2.6.7. **Satz** (Schwarzsches Lemma). Sei $\mathbb{D}=B_1(0)$. Für jede holomorphe Abbildung $f:\mathbb{D}\to\mathbb{D}$ mit f(0)=0 gilt

$$(2.12) |f(z)| \leq |z| \text{ für alle } z \in \mathbb{D} \text{ und } |f'(0)| \leq 1.$$

Gibt es $w \in \mathbb{D} \setminus \{0\}$ mit |f(w)| = |w| oder gilt |f'(0)| = 1, so ist f eine Drehung um 0, d.h. es gibt $\zeta \in S^1$ mit $f(z) = \zeta \cdot z$ für alle $z \in \mathbb{D}$.

Beweis (Carathéodory):

Sei $f(z)=\sum_{n=1}^{\infty}a_nz^n~(a_0=f(0)=0)$ die Taylorentwicklung von f für $z\in\mathbb{D}.$ Die

Potenzreihe $\sum_{n\geqslant 1}^{\infty}a_nz^{n-1}$ hat denselben Konvergenzradius und definiert $g\in\mathcal{O}(\mathbb{D})$,

$$g(z):=\sum_{n=1}^\infty a_n z^{n-1}$$
, $z\in\mathbb{D}$. Dann gilt $f(z)=zg(z)$ und $g(0)=a_1=f'(0)$. Sei $w\in\mathbb{D}$ fest und

$$r \in \left[|w|,1\right], \ w \in \overline{B_r}(0) \underset{\text{Maxprinzip}}{\Rightarrow} |g(w)| \leqslant \max_{|z|=r} |g(z)| = \max_{|z|=r} \frac{|f(z)|}{|z|} \leqslant \frac{1}{r}.$$

Für $r \to 1$ folgt $|g(w)| \leqslant 1$. Da w beliebig ist, folgt (2.12). Falls |f(w)| = |w|, $w \in \mathbb{D} \setminus \{0\}$ oder |f'(0)| = 1, so hat |g| ein Maximum in \mathbb{D} . Maximumprinzip $\Rightarrow g$ ist eine Konstante vom Betrag $1, g(z) = \zeta \in S^1$.

Eine biholomorphe Abbildung $f:D\to D$ einer offenen Menge auf sich selbst heißt **Automorphismus von** D. Die Menge $\operatorname{Aut}(D)$ der Automorphismen ist bzgl. der Komposition von Abbildungen eine Gruppe.

2.6.8. Satz. Jeder Automorphismus $f: \mathbb{D} \to \mathbb{D}$ mit f(0) = 0 ist eine Drehung, d.h. $\exists \zeta = e^{i\varphi} \in S^1$, $f(z) = \zeta \cdot z$, $z \in \mathbb{D}$.

Beweis: Nach dem Schwarzschen Lemma gilt

$$|f(z)|\leqslant |z|\,,\ |f^{-1}(w)|\leqslant |w|\ \text{ für alle }\,z,w\in\mathbb{D}\;.$$

Für $w=f^{-1}(z)\Rightarrow |z|=|f^{-1}f(z)|\leqslant |f(z)|.$ Also $|f(z)|=|z|, \left|\frac{f(z)}{z}\right|=1, \ z\neq 0\Rightarrow \exists \ \zeta\in S^1 \ \mathrm{mit} \ f(z)=\zeta\cdot z$ (Gleichheit im Schwarzschen Lemma). \square

Betrachte nun die spezielle Möbiustransformation

$$arphi_a:\mathbb{D} o\mathbb{D},\ arphi_a(z)=rac{z-a}{\overline{a}z-1} \quad \ (a\in\mathbb{D} \ \mathrm{fest}) \ .$$

Dann gilt:

$$\varphi_a(0)=a\,,\; \varphi_a(a)=0\,,\; \varphi_a^2=\mathrm{Id}_{\mathbb{D}}\,\,,\;\;$$
 d.h. $\varphi_a^{-1}=\varphi_a\,$ (siehe Aufgabe 1, Blatt 2)

 φ_a ist eine holomorphe Involution, die 0 und a vertauscht.

