HÖLDER SINGULAR METRICS ON BIG LINE BUNDLES AND EQUIDISTRIBUTION

DAN COMAN, GEORGE MARINESCU, AND VIỆT-ANH NGUYỄN

ABSTRACT. We show that normalized currents of integration along the common zeros of random \(m \)-tuples of sections of powers of \(m \) singular Hermitian big line bundles on a compact Kähler manifold distribute asymptotically to the wedge product of the curvature currents of the metrics. If the Hermitian metrics are Hölder with singularities we also estimate the speed of convergence.

CONTENTS

1. Introduction 1
2. Asymptotic behavior of Bergman kernel functions 5
3. Intersection of Fubini-Study currents and Bertini type theorem 6
4. Convergence speed towards intersection of Fubini-Study currents 10
4.1. Dinh-Sibony equidistribution theorem 10
4.2. Equidistribution of pullbacks of Dirac masses by Kodaira maps 11
5. Equidistribution with convergence speed for Hölder singular metrics 18
References 22

1. INTRODUCTION

Random polynomials or more generally holomorphic sections and the distribution of their zeros represent a classical subject in analysis [BP, ET, H, K], and they have been more recently used to model quantum chaotic eigenfunctions [BBL, NV].

This area witnessed intense activity recently [BL, BS, BMO, DMS, DS, S, SZ, ST], and especially results about equidistribution of holomorphic sections in singular Hermitian holomorphic bundles were obtained [CM1, CM2, CM3, CMM, DMM] with emphasis on the speed of convergence. The equidistribution is linked to the Quantum Unique Ergodicity conjecture of Rudnick-Sarnak [RS], cf. [HS, Mar].

Date: May 25, 2015.
2010 Mathematics Subject Classification. Primary 32L10; Secondary 32A60, 32U40, 32W20, 53C55, 81Q50.

Key words and phrases. Bergman kernel function, Fubini-Study current, big line bundle, singular Hermitian metric, zeros of random holomorphic sections.

D. Coman is partially supported by the NSF Grant DMS-1300157.
G. Marinescu is partially supported by DFG funded projects SFB/TR 12, MA 2469/2-2.
V.-A. Nguyen is partially supported by Humboldt Foundation and Max-Planck Institute for Mathematics.
Funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative.
The equidistribution of common zeros of several sections is particularly interesting. Their study is difficult in the singular context and equidistribution with the estimate of convergence speed was established in [DMM] for Hölder continuous metrics.

In this paper we obtain the equidistribution of common zeros of sections of \(m \) singular Hermitian line bundles under the hypothesis that the metrics are continuous outside analytic sets intersecting generically. We will moreover introduce the notion of Hölder metric with singularities and establish the equidistribution with convergence speed of common zeros.

Let \((X, \omega)\) be a compact Kähler manifold of dimension \(n \) and \(\text{dist} \) be the distance on \(X \) induced by \(\omega \). If \((L, h)\) is a singular Hermitian holomorphic line bundle on \(X \) we denote by \(c_1(L, h) \) its curvature current. Recall that if \(e_L \) is a holomorphic frame of \(L \) on some open set \(U \subset X \) then \(|e_L|^2_h = e^{-2\phi}\), where \(\phi \in L^1_{\text{loc}}(U) \) is called the local weight of the metric \(h \) with respect to \(e_L \), and \(c_1(L, h)|_U = dd^c\phi \). Here \(d = \partial + \overline{\partial}, \ d^c = \frac{1}{2\pi i}(\partial - \overline{\partial}) \). We say that \(h \) is positively curved if \(c_1(L, h) \geq 0 \) in the sense of currents. This is equivalent to saying that the local weights \(\phi \) are plurisubharmonic (psh).

Recall that a holomorphic line bundle \(L \) is called big if its Kodaira-Iitaka dimension equals the dimension of \(X \) (see [MM1, Definition 2.2.5]). By the Shiffman-Ji-Bonavero-Takayama criterion [MM1, Lemma 2.3.6], \(L \) is big if and only if it admits a singular metric \(h \) with \(c_1(L, h) \geq \varepsilon \omega \) for some \(\varepsilon > 0 \).

Let \((L_k, h_k), 1 \leq k \leq m, n \) be \(m \) singular Hermitian holomorphic line bundles on \((X, \omega)\). Let \(H^0(L_k) \) be the Bergman space of \(L_k \)-holomorphic sections of \(L_k := L_k^{\otimes p} \) relative to the metric \(h_{k,p} := h_k^{\otimes p} \) induced by \(h_k \) and the volume form \(\omega^n \) on \(X \), endowed with the inner product

\[
(S, S')_{k,p} := \int_X \langle S, S' \rangle_{h_{k,p}} \omega^n, \quad S, S' \in H^0(L_k).
\]

Set \(\|S\|^2_{k,p} = (S, S)_{k,p}, \ d_{k,p} = \dim H^0(L_k) - 1 \). For every \(p \geq 1 \) we consider the multiprojective space

\[
X_p := \mathbb{P} H^0(L_1) \times \ldots \times \mathbb{P} H^0(L_m)
\]
equipped with the probability measure \(\sigma_p \), which is the product of the Fubini-Study volumes on the components. If \(S \in H^0(X, L_k) \) we denote by \([S = 0]\) the current of integration (with multiplicities) over the analytic hypersurfaces \{\(S = 0 \)\} of \(X \). Set

\[
[s_p = 0] := [s_{p1} = 0] \land \ldots \land [s_{pm} = 0], \quad \text{for} \ s_p = (s_{p1}, \ldots, s_{pm}) \in X_p,
\]

whenever this is well-defined (cf. Section 3). We also consider the probability space

\[
(\Omega, \sigma_\infty) := \prod_{p=1}^\infty (X_p, \sigma_p).
\]

Let us recall the following:

Definition 1.1. We say that the analytic subsets \(A_1, \ldots, A_m, m \leq n \) of a compact complex manifold \(X \) of dimension \(n \) are in general position if \(\text{codim} A_i \cap \ldots \cap A_{i_k} \geq k \) for every \(1 \leq k \leq m \) and \(1 \leq i_1 < \ldots < i_k \leq m \).
Here is our first main result.

Theorem 1.2. Let \((X, \omega)\) be a compact Kähler manifold of dimension \(n\) and \((L_k, h_k), 1 \leq k \leq m \leq n\), be \(m\) singular Hermitian holomorphic line bundles on \(X\) such that \(h_k\) is continuous outside a proper analytic subset \(\Sigma(h_k) \subset X\), \(c_1(L_k, h_k) \geq \epsilon \omega\) on \(X\) for some \(\epsilon > 0\), and \(\Sigma(h_1), \ldots, \Sigma(h_m)\) are in general position. Then for \(\sigma_\infty\)-a.e. \(\{s_p\}_{p \geq 1} \in \Omega\), we have in the weak sense of currents on \(X\),

\[
\frac{1}{p^n} [s_p = 0] \to c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m) \quad \text{as} \quad p \to \infty.
\]

In order to prove this theorem we show in Theorem 4.2 that the currents \(\frac{1}{p^n} [s_p = 0]\) distribute as \(p \to \infty\) like the wedge product of the normalized Fubini-Study currents of the spaces \(H^0_\omega(X, L_p^k)\) defined in (10) below. Then in Proposition 3.1 we prove that the latter sequence of currents converges to \(c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m)\).

Our second main result gives an estimate of the speed of convergence in Theorem 1.2 in the case when the metrics are Hölder with singularities.

Definition 1.3. We say that a function \(\phi : U \to (-\infty, \infty)\) defined on an open subset \(U \subset X\) is Hölder with singularities along a proper analytic subset \(\Sigma \subset X\) if there exist constants \(c, \rho > 0\) and \(0 < \nu \leq 1\) such that

\[
|\phi(z) - \phi(w)| \leq c \frac{\operatorname{dist}(z, w)^\nu}{\min\{\operatorname{dist}(z, \Sigma), \operatorname{dist}(w, \Sigma)\}^{\rho}}
\]

holds for all \(z, w \in U \setminus \Sigma\). A singular metric \(h\) on \(L\) is called Hölder with singularities along a proper analytic subset \(\Sigma \subset X\) if all its local weights are Hölder functions with singularities along \(\Sigma\).

