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We obtain the semi-classical expansion of the kernels and traces of Toeplitz operators
with C k-symbol on a symplectic manifold. We also give a semi-classical estimate
of the distance of a Toeplitz operator to the space of self-adjoint and multiplication
operators. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870869]

I. INTRODUCTION

The purpose of this paper is to extend some of the semiclassical results about the Berezin-
Toeplitz quantization to the case of Toeplitz operators with C k-symbol.

A fundamental problem in mathematical physics is to find relations between classical and
quantum mechanics. On one side, we have symplectic manifolds and Poisson algebras, on the other
Hilbert spaces and selfadjoint operators. The goal is to establish a dictionary between these theories
such that given a quantum system depending on a parameter, to obtain a classical system when the
parameter approaches a so called semiclassical limit, in such a way that properties of the quantum
system are controlled up to first order by the underlying classical system. It is very interesting to
go the other way, namely, to quantize a classical system, that is, introduce a quantum system whose
semiclassical limit is the given classical system.

The aim of the geometric quantization theory of Kostant12 and Souriau22 is to relate the clas-
sical observables (smooth functions) on a phase space (a symplectic manifold) to the quantum
observables (bounded linear operators) on the quantum space (holomorphic sections of a line bun-
dle). Berezin-Toeplitz quantization is a particularly efficient version of the geometric quantization
theory.1, 2, 6, 10, 13 Toeplitz operators and more generally Toeplitz structures were introduced in geo-
metric quantization by Berezin2 and Boutet de Monvel-Guillemin.5 Using the analysis of Toeplitz
structures,5 Bordemann-Meinrenken-Schlichenmaier,3 and Schlichenmaier20 proved the existence
of the asymptotic expansion for the composition of Toeplitz operators in the Kähler case when we
twist a trivial bundle E = C.

In Refs. 15 and 16, Ma-Marinescu have extended the Berezin-Toeplitz quantization to symplectic
manifolds and orbifolds by using as quantum space the kernel of the Dirac operator acting on
powers of the prequantum line bundle twisted with an arbitrary vector bundle. In Ref. 18, Ma-
Marinescu calculated the first coefficients of the kernel expansions of Toeplitz operators and of their
composition.
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Let us review shortly the results from Refs. 15–17. We consider a compact symplectic manifold
X with symplectic form ω and a Hermitian line bundle (L, hL, ∇L) whose curvature satisfies the
prequantization condition

√−1
2π

RL = ω. Let (E, hE, ∇E) be a Hermitian vector bundle on X with
Hermitian connection ∇E. Let J be a ω-compatible almost-complex structure and gTX be a J-invariant
metric on TX. For any p ∈ N, let Lp := L⊗p be the pth tensor power of L, �0, •(X, Lp ⊗ E) be the
space of smooth anti-holomorphic forms with values in Lp ⊗ E with norm induced by hL, hE, and
gTX, and Pp : �0, •(X, L p ⊗ E) → Ker(Dp) be the orthogonal projection on the kernel of the Dirac
operator Dp.

To any f ∈ C ∞(X, End(E)), we associate a sequence of linear operators

T f, p : �0, •(X, L p ⊗ E) → �0, •(X, L p ⊗ E), T f, p = Pp f Pp , (1.1)

where for simplicity we denote by f the operator of multiplication with f. For any f, g ∈
C ∞(X, End(E)), the product Tf, p Tg, p has an asymptotic expansion

T f, p Tg, p =
∞∑

k=0

TCk ( f, g),p p−k + O(p−∞) (1.2)

in the sense of (4.2), where Ck are bidifferential operators of order ≤2r, satisfying C0(f, g) = fg
and if f, g ∈ C ∞(X ), C1( f, g) − C1(g, f ) = √−1 { f, g}. Here, { · , · } is the Poisson bracket on (X,
2πω) (cf. (3.31)). We deduce from (1.2),

[T f, p , Tg, p] =
√−1

p
T{ f,g}, p + O(p−2) . (1.3)

Moreover, the norm of the Toeplitz operators allows to recover the sup-norm of the classical
observable f ∈ C ∞(X, End(E))

lim
p→∞ ‖T f, p‖ = ‖ f ‖∞ := sup

x∈X
| f (x)| , (1.4)

and ‖ · ‖ is the operator norm. Thus, the Poisson algebra (C ∞(X ), {·, ·}) is approximated by the
operator algebras of Toeplitz operators (for E = C) in the norm sense as p → ∞; the role of the
Planck constant is played by � = 1/p. This is the so-called semi-classical limit process.

All these papers consider the case of a smooth observable. The assumption that the symbol is
C ∞ is quite restrictive and analysts studying Toeplitz operators normally do not require this. While
most results on Berezin-Toeplitz quantization are for smooth symbols, some progress has been
made towards understanding what is happening with non-smooth symbols, in particular in work of
Coburn and co-authors (see, e.g., Refs. 7 and 8). It was remarked recently by Polterovich19 that it
is interesting to study the Berezin-Toeplitz quantization also for the case of continuous observables.
A specific example of a situation where it would be helpful to know how to quantize non-smooth
observables is quantization of the universal Teichmüller space in work of Sergeev (see, in particular,
Ref. 21). We will extend in this paper the relations (1.2), (1.3), (1.4) for C k-symbols f, g. Moreover,
we consider the question of how far is a Toeplitz operator from being self-adjoint or a multiplication
with a function.

In this paper, we shall use the kernel calculus of Toeplitz operators developed in Refs. 15–18
which lends itself very well to handling less regular symbols.

The plan of the paper is as follows. In Sec. II, we recall the Bergman kernel expansion.9, 15

Section III is devoted to the kernel expansion of the Toeplitz operators. In Sec. IV, we explain
the expansion of a product of Toeplitz operators. In Sec. V, we study the asymptotics of the norm
of Toeplitz operators. Finally, in Sec. VI we consider the semi-classical estimates of the distance
of a Toeplitz operator to various spaces (self-adjoint operators, constant multiples of the identity,
multiplication operators).

II. QUANTIZATION OF SYMPLECTIC MANIFOLDS

We will briefly describe in this section the study of the Toeplitz operators and Berezin-Toeplitz
quantization for symplectic manifolds. For details, we refer the reader to Refs. 15 and 16 and to
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the surveys in Refs. 13 and 17. We recall in Sec. II A the definition of the spinc Dirac operator and
formulate the spectral gap property for prequantum line bundles. In Sec. II B, we state the asymptotic
expansion of the Bergman kernel.

A. Spectral gap of the spinc Dirac operator

We will first show that in the general symplectic case the kernel of the spinc operator is a good
substitute for the space of holomorphic sections used in Kähler quantization.

Let (X, ω) be a compact symplectic manifold, dimR X = 2n, with compatible almost complex
structure J : TX → TX. Set T (1,0) X = {u ∈ T X ⊗R C : Ju = √−1u} and T (0,1) X = {u ∈ T X ⊗R

C : Ju = −√−1u}. Let gTX be a J-compatible Riemannian metric. The Riemannian volume form
of gTX is denoted by dvX .

We do not assume that gT X (u, v) = ω(u, Jv) for u, v ∈ T X . We relate gTX with ω by means of
the skew-adjoint linear map J : T X −→ T X which satisfies the relation

ω(u, v) = gT X ( Ju, v) for u, v ∈ T X. (2.1)

Then J commutes with J , and J = J(−J2)−
1
2 .

Let (L, hL, ∇L) be a Hermitian line bundle on X, endowed with a Hermitian metric hL and
a Hermitian connection ∇L, whose curvature is RL = (∇L)2. We assume that the prequantization
condition

ω =
√−1

2π
RL (2.2)

is fulfilled. Let (E, hE, ∇E) be a Hermitian vector bundle on X with Hermitian metric hE and Hermitian
connection ∇E. We will be concerned with asymptotics in terms of high tensor powers Lp ⊗ E, when
p → ∞, that is, we consider the semi-classical limit � = 1/p → 0.

Let us denote by

E := �•(T ∗(0,1) X ) ⊗ E (2.3)

the bundle of anti-holomorphic forms with values in E. The metrics gTX, hL, and hE induce a L2-scalar
product on �0, •(X, L p ⊗ E) = C ∞(X, L p ⊗ E) by〈

s1, s2
〉 = ∫

X

〈
s1(x), s2(x)

〉
L p⊗E dvX (x) , (2.4)

whose completion is denoted
(
L2(X, L p ⊗ E), ‖ · ‖L2

)
.

Let ∇det be the connection on det(T (1,0) X ) induced by the projection of the Levi-Civita connec-
tion ∇TX on T(1, 0)X. Let us consider the Clifford connection ∇Cliff on �•(T ∗(0,1) X ) associated to ∇TX

and to the connection ∇det on det(T (1,0) X ) (see, e.g., Sec. 1.3 in Ref. 15). The connections ∇L, ∇E,
and ∇Cliff induce the connection

∇p = ∇Cliff ⊗ Id + Id ⊗∇L p⊗E on �•(T ∗(0,1) X ) ⊗ L p ⊗ E .

The spinc Dirac operator is defined by

Dp =
2n∑
j=1

c(e j )∇p, e j : �0, •(X, L p ⊗ E) −→ �0, •(X, L p ⊗ E) , (2.5)

where {e j }2n
j=1 local orthonormal frame of TX and c(v) = √

2(v∗
1,0 ∧ −iv 0,1 ) is the Clifford action

of v ∈ T X . Here, we use the decomposition v = v 1,0 + v 0,1, v 1,0 ∈ T (1,0) X , v 0,1 ∈ T (0,1) X and
v∗

1,0 ∈ T ∗(0,1) X is the dual of v1,0.

Remark 2.1. Let us assume for a moment that (X, J) is a complex manifold (i.e., J is integrable)
and the bundles L, E are holomorphic and ∇L, ∇E are the Chern connections. If gT X (u, v) = ω(u, Jv)
for u, v ∈ T X (thus (X, gTX) is Kähler), then

Dp =
√

2
(
∂ + ∂

∗)
, ∂ = ∂

L p⊗E
, (2.6)
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so Ker(Dp) = H 0(X, L p ⊗ E) for p � 1. The following result (Theorem 2.2) shows that for a
general symplectic manifold Ker(Dp) has all semi-classical properties of H0(X, Lp ⊗ E).

