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ABSTRACT. We show that normalized currents of integration along the common zeros of
random m-tuples of sections of powers of m singular Hermitian big line bundles on a
compact Kidhler manifold distribute asymptotically to the wedge product of the curvature
currents of the metrics. If the Hermitian metrics are Holder with singularities we also
estimate the speed of convergence.
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1. INTRODUCTION

Random polynomials or more generally holomorphic sections and the distribution of
their zeros represent a classical subject in analysis [BP, ET, H, K], and they have been
more recently used to model quantum chaotic eigenfunctions [BBL, NV].

This area witnessed intense activity recently [BL, BS, BMO, DMS, DS, S, SZ, ST], and
especially results about equidistribution of holomorphic sections in singular Hermitian
holomorphic bundles were obtained [CM1, CM2, CM3, CMM, DMM] with emphasis on
the speed of convergence. The equidistribution is linked to the Quantum Unique Ergod-
icity conjecture of Rudnick-Sarnak [RS], cf. [HS, Mar].
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The equidistribution of common zeros of several sections is particularly interesting.
Their study is difficult in the singular context and equidistribution with the estimate of
convergence speed was established in [DMM] for Holder continuous metrics.

In this paper we obtain the equidistribution of common zeros of sections of m singular
Hermitian line bundles under the hypothesis that the metrics are continuous outside
analytic sets intersecting generically. We will moreover introduce the notion of Holder
metric with singularities and establish the equidistribution with convergence speed of
common Zeros.

Let (X,w) be a compact Kahler manifold of dimension »n and dist be the distance on X
induced by w. If (L, h) is a singular Hermitian holomorphic line bundle on X we denote
by ¢ (L, h) its curvature current. Recall that if ¢/ is a holomorphic frame of L on some
open set U C X then |er|? = 2%, where ¢ € L} (U) is called the local weight of the
metric h with respect to e, and ¢, (L, h)|y = dd°¢. Here d = 9 + 9, d° = 51(0 — 0). We
say that h is positively curved if ¢;(L, h) > 0 in the sense of currents. This is equivalent to
saying that the local weights ¢ are plurisubharmonic (psh).

Recall that a holomorphic line bundle L is called big if its Kodaira-litaka dimension
equals the dimension of X (see [MM1, Definition 2.2.5]). By the Shiffman-Ji-Bonavero-
Takayama criterion [MM1, Lemma 2.3.6], L is big if and only if it admits a singular metric
h with ¢, (L, h) > ew for some ¢ > 0.

Let (Lg, hi), 1 < k < m < n, be m singular Hermitian holomorphic line bundles on
(X,w). Let H (02) (X, L?) be the Bergman space of L2-holomorphic sections of L := L;”

relative to the metric hy, := h;* induced by h;, and the volume form w" on X, endowed
with the inner product

) (S, 50, = / (S, 8w, 8,5 € HY (X, I).
X

Set ||S|1,, = (S, S)kp> dip = dim Hiy (X, L}) — 1. For every p > 1 we consider the multi-
projective space

(2) X, := PH{y (X, LY) x ... x PHpy (X, L?)
equipped with the probability measure ¢, which is the product of the Fubini-Study vol-
umes on the components. If S € H°(X, L!) we denote by [S = 0] the current of integra-
tion (with multiplicities) over the analytic hypersurface {S = 0} of X. Set

s, =0] :=[sp1 = 0] A...A[Spm = 0], fors, = (sp1,...,8m) € X,

whenever this is well-defined (cf. Section 3). We also consider the probability space

o

(Q000) = [ [(Xp,05) .

p=1
Let us recall the following:
Definition 1.1. We say that the analytic subsets A, ..., A,,, m < n, of a compact complex

manifold X of dimension n are in general position if codim A;, N ... N A;, > k for every
1<k<mand1l < <...<ip <m.
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Here is our first main result.

Theorem 1.2. Let (X,w) be a compact Kdhler manifold of dimension n and (L, hy), 1 <
k < m < n, be m singular Hermitian holomorphic line bundles on X such that hy is
continuous outside a proper analytic subset 3(hy) C X, ¢(Lk, hg) > cw on X for some

e >0, and X(hy), ..., % (hy,) are in general position. Then for o.-a.e. {s,},>1 € €2, we have
in the weak sense of currents on X,
1
— [Sp = O] — C1(L1,h1> VAP C1<Lm,hm) asp— oo.
pm

In order to prove this theorem we show in Theorem 4.2 that the currents pim s, = 0]
distribute as p — oo like the wedge product of the normalized Fubini-Study currents of
the spaces H ?2)(X , L?) defined in (10) below. Then in Proposition 3.1 we prove that the
latter sequence of currents converges to ¢1(Ly, h1) A ... A (Lo, hin)-

Our second main result gives an estimate of the speed of convergence in Theorem 1.2
in the case when the metrics are Holder with singularities.

Definition 1.3. We say that a function ¢ : U — [—00,00) defined on an open subset
U C X is Holder with singularities along a proper analytic subset > C X if there exist
constants ¢, 0 > 0 and 0 < v < 1 such that

c dist(z, w)”

3 — <

) [9(z) = olw)] < min{dist(z, X)), dist(w, X) }¢

holds for all z,w € U \ X. A singular metric h on L is called Holder with singularities along
a proper analytic subset > C X if all its local weights are Holder functions with singularities
along X..

Holder singular Hermitian metrics appear frequently in complex geometry and pluri-
potential theory. Let us first observe that metrics with analytic singularities [MM1, Def-
inition 2.3.9], which are very important for the regularization of currents and for tran-
scendental methods in algebraic geometry [BD, CM3, D3, D4, D6], are Holder metrics
with singularities. The class of Holder metrics with singularities is invariant under pull-
back and push-forward by meromorphic maps. In particular, this class is invariant under
birational maps, e. g. blow-up and blow-down. They occur also as certain quasiplurisub-
harmonic upper envelopes (e.g. Hermitian metrics with minimal singularities on a big
line bundle, equilibrium metrics, see [BB, DMM, DMN], especially [BD, Theorem 1.4]).

Theorem 1.4. In the setting of Theorem 1.2 assume in addition that h, is Holder with
singularities along ¥(hy) and set ¥ := ¥(hy) U ... U X(h,,). Then there exist a constant
¢ > 0 depending only on m and a constant ¢ = ¢(X, Ly, hq, ..., Ly, hy) > 0 with the
following property: For any sequence of positive numbers {\,},>1 such that

A
liminf —~ > (1 +&n)c,
p—oc logp

there are subsets E,, C X,, such that for p large enough,
(@ 0,(E,) < ep*exp(=Ny/c),
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(b) if s, € X, \ E, we have

(<pim[sp =0]— Zn\la(Lk, hk),¢>‘ < c( llogdlst(supp dd°¢, )D 6]l

for any form ¢ of class €? such that dd°¢ = 0 in a neighborhood of 3.

