 
- 
Ch. Bock, On formality and solvmanifolds,
 Köln (2009).
 
- 
B. Sahamie, Dehn twists and Heegaard Floer homology,
 Köln (2009).
 
- 
M. Klukas, Constructions of open books and applications of
 convex surfaces in contact topology,
Köln (2012).
 
- 
M. Dörner, The space of contact forms adapted to an open book,
 Köln (2014).
 
- 
M. Kegel, Legendrian knots in surgery diagrams and the knot complement
problem,
 Köln (2017).
 
- 
C. Evers, Real contact geometry,
 Köln (2017).
 
- 
S. Durst, Contact open books: Classical invariants and the binding sum,
 Köln (2017).
 
- 
T. Becker, On geodesible vector fields and related geometric structures,
 Köln (2023).
 
Publikationen:
(Für Publikationen von H. Geiges ohne weitere aktuelle Mitglieder
der Arbeitsgruppe siehe
hier.)
- 
H. Geiges and D. Rattaggi, Periodic autmorphisms of surfaces: invariant
circles
 and maximal orders, Experiment. Math. 9 (2000), 75-84.
 
- 
F. Ding and H. Geiges, Symplectic fillability of tight contact structures
on torus bundles,
 Algebr. Geom. Topol. 1 (2001), 153-172.
 
- 
Ch. Hummel, Tubular neighbourhoods of 2-flats in 4-manifolds of
nonpositive curvature,
 Geom. Dedicata 86 (2001), 29-36.
 
- 
F. Ding and H. Geiges, A Legendrian surgery presentation of
contact 3-manifolds,
 Math. Proc. Cambridge Philos. Soc. 136 (2004), 583-598.
 
- 
F. Pasquotto, Symplectic geography in dimension 8,
 Manuscripta Math. 116 (2005), 341-355.
 
- 
M. Zessin, On contact p-spheres,
 Ann. Inst. Fourier (Grenoble) 55 (2005), 1167-1194.
 
- 
O. van Koert and K. Niederkrüger, Open book decompositions for
contact structures on Brieskorn manifolds,
 Proc. Amer. Math. Soc. 133 (2005), 3679-3686.
 
- 
K. Niederkrüger, 5-Dimensional contact SU(2)- and SO(3)-manifolds
and Dehn twists,
 Geom. Dedicata 117 (2006), 85-110.
 
- 
H. Geiges and F. Pasquotto, A formula for the Chern classes of symplectic
blow-ups,
 J. London Math. Soc. (2) 76 (2007), 313-330.
 
- 
K. Niederkrüger and F. Öztürk,
Brieskorn manifolds as contact branched covers
of spheres,
 Period. Math. Hungar. 54 (2007), 85-97.
 
- 
M. Zessin,
On contact tops and integrable tops,
 Indag. Math. (N.S.) 18 (2007), 305-325.
 
- 
O. van Koert,
Contact homology of Brieskorn manifolds,
 Forum Math. 20 (2008), 317-339.
 
- 
O. van Koert,
Open books on contact five-manifolds,
 Ann. Inst. Fourier (Grenoble) 58 (2008), 139-157.
 
- 
B. Sahamie,
Dehn twists in Heegaard Floer homology,
 Algebr. Geom. Topol. 10 (2010), 465-524.
 
- 
H. Geiges and K. Zehmisch,
Eliashberg's proof of Cerf's theorem,
 J. Topol. Anal. 2 (2010), 543-579.
 
- 
Ch. Bock, Geography of non-formal symplectic and contact manifolds,
 Forum Math. 23 (2011), 713-727.
 
- 
H. Geiges and K. Zehmisch,
Cerf's theorem and other applications of the filling
with holomorphic discs,
 Oberwolfach Reports 8 (2011), 1055-1056.
 
- 
H. Geiges and K. Zehmisch, Symplectic cobordisms and the strong Weinstein
conjecture,
 Math. Proc. Cambridge Philos. Soc. 153 (2012), 261-279.
 
- 
K. Zehmisch, The annulus property of simple holomorphic discs,
 J. Symplectic Geom. 11 (2013), 135-161.
 
- 
H. Geiges and K. Zehmisch, How to recognize a 4-ball when you see one,
 Münster J. Math. 6 (2013), 525-554, erratum: pp. 555-556.
 