Note that if (X, J) is a complex manifold but gTX is not necessarily associated to ω by gT X (u, v)
= ω(u, Jv), we can still work with the operator D̃p := √

2
(
∂ + ∂

∗)
instead of Dp (cf. Theorem

1.5.5 in Ref. 15), although D̃p is only a modified Dirac operator. Theorem 2.2 and the results which
follow remain valid for D̃p, so that, for p large, the quantum space will be H0(X, Lp ⊗ E) (= Ker(D̃p)
for p � 1).

Let us return now to our general situation of a compact symplectic manifold (X, ω), endowed
with a ω-compatible almost complex structure J and J-compatible Riemannian metric gTX. Let

μ0 = inf
{

RL
x (u, u)/|u|2gT X : u ∈ T (1,0)

x X \ {0}, x ∈ X
}
. (2.7)

By (2.2) we have μ0 > 0.

Theorem 2.2 (Theorems 1.1 and 2.5 in Ref. 14, Theorem 1.5.5 in Ref. 15). There exists C > 0
such that for any p ∈ N and any s ∈ ⊕k>0 �0,k(X, L p ⊗ E), we have

‖Dps‖2
L2 � (2μ0 p − C)‖s‖2

L2 . (2.8)

Moreover, the spectrum of D2
p verifies

Spec(D2
p) ⊂ {

0
} ∪ [2μ0 p − C,+∞[

. (2.9)

The proof of Theorem 2.2 is based on a direct application of the Lichnerowicz formula for D2
p .

By the Atiyah-Singer index theorem, we have for p � 1,

dim Ker(Dp) =
∫

X
Td(T (1,0) X ) ch(L p ⊗ E) = rk(E)

pn

n!

∫
X

ωn + O(pn−1) , (2.10)

where Td is the Todd class and ch is the Chern character. Theorem 2.2 shows the forms in Ker(Dp)
concentrate asymptotically in the L2 sense on their zero-degree component and (2.10) shows that
dim Ker(Dp) is a polynomial in p of degree n, as in the holomorphic case.

B. Off-diagonal asymptotic expansion of Bergman kernel

We recall that a bounded linear operator T on L2(X, L p ⊗ E) is called Carleman operator (see,
e.g., Ref. 11) if there exists a kernel T( · , · ) such that T (x, ·) ∈ L2(X, (L p ⊗ E)x ⊗ (L p ⊗ E)∗) and

(T S)(x) =
∫

X
T (x, x ′)S(x ′)dvX (x ′) , for all S ∈ L2(X, L p ⊗ E) . (2.11)

Let us introduce the orthogonal projection

Pp : L2(X, L p ⊗ E) −→ Ker(Dp),

called the Bergman projection in analogy to the Kähler case. It is a Carleman operator whose integral
kernel is called Bergman kernel. Set dp := dim Ker(Dp). Let {S p

i }dp

i=1 be any orthonormal basis of
Ker(Dp) with respect to the inner product (2.4). Then

Pp(x, x ′) =
dp∑

i=1

S p
i (x) ⊗ (S p

i (x ′))∗ ∈ (L p ⊗ E)x ⊗ (L p ⊗ E)∗x ′ . (2.12)

The Toeplitz operator with symbol f ∈ L∞(X, End(E)) is defined by

T f,p : L2(X, L p ⊗ E) → L2(X, L p ⊗ E) , T f,p = Pp f Pp , (2.13)

where the action of f is the pointwise multiplication by f. The map which associates to
f ∈ L∞(X, End(E)) the family of bounded operators {Tf, p}p on L2(X, L p ⊗ E) is called the
Berezin-Toeplitz quantization. Note that Tf, p is a Carleman operator with smooth integral kernel
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given by

T f, p(x, x ′) =
∫

X
Pp(x, x ′′) f (x ′′)Pp(x ′′, x ′) dvX (x ′′) . (2.14)

The existence of the spectral gap expressed in Theorem 2.2 allows us to localize the behavior of the
Bergman kernel and of the kernel of Toeplitz operators.

Let aX be the injectivity radius of (X, gTX). We denote by B(x, ε) = BX(x, ε) and B(0, ε)
= BTx X (0, ε) the open balls in X and TxX with center x and radius ε, respectively. Then the exponential
map Tx X � Z → expX

x (Z ) ∈ X is a diffeomorphism from BTx X (0, ε) onto BX(x, ε) for ε ≤ aX. From
now on, we identify BTx X (0, ε) with BX(x, ε) via the exponential map for ε ≤ aX. Throughout what
follows, ε runs in the fixed interval ]0, aX/4[.

By Ref. 9, Proposition 4.1, we have the far off-diagonal behavior of the Bergman kernel:

Proposition 2.3. For any �, m ∈ N and ε > 0, there exists C�, m, ε > 0 such that for any p ≥ 1,
x, x′ ∈ X, d(x, x′) > ε, ∣∣Pp(x, x ′)

∣∣
C m (X×X ) � C�, m, ε p−l . (2.15)

The C m norm (2.15) is induced by ∇L, ∇E, hL, hE, and gTX.

Let π : TX × XTX → X be the natural projection from the fiberwise product of TX on X. Let
∇End(E) be the connection on End(�(T ∗(0,1) X ) ⊗ E) induced by ∇Cliff and ∇E.

Let us elaborate on the identifications we use in the sequel. Let x0 ∈ X be fixed and consider the
diffeomorphism BTx0 X (0, 4ε) � Z �→ expX

x0
(Z ) ∈ B X (x0, 4ε) for ε ≤ aX/4. We denote the pull-back

of the vector bundles L, E, and L p ⊗ E via this diffeomorphism by the same symbols.
(i) There exist trivializations of L, E, and L p ⊗ E over BTx0 X (0, 4ε) given by unit frames which

are parallel with respect to ∇L, ∇E, and ∇L p⊗E along the curves γZ : [0, 1] → BTx0 X (0, 4ε) defined
for every Z ∈ BTx0 X (0, 4ε) by γZ (u) = expX

x0
(u Z ).

(ii) With the previous trivializations, Pp(x, x′) induces a smooth section

BTx0 X (0, 4ε) � Z , Z ′ �→ Pp, x0 (Z , Z ′)

of π∗(End(E)) over TX × XTX, which depends smoothly on x0.
(iii) ∇End(E) induces naturally a C m-norm with respect to the parameter x0 ∈ X.
(iv) By (2.1), J is an element of End(T (1,0) X ). Consequently, we can diagonalize J x0 , i.e.,

choose an orthonormal basis {w j }n
j=1 of T (1,0)

x0
X such that

J x0ω j =
√−1

2π
a j (x0)w j , for all j = 1, 2, . . . , n , (2.16)

where 0 < a1(x0) ≤ a2(x0) ≤ . . . ≤ an(x0). The vectors {e j }2n
j=1 defined by

e2 j−1 = 1√
2
(w j + w j ) and e2 j =

√−1√
2

(w j − w j ) , j = 1, . . . , n , (2.17)

form an orthonormal frame of Tx0 X . The diffeomorphism

R2n � (Z1, . . . , Z2n) �−→
∑

i

Zi ei ∈ Tx0 X (2.18)

induces coordinates on Tx0 X , which we use throughout the paper. In these coordinates, we have ej

= ∂/∂Zj. The complex coordinates z = (z1, . . . , zn) on Tx0 X are given by z j = Z2 j−1 + √−1Z2 j , j
= 1, . . . , n.

(v) If dvT X is the Riemannian volume form on (Tx0 X, gTx0 X ), there exists a smooth positive
function κx0 : Tx0 X → R, Z �→ κx0 (Z ) defined by

dvX (Z ) = κx0 (Z ) dvT X (Z ), κx0 (0) = 1, (2.19)

where the subscript x0 of κx0 (Z ) indicates the base point x0 ∈ X. By (4.1.101) in Ref. 15, we have

κx0 (Z ) = 1 + O(|Z |2) . (2.20)
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(vi) Let �p : L2(X, L p ⊗ E) −→ L2(X, L p ⊗ E) be a sequence of continuous linear operators
with smooth kernel �p( · , · ) with respect to dvX (e.g., �p = Tf, p). In terms of our basic trivialization,
�p(x, y) induces a family of smooth sections Z , Z ′ �→ �p, x0 (Z , Z ′) of π∗ End(E) over {(Z, Z′) ∈
TX × XTX : |Z|, |Z′| < ε}, which depends smoothly on x0.

We denote by |�p, x0 (Z , Z ′)|C m (X ) the C m norm with respect to the parameter x0 ∈ X. We say
that

�p, x0 (Z , Z ′) = O(p−∞) , p → ∞,

if for any �, m ∈ N, there exists C�, m > 0 such that |�p, x0 (Z , Z ′)|C m (X ) � C�, m p−�.
We denote by detC for the determinant function on the complex bundle T(1, 0)X and set |J x0 |

= (−J2
x0

)1/2. Note that

detC|J x0 | =
n∏

i=1

ai (x0)

2π
, (2.21)

where ai(x0) were defined in (2.16). Let

Px0 (Z , Z ′) = detC|J x0 | exp
(

− π

2

〈|J x0 |(Z − Z ′), (Z − Z ′)
〉− π

√−1
〈
J x0 Z , Z ′〉)

= 1

(2π )n

n∏
i=1

ai (x0) exp
(

− 1

4

∑
i

ai (x0)
(|zi |2 + |z′

i |2 − 2zi z
′
i

))
.

