1. Komplexe Zahlen und Funktionen

1.1. Der Körper der komplexen Zahlen.

Die komplexe Ebene und die Riemannsche Zahlenkugel bilden den Grundbereich der Funktionentheorie; dort sind ihre Objekte, die analytischen Funktionen, definiert und dort haben sie ihre Werte.

Auf \mathbb{R}^2 führen wir eine Addition und Multiplikation wie folgt ein:

(1.1)
$$(x,y) + (u,v) := (x+u,y+v)$$
$$(x,y) \cdot (u,v) := (xu - yv, xv + yu).$$

1.1.1. **Satz.** $(\mathbb{R}^2, +, \cdot)$ ist ein kommutativer Körper mit Nullelement (0,0) und Einselement (1,0). Dieser Körper heißt **Körper der komplexen Zahlen**, bezeichnet mit $\mathbb{C} := (\mathbb{R}^2, +, \cdot)$.

Das Inverse von $z = (x, y) \neq 0$ ist

$$z^{-1} := \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Die Abbildung $\varphi: \mathbb{R} \longrightarrow \mathbb{C}, \ \varphi(x) = (x,0)$ hat die Eigenschaften

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$
 , $\varphi(xy) = \varphi(x)\varphi(y)$, $\varphi(1) = (1,0)$,

d.h. φ ist ein Körper-Homomorphismus.

Die komplexen Zahlen $\{(x,0):x\in\mathbb{R}\}$ bilden einen Körper mit der induzierten Addition und Multiplikation (1.1). Wir sagen, dass $\{(x,0):x\in\mathbb{R}\}$ ein *Unterkörper* von \mathbb{C} ist. Der Homomorphismus $\varphi:\mathbb{R}\longrightarrow\{(x,0):x\in\mathbb{R}\}$ ist bijektiv, d.h. ein Isomorphismus. Wir *identifizieren* deshalb \mathbb{R} mit $\{(x,0):x\in\mathbb{R}\}$ und sagen, dass \mathbb{R} ein Unterkörper von \mathbb{C} ist.

Wir schreiben für (x,0) kurz x, also 0 für (0,0), 1 für (1,0), usw.

1.1.2. **Definition.** Die (nicht-reelle) Zahl i=(0,1) heißt $imagin\"{a}re\ Einheit$. Es gilt

$$i^2 = (0,1)(0,1) = (0^2 - 1^2, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1.$$

Für z = (x, y) schreiben wir nun

$$z = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy.$$

Dann heißt x Realteil von z, und y heißt Imaginärteil von z, geschrieben Re z := x, Im z := y. Man beachte, dass der Imaginärteil y reell ist. Zahlen der Form iy mit $y \in \mathbb{R}$ heißen auch (rein) imaginär.

- 1.1.3. **Definition.** Die *konjugierte Zahl* zu z = x + iy ist $\overline{z} := x iy$.
- 1.1.4. Satz (Rechenregeln). Für alle $z, w \in \mathbb{C}$ qilt:

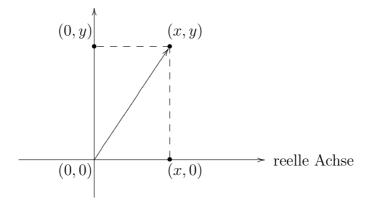
- (i) $\overline{z+w} = \overline{z} + \overline{w}, \ \overline{z\cdot w} = \overline{z} \cdot \overline{w}.$
- (ii) $z + \overline{z} = 2 \operatorname{Re} z$, $z \overline{z} = 2i \operatorname{Im} z$.
- (iii) $z = \overline{z} \Leftrightarrow z \in \mathbb{R}, \ z = -\overline{z} \Leftrightarrow z \in i\mathbb{R}.$
- (iv) $z \cdot \overline{z} = x^2 + y^2 \geqslant 0$ für z = x + iy.
- (v) $\overline{\overline{z}} = z$.
- 1.1.5. **Definition.** Für $z \in \mathbb{C}$ heißt $|z| := \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2}$ der **Betrag** von z. Für $z \in \mathbb{R}$ ist $|z| = \sqrt{z^2}$ der übliche Betrag von reellen Zahlen.
- 1.1.6. Satz (Rechenregeln für den Betrag). Für alle $z, w \in \mathbb{C}$ gilt:
 - (i) $|z| \ge 0$; $|z| = 0 \Leftrightarrow z = 0$.
 - (ii) Ist $z \neq 0$, so gilt $z^{-1} = \overline{z}/|z|^2$.
 - (iii) $|\overline{z}| = |z|$.
 - (iv) $|\text{Re } z| \le |z|, |\text{Im } z| \le |z|.$
 - (v) $|z \cdot w| = |z| \cdot |w|$.
 - (vi) $|z+w| \leq |z| + |w|$ (**Dreiecksungleichung**). Die Gleichheit gilt genau dann, wenn z = 0 (bzw. w = 0) oder $w/z \in \mathbb{R}_+$ (bzw. $z/w \in \mathbb{R}_+$).
 - (vii) $|z| |w| \le |z w|$ (umgekehrte Dreiecksungleichung).