Hölder singular Hermitian metrics appear frequently in complex geometry and pluripotential theory. Let us first observe that metrics with analytic singularities [MM1, Definition 2.3.9], which are very important for the regularization of currents and for transcendental methods in algebraic geometry [BD, CM3, D3, D4, D6], are Hölder metrics with singularities. The class of Hölder metrics with singularities is invariant under pullback and push-forward by meromorphic maps. In particular, this class is invariant under birational maps, e.g. blow-up and blow-down. They occur also as certain quasiplusharmonic upper envelopes (e.g. Hermitian metrics with minimal singularities on a big line bundle, equilibrium metrics, see [BB, DMM, DMN], especially [BD, Theorem 1.4]).

Theorem 1.4. In the setting of Theorem 1.2 assume in addition that \(h_k\) is Hölder with singularities along \(\Sigma(h_k)\) and set \(\Sigma := \Sigma(h_1) \cup \ldots \cup \Sigma(h_m)\). Then there exist a constant \(\xi > 0\) depending only on \(m\) and a constant \(c = c(X, L_1, h_1, \ldots, L_m, h_m) > 0\) with the following property: For any sequence of positive numbers \(\{\lambda_p\}_{p \geq 1}\) such that

\[
\liminf_{p \to \infty} \frac{\lambda_p}{\log p} > (1 + \xi n)c,
\]

there are subsets \(E_p \subset \mathbb{X}_p\) such that for \(p\) large enough,
(a) \(\sigma_p(E_p) \leq cp^{\xi n} \exp(-\lambda_p/c)\),
(b) if $s_p \in X_p \setminus E_p$ we have
\[
\left| \frac{1}{p^n} [s_p = 0] - \sum_{k=1}^{m} c_1(L_k, h_k) \right| \leq c \left(\frac{\lambda_p}{p^n} + \frac{1}{p^n} \log \text{dist}(\text{supp } dd^c \phi, \Sigma) \right) \| \phi \|_{\mathcal{C}^2},
\]
for any form ϕ of class \mathcal{C}^2 such that $dd^c \phi = 0$ in a neighborhood of Σ.

Here $\text{supp } \psi$ denotes the support of the form ψ. Let P_p be the Bergman kernel function of the space $H^0_{(2)}(X, L^p)$ defined in (4). The proof of Theorem 1.4 uses the estimate for P_p obtained in Theorem 2.1 in the case when the metric h on L is Hölder with singularities.

One can also apply Theorem 2.1 to study the asymptotics with speed of common zeros of random n-tuples of sections of a (single) big line bundle endowed with a Hölder Hermitian metric with isolated singularities. Let (L, h) be a singular Hermitian holomorphic line bundle on (X, ω) and $H^0_{(2)}(X, L^p)$ be the corresponding spaces of L^2-holomorphic sections. Consider the multi-projective space $X'_p := (\mathbb{P}H^0_{(2)}(X, L^p))^n$ endowed with the product probability measure σ'_p induced by the Fubini-Study volume on $\mathbb{P}H^0_{(2)}(X, L^p)$, and let
\[(\Omega', \sigma'_\infty) := \prod_{p=1}^\infty (X'_p, \sigma'_p).\]
If $s_p = (s_{p1}, \ldots, s_{pn}) \in X'_p$ we let $[s_p = 0] = [s_{p1} = 0] \land \ldots \land [s_{pn} = 0]$, provided this measure is well-defined.

Theorem 1.5. Let (X, ω) be a compact Kähler manifold of dimension n and (L, h) be a singular Hermitian holomorphic line bundle on X such that h is Hölder with singularities in a finite set $\Sigma = \{x_1, \ldots, x_J\} \subset X$, and $c_1(L, h) \geq \varepsilon \omega$ for some $\varepsilon > 0$. Then there exist $C > 0$, $p_0 \in \mathbb{N}$ depending only on (X, ω, L, h), and subsets $E_p \subset X'_p$ such that:
(a) $\sigma'_p(E_p) \leq Cp^{-2}$;
(b) For every $p > p_0$, every $s_p \in X'_p \setminus E_p$, and every function χ of class \mathcal{C}^2 on X,
\[
\left| \int_X \chi \left(\frac{1}{p^n} [s_p = 0] - c_1(L, h)^n \right) \right| \leq C \frac{\log p}{p^{1/3}} \| \chi \|_{\mathcal{C}^2}.
\]
In particular, this estimate holds for σ'_∞-a.e. sequence $\{s_p\}_{p \geq 1} \subset \Omega'$ provided that p is large enough.

This paper is organized as follows. In Section 2 we prove a pointwise estimate for the Bergman kernel function in the case of Hölder metrics with singularities. Section 3 is devoted to the study of the intersection of Fubini-Study currents and to a version of the Bertini theorem. In Section 4 we consider the Kodaira map as a meromorphic transform and estimate the speed of convergence of the intersection of zero-divisors of m bundles. We use this to prove Theorem 1.2. Finally, in Section 5 we prove Theorem 1.4 and Theorem 1.5.

Acknowledgment. We thank Vincent Guedj for useful discussions regarding this paper.
2. ASYMPTOTIC BEHAVIOR OF BERGMAN KERNEL FUNCTIONS

In this section we prove a theorem about the asymptotic behavior of the Bergman kernel function in the case when the metric is H"older with singularities.

Let \((L, h)\) be a holomorphic line bundle over a compact K"ahler manifold \((X, \omega)\) of dimension \(n\), where \(h\) is a singular Hermitian metric on \(L\). Consider the space \(H^0_{(2)}(X, L^p)\) of \(L^2\)-holomorphic sections of \(L^p\) relative to the metric \(h^p := h^{\otimes p}\) induced by \(h\) and the volume form \(\omega^n\) on \(X\), endowed with the natural inner product (see (1)). Since \(H^0_{(2)}(X, L^p)\) is finite dimensional, let \(\{S_j^p\}_{j=0}^d\) be an orthonormal basis and denote by \(P_p\) the Bergman kernel function defined by

\[
P_p(x) = \sum_{j=0}^d |S_j^p(x)|_{h^p}^2, \quad |S_j^p(x)|_{h^p}^2 := \langle S_j^p(x), S_j^p(x) \rangle_{h^p}, \quad x \in X.
\]

Note that this definition is independent of the choice of basis.

Theorem 2.1. Let \((X, \omega)\) be a compact K"ahler manifold of dimension \(n\) and \((L, h)\) be a singular Hermitian holomorphic line bundle on \(X\) such that \(c_1(L, h) \geq \varepsilon \omega\) for some \(\varepsilon > 0\). Assume that \(h\) is H"older with singularities along a proper analytic subset \(\Sigma\) of \(X\) and with parameters \(\nu, \varrho\) as in (3). If \(P_p\) is the Bergman kernel function defined by (4) for the space \(H^0_{(2)}(X, L^p)\), then there exist a constant \(c > 1\) and \(p_0 \in \mathbb{N}\) which depend only on \((X, \omega, L, h)\) such that for all \(z \in X \setminus \Sigma\) and all \(p \geq p_0\)

\[
\frac{1}{c} \leq P_p(z) \leq \frac{c \rho^{2n/\nu}}{\text{dist}(z, \Sigma)^{2n\nu/\nu}}.
\]

Recall that by Theorem 5.3 in [CM1] we have \(\lim_{p \to \infty} \frac{1}{p} \log P_p(z) = 0\) locally uniformly on \(X \setminus \Sigma\) for any metric \(h\) which is only continuous outside of \(\Sigma\). Theorem 2.1 refines [CM1, Theorem 5.3] in this context, and it is interesting to compare it to the asymptotic expansion of the Bergman kernel function in the case of smooth metrics [B, C, HM, MM1, MM2, T, Z].