(2.22)

We recall that Px0 (Z , Z ′) is actually the kernel of the orthogonal projection Px0 from L2(R2n) onto
the Bargmann-Fock space, see Sec. 2 in Ref. 16. Especially, P2

x0
= Px0 so that

Px0 (Z , Z ′) =
∫
R2n

Px0 (Z , Z ′′)Px0 (Z ′′, Z ′) dv(Z ′′) . (2.23)

Fix k ∈ N and ε′ ∈ ]0, aX[. Let
{

Qr, x0 ∈ End(E)x0 [Z , Z ′] : 0 � r � k, x0 ∈ X
}

be a family of
polynomials in Z, Z′, which is smooth with respect to the parameter x0 ∈ X. We say that

p−n�p,x0 (Z , Z ′) ∼=
k∑

r=0

(Qr, x0Px0 )(
√

pZ ,
√

pZ ′)p−r/2 + O(p−(k+1)/2) , (2.24)

on {(Z, Z′) ∈ TX × XTX : |Z|, |Z′| < ε′} if there exist a decomposition

p−n�p,x0 (Z , Z ′)κ1/2
x0

(Z )κ1/2
x0

(Z ′) −
k∑

r=0

(Qr, x0Px0 )(
√

pZ ,
√

pZ ′)p−r/2

= Rp,k,x0 (Z , Z ′) + O(p−∞) ,

(2.25)

where Rp,k,x0 satisfies the following estimate on {(Z, Z′) ∈ TX × XTX : |Z|, |Z′| < ε′}: for every
m, m ′ ∈ N there exist Ck, m, m ′ > 0, M > 0 such that for all p ∈ N∗

sup
|α|+|α′|�m ′

∣∣∣∣ ∂α+α′

∂ Zα∂ Z ′α′ Rp,k,x0 (Z , Z ′)
∣∣∣∣
C m (X )

� Ck, m, m ′ p(m ′−k−1)/2(1 + √
p |Z | + √

p |Z ′|)M e−C0
√

p |Z−Z ′| .

(2.26)

We consider the orthogonal projection

IC⊗E : E = �•(T ∗(0,1) X ) ⊗ E −→ C ⊗ E . (2.27)

By Theorem 4.18′ in Ref. 9, we have the following off diagonal expansion of the Bergman kernel:

Theorem 2.4. Let ε ∈ ]0, aX/4[. There exist a smooth family relative to the parameter x0 ∈ X{
Jr, x0 (Z , Z ′) ∈ End(Ex0 )[Z , Z ′] : r ∈ N, x0 ∈ X

}
, deg Jr, x0 � 3r ,
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of polynomials Jr, x0 having the same parity as r, and whose coefficients are polynomials in RTX,
RT (1,0) X , RE (and RL) and their derivatives of order ≤ r − 1 (resp. ≤r) such that

p−n Pp, x0 (Z , Z ′) ∼=
k∑

r=0

(Jr, x0Px0 ) (
√

pZ ,
√

pZ ′)p− r
2 + O(p− k+1

2 ) , (2.28)

on the set {(Z, Z′) ∈ TX × XTX : |Z|, |Z′| < 2ε}. Moreover, J0, x0 (Z , Z ′) = IC⊗E .

By taking Z = Z′ = 0 in (2.28), we obtain the diagonal expansion of the Bergman kernel.
Namely, for any k ∈ N, Pp(x, x) has an expansion in the C ∞-topology

Pp(x, x) =
k∑

r=0

br (x)pn−r + O(pn−k−1) , br ∈ C ∞(X, End(E)) , (2.29)

and by Theorem 2.4 and (2.22), we get

b0(x0) = detC|J x0 | IC⊗E ∈ End(Ex0 ) . (2.30)

Let us remark that if gT X (u, v) = ω(u, Jv) for u, v ∈ T X , then ai = 2π , so b0(x) = IC⊗E .

III. EXPANSION OF THE KERNELS AND TRACES OF TOEPLITZ OPERATORS

For a smooth symbol f ∈ C ∞(X, End(E)) we know by Lemma 4.6 in Ref. 16 and Lemma 7.2.4
in Ref. 15 that the kernel of the associated Toeplitz operator Tf, p as in (2.13) has for any � ∈ N an
expansion on the diagonal in the C ∞-topology,

T f,p(x, x) =
�∑

r=0

br, f (x)pn−r + O(pn−�−1) , br, f ∈ C ∞(X, End(E)) , (3.1)

where

b0, f (x) = b0(x) f (x) . (3.2)

Note as an aside, that the coefficients br, f , r = 0, 1, 2, were calculated in Theorem 0.1 in Ref. 18,
if (X, ω) is Kähler and the bundles L, E are holomorphic. In Lemma 4.6 in Ref. 16, we actually
established the off-diagonal expansion of the Toeplitz kernel. We wish to study here the asymptotic
behavior of the Toeplitz kernel for a less regular symbol f. Let us begin with the analogue of Lemma
4.2 in Ref. 16.

Lemma 3.1. Let f ∈ L∞(X, End(E)). For every ε > 0 and every �, m ∈ N, there exists C�, m, ε

> 0 such that

|T f, p(x, x ′)|C m (X×X ) � C�,m,ε p−� , for all p � 1, (x, x ′) ∈ X × X with d(x, x ′) > ε, (3.3)

where the C m-norm is induced by ∇L, ∇E, and hL, hE, gTX. Moreover, there exists C > 0 such that
for all p ≥ 1 and all (x, x′) ∈ X × X with d(x, x′) ≤ ε,

|T f, p(x, x ′)|C m (X×X ) � Cpn+ m
2 e− 1

2 C0
√

p d(x,x ′) + O(p−∞). (3.4)

Proof. Due to (2.14) and (2.15), (3.3) holds if we replace Tf, p by Pp . Moreover, from (2.28), for
any m ∈ N, there exists Cm > 0 such that

|Pp(x, x ′)|C m (X×X ) < Cpn+ m
2 , for all (x, x ′) ∈ X × X . (3.5)
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These two facts and formula (2.14) imply (3.3). By Theorem 2.4, for Z , Z ′ ∈ Tx0 X , |Z|, |Z′| < ε we
have

sup
|α|+|α′|�m

∣∣∣∣ ∂α+α′

∂ Zα∂ Z ′α′ Pp,x0 (Z , Z ′)
∣∣∣∣

� C pn+ m
2 (1 + √

p |Z | + √
p |Z ′|)M e−C0

√
p |Z−Z ′| + O(p−∞) .

(3.6)

Using (2.14) and (3.6) by taking x0 = x, we get (3.4). �
In order to formulate our results for a family of functions (observables), we consider equicon-

tinuous and uniformly bounded families. The results are of course valid for individual functions,
too.

Definition 3.2. We denote by ∇E the connection on (T ∗ X )⊗k ⊗ End(E) induced by the Levi-
Civita connection ∇TX and ∇E. Let A 0 ⊂ C 0(X, End(E)) be a subset which is equicontinuous on
X, and A 1 ⊂ C 1(X, End(E)) be a subset such that ∇EA 1 ⊂ C 0(X, End(E)) is uniformly bounded.
Let A 2 ⊂ C 2(X, End(E)) be a subset such that ∇EA 2 ⊂ C 0(X, End(E)) is uniformly bounded,
and ∇E∇EA 2 ⊂ C 0(X, End(E)) is equicontinuous on X. Let A k

∞ be a subset of A k (for k = 0, 1,
2) which is uniformly bounded.

Theorem 3.3. Let (X, ω) be a compact symplectic manifold, (L, hL, ∇L) → X a prequantum line
bundle, (E, hE, ∇E) → X be an auxiliary vector bundle. We have as p → ∞

p−nT f,p(x, x) = f (x)b0(x) + o(1)(‖ f ‖C 0 + 1) , uniformly for f ∈ A 0, x ∈ X , (3.7)

p−nT f,p(x, x) = f (x)b0(x) + O(p−1/2)(‖ f ‖C 0 + 1) , uniformly for f ∈ A 1, x ∈ X , (3.8)

p−nT f,p(x, x) = f (x)b0(x) + b1, f (x)p−1 + o(p−1)(‖ f ‖C 0 + 1) , (3.9)

uniformly for f ∈ A 2, x ∈ X.

In particular, the remainders o(1), O(p− 1/2), o(p− 1) do not depend on f.

Proof. We start by proving (3.7). Recall that we trivialized L, E by a unit frame over BTx X (0, 4ε)
which is parallel with respect to ∇L, ∇E along the geodesics starting in x. With this trivialization,
the section f ∈ End(E) induces a section

BTx X (0, 4ε) � Z �→ fx (Z ).

We denote by f (x) ∈ End(E)|U the endomorphism obtained by parallel transport of f (x) ∈ End(Ex )
into the neighboring fibers End(Ex ′ ), x′ ∈ U = B(0, 4ε).

Let δ > 0 be given. Since A 0 is uniformly continuous on X, there exists ε > 0 such that B(x, ε)
⊂ U and for all x′ ∈ B(x, ε) we have |f(x′) − f(x)| ≤ δ for any f ∈ A 0.

By (2.14) and (3.3) we have

T f, p(x, x) =
∫

B(x,ε)
Pp(x, x ′) f (x ′)Pp(x ′, x) dvX (x ′) + O(p−∞)‖ f ‖C 0 . (3.10)

We write now f (x ′) = f (x) + ( f (x ′) − f (x)) ∈ End(Ex ′ ) and split accordingly the last integral in
a sum of two integrals. From Theorem 2.4, the first one is∫

B(x,ε)
Pp(x, x ′) f (x)Pp(x ′, x) dvX (x ′)

= p2n
∫

B(x,ε)

1∑
i+ j=0

(Ji,xPx )(0,
√

pZ ′) f (x)(Jj,xPx )(
√

pZ ′, 0)d Z ′ + O(pn−1)‖ f ‖C 0 . (3.11)
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Note that J0,x0 = IC⊗E and J1,x0 (0, Z ′) is a polynomial on Z′ with odd degree, thus∫
R2n

(J1,xPx )(0, Z ′) f (x)(J0,xPx )x (Z ′, 0)d Z ′

=
∫
R2n

(J0,xPx )(0, Z ′) f (x)(J1,xPx )(Z ′, 0)d Z ′ = 0. (3.12)

From (2.30), (3.11), and (3.12), we get∫
B(x,ε)

Pp(x, x ′) f (x)Pp(x ′, x) dvX (x ′) = f (x)Px (0, 0)pn + O(pn−1)‖ f ‖C 0

= f (x)b0(x)pn + O(pn−1)‖ f ‖C 0 .

(3.13)

Note that if f is a function, then we have∫
B(x,ε)

Pp(x, x ′) f (x)Pp(x ′, x) dvX (x ′) = f (x)
(

Pp(x, x ′) + O(p−∞)
)

.