Here supp ¢’ denotes the support of the form . Let P, be the Bergman kernel function
of the space H ?2) (X, LP) defined in (4). The proof of Theorem 1.4 uses the estimate for P,
obtained in Theorem 2.1 in the case when the metric i on L is Holder with singularities.

One can also apply Theorem 2.1 to study the asymptotics with speed of common zeros
of random n-tuples of sections of a (single) big line bundle endowed with a Hélder Her-
mitian metric with isolated singularities. Let (L, h) be a singular Hermitian holomorphic
line bundle on (X,w) and H(OQ) (X, L) be the corresponding spaces of L2-holomorphic
sections. Consider the multi-projective space

endowed with the product probability measure o, induced by the Fubini-Study volume

on PH{, (X, L?), and let

: H p? P

p=1
Ifs, = (sp1,.--,8m) € X, welet [s, = 0] = [s,1 = 0] A... A[sp, = 0], provided this
measure is well-defined.

Theorem 1.5. Let (X,w) be a compact Kdhler manifold of dimension n and (L,h) be a
singular Hermitian holomorphic line bundle on X such that h is Holder with singularities
in a finite set ¥ = {z1,...,2;} C X, and ¢;(L,h) > cw for some € > 0. Then there exist
C' >0, po € N depending only on (X,w, L, h), and subsets E, C X such that:

(@) o)(E,) < Cp?;

(b) For every p > py, every s, € X, \ E,, and every function y of class € on X,

[ (G =0-atn)

In particular, this estimate holds for o/ _-a.e. sequence {s,},>1 € §¥ provided that p is large
enough.

log p
<=2 Il

This paper is organized as follows. In Section 2 we prove a pointwise estimate for
the Bergman kernel function in the case of Holder metrics with singularities. Section
3 is devoted to the study of the intersection of Fubini-Study currents and to a version
of the Bertini theorem. In Section 4 we consider the Kodaira map as a meromorphic
transform and estimate the speed of convergence of the intersection of zero-divisors of m
bundles. We use this to prove Theorem 1.2. Finally, in Section 5 we prove Theorem 1.4
and Theorem 1.5.

Acknowledgment. We thank Vincent Guedj for useful discussions regarding this paper.
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2. ASYMPTOTIC BEHAVIOR OF BERGMAN KERNEL FUNCTIONS

In this section we prove a theorem about the asymptotic behavior of the Bergman
kernel function in the case when the metric is Holder with singularities.

Let (L,h) be a holomorphic line bundle over a compact Kiahler manifold (X,w) of
dimension n, where h is a singular Hermitian metric on L. Consider the space H (02) (X, LP)
of L?-holomorphic sections of L” relative to the metric h? := h®? induced by h and
the volume form w™ on X, endowed with the natural inner product (see (1)). Since
H (02) (X, LP) is finite dimensional, let {S };.lio be an orthonormal basis and denote by P,
the Bergman kernel function defined by

dp

) Py(x) =Y IS} (@)li. 1S5 (@)l := (S7(2), SF(@))w, @ € X.

=0
Note that this definition is independent of the choice of basis.

Theorem 2.1. Let (X,w) be a compact Kdhler manifold of dimension n and (L,h) be a
singular Hermitian holomorphic line bundle on X such that ¢,(L,h) > cw for some € > 0.
Assume that h is Holder with singularities along a proper analytic subset ¥ of X and with
parameters v, p as in (3). If P, is the Bergman kernel function defined by (4) for the space
H(°2) (X, LP), then there exist a constant ¢ > 1 and p, € N which depend only on (X,w, L, h)
such that forall z € X \ X and all p > p,

2n/v
() < Gerr

5 =
© — dist(z, X2)2ne/v

<P

1
c P

Recall that by Theorem 5.3 in [CM1] we have lim,, % log P,(z) = 0 locally uniformly
on X \ ¥ for any metric h which is only continuous outside of . Theorem 2.1 refines
[CM1, Theorem 5.3] in this context, and it is interesting to compare it to the asymptotic

expansion of the Bergman kernel function in the case of smooth metrics [B, C, HM, MM1,
MM2, T, Z].

Proof. The proof follows from [CM1, Section 5], which is based on techniques of Demailly
[D1, Proposition 3.1], [D6, Section9]. Let z € X and U, C X be a coordinate neighbor-
hood of = on which there exists a holomorphic frame ¢, of L. Let ¢, be a psh weight of
h on U,. Fix ry > 0 so that the (closed) ball V' := B(z,2r,) € U, and let U := B(z,19).
By [CM1, (7)] there exist constants ¢; > 0, py € N so that

1 1 1 —2n
_logey <~ log Py(2) < M +2 (max Vo — 7%(2))

p P p B(z,r)

holds for all p > py, 0 < r < rg and z € U with ¢,(z) > —c0.
For z € U \ ¥ and r < min{dist(z, X), 0} we have since 1), is Holder that

v

cr
_ <
max Yo Ya(2) < (dist(z, %) —7)*”
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where ¢ > 0 depends only on . Taking r = dist(z, ¥)/Vp~/* < dist(z, X) /2 we obtain
—logc; <log Py(2) < loge; —2nlogr + 22 epr” dist(z, )¢
= ¢o+ 2nlog (dist(z, )~ o/vpllvy

This holds for all z € U \ ¥ and p > py, with constants 7, pg, co, ¢; depending only on .
A standard compactness argument now finishes the proof. O

3. INTERSECTION OF FUBINI-STUDY CURRENTS AND BERTINI TYPE THEOREM

In this section we show that the intersection of the Fubini-Study currents associated
to line bundles as in Theorem 1.2 is well-defined. Moreover, we show that the sequence
of wedge products of normalized Fubini-Study currents converges weakly to the wedge
product of the curvature currents of (L, hy). We then prove that almost all zero-divisors
of sections of large powers of these bundles are in general position in the sense of Defi-
nition 1.1.

Let V be a vector space of complex dimension d + 1. If V' is endowed with a Hermitian
metric, then we denote by w,, the induced Fubini-Study form on the projective space
P(V) (see [MM1, pp. 65,212]) normalized so that w?_ is a probability measure. We also
use the same notations for P(V'*).

We keep the hypotheses and notation of Theorem 1.2. Namely, (L, hy), 1 < k <
m < n, are singular Hermitian holomorphic line bundles on the compact Kahler manifold
(X, w) of dimension n, such that & is continuous outside a proper analytic subset 3 (h) C
X, ¢1(Lg, hy) > ew for some ¢ > 0, and X(hy),...,%(h,,) are in general position in the
sense of Definition 1.1.