Proof. The proof follows from [CM1, Section 5], which is based on techniques of Demailly [D1, Proposition 3.1], [D6, Section 9]. Let \(x \in X\) and \(U_\alpha \subset X\) be a coordinate neighborhood of \(x\) on which there exists a holomorphic frame \(e_\alpha\) of \(L\). Let \(\psi_\alpha\) be a psh weight of \(h\) on \(U_\alpha\). Fix \(r_0 > 0\) so that the (closed) ball \(V := B(x, 2r_0) \subset U_\alpha\) and let \(U := B(x, r_0)\). By [CM1, (7)] there exist constants \(c_1 > 0, p_0 \in \mathbb{N}\) so that

\[-\frac{\log c_1}{p} \leq \frac{1}{p} \log P_p(z) \leq \frac{\log(c_1 r^{-2n})}{p} + 2 \left(\max_{B(z, r)} \psi_\alpha - \psi_\alpha(z) \right) \]

holds for all \(p > p_0\), \(0 < r < r_0\) and \(z \in U\) with \(\psi_\alpha(z) > -\infty\).

For \(z \in U \setminus \Sigma\) and \(r < \min\{\text{dist}(z, \Sigma), r_0\}\) we have since \(\psi_\alpha\) is H"older that

\[
\max_{B(z, r)} \psi_\alpha - \psi_\alpha(z) \leq \frac{c \rho^{\nu}}{(\text{dist}(z, \Sigma) - r)^{\nu}},
\]

where \(c, \rho\) are constants depending only on the geometry of \(X\) and \(L, h\).
where \(c > 0 \) depends only on \(x \). Taking \(r = \text{dist}(z, \Sigma)^{\theta/\nu} p^{-1/\nu} < \text{dist}(z, \Sigma)/2 \) we obtain

\[
- \log c_1 \leq \log P_{p}(z) \leq \log c_1 - 2n \log r + 2^{p+1} cpr^{\nu} \text{dist}(z, \Sigma)^{-\theta} = c_0 + 2n \log \left(\text{dist}(z, \Sigma)^{-\theta/\nu} p^{1/\nu} \right).
\]

This holds for all \(z \in U \setminus \Sigma \) and \(p > p_0 \), with constants \(r_0, p_0, c_0, c_1 \) depending only on \(x \). A standard compactness argument now finishes the proof. \(\square \)

3. Intersection of Fubini-Study currents and Bertini type theorem

In this section we show that the intersection of the Fubini-Study currents associated to line bundles as in Theorem 1.2 is well-defined. Moreover, we show that the sequence of wedge products of normalized Fubini-Study currents converges weakly to the wedge product of the curvature currents of \((L_k, h_k) \). We then prove that almost all zero-divisors of sections of large powers of these bundles are in general position in the sense of Definition 1.1.

Let \(V \) be a vector space of complex dimension \(d + 1 \). If \(V \) is endowed with a Hermitian metric, then we denote by \(\omega_{VS} \) the induced Fubini-Study form on the projective space \(\mathbb{P}(V) \) (see [MM1, pp. 65, 212]) normalized so that \(\omega_{VS}^{d} \) is a probability measure. We also use the same notations for \(\mathbb{P}(V^*) \).

We keep the hypotheses and notation of Theorem 1.2. Namely, \((L_k, h_k), 1 \leq k \leq m \leq n \), are singular Hermitian holomorphic line bundles on the compact Kähler manifold \((X, \omega) \) of dimension \(n \), such that \(h_k \) is continuous outside a proper analytic subset \(\Sigma(h_k) \subset X \), \(c_1(L_k, h_k) \geq \varepsilon \omega \) for some \(\varepsilon > 0 \), and \(\Sigma(h_1), \ldots, \Sigma(h_m) \) are in general position in the sense of Definition 1.1.

Consider the space \(H^0_{(2)}(X, L_k^p) \) of \(L^2 \)-holomorphic sections of \(L_k^p \) endowed with the inner product (1). Since \(c_1(L_k, h_k) \geq \varepsilon \omega \), it is well-known that \(H^0_{(2)}(X, L_k^p) \) is nontrivial for \(p \) sufficiently large, see e.g. Proposition 4.7. Let

\[
d_{k,p} := \dim H^0_{(2)}(X, L_k^p) - 1.
\]

The Kodaira map associated to \((L_k^p, h_{k,p}) \) is defined by

\[
\Phi_{k,p} : X \longrightarrow \mathbb{G}(H^0_{(2)}(X, L_k^p)), \quad \Phi_{k,p}(x) := \{ s \in H^0_{(2)}(X, L_k^p) : s(x) = 0 \},
\]

where \(\mathbb{G}(H^0_{(2)}(X, L_k^p)) \) denotes the Grassmannian of hyperplanes in \(H^0_{(2)}(X, L_k^p) \) (see [MM1, p. 82]). Let us identify \(\mathbb{G}(d_{k,p}, H^0_{(2)}(X, L_k^p)) \) with \(\mathbb{P}(H^0_{(2)}(X, L_k^p)^*) \) by sending a hyperplane to an equivalence class of non-zero complex linear functionals on \(H^0_{(2)}(X, L_k^p) \) having the hyperplane as their common kernel. By composing \(\Phi_{k,p} \) with this identification, we obtain a meromorphic map

\[
\Phi_{k,p} : X \longrightarrow \mathbb{P}(H^0_{(2)}(X, L_k^p)^*).
\]

To get an analytic description of \(\Phi_{k,p} \), let

\[
S_{j}^{k,p} \in H^0_{(2)}(X, L_k^p), \quad j = 0, \ldots, d_{k,p},
\]

be an orthonormal basis and denote by \(P_{k,p} \) the Bergman kernel function of the space \(H^0_{(2)}(X, L_k^p) \) defined as in (4). This basis gives identifications \(H^0_{(2)}(X, L_k^p) \simeq \mathbb{C}^{d_{k,p}+1} \) and
Let U be a contractible Stein open set in X, let e_k be a local holomorphic frame for L_k on U, and write $S_j^{k,p} = s_j^{k,p} e_k$, where $s_j^{k,p}$ is a holomorphic function on U. By composing $\Phi_{k,p}$ given in (7) with the last identification, we obtain a meromorphic map $\Phi_{k,p} : X \to \mathbb{P}^{d_{k,p}}$ which has the following local expression

$$\Phi_{k,p}(x) = [s_0^{k,p}(x) : \ldots : s_{d_{k,p}}^{k,p}(x)] \quad \text{for } x \in U.$$

It is called the Kodaira map defined by the basis $\{S_j^{k,p}\}_{j=0}^{d_{k,p}}$.

Next, we define the Fubini-Study currents $\gamma_{k,p}$ of $H^0_{(2)}(X, L^p_k)$ by

$$\gamma_{k,p} | U = \frac{1}{2} \dd c \log \sum_{j=0}^{d_{k,p}} |s_j^{k,p}|^2,$$

where the open set U and the holomorphic functions $s_j^{k,p}$ are as above. Note that $\gamma_{k,p}$ is a positive closed current of bidegree $(1, 1)$ on X, and is independent of the choice of basis. Actually, the Fubini-Study currents are pullbacks of the Fubini-Study forms by Kodaira maps, which justifies their name.