The second one can be estimated by∣∣∣ ∫
B(x,ε)

Pp(x, x ′)
(

f (x ′) − f (x)
)
Pp(x ′, x) dvX (x ′)

∣∣∣
� δ

∫
B(x,ε)

|Pp(x, x ′)||Pp(x ′, x)| dvX (x ′)

= δ

∫
B(0,ε)

|Pp,x (0, Z ′)||Pp,x (Z ′, 0)| dvX (Z ′) .

(3.14)

We use now the off-diagonal expansion from Theorem 2.4. By (2.28) we have

Pp,x (Z , 0) = pn
(∏n

j=1
a j

2π
e− 1

4 p
∑n

j=1 a j |z j |2 + p−1/2 Rp,x (Z , 0) + O(p−∞)
)
κ

− 1
2

x (Z )

where |Rp,x (Z , 0)| � C(1 + √
p |Z |)M e−C0

√
p |Z | ,

(3.15)

so in order to estimate the last integral in (3.14), by (2.19), we have to estimate∫
B(0,ε)

p2n
∣∣∣∏n

j=1
a j

2π
e− 1

4 p
∑n

j=1 a j |z′
j |2 + p−1/2 Rp,x (Z ′, 0) + O(p−∞)

∣∣∣2 d Z ′ .

By using the change of variables
√

pZ ′ = Y we see that

p
∫
C

e−πp|Z ′ |2 d Z ′ = 1 , pn
∫
Cn

(1 + √
p |Z ′|)M e−C0

√
p |Z ′| dvX (Z ′) = O(1) ,

hence ∫
B(0,ε)

|Pp,x (0, Z ′)||Pp,x (Z ′, 0)| dvX (Z ′) = O(pn) ,

so there exists C > 0 such that for any x ∈ X, f ∈ A 0, p ∈ N, we have∣∣∣ ∫
B(x,ε)

Pp(x, x ′)
(

f (x ′) − f (x)
)
Pp(x ′, x) dvX (x ′)

∣∣∣ � Cδ pn . (3.16)

From (3.10), (3.13), and (3.16), we get (3.7).
By Taylor’s formula, there exist C > 0, ε > 0, such that for |Z| ≤ ε, f ∈ A 1, we have

fx (Z ) − fx (0) = R(Z ) , |R(Z )| � C |Z | . (3.17)

We repeat the proof above by plugging this expression in the integral from (3.16), we observe that
only ∫

B(0,ε)
|Pp,x (0, Z ′)||Z ′||Pp,x (Z ′, 0)| dvX (Z ′)
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contributes to the subleading term. But then the change of variables
√

pZ ′ = Y introduces a factor
p− 1/2, whereof (3.8) follows.

Finally, for any δ > 0 there exists ε > 0, such that for |Z| ≤ ε, f ∈ A 2,

fx (Z ) − fx (0) = ∑
j ∂ j fx (0)Z j +∑

j,k ∂ jk fx (0)Z j Zk + R(Z ) , |R(Z )| � δ|Z |2 . (3.18)

Taking into account the proof of the asymptotic expansion (3.1) from Lemma 4.6 in Ref. 16, we see
that (3.9) holds. �

Remark 3.4. In the same vein, we show that in the conditions of Theorem 3.3, we have for
f ∈ C k(X, End(E)), k ∈ N, as p → ∞,

p−nT f,p(x, x) =
�k/2�∑
r=0

br, f (x)p−r + Rk,p(x) , uniformly on X , (3.19)

where br, f are the universal coefficients from (3.1) and

Rk,p =
{

o(p−k/2) , for k even ,

O(p−k/2) , for k odd .
(3.20)

Here, �a� denotes the integer part of a ∈ R.

We recall that by (4.79) in Ref. 16 and (7.4.6) in Ref. 15, for any f, g ∈ C ∞(X, End(E)), the
kernel of the composition Tf, p ◦ Tg, p has for all � ∈ N an asymptotic expansion on the diagonal in
the C ∞-topology,

(T f, p ◦ Tg, p)(x, x) =
�∑

r=0

br, f, g(x)pn−r + O(pn−�−1) , br, f, g ∈ C ∞(X, End(E)) . (3.21)

The coefficients br, f, g , r = 0, 1, 2, were calculated in Theorem 0.2 in Ref. 18 in the case of a Kähler
manifold (X, ω) and of holomorphic bundles L and E. We give here the analogue of the expansion
(3.21) in the case of C k symbols.

Theorem 3.5. Let m ∈ N and f1, . . . , fm ∈ L∞(X, End(E)). Write

p−n(T f1,p . . . T fm ,p)(x, x) = f1(x) . . . fm(x)b0(x) + Rp(x) . (3.22)

We have as p → ∞, uniformly in x ∈ X,

Rp(x) = o(1), uniformly on fi ∈ A 0
∞ , (3.23)

Rp(x) = O(p−1/2), uniformly on fi ∈ A 1
∞ , (3.24)

Rp(x) = O(p−1), uniformly on fi ∈ A 2
∞. (3.25)

Proof. To prove (3.23) let δ > 0 be given. Choose ε > 0 such that for x′ ∈ B(x, ε) we have |fj(x′)
− fj(x)| ≤ δ, 1 ≤ j ≤ m, where f j (x) ∈ End(Ex ′ ) is the parallel transport of f j (x) ∈ End(Ex ) as in
the previous proof. By (2.13) we have T f1,p . . . T fm ,p = Pp f1 Pp f2 . . . Pp fm Pp hence

(T f1,p . . . T fm ,p)(x, x)

=
∫

Xm

Pp(x, x1) f1(x1)Pp(x1, x2) f2(x2) . . . fm(xm)Pp(xm, x)
∏m

i=1 dvX (xi )

= I + O(p−∞) ,

(3.26)
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where

I =
∫

|Zi |�ε

1�i�m

Pp,x (0, Z1) f1,x (Z1)Pp,x (Z1, Z2) f2,x (Z2) . . . fm,x (Zm)Pp,x (Zm, 0)
∏m

i=1 dvX (Zi ).

We write now

I = I0 +
m∑

j=1

I j

with

I0 =
∫

|Zi |�ε

1�i�m

Pp(0, Z1) f1,x (0)Pp(Z1, Z2) f2,x (0) . . . fm,x (0)Pp(Zm, 0)
∏m

i=1 dvX (Zi )

= f1(x) . . . fm(x)
(
Px (0, 0)pn + O(pn−1)

)
,

(3.27)

in the above second equation, we use the argument in (3.12), and for 1 ≤ j ≤ m,

I j =
∫

|Zi |�ε

1�i�m

Pp(0, Z1) f1,x (Z1) . . . Pp(Z j−1, Z j )
(

f j,x (Z j ) − f j,x (0)
)

Pp(Z j , Z j+1) f j+1,x (Z j+1) . . . fm,x (Zm)Pp(Zm, 0)
∏m

i=1 dvX (Zi ).

By (2.28), for ≤j ≤ m, we have

|I j | � Cδ

∫
|Zi |�ε

1�i�m

|Pp(0, Z1)|Ap|Pp(Zm, 0)|κ1/2
x (Z1)κ1/2

x (Zm)
∏m

i=1 d Zi , (3.28)

where

Ap = p(m−1)n
m−1∏
i=1

(1 + √
p |Zi | + √

p |Zi+1|)M e−C0
√

p |Zi −Zi+1| .

We plug now the expansion (3.15) for Pp(0, Z1) and Pp(Zm, 0) in (3.28) and estimate the exponential
terms appearing there. By (2.7), we have

exp(− p
4

∑n
j=1 a j |Z1 j |2 − C0

√
p |Z1 − Z2|)

� exp(−μ0

8 p|Z1|2) exp(−C(
√

p|Z2| − 1
4 )),

since

μ0

8 p|Z1|2 + C0
√

p |Z1 − Z2| � C
(

p|Z1|2 + √
p |Z1 − Z2|

)
� C

(√
p|Z1| − 1

4 + √
p |Z1 − Z2|

)
� C

(√
p|Z2| − 1

4

)
.

We pair now one factor e− C
2
√

p|Z2| with e−C0
√

p |Z2−Z3| and obtain

e− C
2
√

p|Z2| e−C0
√

p |Z2−Z3| � e−C3
√

p|Z3| = e− C3
2

√
p|Z3| e− C3

2
√

p|Z3| ;
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we pair further e− C3
2

√
p|Z3| with e−C0

√
p |Z3−Z4| and so on. Finally, we obtain for the left-hand side of

(3.28) the estimate∫
|Zi |�ε

1�i�m

|Pp(0, Z1)|Ap|Pp(Zm, 0)|κ1/2
x (Z1)κ1/2

x (Zm)
∏m

i=1 d Zi

�
∫

|Zi |�ε

1�i�m

exp
(
− μ0

8
p|Z1|2 − C2

√
p|Z2| − . . . − Cm−1

√
p|Zm−1| − μ0

4
p|Zm |2

)
p2n Bp

∏m
i=1 d Zi ,

(3.29)

where

Bp = p(m−1)n(1 + √
p |Z1|)M (1 + √

p |Zm |)M
m−1∏
i=1

(1 + √
p |Zi | + √

p |Zi+1|)M .

Since the right-hand side integral in (3.29) converges we obtain that |Ij| ≤ C′δpn, for some C′ > 0.
This completes the proof of (3.23).

To prove (3.24) and (3.25), we repeat the proof above by estimating fj, x(Zj) − fj, x(0) with the
help of Taylor formulas (3.17) and (3.18). As in the proof of Theorem 3.3, we obtain the remainders
O(p− 1/2) and O(p− 1), respectively, due to the change of variables

√
pZ = Y . �

Remark 3.6. In the same vein, we show that if f, g ∈ C k(X, End(E)), k ∈ N, we have as
p → ∞,

(T f, p ◦ Tg, p)(x, x) =
�k/2�∑
r=0

br, f, g(x)pn−r + Rk,p(x) , uniformly on X , (3.30)

where br, f,g are the universal coefficients from (3.21) and

Rk,p =
{

o(p−k/2) , for k even ,

O(p−k/2) , for k odd .

We will now consider traces of Toeplitz operators.

