Vorlesung Mathematik für Physiker I
Wintersemester 2006/07
http://www.mi.uni-koeln.de/~gmarines/HomepageWS06-07.htm
Inhalt der Vorlesung:
- Strukturen und Funktionen
- Reelle und komplexe Zahlen
- grundlegende topologische und metrische Begriffe
- Funktionen und Abbildungen im R^n, komplexe Funktionen
- Grundlagen der Infinitesimalrechnung
- Konvergenz von Folgen, Reihen
- Funktionenfolgen und - reihen (z.B. Fourierreihen)
- Grenzwerte von Funktionen, Stetigkeit
- Differential - und Integralrechnung
- Differentiation, Rechenregeln
- Taylorentwicklung
- Integral, Rechenregeln (uneigentliche Integrale)
- Hauptsatz der Differential- und Integralrechnung
- Lineare Räume und lineare Abbildungen
- Vektorräume (R^n/C^n , Basis, Dualität)
- lineare Abbildungen und Matrizenkalkül
- lineare Gleichungen
Literatur:
Es ist sinnvoll, neben der Vorlesung, die ja
einen weitgehend standardisierten Stoff bespricht,
auch Lehrbücher zu benutzen. Die Vorlesung wird keinem der Lehrbücher
in allen Einzelheiten folgen, aber zur überprüfung oder Ergänzung
sind die folgenden Bücher alle geeignet. Empfehlenswert ist es,
sich ein Buch, das dem persönlichen Geschmack entspricht, zur
genaueren Lektüre auszusuchen.
- Fischer: Lineare Algebra, Vieweg (gut, viele Bilder und übungsaufgaben)
- Stoppel, Griese: Übungsbuch zur Linearen Algebra. Aufgaben und Lösungen, Vieweg (Ergänzung zu dem Lehrbuch "Lineare Algebra" von Fischer)
- Forster: Analysis I, Vieweg (gut, wesentliche Inhalte, viele Beispiele)
- Forster, Wessoly: Übungsbuch zur Analysis 1. Aufgaben und Lösungen
- Königsberger: Analysis I, Springer (gut, aber recht kurz)
- Heuser: Lehrbuch der Analysis 1, Teubner (recht gut und sehr ausführlich)
Dozent:
Prof. Dr. George Marinescu
Email: gmarines at math.uni-koeln.de
Tel.: 470 2661
Sitz: Weyertal 86-90, Zimmer 110
Sprechstunde: Mo 10 - 11 h
Assistent:
Dipl.-Math. Christoph Bock
Email: bock at math.uni-koeln.de
Tel.: 470 4349
Sitz: Weyertal 86-90, Zimmer 225
Sprechstunde: Fr 8 - 10 h
Termine:
Vorlesung: Mo, Di, Mi 8-10 h im Hörsaal II der Physikalischen Institute
Übung: Mi 2 Stunden nach Vereinbarung
Prüfung
Das Modul Mathematik für Physiker I kann in den Bachelorstudiengängen Physik
bzw. Meteorologie und Geophysik verwendet werden. Bei erfolgreicher Teilnahme an
den übungen und Bestehen einer Abschlußklausur gilt es als bestanden und die
Leistungspunkte werden zuerkannt. Das Modul ist unbenotet und wird mit bestanden
bzw. nicht bestanden bewertet.
Vorlesung
Mathematische Vorlesungen sind vortragsorientierte Lehrveranstaltungen.
Sie dienen der Vermittlung grundlegender oder weiterführender
Kenntnisse über bestimmte Teilgebiete der Mathematik.
Die Vorlesungen sind nicht so gedacht, daß der Vorlesungsstoff
während der Vorlesung vollständig absorbiert werden kann.
Es geht vielmehr darum, den Aufbau eines mathematischen Gebietes
lückenlos oder exemplarisch vorzuführen und dabei eine Stoffmenge
darzubieten, die in einer Woche erarbeitet werden kann (und muß).
Zum Verständnis und zur vollständigen Aneignung des
gebotenen Stoffes ist die kontinuierliche eigene Nacharbeit
unerläßlich; erfarungsgemäß sind dafür mindestens
sechs Stunden wöchentlich erforderlich, am Anfang unter umständen
sogar mehr.
Es ist deshalb sehr ratsam, die Vorlesung mitzuschreiben.
Übungen
Parallel zur Vorlesung werden Übungen angeboten, zu denen eine Anmeldung
erforderlich ist. In der ersten Vorlesung wird ein Anmeldungsformular
ausgeteilt, das bis zum 18. Oktober um 11 uhr ausgefüllt in den Karton vor
Zimmer 225 des Mathematischen Instituts eingeworfen werden muß.
Beginn des übungsbetriebs: 25. Oktober
In der Vorlesung wird jede Woche ein Aufgabenblatt ausgeteilt, das von den
Teilnehmern bearbeitet werden soll. Die Lösungen werden bewertet und in den
übungsstunden besprochen. Die Abgabe der Lösungen erfolgt in der Übungsstunde.
Klausur
Die Klausur findet am Samstag, dem 3. Februar 2007, von 9 - 13 Uhr in den
Hörsälen II und III der Chemischen Institute statt. Um zur Klausur zugelassen zu
werden, ist es erforderlich, erfolgreich an den übungen teilgenommen zu haben.
Darüber hinaus ist bei den jeweiligen Prüfungsämtern eine Anmeldung zur Klausur
notwendig.
Wiederholungsklausur
Die Wiederholungsklausur findet
am Samstag, dem 14. April 2007 von 9 -13 Uhr im Hörsaal des Mathematischen
Instituts statt.
Übungsblätter
Mathematik lernt man, indem man sie betreibt, also auf
Probleme anwendet. Es ist deshalb sehr wichtig für den eigenen
Studienerfolg, daß die übungen selbständig bearbeitet werden.
Als Leistungsnachweis, auch zur eigenen Erfolgskontrolle,
sind die Übungsaufgaben schriftlich zu lösen in einer Form,
die eine problemlose Korrektur ermöglicht; jedes verwendete
Blatt muß mit dem eigenen Namen versehen sein.
Übungsblatt 1
Übungsblatt 2
Übungsblatt 3
Übungsblatt 4
Übungsblatt 5
Übungsblatt 6
Übungsblatt 7
Übungsblatt 8
Übungsblatt 9
Übungsblatt 10
Übungsblatt 11
Übungsblatt 12
Übungsblatt 13
Übungsblatt 14
Probeklausur
Klausur
Klausurergebnisse
Nachklausur
Klausurergebnisse