Let ω_{FS} be the Fubini-Study form on $\mathbb{P}^{d_{k,p}}$. By (9) and (10), the currents $\gamma_{k,p}$ can be described as pullbacks

$$\gamma_{k,p} = \Phi_{k,p}^*(\omega_{\text{FS}}), \quad 1 \leq k \leq m.$$

We introduce the psh function

$$u_{k,p} := \frac{1}{2p} \log \sum_{j=0}^{d_{k,p}} |s_j^{k,p}|^2 = u_k + \frac{1}{2p} \log P_{k,p} \quad \text{on } U,$$

where u_k is the weight of the metric h_k on U corresponding to e_k, so $|e_k|_{h_k} = e^{-u_k}$. Clearly, by (10) and (12), $dd^c u_{k,p} = \frac{1}{p} \gamma_{k,p}$. Moreover, note that by (12), $\log P_{k,p} \in L^1(X, \omega^n)$ and

$$\frac{1}{p} \gamma_{k,p} = c_1(L_k, h_k) + \frac{1}{2p} \dd c \log P_{k,p},$$

as currents on X. By [CM1, Theorem 5.1, Theorem 5.3] (see also [CM1, (7)]) there exist $c > 0, p_0 \in \mathbb{N}$, such that if $p \geq p_0$, $1 \leq k \leq m$ and $z \in X \setminus \Sigma(h_k)$, then $P_{k,p}(z) \geq c$. By (12) it follows that

$$u_{k,p}(z) \geq u_k(z) + \frac{\log c}{2p}, \quad z \in U, \quad p \geq p_0, \quad 1 \leq k \leq m.$$

For $p \geq 1$ consider the following analytic subsets of X:

$$\Sigma_{k,p} := \left\{ x \in X : s_j^{k,p}(x) = 0, \quad 0 \leq j \leq d_{k,p} \right\}, \quad 1 \leq k \leq m.$$

Hence $\Sigma_{k,p}$ is the base locus of $H^0_{(2)}(X, L^p_k)$, and $\Sigma_{k,p} \cap U = \{u_{k,p} = -\infty\}$. Note also that $\Sigma(h_k) \cap U \supset \{u_k = -\infty\}$ and by (14) we have $\Sigma_{k,p} \subset \Sigma(h_k)$ for $p \geq p_0$.

\[\mathbb{P}(H^0_{(2)}(X, L^p_k))^* \simeq \mathbb{P}^{d_{k,p}}.\]
Proposition 3.1. In the hypotheses of Theorem 1.2 we have the following:

(i) For all p sufficiently large and every $J \subset \{1, \ldots, m\}$ the analytic sets $\Sigma_{k,p}$, $k \in J$, $\Sigma(h_{\ell})$, $\ell \in J' := \{1, \ldots, m\} \setminus J$, are in general position.

(ii) If p is sufficiently large then the currents

$$
\bigwedge_{k \in J} \gamma_{k,p} \wedge \bigwedge_{\ell \in J'} c_1(L_{\ell}, h_{\ell})
$$

are well defined on X, for every $J \subset \{1, \ldots, m\}$.

(iii) $\frac{1}{p^n} \gamma_{1,p} \wedge \ldots \wedge \gamma_{m,p} \to c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m)$ as $p \to \infty$, in the weak sense of currents on X.

Proof. As noted above we have by (14) that $\Sigma_{k,p} \subset \Sigma(h_k)$ for all p sufficiently large. Since $\Sigma(h_1), \ldots, \Sigma(h_m)$ are in general position this implies (i). Then (ii) follows by [D5, Corollary 2.11].

(iii) Let $U \subset X$ be a contractible Stein open set as above, $u_{k,p}$, u_k be the psh functions defined in (12), so $dd^c u_k = c_1(L_k, h_k)$ and $dd^c u_{k,p} = \frac{1}{p} \gamma_{k,p}$ on U. By [CM1, Theorem 5.1] we have that $\frac{1}{p} \log P_{k,p} \to 0$ in $L^1(X, \omega^n)$, hence by (12), $u_{k,p} \to u_k$ in $L^1_{\text{loc}}(U)$, as $p \to \infty$, for each $1 \leq k \leq m$. Recall that by (14), $u_{k,p} \geq u_k - \frac{C}{p}$ holds on U for all p sufficiently large and some constant $C > 0$. Then [FS, Theorem 3.5] implies that $dd^c u_{1,p} \wedge \ldots \wedge dd^c u_{m,p} \to dd^c u_1 \wedge \ldots \wedge dd^c u_m$ weakly on U as $p \to \infty$. □

We will need the following version of Bertini’s theorem. The corresponding statement for the case of a single line bundle is proved in [CM1, Proposition 4.1].

Proposition 3.2. Let $L_k \longrightarrow X$, $1 \leq k \leq m \leq n$, be holomorphic line bundles over a compact complex manifold X of dimension n. Assume that:

(i) V_k is a vector subspace of $H^0(X, L_k)$ with basis $S_{k,0}, \ldots, S_{k,d_k}$, base locus $B_k := \{S_{k,0} = \ldots = S_{k,d_k} = 0\} \subset X$, such that $d_k \geq 1$ and the analytic sets $B_k V_1, \ldots, B_k V_m$ are in general position in the sense of Definition 1.1.

(ii) $Z(t_k) := \{x \in X : \sum_{j=0}^{d_k} t_{k,j} S_{k,j}(x) = 0\}$, where $t_k = [t_{k,0} : \ldots : t_{k,d_k}] \in \mathbb{P}^{d_k}$.

(iii) $\nu = \mu_1 \times \ldots \times \mu_m$ is the product measure on $\mathbb{P}^{d_1} \times \ldots \times \mathbb{P}^{d_m}$, where μ_k is the Fubini-Study volume on \mathbb{P}^{d_k}.

Then the analytic sets $Z(t_1), \ldots, Z(t_m)$ are in general position for ν-a.e. $(t_1, \ldots, t_m) \in \mathbb{P}^{d_1} \times \ldots \times \mathbb{P}^{d_m}$.

Proof. If $1 \leq l_1 < \ldots < l_k \leq m$ let $\nu_{t_1 \ldots t_k} = \mu_{l_1} \times \ldots \times \mu_{l_k}$ be the product measure on $\mathbb{P}^{d_{l_1}} \times \ldots \times \mathbb{P}^{d_{l_k}}$. For $1 \leq k \leq m$ consider the sets

$$
U_k = \{(t_{l_1}, \ldots, t_{l_k}) \in \mathbb{P}^{d_{l_1}} \times \ldots \times \mathbb{P}^{d_{l_k}} : \dim Z(t_{l_1}) \cap \ldots \cap Z(t_{l_k}) \cap A_j \leq n - k - j\},
$$

where $1 \leq l_1 < \ldots < l_k \leq m$, $j = 0$ and $A_0 = \emptyset$, or $1 \leq j \leq m - k$ and $A_j = B_k V_{i_1} \cap \ldots \cap B_k V_{i_j}$ for some $i_1 < \ldots < i_j$ in $\{1, \ldots, m\} \setminus \{l_1, \ldots, l_k\}$.

The proposition follows if we prove by induction on k that

$$
\nu_{t_1 \ldots t_k}(U_k) = 1.
$$
for every set U_k with $1 \leq l_1 < \ldots < l_k \leq m$, $0 \leq j \leq m - k$ and A_j as above. Clearly, it suffices to consider the case $\{l_1, \ldots, l_k\} = \{1, \ldots, k\}$. To simplify notation we set $\nu_k := \nu_{1 \ldots k}$.

Let $k = 1$. If $j = 0$, $A_0 = \emptyset$, so $U_1 = \{t_1 \in \mathbb{P}^{d_1} : \dim Z(t_1) \leq n - 1\} = \mathbb{P}^{d_1}$. Assume next that $1 \leq j \leq m - 1$ and write $A_j = \bigcup_{l=1}^{n} D_l \cup B$, where D_l are the irreducible components of A_j of dimension $n - j$ and $\dim B \leq n - j - 1$. We have that $\{t_1 \in \mathbb{P}^{d_1} : D_l \subset Z(t_1)\}$ is a proper linear subspace of \mathbb{P}^{d_1}. Indeed, otherwise $D_l \subset Bs V_l$, so $\dim A_j \cap Bs V_l = n - j$, which contradicts the hypothesis that $Bs V_1, \ldots, Bs V_m$ are in general position. If $t_1 \in \mathbb{P}^{d_1} \setminus U_1$ then $\dim Z(t_1) \cap A_j \geq n - j$. Since $Z(t_1) \cap A_j$ is an analytic subset of A_j, it follows that $D_l \subset Z(t_1) \cap A_j$ for some l, hence $\mathbb{P}^{d_1} \setminus U_1 = \bigcup_{l=1}^{n} \{t_1 \in \mathbb{P}^{d_1} : D_l \subset Z(t_1)\}$. Therefore $\mu_1(\mathbb{P}^{d_1} \setminus U_1) = 0$.