- 
M. Klukas and B. Sahamie, On prolongations of contact manifolds,
 Proc. Amer. Math. Soc. 141 (2013), 3257-3263.
 
- 
K. Zehmisch, The codisc radius capacity,
 Electron. Res. Announc. Math. Sci. 20 (2013), 77-96.
 
- 
K. Zehmisch and F. Ziltener, Discontinuous symplectic capacities,
 J. Fixed Point Theory Appl. 14 (2013), 299-307.
 
- 
K. Zehmisch, Lagrangian non-squeezing and a geometric inequality,
 Math. Z. 277 (2014), 285-291.
 
- 
M. Dörner, H. Geiges and K. Zehmisch, Open books and the Weinstein
conjecture,
 Q. J. Math. 65 (2014), 869-885.
 
- 
H. Geiges, N. Röttgen and K. Zehmisch, Trapped Reeb orbits
do not imply periodic ones,
 Invent. Math. 198 (2014), 211-217.
 
- 
H. Geiges and M. Klukas,
The fundamental group of the space of contact structures
on the 3-torus,
 Math. Res. Lett. 21 (2014), 1257-1262.
 
- 
K. Zehmisch, Holomorphic jets in symplectic manifolds,
 J. Fixed Point Theory Appl. 17 (2015), 379-402.
 
- 
H. Geiges and K. Zehmisch, Reeb dynamics detects odd balls,
 Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 663-681.
 
- 
S. Durst, Round handle decompositions of 1-connected 5-manifolds,
 Expo. Math. 34 (2016), 43-61.
 
- 
S. Suhr and K. Zehmisch, Linking and closed orbits,
 Abh. Math. Semin. Univ. Hambg. 86 (2016), 133-150.
 
- 
Ch. Bock, On low-dimensional solvmanifolds,
 Asian J. Math. 20 (2016), 199-262.
 
- 
M. Klukas, Open book decompositions of fibre sums in contact topology,
 Algebr. Geom. Topol. 16 (2016), 1253-1277.
 
- 
S. Durst, M. Kegel and M. Klukas, Computing the Thurston-Bennequin invariant
in open books,
 Acta Math. Hungar. 150 (2016), 441-455.
 
- 
S. Durst and M. Kegel, Computing rotation and self-linking numbers in
contact surgery diagrams,
 Acta Math. Hungar. 150 (2016), 524-540.
 
- 
M. Dörner, H. Geiges and K. Zehmisch,  Finsler geodesics, periodic Reeb
orbits, and open books
 Eur. J. Math. 3 (2017), 1058-1075.
 
- 
J. Gutt, The positive equivariant symplectic homology as an invariant
for some contact manifolds,
 J. Symplectic Geom. 15 (2017), 1019-1069.
 
- 
M. Klukas, Open books and exact symplectic cobordisms,
 Internat. J. Math. 29 (2018), 1850026, 19 pp.
 
- 
P. Albers, J. Gutt and D. Hein, Periodic Reeb orbits on prequantization
bundles,
 J. Mod. Dyn. 12 (2018), 123-150.
 
- 
J. Gutt and M. Hutchings,
Symplectic capacities from positive S1-equivariant
symplectic homology,
 Algebr. Geom. Topol. 18 (2018), 3537-3600.
 
- 
M. Kegel, The Legendrian knot complement problem,
 J. Knot Theory Ramifications 27 (2018), 1850067, 36 pp.
 
- 
S. Durst and M. Kegel, Computing rotation numbers in open books,
 J. Gökova Geom. Topol. GGT 12 (2018), 71-92.
 
- 
M. Kegel, Cosmetic contact surgeries along transverse knots
and the knot complement problem,
 Topology Appl. 256 (2019), 46-59.
 
- 
S. Durst, H. Geiges and M. Kegel, Handle homology of
manifolds,
 Topology Appl. 256 (2019), 113-127.
 
- 
J. Gutt and M. Usher, Symplectically knotted codimension-zero
embeddings of domains in R4,
 Duke Math. J. 168 (2019), 2299-2363.
 
- 
S. Durst, H. Geiges, J. Gonzalo and M. Kegel, Parallelisability of 3-manifolds
via surgery,
 Expo. Math. 38 (2020), 131-137.
 
- 
M. Limouzineau, On Legendrian cobordisms and generating functions,
 J. Knot Theory Ramifications 29 (2020), 2050008, 17 pp.
 