2.6.9. Satz.

$$\operatorname{Aut}(\mathbb{D}) = \{ \mathbb{D} \ni z \mapsto \zeta \frac{z - a}{\overline{a}z - 1} \in \mathbb{D} : a \in \mathbb{D}, \ \zeta \in S^1 \}.$$

Beweis: Sei $a = f^{-1}(0)$. Dann ist

$$f \circ \varphi_a \in \operatorname{Aut}(\mathbb{D}) \text{ und } f \circ \varphi_a(0) = f(a) = 0$$
.

Satz 2.6.8
$$\Rightarrow \exists \zeta \in S^1 \text{ mit } f \circ \varphi_a(z) = \zeta \cdot z, f(z) = \zeta \varphi_a^{-1}(z) = \zeta \varphi_a(z) = \zeta \cdot \frac{z-a}{\overline{a}z-1}.$$

2.7. Isolierte Singularitäten.

2.7.1. **Definition.** Sei $D \subset \mathbb{C}$ offen, $f \in \mathcal{O}(D)$. Ein isolierter Punkt $z_0 \in \mathbb{C} \setminus D$ (d.h. so dass $\exists r > 0 : B_r(z_0) \setminus \{z_0\} \subset D$) heißt *isolierte Singularität von* f.

Wir unterscheiden drei Arten von isolierten Singularitäten:

- (1) hebbare Singularitäten: $\exists \tilde{f} \in \mathcal{O}(D \cup \{z_0\}) \text{ mit } \tilde{f}|_D = f.$
- (2) **Pole**: nicht hebbar und $\exists g \in \mathcal{O}(D \cup \{z_0\})$, $p \in \mathbb{N}$ mit $f(z) = g(z)/(z-z_0)^p$ für $z \in D$.
- (3) wesentliche Singularitäten: weder hebbar, noch Pole.

Beispiele: Die Funktionen $\frac{z^2-1}{z-1}, \frac{\sin z}{z}, \frac{z}{e^z-1}$ haben hebbare Singularitäten in 1 bzw. in 0. Die Funktion $\frac{1}{(z-z_0)^m}$ hat einen Pol in z_0 , die Funktion $e^{\frac{1}{z}}$ hat eine wesentliche Singularität in 0. Die Funktion $\frac{1}{\sin\frac{1}{z}}$ hat Pole in $z_k=\frac{1}{k\pi}$, $k\in\mathbb{Z}$. Der Punkt 0 ist keine isolierte Singularität, da $\lim_{k\to\infty}z_k=0$.

2.7.2. **Satz** (Riemannscher Hebbarkeitssatz). Eine isolierte Singularität z_0 einer Funktion $f \in \mathcal{O}(D)$ ist genau dann hebbar, wenn es eine Umgebung U von z_0 gibt, so dass f in $U \setminus \{z_0\}$ beschränkt ist.

Beweis: Betrachte $g, h: D \cup \{z_0\} \to \mathbb{C}$

$$g(z) = \begin{cases} (z - z_0)f(z) &, & z \neq z_0 \\ 0 &, & z = z_0 \end{cases},$$
$$h(z) = (z - z_0)g(z) .$$

g ist nach Annahme stetig in z_0 . Daher gilt

$$\lim_{z \to z_0} \frac{h(z) - h(z_0)}{z - z_0} = \lim_{z \to z_0} g(z) = 0$$

und h ist \mathbb{C} -diffbar, also holomorph mit h(0) = h'(0) = 0.