We assume now that $\nu_k(U_k) = 1$ for any set U_k as above. Let

$$U_{k+1} = \{(t_1, \ldots, t_{k+1}) \in \mathbb{P}^{d_1} \times \ldots \times \mathbb{P}^{d_{k+1}} : \dim Z(t_1) \cap \ldots \cap Z(t_{k+1}) \cap A_j \leq n - k - 1 - j\},$$

where $0 \leq j \leq m - k - 1$, $A_0 = \emptyset$, or $A_j = Bs V_1 \cap \ldots \cap Bs V_j$ with $k + 2 \leq i_1 < \ldots < i_j \leq m$. Consider the set $U = U' \cup U''$, where

$$U' = \{(t_1, \ldots, t_k) \in \mathbb{P}^{d_1} \times \ldots \times \mathbb{P}^{d_k} : \dim Z(t_1) \cap \ldots \cap Z(t_k) \cap A_j \leq n - k - j\},$$

$$U'' = \{(t_1, \ldots, t_k) \in \mathbb{P}^{d_1} \times \ldots \times \mathbb{P}^{d_k} : \dim Z(t_1) \cap \ldots \cap Z(t_k) \cap Bs V_{k+1} \cap A_j \leq n - k - j - 1\}.$$

By the induction hypothesis we have $\nu_k(U') = \nu_k(U'') = 1$, so $\nu_k(U) = 1$. To prove that $\nu_{k+1}(U_{k+1}) = 1$ it suffices to show that

$$\nu_{k+1}(W) = 0, \quad \text{where } W := (U \times \mathbb{P}^{d_{k+1}}) \setminus U_{k+1}.$$

To this end we fix $t := (t_1, \ldots, t_k) \in U$, we let

$$Z(t) := Z(t_1) \cap \ldots \cap Z(t_k), \quad W(t) := \{t_{k+1} \in \mathbb{P}^{d_{k+1}} : \dim Z(t) \cap A_j \cap Z(t_{k+1}) \geq n - k - j\},$$

and prove that $\mu_{k+1}(W(t)) = 0$.

Since $t \in U \subset U'$ we can write $Z(t) \cap A_j = \bigcup_{l=1}^{n} D_l \cup B$, where D_l are the irreducible components of $Z(t) \cap A_j$ of dimension $n - k - j$ and $\dim B \leq n - k - j - 1$. If $t_{k+1} \in W(t)$ then $Z(t) \cap A_j \cap Z(t_{k+1})$ is an analytic subset of $Z(t) \cap A_j$ of dimension $n - k - j$, so $D_l \subset Z(t) \cap A_j \cap Z(t_{k+1})$ for some l. Thus

$$W(t) = \bigcup_{l=1}^{n} F_l(t), \quad \text{where } F_l(t) := \{t_{k+1} \in \mathbb{P}^{d_{k+1}} : D_l \subset Z(t_{k+1})\}.$$

If $D_l \subset Bs V_{k+1}$ then $\dim Z(t) \cap A_j \cap Bs V_{k+1} = n - k - j$, which contradicts the fact that $t \in U''$. Hence the sections in V_{k+1} cannot all vanish on D_l, so we may assume that $S_{k+1,d_{k+1}} \not\equiv 0$ on D_l. We have $F_l(t) \subset \{t_{k+1,0} = 0\} \cup H_l(t)$ where

$$H_l(t) := \{[1 : t_{k+1,1} : \ldots : t_{k+1,d_{k+1}}] \in \mathbb{P}^{d_{k+1}} : D_l \subset Z([1 : t_{k+1,1} : \ldots : t_{k+1,d_{k+1}}])\}.$$

For each $(t_{k+1,1} : \ldots : t_{k+1,d_{k+1} - 1}) \in \mathbb{C}^{d_{k+1} - 1}$ there exists at most one $\zeta \in \mathbb{C}$ with $[1 : t_{k+1,1} : \ldots : t_{k+1,d_{k+1} - 1} : \zeta] \in H_l(t)$. Indeed, if $\zeta \neq \zeta'$ have this property then

$$S_{k+1,0} + t_{k+1,1}S_{k+1,1} + \ldots + t_{k+1,d_{k+1} - 1}S_{k+1,d_{k+1} - 1} + aS_{k+1,d_{k+1}} \equiv 0 \text{ on } D_l,$$
for \(a = \zeta, \zeta' \), hence \(S_{k+1, d_{k+1}} \equiv 0 \) on \(D_1 \), a contradiction. It follows that \(\mu_{k+1}(H_f(t)) = 0 \), so \(\mu_{k+1}(F_1(t)) = 0 \). Hence \(\mu_{k+1}(W(t)) = 0 \) and the proof is complete. \(\square \)

We return now to the setting of Theorem 1.2. If \(\{S_{j}^{k,p} \}_{j=0}^{d_{k,p}} \) is an orthonormal basis of \(H^0_\Omega(X, \mathcal{L}^p) \), we define the analytic hypersurface \(Z(t_k) \subset X \), for \(t_k = [t_{k,0} : \ldots : t_{k,d_{k,p}}] \in \mathbb{P}^{d_{k,p}} \), as in Proposition 3.2 (ii). Let \(\mu_{k,p} \) be the Fubini-Study volume on \(\mathbb{P}^{d_{k,p}} \), \(1 \leq k \leq m \), \(p \geq 1 \), and let \(\mu_p = \mu_{1,p} \times \ldots \times \mu_{m,p} \) be the product measure on \(\mathbb{P}^{d_1,p} \times \ldots \times \mathbb{P}^{d_m,p} \). Applying Proposition 3.2 we obtain:

Proposition 3.3. In the above setting, if \(p \) is sufficiently large then for \(\mu_p \)-a.e. \((t_1, \ldots, t_m) \in \mathbb{P}^{d_1,p} \times \ldots \times \mathbb{P}^{d_m,p} \) the analytic subsets \(Z(t_1), \ldots, Z(t_m) \subset X \) are in general position, and \(Z(t_{i_1}) \cap \ldots \cap Z(t_{i_k}) \) has pure dimension \(n - k \) for each \(1 \leq k \leq m \), \(1 \leq i_1 < \ldots < i_k \leq m \).

Proof. Let \(V_{k,p} := H^0_\Omega(X, \mathcal{L}_k^p) \), so \(\text{Bs} V_{k,p} = \Sigma_{k,p} \). By Proposition 3.1, \(\Sigma_1,p, \ldots, \Sigma_{m,p} \) are in general position for all \(p \) sufficiently large. We fix such \(p \) and denote by \([Z(t_k)] \) the current of integration along the analytic hypersurface \(Z(t_k) \); it has the same cohomology class as \(p c_1(L_k, h_k). \) Proposition 3.2 shows that the analytic subsets \(Z(t_1), \ldots, Z(t_m) \) are in general position for \(\mu_p \)-a.e. \((t_1, \ldots, t_m) \in \mathbb{P}^{d_1,p} \times \ldots \times \mathbb{P}^{d_m,p} \). Hence if \(1 \leq k \leq m \), \(1 \leq i_1 < \ldots < i_k \leq m \), the current \([Z(t_{i_1})] \wedge \ldots \wedge [Z(t_{i_k})] \) is well defined by \([D5, Corollary 2.11] \) and it is supported in \(Z(t_{i_1}) \cap \ldots \cap Z(t_{i_k}) \). Since \(c_1(L_k, h_k) \geq \epsilon \omega \), it follows that

\[
\int_X [Z(t_{i_1})] \wedge \ldots \wedge [Z(t_{i_k})] \wedge \omega^{n-k} = p^k \int_X c_1(L_{i_1}, h_{i_1}) \wedge \ldots \wedge c_1(L_{i_k}, h_{i_k}) \wedge \omega^{n-k} \geq p^k \epsilon^k \int_X \omega^n.
\]

So \(Z(t_{i_1}) \cap \ldots \cap Z(t_{i_k}) \neq \emptyset \), hence it has pure dimension \(n - k \). \(\square \)

4. Convergence speed towards intersection of Fubini-Study currents

In this section we rely on techniques introduced by Dinh-Sibony [DS], based on the notion of meromorphic transform, in order to estimate the speed of equidistribution of the common zeros of \(m \)-tuples of sections of the considered big line bundles towards the intersection of the Fubini-Study currents. We then prove Theorem 1.2.