- 
S. Durst, M. Kegel and J. E. Licata, Rotation numbers and the
Euler class in open books,
 Michigan Math. J. 70 (2021), 869-888.
 
- 
Ch. Bock, On rational homotopy and minimal models,
 Forum Math. 33 (2021), 283-288.
 
- 
M. Abreu, J. Gutt, J. Kang and L. Macarini,
Two closed orbits for non-degenerate Reeb flows,
 Math. Proc. Cambridge Philos. Soc. 170 (2021), 625-660.
 
- 
T. Becker and H. Geiges, The contact structure induced by a line fibration of
R3 is standard,
 Bull. Lond. Math. Soc. 53 (2021), 104-107.
 
- 
S. Blackwell, N. Legout, C. Leverson, M. Limouzineau, Z. Myer, Y. Pan,
S. Pezzimenti,
 L. S. Suárez and L. Traynor,
Construction of Lagrangian cobordisms,
 in: Research Directions in Symplectic and Contact Geometry and Topology,
 Assoc. Women Math. Ser. 27, Springer-Verlag, Cham (2021), 245-272.
 
- 
B. Albach and H. Geiges, Surfaces of section for Seifert fibrations,
 Arnold Math. J. 7 (2021), 573-597.
 
- 
M. Sağlam, Contact forms with large systolic ratio in arbitrary dimensions,
 Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), 1265-1308.
 
- 
S. Durst and M. Klukas, Nested open books and the binding sum,
 Osaka J. Math. 58 (2021), 189-212.
 
- 
R. Chatterjee, Links in overtwisted contact manifolds,
 Expo. Math. 40 (2022), 231-248.
 
- 
M. Sağlam, Holomorphic curves in symplectizations of lens spaces - an
elementary approach,
 Münster J. Math. 15 (2022), 389-440.
 
- 
R. Chatterjee, Transverse links, open books and overtwisted manifolds,
 New York J. Math. 29 (2023), 213-230.
 
- 
H. Geiges and N. Thies, Klein bottles in lens spaces,
 Involve 16 (2023), 621-636.
 
- 
T. Becker, Geodesic and conformally Reeb vector fields on flat 3-manifolds,
 Differential Geom. Appl. 89 (2023), Paper No. 102013, 18 pp.
 
- 
H. Geiges, M. Sağlam and K. Zehmisch, Why bootstrapping for
J-holomorphic curves fails in Ck,
 Anal. Math. Phys. 13 (2023), Paper No. 11, 11 pp.
 
- 
A. Abbondandolo, M. R. R. Alves, M. Sağlam and F. Schlenk,
 Entropy collapse versus entropy rigidity for Reeb and Finsler flows,
 Selecta Math. 29 (2023), Paper No. 67, 99 pp.
 
- 
M. Sağlam, Reeb flows with small contact volume and large return time
to a global section,
 J. Topol. Anal. 16 (2024), 541-560.
 
- 
H. Geiges, J. Hedicke and M. Sağlam,
Bott-integrable Reeb flows on 3-manifolds,
 J. London Math. Soc. (2) 109 (2024), Paper No. e12859, 42 pp.
 
- 
G. Fischer, J. Gutt and M. Jünger, Algorithmic symplectic packing,
 Exp. Math. 33 (2024), 175-192.
 
- 
S. Allout and M. Sağlam: On contact mapping classes of prequantizations,
 Algebr. Geom. Topol. 25 (2025), 2507-2526.
 
- 
R. Chatterjee, J. B. Etnyre, H. Min and A. Mukherjee,
 Existence and construction of non-loose knots,
 Int. Math. Res. Not. IMRN, to appear.
 
- 
T. Becker, 
Geodesic vector fields, induced contact structures and tightness
in dimension three,
 Geom. Dedicata 218 (2024), Paper No. 98, 20 pp.
 
- 
R. Chatterjee and M. Kegel, Contact surgery numbers of
Σ(2,3,11) and L(4m+3,4),
 preprint (2024).
 
- 
R. Chatterjee, H. Geiges and S. Onaran, Legendrian Hopf links
in L(p,1),
 Q. J. Math., to appear.
 
- 
H. Geiges, J. Hedicke and M. Sağlam,
Bott-integrability of overtwisted contact structures,
 preprint (2025).