Nach dem Potenzreihenentwicklungssatz $\exists r > 0 : \forall z \in B_r(z_0)$

$$h(z) = (z - z_0)^2 \underbrace{(a_2 + a_3(z - z_0) + \dots)}_{=: \tilde{f}(z)} = (z - z_0)^2 \tilde{f}(z)$$

mit $\tilde{f} \in \mathcal{O}(B_r(z_0))$. Für $z \in B_r(z_0) \setminus \{z_0\}$ gilt $h(z) = (z - z_0)g(z) = (z - z_0)^2 f(z)$, also $\tilde{f}(z) = f(z)$. Setze

$$\tilde{\tilde{f}}: D \cup \{z_0\} \to \mathbb{C}, \ \tilde{\tilde{f}}(z) = \begin{cases} f(z) &, z \in D\\ \tilde{f}(z) &, z \in B_r(z_0) \end{cases}$$

 $ilde{ ilde{f}}$ ist wohldefiniert und \mathbb{C} –diffbar in $D \cup \{z_0\}$ mit $ilde{ ilde{f}}|_D = f$.

2.7.3. **Definition.** Sei $f \in \mathcal{O}(D)$, $z_0 \in D$. Die **Ordnung von** f **in** z_0 ist

$$\operatorname{ord}_{z_0}(f) = \begin{cases} \min\{n \in \mathbb{N}_0 : f^{(n)}(z_0) \neq 0\}, \ f \not\equiv 0 \text{ in einer Umgebung von } z_0, \\ \infty, \quad f \equiv 0 \text{ in einer Umgebung von } z_0. \end{cases}$$

(Nach dem Identitätssatz gibt es $n \in \mathbb{N}_0$ mit $f^{(n)}(z_0) \neq 0$ falls $f \not\equiv 0$ in einer Umgebung von z_0 .)

Beispiele:
$$f(z) \neq 0 \iff \operatorname{ord}_z(f) = 0$$
; $\operatorname{ord}_{z_0}(z - z_0)^n = n$; $\operatorname{ord}_w(z - z_0)^n = 0$, $w \neq z_0$.

2.7.4. Satz. Sei $f \in \mathcal{O}(D)$, $z_0 \in D$, $m = \operatorname{ord}_{z_0}(f)$. Dann gibt es $g \in \mathcal{O}(D)$, so dass $f(z) = (z - z_0)^m g(z)$, $z \in D$ und $g(z_0) \neq 0$.

Beweis: Die Taylorentwicklung von f um z_0 lautet

$$f(z) = a_m(z - z_0)^m + a_{m+1}(z - z_0)^{m+1} + \dots = (z - z_0)^m (a_m + a_{m+1}(z - z_0) + \dots),$$

wobei $a_m = \frac{f^{(m)}(z_0)}{m!} \neq 0$. Daher ist

$$g: D \to \mathbb{C}$$
 , $g(z) = \begin{cases} \frac{f(z)}{(z-z_0)^m} & , & z \neq z_0 \\ a_m & , & z = z_0 \end{cases}$

holomorph in D: g ist komplex diffbar in z_0 , da $g(z) = a_m + a_{m+1}(z - z_0) + \ldots$ in einer Umgebung von z_0 .

Sei nun $f \in \mathcal{O}(D), z_0$ ein Pol von f, d.h. z_0 ist nicht hebbar und

$$f = g/(z - z_0)^p$$
 , $g \in \mathcal{O}(D \cup \{z_0\})$, $p \in \mathbb{N}$.

Sei $q = \operatorname{ord}_{z_0}(g)$ und $g(z) = h(z)(z - z_0)^q$, $h \in \mathcal{O}(D \cup \{z_0\})$, $h(z_0) \neq 0$. Dann gilt:

$$f(z) = \frac{h(z)(z-z_0)^q}{(z-z_0)^p} = \frac{h(z)}{(z-z_0)^{p-q}}, \ z \in D.$$

Es ist p > q, ansonsten wäre z_0 hebbar; f hat also die Darstellung

(2.13)
$$f = \frac{h}{(z - z_0)^r}, \quad h(z_0) \neq 0,$$

wobei r = p - q > 0.

2.7.5. **Definition.** Sei $f \in \mathcal{O}(D)$, z_0 ein Pol von f. Die Zahl r > 0 aus der Darstellung (2.13) heißt die *Ordnung des Pols* z_0 *von* f. Die Zahl $\operatorname{ord}_{z_0} f = -r$ heißt die *Ordnung der Funktion* f *in* z_0 .