4.1. Dinh-Sibony equidistribution theorem

A meromorphic transform \(F : X \rightarrow Y \) between two compact Kähler manifolds \((X, \omega)\) of dimension \(n \) and \((Y, \omega_Y)\) of dimension \(m \) is the data of an analytic subset \(\Gamma \subset X \times Y \) (called the graph of \(F \)) of pure dimension \(m + k \) such that the projections \(\pi_1 : X \times Y \rightarrow X \) and \(\pi_2 : X \times Y \rightarrow Y \) restricted to each irreducible component of \(\Gamma \) are surjective. We set formally \(F = \pi_2 \circ (\pi_1|\Gamma)^{-1} \). For \(y \in Y \) generic (that is, outside a proper analytic subset), the dimension of the fiber \(F^{-1}(y) := \pi_1(\pi_2^{-1}(y)) \) is equal to \(k \). This is called the codimension of \(F \). We consider two of the intermediate degrees for \(F \) (see [DS, Section 3.1]):

\[
d(F) := \int_X F^*(\omega_Y^m) \wedge \omega^k \quad \text{and} \quad \delta(F) := \int_X F^*(\omega_Y^{m-1}) \wedge \omega^{k+1}.
\]

By [DS, Proposition 2.2], there exists \(r := r(Y, \omega_Y) \) such that for every positive closed current \(T \) of bidegree \((1,1)\) on \(Y \) with \(\|T\| = 1 \) there is a smooth \((1,1)\)-form \(\alpha \) which depends uniquely on the class \([T] \) and a quasipositivity of the \(\varphi \) such
that $-r\omega_Y \leq \alpha \leq r\omega_Y$ and $dd^c\varphi - T = \alpha$. If Y is the projective space \mathbb{P}^d equipped with the Fubini-Study form ω_{FS}, then we have $r(\mathbb{P}^d, \omega_{\text{FS}}) = 1$. Consider the class
\[Q(Y, \omega_Y) := \{ \varphi \text{ qphf on } Y, \int_Y dd^c\varphi \geq -r(Y, \omega_Y)\omega_Y \} . \]

A positive measure μ on Y is called a BP measure if all qphf functions on Y are integrable with respect to μ. When $\dim Y = 1$, it is well-known that μ is BP if and only if it admits locally a bounded potential. The terminology BP comes from this fact (see [DS]).

If μ is a BP measure on Y and $t \in \mathbb{R}$, we let
\[R(Y, \omega_Y, \mu) := \sup \left\{ \max_Y \varphi : \varphi \in Q(Y, \omega_Y), \int_Y \varphi d\mu = 0 \right\} , \]
\[\Delta(Y, \omega_Y, \mu, t) := \sup \left\{ \mu(\varphi < -t) : \varphi \in Q(Y, \omega_Y), \int_Y \varphi d\mu = 0 \right\} . \]

Let Φ_p be a sequence of meromorphic transforms from a compact Kähler manifold (X, ω) into compact Kähler manifolds (X_p, ω_p) of the same codimension k, where X_p is defined in (2). Let ν_p be a BP probability measure on X_p and $\nu_\infty = \prod_{p \geq 1} \nu_p$ be the product measure on $\Omega := \prod_{p \geq 1} X_p$. For every $p > 0$ and $\varepsilon > 0$ let
\[E_p(\varepsilon) := \bigcup_{\|\phi\|_{qphf} \leq 1} \{ x_p \in X_p : \langle \Phi_p^*(\delta_{x_p}), \phi \rangle \geq d(\Phi_p)\varepsilon \} , \]
where δ_{x_p} is the Dirac mass at x_p. Note that $\Phi_p^*(\delta_{x_p})$ and $\Phi_p^*(\nu_p)$ are positive closed currents of bidimension (k, k) on X, and the former is well defined for the generic point $x_p \in X_p$ (see [DS, Section 3.1]). Now we are in position to state the part which deals with the quantified speed of convergence in the Dinh-Sibony equidistribution theorem [DS, Theorem 4.1].

Theorem 4.1 ([DS, Lemma 4.2 (d)]). In the above setting the following estimate holds:
\[\nu_p(E_p(\varepsilon)) \leq \Delta \left(X_p, \omega_p, \nu_p, \eta_{c.p} \right) , \]
where $\eta_{c.p} := \varepsilon d(\Phi_p)^{-1} d(\Phi_p) - 3R(\mathcal{X}_p, \omega_p, \nu_p)$.

4.2. Equidistribution of pullbacks of Dirac masses by Kodaira maps. Let (X, ω) be a compact Kähler manifold of dimension n and (L_k, h_k), $1 \leq k \leq m \leq n$, be singular Hermitian holomorphic line bundles on X such that h_k is continuous outside a proper analytic subset $\Sigma(h_k) \subset X$, $c_1(L_k, h_k) \geq \varepsilon\omega$ on X for some $\varepsilon > 0$, and $\Sigma(h_1), \ldots, \Sigma(h_m)$ are in general position. Recall from Section 1 that
\[X_p := \mathbb{P}H^0_{(2)}(X, L_k^p) \times \ldots \times \mathbb{P}H^0_{(2)}(X, L_m^p) , \quad (\Omega, \sigma_\infty) := \prod_{p=1}^\infty (X_p, \sigma_p) , \]
where the probability measure σ_p is the product of the Fubini-Study volume on each factor. From now on let $p \in \mathbb{N}$ be large enough. Fix an orthonormal basis $\{ S^k_{j,0} \}_{j=0}^d$ as in (8) and let $\Phi_{k,p} : X \rightarrow \mathbb{P}^d$, be the Kodaira map defined by this basis. By (11) we have that $\Phi_{k,p}^*\omega_{\text{FS}} = \gamma_{k,p}$, where $\gamma_{k,p}$ is the Fubini-Study current of the space $H^0_{(2)}(X, L_k^p)$ as defined in (10).
We consider now the Kodaira maps as meromorphic transforms from X to $\mathbb{P} H^0_{(2)}(X, L_k^p)$ which we denote still by $\Phi_{k,p} : X \rightarrow \mathbb{P} H^0_{(2)}(X, L_k^p)$. Precisely, this is the meromorphic transform with graph
\[
\Gamma_{k,p} = \{(x, s) \in X \times \mathbb{P} H^0_{(2)}(X, L_k^p) : s(x) = 0\}, \quad 1 \leq k \leq m.
\]
Indeed, since $\dim H^0_{(2)}(X, L_k^p) \geq 2$ (see e.g. Proposition 4.7 below), there exists, for every $x \in X$, a section $s \in H^0_{(2)}(X, L_k^p)$ with $s(x) = 0$, so the projection $\Gamma_{k,p} \rightarrow X$ is surjective. Moreover, since L_k^p is non-trivial, every global holomorphic section of L_k^p must vanish at some $x \in X$, hence the projection $\Gamma_{k,p} \rightarrow \mathbb{P} H^0_{(2)}(X, L_k^p)$ is surjective. Note that
\[
\Phi_{k,p}(x) = \{s \in \mathbb{P} H^0_{(2)}(X, L_k^p) : s(x) = 0\}, \quad \Phi^{-1}_{k,p}(s) = \{x \in X : s(x) = 0\}.
\]
Let Φ_p be the product transform of $\Phi_{1,p}, \ldots, \Phi_{m,p}$ (see [DS, Section 3.3]). It is the meromorphic transform with graph
\[
(15) \quad \Gamma_p = \{(x, s_{p1}, \ldots, s_{pm}) \in X \times \mathbb{X}_p : s_{p1}(x) = \ldots = s_{pm}(x) = 0\}.
\]
By above, the projection $\Pi_1 : \Gamma_p \rightarrow X$ is surjective. The second projection $\Pi_2 : \Gamma_p \rightarrow \mathbb{X}_p$ is proper, hence by Remmert’s theorem $\Pi_2(\Gamma_p)$ is an analytic subvariety of \mathbb{X}_p. Proposition 3.3 implies that $\Pi_2(\Gamma_p)$ has full measure in \mathbb{X}_p, so Π_2 is surjective and Φ_p is a meromorphic transform of codimension (m, m), with fibers
\[
\Phi^{-1}_p(s_p) = \{x \in X : s_{p1}(x) = \ldots = s_{pm}(x) = 0\}, \quad \text{where } s_p = (s_{p1}, \ldots, s_{pm}) \in \mathbb{X}_p.
\]
Considering the product transform of any $\Phi_{i1,p}, \ldots, \Phi_{ik,p}$, $1 \leq i_1 < \ldots < i_k \leq m$, and arguing as above it follows that, for $s_p = (s_{p1}, \ldots, s_{pm}) \in \mathbb{X}_p$ generic, the analytic sets $\{s_{p1} = 0\}, \ldots, \{s_{pm} = 0\}$ are in general position. Hence by [DS, Corollary 2.1.11] the following current of bidegree (m, m) is well defined on X:
\[
\Phi^*_p(\delta_{s_p}) = [s_p = 0] = [s_{p1} = 0] \wedge \ldots \wedge [s_{pm} = 0] = \Phi^*_{1,p}(\delta_{s_{p1}}) \wedge \ldots \wedge \Phi^*_{m,p}(\delta_{s_{pm}}).
\]