Theorem 3.7. Let f ∈ L∞(X, End(E)). Then for any k ∈ N we have as p → ∞,

Tr(T f,p) =
k∑

r=0

tr, f pn−r + O(pn−k−1) , with tr, f =
∫

X
Tr[br f ] dvX . (3.31)

Proof. By (2.29), we infer

Tr(T f,p) = Tr(Pp f Pp) = Tr(Pp f ) =
∫

X
Tr
[
Pp(x, x) f (x)

]
dvX (x)

=
k∑

r=0

pn−r
∫

X
Tr
[
br (x) f (x)

]
dvX (x) + O(pn−k−1) .

(3.32)

�
Theorem 3.8. Let f1, . . . , fm ∈ L∞(X, End(E)). Write

p−n Tr(T f1,p . . . T fm ,p) =
∫

X
Tr
[

f1 . . . fm
] ωn

n !
+ Rp . (3.33)
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Then as p → ∞,

Rp =

⎧⎪⎪⎨⎪⎪⎩
o(1) , uniformly on fi ∈ A 0

∞ ,

O(p−1/2) , uniformly on fi ∈ A 1
∞ ,

O(p−1) , uniformly on fi ∈ A 2
∞ .

(3.34)

Proof. We have

Tr(T f1,p . . . T fm ,p) =
∫

X
Tr(T f1,p . . . T fm ,p)(x, x) dvX ,

and we apply Theorem 3.5 together with the dominated convergence theorem. �
When (X, J, ω) is a compact Kähler manifold, gTX( · , · ) = ω( · , J · ), E = C with the trivial

metric, and each fi ∈ C ∞(X ), then (3.33) appears in p. 292 in Ref. 3 and Theorem 4.2 in Ref. 4
with Rp = O(p− 1).

IV. EXPANSION OF A PRODUCT OF TOEPLITZ OPERATORS

We consider in this section the expansion of the composition of two Toeplitz operators at the
operator level. We recall first the situation for Toeplitz operators with smooth symbols. A Toeplitz
operator is a sequence {Tp} = {Tp}p∈N of linear operators Tp : L2(X, L p ⊗ E) −→ L2(X, L p ⊗ E)
with the properties:

(i) For any p ∈ N, we have Tp = Pp Tp Pp .
(ii) There exist a sequence gl ∈ C ∞(X, End(E)) such that for all k ≥ 0 there exists Ck > 0 such

that for all p ∈ N∗, we have∥∥∥Tp − Pp

( k∑
l=0

p−l gl

)
Pp

∥∥∥ � Ck p−k−1, (4.1)

where ‖ · ‖ denotes the operator norm on the space of bounded operators.

We write symbolically

Tp = Pp

( ∞∑
l=0

p−l gl

)
Pp + O(p−∞). (4.2)

Let f, g ∈ C ∞(X, End(E)). By Theorem 1.1 in Ref. 16, the product of the Toeplitz operators
Tf, p and Tg, p is a Toeplitz operator, more precisely, it admits the asymptotic expansion in the sense
of (4.2)

T f, p ◦ Tg, p =
∞∑

r=0

p−r TCr ( f,g), p + O(p−∞), (4.3)

where Cr are bidifferential operators with smooth coefficients of total degree 2r (cf. Lemma 4.6 and
(4.80) in Ref. 16). We have C0(f, g) = fg and if f, g ∈ C ∞(X ),

C1( f, g) − C1(g, f ) = √−1{ f, g} IdE . (4.4)

In the case of a Kähler manifold (X, ω), the operators C0, C1, C2 were calculated in Theorem 0.1 in
Ref. 18.

We study now the expansion of the product of two Toeplitz operators with C k symbols.

Theorem 4.1. Let k ∈ N and f, g ∈ C k(X, End(E)). Then for m ∈ {0, . . . , �k/2�}, we have

T f, p ◦ Tg, p =
m∑

r=0

p−r TCr ( f,g),p + Rm,p , (4.5)
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where Cr(f, g) are the universal coefficients from (4.3) and Rm, p satisfies the following estimates:

Rm,p =
{

o(p−k/2) , for m = �k/2� ,

O(p−m−1) , for m < �k/2� ,
(4.6)

in the operator norm sense.

In order to prove this theorem, we need to develop some machinery from Ref. 16 concerning
a criterion for a sequence of operators to be a (generalized) Toeplitz operator. For this purpose, we
refine the condition from (vi) in Sec. II.

Let �p : L2(X, L p ⊗ E) −→ L2(X, L p ⊗ E) be a sequence of continuous linear operators
with smooth kernel �p( · , · ) with respect to dvX . Fix k ∈ N and ε′ ∈ ]0, aX[. Let{

Qr, x0 ∈ End(E)x0 [Z , Z ′] : 0 � r � k, x0 ∈ X
}

be a family of polynomials in Z, Z′, such that Qr, x0 is of class C k−r with respect to the parameter x0

∈ X. We say that

p−n�p,x0 (Z , Z ′) ∼=
k∑

r=0

(Qr, x0Px0 )(
√

pZ ,
√

pZ ′)p−r/2 + O(p− k+1
2 ) , (4.7)

on {(Z, Z′) ∈ TX × X TX : |Z|, |Z′| < ε′} if there exist a decomposition (2.25) and (2.26) holds for
m = m′ = 0.

We say that

p−n�p,x0 (Z , Z ′) ∼=
k∑

r=0

(Qr, x0Px0 )(
√

pZ ,
√

pZ ′)p−r/2 + o(p− k
2 ) , (4.8)

if there exist a decomposition (2.25) where Rp,k,x0 satisfies the following estimate: for any δ > 0,
there exists ε > 0, Ck > 0, M > 0 such that for all (Z, Z′) ∈ TX × X TX with |Z|, |Z′| < ε and p ∈ N∗,∣∣∣Rp,k,x0 (Z , Z ′)

∣∣∣
C 0(X )

� δ p−k/2(1 + √
p |Z | + √

p |Z ′|)M e−C0
√

p |Z−Z ′| . (4.9)

We have the following analogue of Lemma 4.6 in Ref. 16.

Lemma 4.2. Let f ∈ C k(X, End(E)). There exists a family{
Qr, x0 ( f ) ∈ End(E)x0 [Z , Z ′] : 0 � r � k, x0 ∈ X

}
such that

(a) Qr, x0 ( f ) are polynomials with the same parity as r,
(b) Qr, x0 ( f ) is of class C k−r with respect to the parameter x0 ∈ X,
(c) There exists ε ∈ ]0, aX/4[such that for any m ∈ {0, 1, . . . , k}, x0 ∈ X, Z , Z ′ ∈ Tx0 X , |Z|, |Z′|

< ε/2, we have

p−nT f, p, x0 (Z , Z ′) ∼=
m∑

r=0

(Qr, x0 ( f )Px0 )(
√

pZ ,
√

pZ ′)p− r
2 + Rm,p , (4.10)

where

Rm,p =
{
O(p− m+1

2 ) , if m � k − 1 ,

o(p− m
2 ) , if m = k ,

in the sense of (4.7) and (4.8). The coefficients Qr, x0 ( f ) are expressed by

Qr, x0 ( f ) =
∑

r1+r2+|α|=r

K
[

Jr1, x0 ,
∂α f x0

∂ Zα
(0)

Zα

α!
Jr2, x0

]
. (4.11)
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Especially,

Q0, x0 ( f ) = f (x0) IC⊗E . (4.12)

Proof. We just have to modify the proof of Lemma 4.6 in Ref. 16 in what concerns the Taylor
formula for fx0

fx0 (Z ) =
∑

|α|�m

∂α fx0

∂ Zα
(0)

Zα

α!
+ Rm(Z ) , Rm(Z ) =

{
O(|Z |m+1) , if m � k − 1 ,

o(|Z |m) , if m = k ,

thus

fx0 (Z ) =
∑

|α|�m

p−|α|/2 ∂α fx0

∂ Zα
(0)

(
√

pZ )α

α!
+ Rm,p(Z ) , (4.13)

where

Rm,p(Z ) =
{

p− m+1
2 O(|√pZ |m+1) , if m � k − 1 ,

o(p− m
2 )O(|√pZ |m) , if m = k .

The last line just means that there exists C > 0 such that for any δ > 0, there exists ε > 0 such that
for all |Z| ≤ ε and all p ∈ N, we have |Rm,p(Z )| � Cδp− m

2 |√pZ |m . �
Lemma 4.3. Let Tp : L2(X, L p ⊗ E) −→ L2(X, L p ⊗ E) be a sequence of continuous linear

operators with smooth kernel Tp(·, ·) with respect to dvX . Assume that in the sense of (4.8),

p−nTp,x0 (0, Z ′) ∼= o(1) , p −→ ∞ . (4.14)

Then there exists C > 0 such that for every δ > 0, there exists p0 such that for every p > p0 and
s ∈ L2(X, L p ⊗ E) we have

‖Tp s‖L2 � Cδ‖s‖L2 , ‖T ∗
p s‖L2 � Cδ‖s‖L2 . (4.15)

Proof. By the Cauchy-Schwarz inequality, we have∥∥Tp s
∥∥2

L2 �
∫

X

( ∫
X

∣∣Tp(x, y)
∣∣dvX (y)

)( ∫
X

∣∣Tp(x, y)
∣∣|s(y)|2dvX (y)

)
dvX (x) . (4.16)

We split then the inner integrals into integrals over BX(x, ε′) and X\BX(x, ε′) and use the fact that the
kernel of Tp has the growth O(p−∞) outside the diagonal. By (4.14), there exists C′ > 0 such that
for every δ > 0, there exists p0 such that for every p > p0 and x ∈ X,∫

X

∣∣Tp(y, x)
∣∣dvX (y) �

∫
B X (y,ε′)

Cpnδ(1 + √
pd(y, x))M e−C0

√
pd(y,x)dvX (y) + O(p−∞)

= O(1)δ + O(p−∞),∫
X

∣∣Tp(x, y)
∣∣dvX (y) � Cδ .