Consider the space H{y (X, L}) of L*-holomorphic sections of Lj endowed with the

inner product (1). Since ¢;(Ly, hy) > ew, it is well-known that H (02) (X, L?) is nontrivial
for p sufficiently large, see e. g. Proposition 4.7. Let

dyp -= dim Hipy (X, L}) — 1.
The Kodaira map associated to (L%, hy,) is defined by
(6)  Prp: X - Gldpp, Hpy(X, L})), Puplz) = {s € H (X, L}) =0},

where G(dy,, H{y (X, L})) denotes the Grassmannian of hyperplanes in [, )(X ,L7) (see

[MM1, p.82]). Let us identify G(dy,, Hpy (X, L})) with P(H{, (X, L})*) by sending a hy-
perplane to an equivalence class of non-zero complex linear functionals on H(Q)(X L)

having the hyperplane as their common kernel. By composing ®;, with this identifica-
tion, we obtain a meromorphic map

(7) Dpp: X --> P(Hpyy (X, LY)").
To get an analytic description of @, let
8) S e Hiy (X, LP), j=0,... dyy,

be an orthonormal basis and denote by Pkp the Bergman kernel function of the space

H{, (X, L}) defined as in (4). This basis gives identifications H{, (X, L) ~ C%»*! and
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P(Hpyy (X, Ly)*) =~ P%». Let U be a contractible Stein open set in X, let ¢, be a local

i k s Wri P = gTPe P W s:P i
holomorphic frame for L; on U, and write S = s7e”, where s'” is a holomorphic

function on U. By composing ®;, given in (7) with the last identification, we obtain a
meromorphic map &y, : X --» P%~» which has the following local expression

9 Oy p(w) = [s7(x) ... 1 sy” ()] forw € U.

It is called the Kodaira map defined by the basis {S]'-“’p };’Qg.
Next, we define the Fubini-Study currents v, of Hiy) (X, L}) by

di,p

1 C
(10) Tplo = 5 ddlog Y |55,
=0

where the open set U and the holomorphic functions s?’p are as above. Note that 7, is a
positive closed current of bidegree (1,1) on X, and is independent of the choice of basis.
Actually, the Fubini-Study currents are pullbacks of the Fubini-Study forms by Kodaira
maps, which justifies their name.

Let w,, be the Fubini-Study form on P%~». By (9) and (10), the currents ~;, can be
described as pullbacks

1D Vep = @va(wFS), 1<k <m.

We introduce the psh function

dk,p

1 i 1
(12) Uy, = — log 8572 = uy, + — log P., onU,
D 2p ]ZO J 2p P

where v, is the weight of the metric h; on U corresponding to ey, so |ex|n, = e “*. Clearly,
by (10) and (12), dduy,, = iyk,p. Moreover, note that by (12), log Py, € L'(X,w") and

1 1
(13) ]—?’yk’p = Cl(Lk7 hk) + 2_p ddc log Pk,p

as currents on X. By [CM1, Theorem 5.1, Theorem 5.3] (see also [CM1, (7)]) there exist
c¢>0,po €N, suchthatif p > py, 1 <k <mandz e X\ X(hy), then P, ,(z) > c. By (12)
it follows that

I
(14) i p(2) > un(z) + ‘;ipc L zeU p>po, 1<k<m.

For p > 1 consider the following analytic subsets of X:
Sipi={r€ X1 S{P@) =0, 0<j<dypf, 1<k <m.

Hence Y, is the base locus of H{, (X, L}), and ¥, N U = {u,, = —oc}. Note also that
Y(hg) NU D {uy = —oo} and by (14) we have X, C X(hy) for p > py.
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Proposition 3.1. In the hypotheses of Theorem 1.2 we have the following:
(D For all p sufficiently large and every J C {1,...,m} the analytic sets ¥, k € J, X(hs),
teJ :={1,...,m}\ J, are in general position.

(ii) If p is sufficiently large then the currents

/\ Vep A /\ c1(Ly, hy)

keJ leJ’

are well defined on X, for every J C {1,...,m}.
(iii) # Yip Ao e AYmp = 1L, ha) Ao A er(Lim, hin) as p — oo, in the weak sense of
currents on X.

Proof. As noted above we have by (14) that 3;, C X(hs) for all p sufficiently large.
Since X(hq), ..., 3(h,,) are in general position this implies (7). Then (i7) follows by [D5,
Corollary 2.11].

(i17) Let U C X be a contractible Stein open set as above, uy,, u; be the psh functions
defined in (12), so dd“u;, = c1(Lg, hy) and dduy, = %%p on U. By [CM1, Theorem
5.1] we have that ; log P, — 0 in L'(X,w"), hence by (12), uy, — w in Lj,.(U), as
p — oo, for each 1 < k£ < m. Recall that by (14), ur, > up — % holds on U for all
p sufficiently large and some constant C' > 0. Then [FS, Theorem 3.5] implies that
dd®uyp A ... A ddUpy, p, — dduq A ... A ddu, weakly on U as p — oo. O

We will need the following version of Bertini’s theorem. The corresponding statement
for the case of a single line bundle is proved in [CM1, Proposition 4.1].

Proposition 3.2. Let L, — X, 1 < k < m < n, be holomorphic line bundles over a
compact complex manifold X of dimension n. Assume that:

(D) Vj. is a vector subspace of H°(X, Lj) with basis Sk, ..., Ska,, base locus BsVj, :=

{Sko="...= Ska, =0} C X, such that dj, > 1 and the analytic sets Bs V1, ...,BsV,, are in
general position in the sense of Definition 1.1.

() Z(ty) ={r e X : Z;‘lio trjSk(z) =0}, where tj, = [tyo : ... tra,] € P

(iii)) v = py X ... X p, is the product measure on P x ... x P4 where yu is the

Fubini-Study volume on Pd.
Then the analytic sets Z(t1),...,Z(t,) are in general position for v-a.e. (ti,...,t,) €
Ph x ... x Pdm,

Proof If 1 <} < ... <l <mletwy, 4, =, x...x w, be the product measure on
P x ... x P%., For 1 < k < m consider the sets

Up={(ty,.. . t;,) EP" x ... xP% : dim Z(t;,)N...NZ(t,)NA; <n—k—j},

where 1 < [} < ... <y <m,j=0and A4y =0, orl < j < m-—Fkand 4; =

BsV;, N...NBsV;, forsome i, < ... <id;in{1,...,m}\ {l,..., L}
The proposition follows if we prove by induction on £ that

v, (Ug) =1
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for every set U, with 1 <[} < ... <[, <m, 0 < j <m—k and A; as above. Clearly,
it suffices to consider the case {l1,...,lx} = {1,...,k}. To simplify notation we set v, :=

V1. k-

Letk=1.1fj=0, Ay =0,s0 Uy = {t; € P" : dim Z(¢;) < n — 1} = P%. Assume next
that 1 < j <m— 1 and write A; = |J', D, U B, where D are the irreducible components
of A; of dimension n — j and dim B < n — j — 1. We have that {¢t;, € P : D, C Z(t1)}
is a proper linear subspace of P%. Indeed, otherwise D; C BsVj, so dim A; N BsV; =
n — j, which contradicts the hypothesis that BsV},...,BsV,, are in general position. If
t; € P4\ U, then dim Z(t,) N A; > n — j. Since Z(t1) N A; is an analytic subset of A;, it
follows that D; € Z(t,) N A; for some [, hence P% \ U, = JY {t, € P : D, € Z(t)}.
Therefore y, (P4 \ Uy) = 0.

