COMPLEX GEOMETRY SOMMERSEMESTER 2014

George Marinescu

- 1. CLASSICAL RESULTS IN ONE COMPLEX VARIABLE
- 1.1. The Cauchy-Riemann Equations.
- 1.2. Runge, Mittag-Leffler, Weierstrass Theorems.
 - 2. Holomorphic Functions of Several Variables
- 2.1. The Cauchy Integral Formula.
- 2.2. The Hartogs Extension Theorem.
- 2.3. Subharmonic and Plurisubharmonic Functions.
- 2.4. Holomorphic Convexity and Pseudoconvexity.
- 2.5. Stein Manifolds.

3. Complex Spaces

- 3.1. Analytic Sets, Weierstrass Preparation Theorem.
- 3.2. Presheaves, Sheaves, complex spaces.
 - 4. Vector bundles and Connections
- 4.1. Connections and Curvature.
- 4.2. Kähler metrics, Kähler Identities.
- 4.3. Bochner-Kodaira-Nakano formula.
- 4.4. Line bundles, divisors and blowing-up.
 - 5. Sheaves and Cohomology
- 5.1. Acyclic Resolutions.
- 5.2. The De Rham-Weil Isomorphism Theorem.

6. Hodge Theory

- 6.1. Elliptic Differential Operators.
- 6.2. Harmonic Forms and Cohomology.
- 6.3. Hodge Decomposition on Kähler manifolds.
 - 7. Positive Vector Bundles and Vanishing Theorems
- 7.1. Bochner-Kodaira Vanishing Theorem.
- 7.2. Kodaira Embedding Theorem.

8. L^2 ESTIMATES FOR $\overline{\partial}$

- 8.1. Estimates on complete Kähler manifolds.
- 8.2. Positive Currents, singular Hermitian Metrics.
- 8.3. Nadel Vanishing Theorem.
- 8.4. Ohsawa-Takegoshi Extension theorem.
 - 9. The Bergman Kernel
- 9.1. Asymptotic Expansion.
- 9.2. Convergence of the induced Fubini-Study metrics.
- 9.3. Scalar curvature and projective embeddings.
- 9.4. Distribution of zeros of random sections.