(4.17)

Combining (4.16) and (4.17) and Fubini’s theorem, we obtain∥∥Tp s
∥∥2

L2 � Cδ

∫
X

( ∫
X

∣∣Tp(x, y)
∣∣|s(y)|2dvX (y)

)
dvX (x)

= Cδ

∫
X

( ∫
X

∣∣Tp(x, y)
∣∣dvX (x)

)
|s(y)|2dvX (y)

� (Cδ)2
∫

X
|s(y)|2dvX (y).

(4.18)
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This proves the first estimate of (4.15). The second one follows by taking the adjoint. The proof of
Lemma 4.3 is completed. �

Proof of Theorem 4.1. First, it is obvious that Pp Tf, p Tg, p Pp = Tf, p Tg, p. Lemmas 3.1 and 4.2
imply that for Z , Z ′ ∈ Tx0 X , |Z|, |Z′| < ε/4

(T f, p ◦ Tg, p)x0 (Z , Z ′) =
∫

Tx0 X
T f, p, x0 (Z , Z ′′)ρ

(4|Z ′′|
ε

)
Tg, p, x0 (Z ′′, Z ′)κx0 (Z ′′) dvT X (Z ′′)

+ O(p−∞). (4.19)

Case k = 0. By (4.19), we deduce as in the proof of Lemma 4.2, that for Z , Z ′ ∈ Tx0 X , |Z|, |Z′|
< ε/4, we have

p−n(T f, p ◦ Tg, p)x0 (Z , Z ′) ∼= (Q0, x0 ( f, g)Px0 )(
√

p Z ,
√

p Z ′) + o(1), (4.20)

where

Q0, x0 ( f, g) = K [Q0, x0 ( f ), Q0, x0 (g)] = f (x0)g(x0) . (4.21)

We conclude by Lemma 4.3 that Tf, p ◦ Tg, p − Tfg, p = o(1), as p → ∞.
Case k = 1. By (4.19) and the Taylor formula (4.13) for m = k = 1 we deduce as in the

proof of Lemma 4.2 an estimate analogous to (4.20) with o(1) replaced by o(p−1/2), so we obtain
Tf, p ◦ Tg, p − Tfg, p = o(p− 1/2), as p → ∞.

Case k ≥ 2. We obtain now that for Z , Z ′ ∈ Tx0 X , |Z|, |Z′| < ε/4 and for every
m ∈ {0, 1, . . . , k} we have

p−n(T f, p ◦ Tg, p)x0 (Z , Z ′) ∼=
m∑

r=0

(Qr, x0 ( f, g)Px0 )(
√

p Z ,
√

p Z ′)p− r
2 + Rm,p, (4.22)

where

Rm,p =
{
O(p− m+1

2 ) , if m � k − 1 ,

o(p− m
2 ) , if m = k ,

in the sense of (4.7) and (4.8).
Note that for f, g ∈ C ∞(X, End(E)), by Lemma 4.2 and (4.3), we know that

�l/2�∑
r=0

Ql−2r (Cr ( f, g)) = Ql( f, g). (4.23)

As Cr are bidifferential operators with smooth coefficients of total degree 2r defined in (4.3),
thus for f, g ∈ C k(X, End(E)), (4.23) still holds for l ≤ k. Lemma 4.3 and (4.23) imply that
Theorem 4.1 holds. �

Corollary 4.4. Let f, g ∈ C k(X, End(E)), k ∈ N. Then as p → ∞, in the operator norm sense,
we have

T f, p ◦ Tg, p = T f g,p + R0,p , R0,p =
{

o(1) , for k = 0 ,

o(p−1/2) , for k = 1 .
(4.24)

If k ≥ 2, then

T f, p ◦ Tg, p = T f g,p + p−1TC1( f,g),p + Rp , Rp =

⎧⎪⎪⎨⎪⎪⎩
o(p−1) , for k = 2 ,

o(p−3/2) , for k = 3 ,

O(p−2) , for k = 4 .

(4.25)

By (4.4) and (4.25), we get
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Corollary 4.5. Let f, g ∈ C 2(X ). Then the commutator of the operators Tf, p , Tg, p satisfies

[
T f, p , Tg, p

] =
√−1

p
T{ f,g}, p + Rp , p → ∞ , (4.26)

where { · , · } is the Poisson bracket on (X, 2πω) and Rp satisfies the estimates from (4.25).

The Poisson bracket { · , · } on (X, 2πω) is defined as follows. For f, g ∈ C 2(X ), let ξ f be the
Hamiltonian vector field generated by f, which is defined by 2π iξ f ω = d f . Then {f, g} := ξ f(dg).

V. ASYMPTOTICS OF THE NORM OF TOEPLITZ OPERATORS

For f ∈ L∞(X, End(E)), we denote the essential supremum of f by

‖ f ‖∞ = ess supx∈X | f (x)|End(E) .

Note that the operator norm ‖Tf, p‖ of Tf, p satisfies

‖T f,p‖ � ‖ f ‖∞ . (5.1)

Theorem 5.1. Let (X, ω) be a compact symplectic manifold and let (L, hL, ∇L) → X be a
prequantum line bundle satisfying (2.2). Let (E, hE, ∇E) → X be a twisting Hermitian vector bundle.
Let f ∈ L∞(X, End(E)) and assume that there exists x0 ∈ X such that ‖ f ‖∞ = | f (x0)|End(E) and f
is continuous in x0. Then the norm of Tf, p satisfies

lim
p→∞ ‖T f, p‖ = ‖ f ‖∞ . (5.2)

Proof. By hypothesis there exist x0 ∈ X and u0 ∈ Ex0 , with |u0|hE = 1, such that |f(x0)(u0)|
= ‖f‖∞. Let us trivialize the bundles L, E in normal coordinates over a neighborhood U of x0, and
let eL be the unit frame of L which trivialize L. In these normal coordinates, we take the parallel
transport of u0 and obtain a nowhere vanishing section eE of E over U. Denote by f (x0) ∈ End(E)|U
the endomorphism obtained by parallel transport of f (x0) ∈ End(Ex0 ).

Let δ > 0 be fixed. Since f is continuous, there exists ε > 0 such that for all x ∈ B(x0, 2ε), u ∈
Ex, with |u|hE = 1, we have

| f (x)u − f (x0)u| � δ. (5.3)

Since x0 is fixed let us denote for simplicity ai = ai(x0) and set

|Z |a := 1

2

( n∑
i=1

ai |zi |2
) 1

2
,

ρ ∈ C ∞(X ) , supp ρ ⊂ B(x0, ε) , ρ = 1 on B(x0, ε/2).

Define sections

S p = S p
x0, u0

= p
n
2

√
detC|J x0 | Pp

(
ρe−p|Z |2a e⊗p

L ⊗ eE
) ∈ Ker(Dp) . (5.4)

Our goal is to prove the following.

Proposition 5.2. There exists C > 0 (independent of δ) such that for p � 1,∥∥T f,p S p − ρ f (x0)S p
∥∥

L2 � Cδ‖S p‖L2 . (5.5)

Moreover, for p → ∞, ∥∥ρ f (x0)S p
∥∥

L2 = ‖ f ‖∞ + O(p− 1
2 ). (5.6)

We start by showing that Sp are peak sections, i.e., satisfies the properties in Lemma 5.3 below.
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Lemma 5.3. The following expansions hold as p → ∞:

S p(Z ) = p
n
2

√
detC|J x0 | e−p|Z |2a

(
1 +

k∑
r=1

Qr (
√

p Z )p− r
2

)
u0

+ O
(

p
n−k−1

2 e−C0
√

p |Z | (1 + √
p |Z |)2M

)
+ O(p−∞) , Z ∈ B(0, ε/2)

(5.7)

for some constants C0, M > 0 and polynomials Qr with values in End(Ex0 ),

S p = O(p−∞) , uniformly on any compact set K such that x0 �∈ K , (5.8)

‖S p‖2
L2 =

∫
X

|S p|2dvX = 1 + O(p−1) . (5.9)

Proof. By (5.4), we have for x ∈ X,

S p(x) = p
n
2

√
detC|J x0 |

∫
B(x0,ε)

Pp(x, x ′)(ρe−p|Z |2a e⊗p
L ⊗ eE )(x ′) dvX (x ′) . (5.10)

We deduce from (2.15) that for p → ∞,

S p(x) = O(p−∞) , uniformly on X \ B(x0, 2ε). (5.11)

For Z ∈ B(0, 2ε), by (2.19) and (5.10), we have

S p(Z ) = p
n
2

√
detC|J x0 |

∫
B(0,ε)

Pp,x0 (Z , Z ′ )̃κ(Z ′)e−p|Z ′ |2a u0 d Z ′, (5.12)

where we have denoted κ̃ = ρκx0 . We wish to obtain an expansion of Sp in powers of p, so we apply
Theorem 2.4. By (2.28) (see (2.25)), we have

Pp,x0 (Z , Z ′)κ
1
2

x0 (Z )κ
1
2

x0 (Z ′) =
k∑

r=0

(Jr, x0Px0 ) (
√

pZ ,
√

pZ ′)pn− r
2 + Rp,k,x0 (Z , Z ′) + O(p−∞) .

(5.13)

By (2.20), we write the Taylor expansion of ϕ(Z , Z ′) = κ
− 1

2
x0 (Z )κ

− 1
2

x0 (Z ′)̃κ(Z ′) in the form

ϕ(Z , Z ′) = 1 +
∑

1<|α|+|β|�k

∂α
Z∂

β

Z ′ϕ(0, 0)
Zα

α!

Z ′β

β!
+ O(|(Z , Z ′)|k+1)

= 1 +
∑

1<|α|+|β|�k

p−(|α|+|β|)/2 ∂α
Z∂

β

Z ′ϕ(0, 0)
(
√

pZ )α

α!

(
√

pZ ′)β

β!
+ p−(k+1)/2 O(|√p(Z , Z ′)|k+1)

(5.14)

and multiply it with the right-hand side of (5.13). We obtain in this way an expansion in powers of
p1/2 of Pp,x0 (Z , Z ′ )̃κ(Z ′)

Pp, x0 (Z , Z ′ )̃κ(Z ′) =
k∑

r=0

( J̃r, x0Px0 ) (
√

pZ ,
√

pZ ′)pn− r
2 + pn R̃p,k(Z , Z ′), (5.15)

for some polynomials J̃r, x0 ∈ End(Ex0 )[Z , Z ′], J̃0, x0 = IC⊗E , and a rest R̃p,k(Z , Z ′) satisfying
appropriate estimates corresponding to (2.26).