We assume now that v, (Uy) = 1 for any set Uy, as above. Let

Uppr = {(t1, .. tgs1) EPU X xPW+ o dim Z ()N .0 Z(t)NA; <n—k—1—3},

where 0 < j <m—k—1, Ay =0,0or A; =BsV; N.. NBsV;, with k+2 <4y < ... < iy <m.
Consider the set U = U’ N U”, where

U={(t;,....,tx) €EP" x ... xP% : dim Z(t;,)N...N Z(ty) N A; <n —k — j},

U= {(t,...,tp) EPUx ... xP%: dim Z(t;)N...NZ(t,)NBs Vo NA; <n—k—j—1}.

By the induction hypothesis we have v, (U’) = v4(U") = 1, so v(U) = 1. To prove that
Vi+1(Ugs1) = 1 it suffices to show that

Veri(W) =0, where W := (U x P%+1)\ Up,,.
To this end we fix t := (¢,...,tx) € U, we let
Z@t):=Z(t)N...0Z (), W) = {tepr €PU : dim Z() N A;N Z(tpyr) > n—k — j},

and prove that p, (W (t)) = 0.

Since t € U C U’ we can write Z(t) N A; = Ufi . D1 U B, where D; are the irreducible
components of Z(t) N A; of dimensionn —k—jand dimB <n—k—j—1.If t;,, € W(?)
then Z(t) N A; N Z(tx41) is an analytic subset of Z(t) N A; of dimension n — k — j, so
D, C Z(t)NA; N Z(ty41) for some [. Thus

N
W(t) = F(t), where Fi(t) := {tys1 € P%: D} C Z(ty41)}-
=1

If D, C BsViyq then dim Z(t) N A; N Bs V41 = n — k — j, which contradicts the fact
that t € U”. Hence the sections in V},; cannot all vanish on D,;, so we may assume that
Sk+1,de: Z 0 0n D;. We have Fi(t) C {tp41,0 = 0} U H;(t) where

Hy(t) == {[1:tpgr1 0o thgr,de,,) € Pé+1 . Dy Z([1: b1 - bt ]) ) -

For each (tj41,1 -t tig1,dpi—1) € Cd+171 there exists at most one ¢ € C with [1: ¢, :
oot teptde,—1 0 ¢ € Hi(t). Indeed, if ¢ # ¢’ have this property then

Sk+1,0 tteg1,05% 410 + oo+ b tde 15k 1dp -1 + @Ski1,0,, =0 on Dy,
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for a = ¢, (', hence Siy1,4,,, = 0 on Dy, a contradiction. It follows that ju,,(H;(t)) = 0,
so puk+1(F1(t)) = 0. Hence p1 (W (t)) = 0 and the proof is complete. O

We return now to the setting of Theorem 1.2. If {Sj’?’p }jig is an orthonormal basis of
H(Oz) (X, L},), we define the analytic hypersurface Z(t;) C X, for ¢, = [tyo : ... : trq,,] €
Pdr, as in Proposition 3.2 (ii). Let yy,, be the Fubini-Study volume on P%», 1 < k < m,
p>1,andlet y, = 1 X . .. X fim,, be the product measure on P4» x ... x P%m». Applying
Proposition 3.2 we obtain:

Proposition 3.3. In the above setting, if p is sufficiently large then for y,-a.e. (t1,....t,) €
Phr x ... x P4mr the analytic subsets Z(t1),...,Z(t,) C X are in general position, and
Z(ti,) N ...N Z(t;,) has pure dimension n — k foreach 1 <k <m, 1 < iy <...<ix <m.
Proof. Let Vi, := H(02)(X, LYY, so BsVy, = X;,. By Proposition 3.1, ¥ ,,...,%,,, are
in general position for all p sufficiently large. We fix such p and denote by [Z(¢;)] the
current of integration along the analytic hypersurface Z(¢); it has the same cohomology
class as pci(Lyg, hy). Proposition 3.2 shows that the analytic subsets Z(t1), ..., Z(t,,) are
in general position for p,-a.e. (ti,...,t,) € P4» x ... x Pi», Henceif 1 < k < m,
1 <i; <...<ip<m,thecurrent [Z(t;)|A...\[Z(t; )] is well defined by [D5, Corollary
2.11] and it is supported in Z(¢;,) N ... N Z(t;, ). Since ¢;(Lg, hy) > cw, it follows that

/[Z(t“)]/\/\[Z(tlk)]/\wnk:pk/ Cl(Lil,hil)/\.../\Cl(Lik,hik)/\wnk>pk€k/ w".
X X X

So Z(t;,)N...NZ(t;,) # 0, hence it has pure dimension n — k. O

4. CONVERGENCE SPEED TOWARDS INTERSECTION OF FUBINI-STUDY CURRENTS

In this section we rely on techniques introduced by Dinh-Sibony [DS], based on the
notion of meromorphic transform, in order to estimate the speed of equidistribution of
the common zeros of m-tuples of sections of the considered big line bundles towards the
intersection of the Fubini-Study currents. We then prove Theorem 1.2.

4.1. Dinh-Sibony equidistribution theorem. A meromorphic transform /' : X --» Y
between two compact Kahler manifolds (X, w) of dimension n and (Y, wy) of dimension
m is the data of an analytic subset I' C X x Y (called the graph of F') of pure dimension
m + k such that the projections m; : X xY — X and m, : X xY — Y restricted
to each irreducible component of ' are surjective. We set formally F' = 7y o (m|p) .
For y € Y generic (that is, outside a proper analytic subset), the dimension of the fiber
F~Y(y) := m (7 '|r(y)) is equal to k. This is called the codimension of F. We consider two
of the intermediate degrees for F' (see [DS, Section 3.1]):

d(F) ::/ F* W) Aw® and §(F) := / F* (™) Awh
X b
By [DS, Proposition 2.2], there exists r := (Y, wy) such that for every positive closed
current 7' of bidegree (1,1) on Y with ||T|| = 1 there is a smooth (1, 1)-form « which
depends uniquely on the class {7’} and a quasiplurisubharmonic (gpsh) function ¢ such
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that —rwy < a < rwy and dd°¢ — T = «. If Y is the projective space P’ equipped with

the Fubiny-Study form w_,, then we have r(P*,w,,) = 1. Consider the class

Q(Y,wy) :={¢ gqpshonY, dd°¢ > —r(Y,wy)wy} .

A positive measure ;, on Y is called a BP measure if all gpsh functions on Y are integrable
with respect to . When dim Y = 1, it is well-known that y is BP if and only if it admits
locally a bounded potential. The terminology BP comes from this fact (see [DS]).