The main result of this section is the following theorem.

Theorem 4.2. Under the hypotheses of Theorem 1.2 there exist a constant $\xi > 0$ depending only on m and a constant $c = c(X, L_1, h_1, \ldots, L_m, h_m) > 0$ with the following property: For any sequence of positive numbers $\{\lambda_p\}_{p \geq 1}$ with
\[
\liminf_{p \rightarrow \infty} \frac{\lambda_p}{\log p} > (1 + \xi)c,
\]
there are subsets $E_p \subset \mathbb{X}_p$ such that
(a) $\sigma_p(E_p) \leq c p^{\xi/2} \exp(-\lambda_p / c)$ for all p large enough;
(b) if $s_p \in \mathbb{X}_p \setminus E_p$ we have that the estimate
\[
\left| \frac{1}{p^m} \left[[s_p = 0] - \gamma_{1,p} \wedge \ldots \wedge \gamma_{m,p}, \phi \right] \right| \leq c \frac{\lambda_p}{p} \|\phi\|_{C^2}
\]
holds for every $(n - m, n - m)$ form ϕ of class C^2.

In particular, for σ_∞-a.e. $s \in \Omega$ the estimate from (b) holds for all p sufficiently large.
Lemma 4.3. There is a constant $c > 0$ such that $c_p \geq c_0$ for all $p \geq 1$.

Proof. Fix $p \geq 1$ large enough. For each $1 \leq k \leq m$, let $l_k := d_{k,p}$. Using Stirling’s formula $! \approx (\ell/e)^\ell \sqrt{2\pi\ell}$ it suffices to show that there is a constant $c > 0$ such that for all $l_1, \ldots, l_m \geq 1$,

$$
\log (l_1 + \ldots + l_m) - \left(\frac{l_1 \log l_1}{l_1 + \ldots + l_m} + \ldots + \frac{l_m \log l_m}{l_1 + \ldots + l_m} \right) \leq c.
$$

Since the function $t \mapsto t \log t$, $t > 0$, is convex, we infer that

$$
\frac{1}{m} \left(l_1 \log l_1 + \ldots + l_m \log l_m \right) \geq \frac{l_1 + \ldots + l_m}{m} \log \frac{l_1 + \ldots + l_m}{m}.
$$

This implies the required estimate with $c := \log m$. \hfill \Box

Following subsection 4.1 we consider two intermediate degrees for the Kodaira maps Φ_p:

$$
d_p = d(\Phi_p) := \int_X \Phi_p^*(\omega_p^{d_{0,p}}) \wedge \omega^{n-m} \quad \text{and} \quad \delta_p = \delta(\Phi_p) := \int_X \Phi_p^*(\omega_p^{d_{0,p-1}}) \wedge \omega^{n-m+1}.
$$

The next result gives the asymptotic behavior of d_p and δ_p as $p \to \infty$.

Lemma 4.4. We have $d_p = p^m \|c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m)\|$ and

$$
\delta_p = \frac{p^{m-1}}{c_p} \sum_{k=1}^m \frac{d_{k,p}}{d_{0,p}} \left\| \bigwedge_{l=1, l \neq k}^m c_1(L_l, h_l) \right\| \leq C p^{n-1},
$$

where $C > 0$ is a constant depending on (L_k, h_k), $1 \leq k \leq m$.

Proof. We use a cohomological argument. For the first identity we replace $\omega_p^{d_{0,p}}$ by a Dirac mass δ_s, where $s := (s_1, \ldots, s_m) \in X_p$ is such that $\{s_1 = 0\}, \ldots, \{s_m = 0\}$ are in general position, so the current $\Phi_p^*(\delta_s) = [s_1 = 0] \wedge \ldots \wedge [s_m = 0]$ is well defined (see Proposition 3.3). By the Poincaré-LeLong formula [MM1, Theorem 2.3.3],

$$
[s_k = 0] = pc_1(L_k, h_k) + dd^c \log |s_k|_{h_k,p}, \quad 1 \leq k \leq m.
$$

Since the current $c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m)$ is well defined (see Proposition 3.1) it follows that

$$
\int_X \Phi_p^*(\delta_s) \wedge \omega^{n-m} = p^m \int_X \theta_1 \wedge \ldots \wedge \theta_m \wedge \omega^{n-m} = p^m \int_X c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m) \wedge \omega^{n-m}.
$$
where θ_k is a smooth closed $(1, 1)$ form in the cohomology class of $c_1(L_k, h_k)$. Thus

$$d_p = \int_X \Phi_p^*(\omega_{d_p}^{d_{0,p}}) \wedge \omega^{n-m} = \int_X \Phi_p^*(\delta_k) \wedge \omega^{n-m} = p^m \|c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m)\|.$$

For the second identity, a straightforward computation shows that

$$\omega_{d_p, p}^{d_{0,p}-1} = \sum_{k=1}^m \frac{c_{d_p, p}^{d_{0,p}-1}(d_{0,p} - 1)!}{d_{1,p}! \ldots (d_{k,p} - 1)! \ldots d_{m,p}!} \pi_1^* \omega_{\text{FS}}^{d_{1,p}} \wedge \ldots \wedge \pi_k^* \omega_{\text{FS}}^{d_{k,p}-1} \wedge \ldots \wedge \pi_m^* \omega_{\text{FS}}^{d_{m,p}}.$$

Using (16) and replacing $\omega_{\text{FS}}^{d_{k,p}}$ (resp. $\omega_{\text{FS}}^{d_{k,p}-1}$) by a generic point (resp. a generic complex line) in $\mathbb{P} H^0(X, L_k^p)$, we may replace $\omega_{d_p, p}^{d_{0,p}-1}$ by a current of the form

$$T := \sum_{k=1}^m \frac{d_{k,p}}{c_{d_p, d_{0,p}}} \{[s_1] \times \ldots \times D_k \times \ldots \times \{s_m\}\}.$$

Here, D_k is a generic complex line in $\mathbb{P} H^0(X, L_k^p)$ and (s_1, \ldots, s_m) is a generic point in X_p. The genericity of D_k implies that $\Phi_p^*(D_k) = X$, so

$$\Phi_p^*([\{s_1\} \times \ldots \times D_k \times \ldots \times \{s_m\}]) = \bigwedge_{l=1, l \neq k}^m [s_l = 0].$$

The Poincaré-Lelong formula yields

$$\|\Phi_p^*([\{s_1\} \times \ldots \times D_k \times \ldots \times \{s_m\}])\| = p^m \left\| \bigwedge_{l=1, l \neq k}^m c_1(L_l, h_l) \right\|.$$