We apply now to Pp,x0 (Z , Z ′) the off-diagonal expansion (5.15) and integrate∫
B(0,ε)

Pp,x0 (Z , Z ′ )̃κ(Z ′)e−p|Z ′ |2a u0 d Z ′ =
k∑

r=0

Ir p− r
2 + I ′

k, (5.16)
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where

Ir =
∫

B(0,ε)
( J̃r, x0Px0 ) (

√
pZ ,

√
pZ ′)pne−p|Z ′ |2a u0 d Z ′ ,

I ′
k =

∫
B(0,ε)

pn R̃p,k(Z , Z ′)e−p|Z ′ |2a u0 d Z ′.
(5.17)

The norms Z �→ |Z| and Z �→ |Z|a are equivalent so by the exponential decay of Px0 we have, as
p → ∞,

Ir =
∫

|Z |a�2ε

( J̃r, x0Px0 ) (
√

pZ ,
√

pZ ′)pne−p|Z ′ |2a u0 d Z ′ + O(p−∞) . (5.18)

We deal first with I0. Let |Z|a ≤ ε/2. Then by (2.22),∫
|Z ′|a� 2ε

Px0 (
√

pZ ,
√

pZ ′)pne−p|Z ′ |2a d Z ′ =
∫
Cn

Px0 (
√

pZ ,
√

pZ ′)pne−p|Z ′ |2a d Z ′ + O(e−Cp).

By using Px0 is a projector operator, we get from (2.22) and (2.23),∫
R2n

Px0 (
√

pZ ,
√

pZ ′)pne−p|Z ′ |2a d Z ′

= (detC|J x0 |)−1
∫
R2n

Px0

(√
p Z ,

√
p Z ′

)
Px0

(√
p Z ′, 0

)
pn d Z ′

= (detC|J x0 |)−1 Px0

(√
p Z , 0

) = e−p|Z |2a ,

(5.19)

where the first and third equalities follow from (2.22) and the second from (2.23). We obtain thus

I0 =
∫

|Z ′|a� 2ε

( J̃0, x0Px0 ) (
√

pZ ,
√

pZ ′)pne−p|Z ′ |2a u0 d Z ′ + O(p−∞)

= e−p|Z |2a eE + O(p−∞) .

(5.20)

In a similar manner, we show that as p → ∞,

Ir = e−p|Z |2a Qr (
√

pZ ) eE + O(p−∞) . (5.21)

Taking into account the definition of R̃p,k(Z , Z ′), (2.26) and (5.17) we obtain in the same vein, as
p → ∞,

I ′
k = O

(
p

−k−1
2 e−C0

√
p |Z | (1 + √

p |Z |)2M
)

+ O(p−∞) . (5.22)

Combining (5.20)–(5.22) we get (5.7). From (5.11) and (5.7), we deduce immediately (5.8).
Note that by (2.19), (5.8), we get

‖S p‖2
L2 =

∫
X

∣∣S p(x)
∣∣2dvX (x) =

∫
B(0, 2ε)

∣∣S p(Z )
∣∣2κx0 (Z )d Z + O(p−∞) . (5.23)

By (2.20) we have∫
B(0, 2ε)

pne−2p|Z |2a κx0 (Z ) d Z =
∫

B(0, 2ε
√

p)
e−2p|Z |2a κx0 (Z/

√
p) d Z

=
∫
R2n

e−∑n
j=1

1
2 p a j |Z j |2 d Z + O(p−1) = ∏n

j=1
2π
a j

+ O(p−1) .

(5.24)

Further ∫
R2n

∣∣∣p n
2 e−p|Z |2a Qr (

√
pZ )

∣∣∣2 d Z < ∞ , (5.25)
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and ∫
B(0, 2ε)

∣∣∣p n−k−1
2 e−C0

√
p|Z | (1 + √

p |Z |)2M
∣∣∣2 d Z = O(p−k−1) . (5.26)

From (5.7)–(5.25) we obtain (5.9). The proof of Lemma 5.3 is completed. �
Lemma 5.4. We have as p → ∞

T f,p S p = O(p−∞) uniformly on X \ B(x0, 2ε) . (5.27)

Proof. Due to Lemma 3.1 and (5.8), as p → ∞, we have

T f,p S p(x) =
∫

B(x0,ε)
T f, p(x, x ′)S p(x ′) dvX (x ′) + O(p−∞)

= O(p−∞) ,

(5.28)

uniformly for x ∈ X\B(x0, 2ε). �
Lemma 5.5. As p → ∞, we have∫

X\B(x0,2ε)

∣∣T f,p S p − ρ f (x0)S p
∣∣2 dvX = O(p−∞) . (5.29)

Proof. This follows immediately from (5.8) and Lemma 5.4. �
Lemma 5.6. For p � 1, we have∫

B(x0,2ε)

∣∣T f,p S p − ρ f (x0)S p
∣∣2 dvX � C2δ2‖S p‖2

L2 . (5.30)

Proof. We have PpSp = Sp, since S p ∈ Ker(Dp). Thus, Tf, pSp = Pp(fSp). Hence,

(T f,p S p)(x) =
∫

X
Pp(x, x ′) f (x ′)S p(x ′) dvX (x ′) .

Let us split

(T f,p S p)(x) − (ρ f (x0)S p)(x) = gp(x) + h p(x), (5.31)

where

gp(x) :=
∫

X
Pp(x, x ′)

[
f (x ′) − ρ f (x0)

]
S p(x ′) dvX (x ′),

h p(x) :=
∫

X
Pp(x, x ′)ρ f (x0)S p(x ′) dvX (x ′) − (ρ f (x0)S p)(x).

Set

Rp,1,x0 (Z , Z ′) := Pp,x0 (Z , Z ′)κx0 (Z ′) − pn(J0Pp,x0 )(
√

pZ ,
√

pZ ′).

By (2.26) we have∣∣Rp,1,x0 (Z , Z ′)
∣∣ � C pn− 1

2 (1 + √
p |Z | + √

p |Z ′|)M e−C0
√

p |Z−Z ′| + O(p−∞). (5.32)
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Set

I1,p(Z ) =
∫

B(0,2ε)
Rp,1,x0 (Z , Z ′)ρ f (x0)S p(Z ′)κ(Z ′) d Z ′,

S p
0 = √

det |J x0 |p
n
2 e−p|Z |2a u0,

I2,p(Z ) =
∫

B(0,2ε)
pn(J0,x0P)(

√
pZ ,

√
pZ ′)ρ f (x0)(S p − S p

0 )(Z ′) d Z ′.

(5.33)

We have

h p(Z ) = I1,p(Z ) + I2,p(Z ) + ρ f (x0)
(
S p − S p

0

)
(Z ′) + O(p−∞). (5.34)

Estimates (5.7) and (5.32) entail∣∣I1,p(Z )
∣∣ � C p

n−1
2 (1 + √

p |Z |)2M e−C0
√

p |Z | + O(p−∞) . (5.35)

By (5.7), ∣∣I2,p(Z )
∣∣ � p

n−1
2 e−C

√
p |Z | . (5.36)

By (5.7), (5.25), (5.34)–(5.36), we obtain as p → ∞,(∫
B(x0,2ε)

|h p(x)|2 dvX (x)

) 1
2

�
(∫

B(0,2ε)
|I1,p(Z )|2 dvX (Z )

) 1
2

+ O(p−∞)

+
(∫

B(0,2ε)
|I2,p(Z )|2 dvX (Z )

) 1
2

+
(∫

B(0,2ε)

∣∣ρ f (x0)
(
S p − S p

0

)
(Z )

∣∣2 dvX (Z )

) 1
2

= O(p− 1
2 ) .

(5.37)

Moreover, for gp from (5.31), we get by (5.3) that for Z ∈ Tx0 X , |Z| ≤ 2ε we have∣∣gp(Z )
∣∣ � δ

∫
B(0,4ε)

g̃(Z , Z ′) dvX (Z ′) + O(p−∞),

where

g̃(Z , Z ′) = (
pne−C

√
p|Z−Z ′|(1 + √

pZ + √
pZ ′)M

)
p

n
2 e−p|Z |2a (1 + √

p|Z ′|)M ′
,

hence ∣∣gp(Z )
∣∣ � Cδ

(
p

n
2 e−C

√
p |Z | + O(p−∞)

)
. (5.38)

From (5.9) and (5.38), we infer∫
B(x0,2ε)

|gp(x)|2 dvX (x) � C2
1δ

2‖S p‖2
L2 . (5.39)

Now (5.31), (5.37), and (5.39) yield the desired estimate (5.30). �
Lemmas 5.5 and 5.6 yield (5.5). By (2.20), (5.7), and (5.33), similar to (5.24), we have for

p → ∞, ∥∥ρ f (x0)S p
∥∥2

L2 =
∫

B(0,ε)

∣∣ f (x0)ρS p(Z )
∣∣2κ(Z ) d Z

=
∫

B(0,ε/2)

∣∣ f (x0)S p
0 (Z )

∣∣2 d Z + O(p−1)

= | f (x0)u0|2
∫

B(0,ε/2)
pndetC|J x0 |e−2p|Z |2a d Z + O(p−1)

= ‖ f ‖2
∞ + O(p−1).

(5.40)

This completes the proof of Proposition 5.2. �
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Remark 5.7. If we improve the regularity of the section f in Theorem 5.1, the convergence speed
in (5.2) improves accordingly (by improving Lemma 5.6):

(a) If f ∈ C 1(X, End(E)), then there exists C > 0 such that

‖ f ‖∞ − C√
p

� ‖T f,p‖ � ‖ f ‖∞.

The estimate does not improve even if f is a function.
(b) Assume that in Theorem 5.1, (X, J, ω) is Kähler, (L, hL, ∇L) → X is a prequantum

holomorphic line bundle (where ∇L is the Chern connection) satisfying (2.2) and (E, hE, ∇E) → X
is a holomorphic Hermitian vector bundle with the Chern connection ∇E. The Kähler assumption
implies that J1(Z, Z′) = 0 (cf. (4.1.102) in Ref. 15). Using (2.20) and∫

Cn

e− π
2 p|Z |2 Z j d Z = 0,

we deduce that for f ∈ C 2(X, End(E)) there exists C > 0 such that

‖ f ‖∞ − C

p
� ‖T f,p‖ � ‖ f ‖∞.