If 1 is a BP measure on Y and ¢ € R, we let

R(Y,wy,pu) = sup {myawr ¢ € Q(Y,wy), /s@dMZO},
Y

A(Y,wy,p,t) = Sup{u(s0<—t): p € Q(Y,wy), /Ysoduz()}.

Let ®, be a sequence of meromorphic transforms from a compact Kdhler manifold
(X,w) into compact Kahler manifolds (X,,w,) of the same codimension k, where X, is
defined in (2). Let v, be a BP probability measure on X, and v, = [[ 5, v, be the product
measure on €2 := [ ., X,,. For every p > 0 and € > 0 let

Eye) = |J {meXy: (25(6:,) — Ph(1p), 0)| = d(®,)e},

8]l g2 <1

where d,, is the Dirac mass at x,. Note that ®(J,,,) and ®;(v,) are positive closed currents
of bidimension (k, k) on X, and the former is well defined for the generic point z, €
X, (see [DS, Section 3.1]). Now we are in position to state the part which deals with
the quantified speed of convergence in the Dinh-Sibony equidistribution theorem [DS,
Theorem 4.1].

Theorem 4.1 ([DS, Lemma 4.2 (d)]). In the above setting the following estimate holds:

1p(By(€)) < B (Xprps vy )
where 1., := £0(®,) " 1d(®,) — 3R(X,, wy, 1)

4.2. Equidistribution of pullbacks of Dirac masses by Kodaira maps. Let (X,w) be
a compact Kahler manifold of dimension n and (L, hy), 1 < k < m < n, be singular
Hermitian holomorphic line bundles on X such that &, is continuous outside a proper
analytic subset X(hy) C X, ¢1(Lg, h) > ew on X for some ¢ > 0, and X(hy), ..., 2 ()
are in general position. Recall from Section 1 that

X, 1= PH (X, LY) x ... x PHYy (X, L2,) . (Q00) = [[(X5. 00),
p=1
where the probability measure o, is the product of the Fubini-Study volume on each

factor. From now on let p € N be large enough. Fix an orthonormal basis {S]’?’p }%

j—0 as
in (8) and let ®;, : X --» P%~» be the Kodaira map defined by this basis (see (9)).
By (11) we have that ®; w., = 7k ,, Where v, is the Fubini-Study current of the space

H(OQ) (X, L?) as defined in (10).
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We consider now the Kodaira maps as meromorphic transforms from X to PH, (02) (X, LY)
which we denote still by ¢, : X --» ]P’H?Q) (X, LY). Precisely, this is the meromorphic
transform with graph

Trp={(z,5) € X x PHpp (X, L}) : s(z) =0}, 1<k <m.

Indeed, since dim H ?2)(X , L?) > 2 (see e.g. Proposition 4.7 below), there exists, for every
xr € X, asection s € H (02) (X, LY) with s(z) = 0, so the projection I'y , — X is surjective.
Moreover, since L is non-trivial, every global holomorphic section of L} must vanish at
some x € X, hence the projection I';, , — IP’H&) (X, LY) is surjective. Note that

By p(x) = {s € IP’H(%)(X, LYy« s(z) =0}, CI)];’;(S) ={zeX: s(x)=0}.

Let ¢, be the product transform of ¢, ,, ..., ®,,, (see [DS, Section 3.3]). It is the mero-
morphic transform with graph

(15) L= {(z,sp1,. - Spm) € X xXp 1 sp(2) = ... = spm(z) =0} .

By above, the projection 11, : I', — X is surjective. The second projectionII, : I', — X,
is proper, hence by Remmert’s theorem II,(I',) is an analytic subvariety of X,,. Proposition
3.3 implies that II,(I",) has full measure in X,,, so II, is surjective and ¢, is a meromorphic
transform of codimension n — m, with fibers

O M(s,) ={r € X : sp(x) =... = spn(x) =0}, where s, = (sp1,...,5m) €X,.
Considering the product transform of any ®;, ,,,...,®;, ,, 1 < i3 < ... < 4 < m, and
arguing as above it follows that, for s, = (s,1,...,5m) € X, generic, the analytic sets

{sp1 = 0},...,{spm = 0} are in general position. Hence by [D5, Corollary 2.11] the
following current of bidegree (m,m) is well defined on X:

P (ds,) = [sp =0] = [sp1 = 0] A ... A [Spy, = 0] = <I>’{,p(5s,,1) A A @;713(55,””) )

p
The main result of this section is the following theorem.
Theorem 4.2. Under the hypotheses of Theorem 1.2 there exist a constant £ > 0 depending

only on m and a constant ¢ = ¢(X, Ly, hy, ..., Ly, hy,) > 0 with the following property: For
any sequence of positive numbers {\,},>1 with

A
liminf —~ > (1 +&n)c,
p—oo logp

there are subsets £, C X, such that
(@) 0,(E,) < cp*™exp(—A\,/c) for all p large enough;
(b) if s, € X, \ E, we have that the estimate

1 A
_m<[sp:()}_71,p/\"'/\7m,pv¢> Sc_qubH%Q
p p
holds for every (n — m,n — m) form ¢ of class €>.
In particular, for o.-a.e. s € § the estimate from (b) holds for all p sufficiently large.
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Prior to the proof we need to establish some preparatory results. Let
d07p = d17p + ...+ dm,p
be the dimension of X, and =, be the canonical projection of X, onto its k-th factor. Let

Wy = Cp(TWeg + ... + Tryg) , SO 0 = wdovp .
Here w,, denotes, as usual, the Fubini- Study form on each factor PHp, (X, L}), and the
constant ¢, is chosen so that o, is a probability measure on X, thus
do !
dip! .. dmy!

Lemma 4.3. There is a constant ¢, > 0 such that ¢, > ¢, for all p > 1.

(16) ()% =

Proof. Fix p > 1 large enough. For each 1 < k < m, let [, := d,. Using Stirling’s
formula ¢! ~ (¢/e)*\/27( it suffices to show that there is a constant ¢ > 0 such that for all
by oo oylm > 1,

ll logll lm loglm
——+.. .+ ——— ) <c
log (l 4 4 Im) <l1+...+lm+ l1+...+lm>—c

Since the function ¢ — tlogt, t > 0, is convex, we infer that

1 Lh+...+1, Lh+...4+1,
_<lllogl1+...+lmloglm>2 1. log 1. .
m m m

This implies the required estimate with ¢ := log m. O

Following subsection 4.1 we consider two intermediate degrees for the Kodaira maps
D,
d, =d(®,) := / O (wlory Aw™™™ and b, = 6(P,) := / ¥ (wior=ty A @M HL
b b
The next result gives the asymptotic behavior of d, and ¢, as p — co.
Lemma 4.4. We have d, = pm||c1(L1, hi) A ... Ner(Lo, hiy)| and

dkp

/\ Cl(Llahl)H <Cp™t,
1=1,1%k

where C > 0 is a constant dependmg on (Lk, h), 1 <k <m.