Beweis: Zu (vi): Ist z + w = 0, so ist die Aussage klar, Ist $z + w \neq 0$ so gilt:

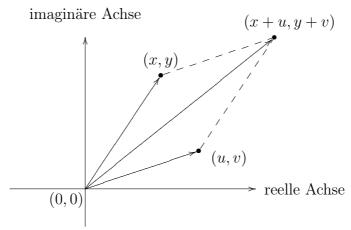
$$\frac{|z|+|w|}{|z+w|} = \left|\frac{z}{z+w}\right| + \left|\frac{w}{z+w}\right| \stackrel{(iv)}{\geqslant} \operatorname{Re} \frac{z}{z+w} + \operatorname{Re} \frac{w}{z+w} = \operatorname{Re} \frac{z+w}{z+w} = 1.$$

1.1.7. Geometrische Deutung der komplexen Zahlen. Wir veranschaulichen uns seit Gauß die komplexen Zahlen geometrisch als Punkte in einer Ebene mit rechtwinkligen Koordinaten, genannt $Gaußsche\ Zahlenbene\$ (oder als Vektoren mit Ursprung im Nullpunkt (0,0) und Endpunkt in (x,y)).

imaginäre Achse



Die Addition komplexer Zahlen ist dann die übliche Vektoraddition nach der Parallelogrammregel.



|z| ist der Euklidische Abstand des Punktes z=(x,y) zum Ursprung. \overline{z} ist die Spiegelung des Punktes z=(x,y) an der reellen Achse.

Die Ungleichung $|z+w| \leq |z| + |w|$ ist genau die Dreiecksungleichung aus der Geometrie: Im Dreieck ist die Summe der Längen zweier Seiten stets mindestens so groß wie die Länge der dritten Seite.

1.1.8. **Topologie von** C. Als bekannt vorausgesetzt werden die metrischen und topologischen Grundbegriffe (Metrik, Norm, Cauchy-Folge, offen, abgeschlossen, kompakt, zusammenhängend, Rand, innerer Punkt, Häufungspunkt usw.) sowie die Begriffe Grenzwert, Stetigkeit usw., die ausführlich in der Vorlesung Analysis I behandelt worden sind.

 $(\mathbb{C}, |\cdot|)$ ist ein normierter Raum. Auf \mathbb{C} betrachten wir stets die von der Norm $|\cdot|$ induzierte Topologie. Für $a \in \mathbb{C}$ und r > 0 bezeichnen wir mit $B_r(a)$ die offene Kreisscheibe mit dem Radius r und dem Mittelpunkt a:

$$B_r(a) = \left\{ z \in \mathbb{C} : |z - a| < r \right\}.$$

Eine Teilmenge $U \subset \mathbb{C}$ heißt offen, falls zu jedem $z \in U$ ein r > 0 exitiert, so dass $B_r(a) \subset U$.

 $(\mathbb{C}, |\cdot|)$ ist ein Banachraum, d.h. jede Cauchy-Folge bzgl. $|\cdot|$ konvergiert.