7. Blatt zur Vorlesung Funktionentheorie

Abgabe: 10–11.06.2013 in den Übungen

1. Aufgabe (4 Punkte)

- (a) Zeige, dass der Offenheitssatz das Maximunmprinzip impliziert.
- (b) Zeige, dass der Satz über Gebietstreue den Offenheitssatz impliziert.
- (c) Bestimme die Automorphismengruppen der oberen Halbebene $\mathbb{H} = \{z : \text{Im}z > 0\}$ und der punktierten Kreisscheibe $\mathbb{D}\setminus\{0\}$.

2. Aufgabe (4 Punkte)

Sei $D \subset \mathbb{C}$ ein Gebiet, $f \in \mathcal{O}(D)$.

- (a) Sei |f| konstant. Zeige, dass f konstant ist.
- (b) Sei $\overline{\mathbb{D}} \subset D$ und $f(z) \in \mathbb{R}$ für |z| = 1. Zeige, dass f konstant ist.

3. Aufgabe (4 Punkte)

Sei $f \in \mathcal{O}(\mathbb{D})$ mit $||f||_{\mathbb{D}} = M < \infty$ und $f(0) = f'(0) = \ldots = f^{(k-1)}(0)$ für ein $k \in \mathbb{N}$.

- (a) Zeige, dass die Funktion $g: \mathbb{D}\setminus\{0\} \to \mathbb{C}, \ g(z) = z^{-k}f(z)$ in 0 holomorph fortsetzbar ist und die fortgesetzte Funktion $\widetilde{g}: \mathbb{D} \to \mathbb{C}$ erfüllt $||\widetilde{g}||_{\mathbb{D}} \leq M$.
- (b) Zeige, dass $|f(z)| \leq M|z|^k$ für alle $z \in \mathbb{D}$. Was passiert, wenn ein $a \in \mathbb{D} \setminus \{0\}$ existiert mit $|f(a)| = M|a|^k$?

Zusatzaufgabe (+ 4 Punkte)

- (a) Sei D ein beschränktes Gebiet in \mathbb{C} und $h \in \mathcal{O}(D) \cap \mathcal{C}(\overline{D})$, so dass $|h|_{\partial D}|$ konstant ist. Zeige, dass h konstant ist oder dass h eine Nullstelle in D hat.
- (b) Sei $f \in \mathcal{O}(\mathbb{D}) \cap \mathcal{C}(\overline{\mathbb{D}})$ nicht-konstant, so dass $|f|_{\partial \mathbb{D}}|$ konstant ist. Zeige, dass es $p \in \mathbb{N}, a_1, \ldots, a_p \in \mathbb{D}, m_1, \ldots, m_p \in \mathbb{N}$ und $g \in \mathcal{O}(\mathbb{D})$ gibt mit

$$f(z) = (z - a_1)^{m_1} \dots (z - a_p)^{m_p} g(z), \ z \in \mathbb{D},$$

wobei g keine Nullstellen in \mathbb{D} hat.

- (c) Sei $a \in \mathbb{D}$. Zeige, dass $|\varphi_a(z)| = 1$ für |z| = 1.
- (d) Sei f eine Funktion wie in (b). Zeige, dass $h: \overline{\mathbb{D}} \setminus \{a_1, \ldots, a_p\} \to \mathbb{C}, h = f \varphi_{a_1}^{-m_1} \cdots \varphi_{a_p}^{-m_p}$ eine Fortsetzung $\widetilde{h} \in \mathcal{O}(\mathbb{D}) \cap (\overline{\mathbb{D}})$ hat, mit $|\widetilde{h}|_{\partial \mathbb{D}}|$ konstant. Leite her, dass es $C \in \mathbb{C}$ gibt, mit

$$f(z) = C\varphi_{a_1}^{m_1}(z_1)\cdots\varphi_{a_p}^{m_p}(z_p), \ z\in\overline{\mathbb{D}}.$$