Proof. We use a cohomological argument. For the first identity we replace wﬁo”’ by a Dirac
mass 0s, where s := (s1,...,s,) € X, is such that {s; = 0} ,{sm = 0} are in general
position, so the current ®(ds) = [s1 = 0] A ... A [s,,, = 0] is well defined (see Proposition
3.3). By the Poincaré -Lelong formula [MMl, Theorem 2.3.3],

[sk = 0] = pc1 (L, hy) + dd°log |sgp, ,, 1 <k <m.

Since the current ¢;(Ly,h1) A ... A ¢1(Lpy, hy) is well defined (see Proposition 3.1) it
follows that

/CID;((SS)/\w”_m:pm/ 01/\.../\0m/\w”_m:pm/ c1(Ly, b)) N Aey (L, b)) A,
X X X
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where 6, is a smooth closed (1, 1) form in the cohomology class of ¢;(Ly, hy). Thus

d, = / @;(u}g(”l’) Aw"™™ = / D7 (0s) AW = p"|ler(Ly, i) Ao A er(Lons hn) |-
b b

For the second identity, a straightforward computation shows that

do » P 7r dl N P i AT W,
Zd dkp_l) d 7p! 1w k= Fs m=Fs

Using (16) and replacing wﬁgﬁp (resp. wﬁgﬁp‘l) by a generic point (resp. a generic complex
line) in PH, ?2) (X, L?), we may replace ng’P_l by a current of the form

 d
T:= B2 {5y} X o X Dy x . X {sm}]
i Cotoy
Here, Dy, is a generic complex line in PH (02) (X, L) and (sy,...,sy) is a generic point in

X,. The genericity of Dj, implies that ®; (D) = X, so

O ([{s1} x ... xDpx ... x {su}) = N [s1=0].
I=1,1#k
The Poincaré-Lelong formula yields
[8([Ls1} % o x Dxoox LDl =27 | A\ er (L)
1=1,l#k

Since 0, = [|®5(T')||, the second identity follows. Using Lemma 4.3, this yields the upper
bound on §,. O
Lemma 4.5. For all p sufficiently large we have ®(c,) = y1p Ao A Ymyp-

Proof. Let us write X, = X;, x ... x X,;,, and 0, = 01, X ... X 0y, Where X, =
PH, (X, L) and oy, is the Fubini-Study volume on X ,. Recall that the meromorphic

transform @, has graph I', defined in (15), and II; : I', — X, II, : I, — X,,, denote
the canonical projections. By the definition of @;(ap) (see [DS, Sect. 3.1]) we have

@300 = [ TG0 AT(ey) = | TaG(0) A, = [ (fsy = 01.6) doy (s,

XP
where ¢ is a smooth (n — m,n — m) form on X. Thanks to Propositions 3.1 and 3.2, we
can apply [CM1, Proposition 4.2] as in the proof of [CM1, Theorem 1.2] to show that

(@r(0p), ) = /X /X [sp1] = O] A oo A [Spm = 0], @) do1 p(Sp1) - - - Aoy p(Spm)

_ / / iy A lsra] = O] A A [spm = 01, 8) oy (5y2) « - - A p(5prm)
Xomp X,

= ... _<71,p --~/\’7m,p7¢>-
This concludes the proof of the lemma. O
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Lemma 4.6. There exist absolute constants C, a > 0, and constants Cy, o/, £ > 0 depending
only on m > 1, such that for all ¢, ¢, ..., ¢, > 1andt > 0,

1
R(]Pevasawﬁs> < 5 (1 + loge) )
A(Pg,wFs,wﬁS,t) < Cyle™,
d
r(P x . ox P ow ) < vl ) = lg}eagna ,
R(P" x ... x IP’&”,wMP,wf/IP) < Cor(ly, ..., 0n)(1+logd),
AP x . ox Pimw 0l 1) < CodSemtrttn)
where
* * —d d‘
dzgl +—|—€m, Wyp = C(ﬂ'l(wFs) 4+ ... +7Tm(CL)FS)), & = W,
1he !
so w® is a probability measure on P x ... x Ptm,

MP
Proof. The first two inequalities are proved in Proposition A.3 and Corollary A.5 from

[DS]. If T is a positive closed current of bidegree (1,1) on Pt x ... x P with ||T|| = 1
then 7' is in the cohomology class of o = a;7](wpg) + - .. + a7}, (e ), for some a; > 0.

Hence
Qg
0<a< (max —)wMP.
1<k<m c
Now
" agl
- Kbk
L=zl = [, aneft=3o
d
Pl x...xPtm i €

so ap/c < d/l,. Thus (P4 x ... x P w ) < maXj<p<m %. The last two inequalities
follow from these estimates by applying [DS, Proposition A.8, Proposition A.9]. O

We will also need the following lower estimate for the dimension d .

Proposition 4.7. Let (X,w) be a compact Kdhler manifold of dimension n. Let (L,h) — X
be a singular Hermitian holomorphic line bundle such that c¢;(L,h) > ew for some € > 0 and
h is continuous outside a proper analytic subset of X. Then there exists C > 0 and py € N
such that

dim Hpy (X, LP) > Cp™, Vp > po.

Proof Let ¥ C X be a proper analytic set such that 4 is continuous on X \ X. We fix
zro € X \ ¥ and r > 0 such that B(z¢,2r) N X = (. Let 0 < x < 1 be a smooth cut-
off function which equals 1 on B(xy,r) and is supported in B(x,2r). We consider the
function ¢ : X — [—00,0), ¥(x) = nx(x)log |x — x¢|, where n > 0.

Consider the metric hy = hexp(—1) on L. We choose 7 sufficiently small such that

Cl(L7 h()) > gw on X.
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Let us denote by Z(h?) the multiplier ideal sheaf associated to h?. Note that H (02) (X, LP) =

H°(X, L? @ Z(h?)). The Nadel vanishing theorem [D6, N] shows that there exists p, € N
such that

a7 HY (X, L @ Z(h§)) =0, p > po.
Note that Z(h{)) = Z(h*) ® Z(pt)). Consider the exact sequence
(18) 0= L’ @I(h) @ I(py) — LP @ I(W?) — LP @ T(h?) @ Ox /I(pih) — 0.

Thanks to (17) applied to the long exact cohomology sequence associated to (18) we
have

(19 HY(X, P @ Z(h?)) = H(X, LI’ @ Z(h") @ Ox /Z(py))) = 0, p > po.