For f ∈ C 1(X, End(E)), we have the same estimate as in (a), which cannot be improved.

Remark 5.8. Theorem 5.1 holds also for large classes of non-compact manifolds, see Sec. 7.5
in Ref. 15, Sec. 5 in Ref. 16, and Sec. 2.8 in Ref. 17.

VI. HOW FAR IS Tf, p FROM BEING SELF-ADJOINT OR MULTIPLICATION OPERATOR

In this section, we continue to work in the setting of Sec. II A. Let (X, ω) be a 2n-dimensional
connected compact symplectic manifold, and (L, hL, ∇L) → X be a prequantum line bundle satisfying
(2.2). We assume in the following that the vector bundle E is trivial of rank one (E = C). To avoid
lengthy formulas, let us denote

Hp = ker(Dp). (6.1)

Let C 0(X ) denote the space of continuous complex-valued functions on X. We shall denote by
C 0(X,R) the space of continuous real-valued functions on X. For f, g ∈ C 0(X ) set〈

f, g
〉 = ∫

X
f (x)g(x)

ωn

n!
· (6.2)

Let L2(X) be the completion of C 0(X ) with respect to the norm ‖ f ‖ = √〈 f, f 〉 and let L2(X,R)
be the subspace of L2(X) that consists of (equivalence classes of) real-valued functions. By a slight
abuse of notation, we denote by C ⊂ C 0(X ) the one-dimensional subspace of C 0(X ) that consists of
constant functions. Note: L2(X,R) andC are closed subspaces of L2(X). For f ∈ L2(X) the orthogonal
projection of f onto C (with respect to the inner product 〈 · , · 〉) is the constant function

�
X

f
ωn

n !
:=

〈
f, 1
〉〈

1, 1
〉 = 1

vol(X )

∫
X

f
ωn

n!
with vol(X ) =

∫
X

ωn

n!
, (6.3)

and the orthogonal projection of f onto L2(X,R) (with respect to the inner product Re〈 · , · 〉) is Re(f).
Denote by ( · , · )HS the Hilbert-Schmidt inner product on End(Hp): for A, B ∈ End(Hp)

(A, B)H S = Tr(AB∗),

where B* is the adjoint of B. Note that the operator norm does not exceed the Hilbert-Schmidt norm.
The inner product on the underlying real vector space EndR(Hp) is given by

(A, B)R = Re Tr(AB∗).

Denote by Herm(Hp) the subspace of EndR(Hp) that consists of self-adjoint (Hermitian) operators.
Denote byCIdHp the subspace of End(Hp) that consists of constant multiples of the identity operator.
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We shall use dist(v, V ) to denote the distance between an element v of a normed vector space
and a closed subspace V . For example, for f ∈ L2(X)

dist( f,C)2 =
∫

X
| f |2 ωn

n!
− 1

vol(X )

∣∣∣∣ ∫
X

f
ωn

n!

∣∣∣∣2 · (6.4)

It is clear that for any f ∈ L∞(X) we have

T ∗
f,p = T f ,p , (6.5)

hence for f ∈ L∞(X,R) the operator Tf, p is self-adjoint. We denote Mf the pointwise multiplication
by f. On the other hand, if f ∈ L∞(X) is constant, then Tf, p = Mf.

Theorem 6.1, stated below, addresses, informally speaking, the following issues: given f ∈
C 0(X ),

(1) how far f is from being real-valued should be related to how far Tf, p is from being self-adjoint
(in EndR(Hp)),

(2) how far f is from being constant should be related to how far Tf, p is from being a constant
multiple of the identity operator (in End(Hp)).

Theorem 6.1. Let f ∈ L∞(X). Write

p−n
[

dist(T f,p , Herm(Hp))
]2 = [

dist( f, L2(X,R))
]2 + R1,p ,

p−n
[

dist(T f,p ,CIdHp )
]2 = [

dist( f,C)
]2 + R2,p .

(6.6)

Then Ri, p , i = 1, 2 , satisfy as p → ∞

Ri,p =

⎧⎪⎪⎨⎪⎪⎩
o(1) , uniformly on f ∈ A 0

∞ ,

O(p−1/2) , uniformly on f ∈ A 1
∞ ,

O(p−1) , uniformly on f ∈ A 2
∞ .

(6.7)

Proof. We consider first the case i = 1. Let A ∈ End(Hp). The orthogonal projection of A onto
Herm(Hp) is 1

2 (A + A∗). We have[
dist(A, Herm(Hp))

]2 = (
1
2 (A − A∗), 1

2 (A − A∗)
)
R

= 1
4 Tr

[
(A − A∗)(A∗ − A)

]
= 1

4

[− Tr(A2) − Tr((A∗)2) + Tr(AA∗) + Tr(A∗ A)
]
.

(6.8)

We apply the previous formula for A = Tf, p by using Theorem 3.8 and (6.5), we get as p → ∞

p−n
[

dist(A, Herm(Hp))
]2 = 1

4

∫
X

(− f 2 − f
2 + 2 f f

) ωn

n !
+ R1,p

=
∫

X

∣∣Im( f )
∣∣2 ωn

n !
+ R1,p,

(6.9)

where R1, p satisfies (6.7). This proves the assertion of the theorem for i = 1, since[
dist( f, L2(X,R))

]2 =
∫

X

∣∣ f − Re( f )
∣∣2 ωn

n !
. (6.10)

We consider now the case i = 2. For A ∈ End(Hp), the orthogonal projection of A onto CIdHp is
αIdHp , and α = 1

dimHp
Tr(A). Therefore,[

dist(A,CIdHp )
]2 = (A − αIdHp , A − αIdHp ) = Tr

[
(A − αIdHp )(A∗ − ᾱIdHp )

]
= Tr(AA∗ − αA∗ − ᾱA + αᾱIdHp )

= Tr(AA∗) − 1

dimHp
Tr(A) Tr(A∗),

(6.11)
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since Tr(IdHp ) = dimHp. Note that by the Atiyah-Singer index formula (2.10), we have

dimHp = pn vol(X ) + O(pn−1). (6.12)

We apply formula (6.11) for A = Tf, p by using Theorem 3.8, (6.4), (6.5), and (6.12) to get

p−n
[

dist(T f,p ,CIdHp )
]2 =

∫
X

| f |2 ωn

n !
− 1

vol(X )

∣∣∣∣ ∫
X

f
ωn

n !

∣∣∣∣2 + R2,p

= [
dist( f,C)

]2 + R2,p,

(6.13)

where R2, p satisfies (6.7) as p → ∞. �
It is also intuitively clear that how far f is from being constant (i.e., how far df is from zero)

should be related to how far Tf, p is from MfPp. This is addressed in the next proposition. The main
point here is to estimate the Hilbert-Schmidt norm of the difference Tf, p − MfPp uniformly for
f ∈ C 1(X ).

Proposition 6.2. We suppose that gTX( · , · ) = ω( · , J · ). Let λ > 0 be the lowest positive
eigenvalue of the Laplace operator �gT X acting on functions. Then for any ε > 0, there exists
p0 > 0 such that for any p ≥ p0, f ∈ C 1(X ), we have

p−n‖T f,p − M f Pp‖2
H S � λ−1(1 + ε)‖d f ‖2

L2 . (6.14)

Proof. Denote for simplicity � = �gT X . The Hodge decomposition of f has the form f = f1
+ f2, where f1 ∈ Ker(�) is the harmonic component of f and f2 ∈ (Ker �)⊥. We have Ker(�) = C
and f1 =

�
X

f dvX . Moreover,

‖ f2‖2
L2 � λ−1‖d f2‖2

L2 = λ−1‖d f ‖2
L2 . (6.15)

Now

T f,p − M f Pp = T f2,p − M f2 Pp . (6.16)

As Tr[T f2,pT ∗
f2,p] > 0, we get by using (2.12) and (6.16) that

‖T f,p − M f Pp‖2
H S = Tr

[
T f2,pT ∗

f2,p + f2 Pp f 2 − T f2,p f 2 − f2 Pp f 2 Pp

]
= Tr

[
Pp f2 f 2 Pp − T f2,pT ∗

f2,p

]
� Tr

[
Pp| f2|2 Pp

]
=

dp∑
i=1

‖ f2SP
i ‖2

L2 =
∫

X
| f2(x)|2 Tr[Pp(x, x)]dvX (x).

(6.17)

By the argument after (2.29), for any ε > 0, there exists p0 > 0 such that for p ≥ p0, we have∫
X

| f2(x)|2 Tr[Pp(x, x)]dvX (x) � (1 + ε)pn‖ f2‖2
L2 . (6.18)

By (6.15), (6.17), and (6.18), we get (6.14). �
Remark 6.3. The results in this paper hold in particular in the case of the Kähler quantization. Let

us assume that (X, J, gTX) is a compact Kähler manifold (i.e., J is integrable and gT X (u, v) = ω(u, Jv)
for u, v ∈ T X ). Assume moreover that the bundles L and E are holomorphic and ∇L, ∇E are the Chern
connections. Then by Remark 2.1, the quantum space are the spaces of global holomorphic sections
of Lp ⊗ E. We can even dispense of the Kähler condition gT X (u, v) = ω(u, Jv) for u, v ∈ T X , see
Remark 2.1.

To illustrate the kind of results, we obtain in the Kähler case let us formulate the following
special case of Proposition 6.2.
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Proposition 6.4. Assume that (X, J, gTX) is a compact Kähler manifold and the bundles L and E
are holomorphic. Let λ > 0 be the lowest positive eigenvalue of the Kodaira Laplace operator ∂

∗
∂

acting on functions. Then for any ε > 0, there exists p0 > 0 such that for any p ≥ p0, f ∈ C 1(X ),
we have

p−n‖T f,p − M f Pp‖2
H S � λ−1(1 + ε)‖∂ f ‖2

L2 . (6.19)
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