Now, for = # zo, Z(py)), = Ox, hence Ox ,/Z(py), = 0. Moreover Z(h?),, = Ox 4, since
h is continuous at x,. Hence

HY (X, L" @ Z(h") ® Ox [Z(py)) = L, @ Z(7)ay @ Ox,a /L(p¥)

(20)
- Lgo & OX,IO/I(p@Z))xm
SO
) HYX, 1P @ T(1)) > 12, © Ot /T(p)uy — 0, 1= o

Denote by M ,, the maximal ideal of Oy ,, (that is, germs of holomorphic functions

vanishing at z,). We have Z(py),, ¢ MZ'-""" and dim Ox,,/M~5L = (*I"), which

together with (21) implies the conclusion. O

Proof of Theorem 4.2. We will apply Theorem 4.1 to the meromorphic transforms ¢, from
X to the multi-projective space (X,,w,) defined above, and the BP measures v, := 0, on
X,. Fort e Rand e > 0 let

Ry = R(Xp,wp,0p) » Ap(t) = A(Xy,wyp, 0p, 1),

(22) Eye):= |J {seXp: [(5=01=mpA. . AYmp.0)| > dpe}.

ll¢llg2<1
It follows from Siegel’s lemma [MM1, Lemma 2.2.6] and Proposition 4.7 that there exists
C3 > 0 depending only on (X, L, hi)1<k<m and py € N such that

pn/CS Sdk,p S C3pn7 pZPOy 1 Sk Sm
By the last two inequalities in Lemma 4.6 we obtain for p > p, and t > 0,

R, < mCyC3(1 + log(mCsp™)) < Cylogp,

" a't " —t/Cy
A, (t) < Cy(mCsp™)* exp (m(ﬂ) < Cypre /O

3
where ()} is a constant depending only on (X, L, hy)1<x<m- Now set

Ep i =Np/D s Mp = Epdy /0, — 3R,
Lemma 4.4 implies that d, ~ p™, §, < p™?, so

(23)

Mo 2 05)\p _30410gp7 p 2p07
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where Cj is a constant depending only on (X, Ly, ht)1<k<m- Note that for all p sufficiently
large,

Ny > G A\, provided that lim inf Ay > 6C,/Cs .
2 p—oo logp
If E, = E,(¢,) then it follows from Theorem 4.1 and Lemma 4.5 that for all p sufficiently
large
—C5\
o,(E,) <A < Cypexp (—=2),
p(Ep) < Ap(np) < Cup p( 20, )

where for the last estimate we used (23). Let

- ma ( 6C, 20,
= X
05(1 =+ 571) ’ 05

If liminf, . (A\,/logp) > (1 + &n)c then for all p sufficiently large

,04, ||61(L1, hl) VAN Cl(Lm, hm)”) .

o,(E,) < Cyp™" exp <_§C5Ap> < cp*exp (%)

4

On the other hand we have by the definition of E, that if s, € X, \ £, and ¢ isa (n —
m,n — m) form of class ¢ then
1 d, \ A
— (s, = 0] — Noco AN Ymw s < 272 52<C—p 52 .
=01 A A 01| < 22 [ < €22 ol
In the last inequality we used the fact that d, < ¢p™ by Lemma 4.4.
For the last conclusion of Theorem 4.2 we proceed as in [DMM, p. 9]. The assumption
on ),/ logp and (a) imply that

for some ¢ > 0 and n > 1. Hence the set
E:={s=(s1,8,...) €Q: s, € E, for infinitely many p}
satisfies 0, (E) = 0. Indeed, for every N > 1, F is contained in the set
{s=(s1,8,...) €Q: s, € E, for at least one p > N},

whose o..-measure is at most

o0

= 1
Zap(Ep)Sc'Zﬁ%0 as N — oo.

p=N p=N

The proof of the theorem is thereby completed. O

Proof of Theorem 1.2. Theorem 1.2 follows directly from Theorem 4.2 and Proposition
3.1 (iii). O
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5. EQUIDISTRIBUTION WITH CONVERGENCE SPEED FOR HOLDER SINGULAR METRICS

In this section we prove Theorems 1.4 and 1.5. We close with more examples of Holder
metrics with singularities. Theorem 1.4 follows at once from Theorem 4.2 and the next
result.

Theorem 5.1. In the setting of Theorem 1.4, there exists a constant ¢ > 0 depending only
on (X, Ly, h, ..., Ly, hy,) such that for all p sufficiently large the estimate

(= /\vkp 7\ (Lach).6)| < o(FE2 4~ logdist(supp dae, =) 6]

holds for every (n—m,n —m) form ¢ of class €* which satisfies dd°¢ = 0 in a neighborhood
of ¥.

Proof. If ¢ is as in the statement, then using Proposition 3.1 and (13) we can write

< /\”Ykp /njclLk,hk > ka,

where
Ik = <01(L1, hl) AN Cl(kala hkfl) A\ (% — Cl(Lk, hk)> 'Vk;-)l,p VANAVAN % ¢>
dd¢log P, m
— <cl(L1,h1) A A er(Ly—i, hi—t) A gi LI\ 7’“;1’1’ A A % ,¢>.

Since log P, is continuous on supp dd“¢ we have
mp log P
Ik = <01(L1, hl) VANPIRIAN Cl(Lk—la hk:—l) A M VANPIRAN u s %ddc¢>
p p P

By (13) the masses of %” and c¢;(Ly, hy) are equal. Moreover, by Theorem 2.1 there exist
a constant ¢ > 1 and py € N such that for all z € X \ ¥ and all p > p, one has

—d <log Py, < dlogp + ¢ |logdist(z,5)|, 1 <k <m.

It follows that

1 1
1 < = (282 2 ogdist(supp dd“o, )| )6l , V= po,1 <k <m,
m p p
with some constant ¢ = ¢(X, Ly, h1, ..., Ly, hy) > 0, and the proof is complete. O

Finally, we turn our attention to the proof of Theorem 1.5. To this end we need the
following:

Theorem 5.2. Let (X,w) be a compact Kdhler manifold of dimension n and (L,h) be a
singular Hermitian holomorphic line bundle on X such that h is Holder with singularities
in a finite set ¥ = {z1,...,2;} C X, and ¢,(L,h) > cw for some ¢ > 0. Let , be the
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Fubini-Study current of H (02) (X, LP?) defined in (10). Then there exist a constant C' > 0 and
po € N which depend only on (X,w, L, h) such that

/XX <}% Y —all, h)")

for every p > poy and every function  of class €? on X.

log p
<C pi/3

Proof. Throughout the proof we will denote by C' > 0 a constant that depends only on
(X,w, L, h) and may change from an estimate to the next. Let » € (0, 1) be a number to
be chosen later such that there exist coordinate balls B(x;,2r) centered at z;, 1 < j < J,
which are disjoint. Let 0 < y; < 1,1 < j < J, be a smooth function with supp x,; C
B(x;,2r), x; = 1 on B(;,7), and set xo = 1 — 37, x;. Then

24 IXjllee < C/r* 0 < T,

for some constant C' > 0.
Let now y be a function of class 4> on X. Using its Taylor expansion near z; we have
Ix(z) — x(z;)| < Cr|x||¢ for x € B(x;,2r), hence

(25) Ix(z)x;(z) = x(z;)x;(@)] < Crllxlle: x;(z), Vo e X.

If P, is the Bergman kernel function of the space H (02) (X, L?) defined in (4) then using
(13) we obtain

n—1 n—1—¢

1 1

% el k)" = 5 dd log P ARy, where R, = > (%) Aei(L, h).
=0

Using a similar argument to that in the proof of Proposition 3.1 one shows that all of
these currents are well defined (see also [CM1, Lemma 3.3 and Remark 3.5]). Moreover,

1
IRl = [ Ronw=n [ a@nrtaw, [ op= [ a@n
X X xD X

Set X, = X'\ U}le B(zj,r). By Theorem 2.1 there exist C' > 0 and p, depending only on
(X,w, L, h) such that for p > py,

(26) | log Ppl|zeo(x,) < C(logp —logr).

Since R, is closed we have

27) /Xx<17p—cth) Z/XXJ( yp—cl(Lh))

—/ log P,) R, A dd*(xxo +Z/x><g( vy — (L, h))

Note that yo = 0 on szl B(z;,r), so we deduce by (24) and (26) that

(28) o

C (@
o / (log F) Ry A dd‘“’(xx())‘ < % (logp —logr).
X
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For j > 1 we obtain using (25),

1 1
/ XX <—n v, —alL, h)”) ‘ < / X(25)X; (—n v, —alL, h)”) ‘ +
X p X p

1
+/ IXx; = x(@;)x;] (7 T+ 61(L,h)”)
X p

‘X;j;j)’ /X (log By) R, A dd°;

Since dd°y; is supported on X, we use again (24) and (26) to get

1
/ XX <—n Vp — C1(L,h)n)
X p

for 1 < j < J. By (27), (28), (29) we conclude that

Jor Geos -]

~1/3

<

(29)

€2,

pr?

logp —logr) + Cr|x

logp — logr
< Clxll2 (—2 +7 .
pr

The proof is finished by choosing r = p in the last estimate. O
Proof of Theorem 1.5. This follows directly from Theorem 5.2 and Theorem 4.2. Indeed,

one applies Theorem 4.2 with m = n, (Lg, hx) = (L,h), and for the sequence \, =
(24 &n)clog p. O

Let us close the paper with more examples of Holder metrics with singularities.

(1) Consider a projective manifold X and a smooth divisor ¥ c X . By [Ko, TY], if
L = Kx® Ox(X) is ample, there exist a complete Kéhler-Einstein metricw on M := X \ X
with Ric, = —w. This metric has Poincaré type singularities, describe as follows. We
denote by D the unit disc in C. Each = € ¥ has a coordinate neighborhood U, such that

U, 2D 2=0, Uy NS 2{z=(2,...,2,): 21 =0}, U, "M =D* x D",

Thenw = 3", | gjrdz; A dZ is equivalent to the Poincaré type metric

1 le/\dgl 1 -
=- N dz Ndz
STFllog P 3 2% "

Let o be the canonical section of 0x(3) (cf. [MM1, p.71]) and denote by h, the metric
induced by ¢ on Ox (%) (cf. [MM1, Example 2.3.4]). Note also that ¢;(0x(X), h,) = [¥]
by [MM1, (2.3.8)]. Consider the metric

wp

(30) hMJ = hKM®]’LU on L ’M: KM®ﬁ)(<Z) |Mg KM
Note that L is trivial over U, and the metric h,,, has a weight o on U, N M = D* x D"!
given by e?* = |z[*det[g;x]. So dd°¢ = —5-Ric, > 0 and ¢ is psh on U, N M. We

see as in [CM1, Lemma 6.8] that ¢ extends to a psh function on U,, and h,,, extends
uniquely to a positively curved metric h* on L. By construction, h’ is a Holder metric
with singularities.
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(2) Let us specialize the previous example to the case of Riemann surfaces. Let X be a

compact Riemann surface of genus g and let ¥ = {py,...,ps} C X. It is well-known that
the following conditions are equivalent:
(i) U = X \ ¥ admits a complete Kahler-Einstein metric w with Ric, = —w,

(i) 2g —2+d > 0,

(iii) L = Kx ® Ox(X) is ample,

(iv) the universal cover of U is the upper-half plane H.
If one of these equivalent conditions is satisfied, the Kahler-Einstein metric w is induced
by the Poincaré metric on H. In local coordinates z centered at p € ¥ we have w =
tgdz A dz where g has singularities of type |z|~*(log|z|?)"2. Note that w extends to a
closed strictly positive (1, 1)-current on X. By [CM1, Lemma 6.8] there exists a singular
metric 2* on L such that ¢, (L, h*) = ;-w on X. The weight of 2" near a point p € ¥ has
the form ¢ = £ log(|z|?g), which is Holder with singularities.

(3) Let X be a complex manifold, (L, h}) a holomorphic line bundle on X with smooth
Hermitian metric such that ¢, (L, h{) is a Kéhler metric. Let ¥ be a compact divisor with
normal crossings. Let ¥y, ..., Xy be the irreducible components of ¥, so X; is a smooth
hypersurface in X. Let o; be holomorphic sections of the associated holomorphic line
bundle &'x(X,) vanishing to first order on ¥; and let |- |; be a smooth Hermitian metric on
Ox(%;) so that |o;|; < 1 and |o;|; = 1/e outside a relatively compact open set containing
2. Set

N
1
O; = Q+ 3dd°F, where § > 0, F = 23 log(~log|y],).

Jj=1

For o sufficiently small ©4 defines the generalized Poincaré metric [MM1, Lemma 6.2.1],
[CM1, Section 2.3]. For ¢ > 0,

N
a h H _10g|03’]
7j=1

is a singular Hermitian metric on L which is Holder with singularities. The curvature
c1(L, hl) is a strictly positive current on X, provided that ¢ is sufficiently small (cf. [MM1,
Lemma 6.2.1]). When X is compact the curvature current of 4. dominates a small mul-
tiple of ©5 on X \ X.

(4) Let X be a Fano manifold. Fix a Hermitian metric hy on K;(l such that w =
c1(Kx', ho) is a Kahler metric. We denote by PSH (X, w) the set of w-plurisubharmonic
functions on X. Let ¥ be a smooth divisor in the linear system defined by K, so there
exists a section s € H°(X, Ky") with ¥ = Div(s).

Fix a smooth metric 4 on the bundle 'x(X) and let 5 € [0,1). A conic Kahler metric &
on X with cone angle 3 along %, cf. [Do, T2], is a current & = w, = w + dd°p € ¢;(X)
where ¢ = ¢ + |s|” € PSH(X,w) and ¢ € €>(X) N PSH(X,w). In a neigbourhood
of a point of ¥ where ¥ is given by z; = 0 the metric & is equivalent to the cone metric
sz 2d2y Ndzy + Y07, dzy A dzp).
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The metric & defines a singular metric h; on K ' which is Holder with singularities.
Its curvature current is Ricg := ¢ (K", hg) = (1 — £8)& + B[X], where [X] is the current
of integration on .
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