Since $\delta_p = \|\Phi_p^*(T)\|$, the second identity follows. Using Lemma 4.3, this yields the upper bound on δ_p.

\begin{lemma}
For all p sufficiently large we have $\Phi_p^*(\sigma_p) = \gamma_{1,p} \wedge \ldots \wedge \gamma_{m,p}$.
\end{lemma}

\begin{proof}
Let us write $X_p = X_{1,p} \times \ldots \times X_{m,p}$ and $\sigma_p = \sigma_{1,p} \times \ldots \times \sigma_{m,p}$, where $X_{k,p} = \mathbb{P} H^0(X, L_k^p)$ and $\sigma_{k,p}$ is the Fubini-Study volume on $X_{k,p}$. Recall that the meromorphic transform Φ_p has graph Γ_p defined in (15), and $\Pi_1 : \Gamma_p \rightarrow X$, $\Pi_2 : \Gamma_p \rightarrow X_p$, denote the canonical projections. By the definition of $\Phi_p^*(\sigma_p)$ (see [DS, Sect. 3.1]) we have

$$\langle \Phi_p^*(\sigma_p), \phi \rangle = \int_{\Gamma_p} \Pi_1^*(\phi) \wedge \Pi_2^*(\sigma_p) = \int_{X_p} \Pi_2^*(\phi) \wedge \sigma_p = \int_{X_p} \langle [s_p = 0], \phi \rangle d\sigma_p(s_p),$$

where ϕ is a smooth $(n - m, n - m)$ form on X. Thanks to Propositions 3.1 and 3.2, we can apply [CM1, Proposition 4.2] as in the proof of [CM1, Theorem 1.2] to show that

$$\langle \Phi_p^*(\sigma_p), \phi \rangle = \int_{X_{m,p}} \ldots \int_{X_{1,p}} \langle [s_{p1} = 0] \wedge \ldots \wedge [s_{pm} = 0], \phi \rangle d\sigma_{1,p}(s_{p1}) \ldots d\sigma_{m,p}(s_{pm})$$

$$= \int_{X_{m,p}} \ldots \int_{X_{2,p}} \langle \gamma_{1,p} \wedge [s_{p2} = 0] \wedge \ldots \wedge [s_{pm} = 0], \phi \rangle d\sigma_{2,p}(s_{p2}) \ldots d\sigma_{m,p}(s_{pm})$$

$$= \ldots = \langle \gamma_{1,p} \wedge \ldots \wedge \gamma_{m,p}, \phi \rangle.$$

This concludes the proof of the lemma.
\end{proof}
Lemma 4.6. There exist absolute constants $C_1, \alpha > 0$, and constants $C_2, \alpha', \xi > 0$ depending only on $m \geq 1$, such that for all $\ell, \ell_1, \ldots, \ell_m \geq 1$ and $t \geq 0$,

\[
R(\mathbb{P}^\ell, \omega_{FS}, \omega_{FS}^\ell) \leq \frac{1}{2} (1 + \log \ell),
\]

\[
\Delta(\mathbb{P}^\ell, \omega_{FS}, \omega_{FS}^\ell, t) \leq C_1 \ell e^{-\alpha t},
\]

\[
r(\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}, \omega_{MP}) \leq r(\ell_1, \ldots, \ell_m) := \max_{1 \leq k \leq m} \frac{d}{\ell_k},
\]

\[
R(\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}, \omega_{MP}, \omega_{MP}^d) \leq C_2 r(\ell_1, \ldots, \ell_m)(1 + \log d),
\]

\[
\Delta(\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}, \omega_{MP}, \omega_{MP}^d, t) \leq C_2 d \xi e^{-\alpha' t}(r(\ell_1, \ldots, \ell_m)},
\]

where

\[
d = \ell_1 + \ldots + \ell_m, \omega_{MP} := c(\pi_1^*(\omega_{FS}) + \ldots + \pi_m^*(\omega_{FS})), c^{-d} = \frac{d!}{\ell_1! \ldots \ell_m!},
\]

so ω_{MP}^d is a probability measure on $\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}$.

Proof. The first two inequalities are proved in Proposition A.3 and Corollary A.5 from [DS]. If T is a positive closed current of bidegree $(1, 1)$ on $\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}$ with $\|T\| = 1$ then T is in the cohomology class of $\alpha = a_1 \pi_1^*(\omega_{FS}) + \ldots + a_m \pi_m^*(\omega_{FS})$, for some $a_k \geq 0$. Hence

\[
0 \leq \alpha \leq \left(\max_{1 \leq k \leq m} \frac{a_k}{c} \right) \omega_{MP}.
\]

Now

\[
1 = \|T\| = \int_{\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}} \alpha \wedge \omega_{MP}^{d-1} = \sum_{k=1}^{m} \frac{a_k \ell_k}{cd},
\]

so $a_k/c \leq d/\ell_k$. Thus $r(\mathbb{P}^{\ell_1} \times \ldots \times \mathbb{P}^{\ell_m}, \omega_{MP}) \leq \max_{1 \leq k \leq m} \frac{d}{\ell_k}$. The last two inequalities follow from these estimates by applying [DS, Proposition A.8, Proposition A.9].

We will also need the following lower estimate for the dimension $d_{k,p}$.

Proposition 4.7. Let (X, ω) be a compact Kähler manifold of dimension n. Let $(L, h) \to X$ be a singular Hermitian holomorphic line bundle such that $c_1(L, h) \geq \varepsilon \omega$ for some $\varepsilon > 0$ and h is continuous outside a proper analytic subset of X. Then there exists $C > 0$ and $p_0 \in \mathbb{N}$ such that

\[
\dim H^0_{(2)}(X, L^p) \geq C p^n, \quad \forall p \geq p_0.
\]

Proof. Let $\Sigma \subset X$ be a proper analytic set such that h is continuous on $X \setminus \Sigma$. We fix $x_0 \in X \setminus \Sigma$ and $r > 0$ such that $B(x_0, 2r) \cap \Sigma = \emptyset$. Let $0 \leq \chi \leq 1$ be a smooth cutoff function which equals 1 on $\overline{B}(x_0, r)$ and is supported in $B(x_0, 2r)$. We consider the function $\psi : X \to [\infty, \infty), \psi(x) = \eta \chi(x) \log |x - x_0|$, where $\eta > 0$.

Consider the metric $h_0 = h \exp(-\psi)$ on L. We choose η sufficiently small such that

\[
c_1(L, h_0) \geq \frac{\varepsilon}{2} \omega
\]

on X.

\[
\text{HÖLDER SINGULAR METRICS ON BIG LINE BUNDLES AND EQUIDISTRIBUTION 15}
\]
Let us denote by \(\mathcal{I}(h^p)\) the multiplier ideal sheaf associated to \(h^p\). Note that \(H^0_{(2)}(X, L^p) = H^0(X, L^p \otimes \mathcal{I}(h^p))\). The Nadel vanishing theorem [D6, N] shows that there exists \(p_0 \in \mathbb{N}\) such that
\[
H^1(X, L^p \otimes \mathcal{I}(h^p)) = 0, \quad p \geq p_0.
\]
(17)
Note that \(\mathcal{I}(h^p_0) = \mathcal{I}(h^p) \otimes \mathcal{I}(p\psi)\). Consider the exact sequence
\[
0 \to L^p \otimes \mathcal{I}(h^p) \otimes \mathcal{I}(p\psi) \to L^p \otimes \mathcal{I}(h^p) \to L^p \otimes \mathcal{I}(h^p) \otimes \mathcal{O}_X / \mathcal{I}(p\psi) \to 0.
\]
(18)
Thanks to (17) applied to the long exact cohomology sequence associated to (18) we have
\[
H^0(X, L^p \otimes \mathcal{I}(h^p)) \to H^0(X, L^p \otimes \mathcal{I}(h^p) \otimes \mathcal{O}_X / \mathcal{I}(p\psi)) \to 0, \quad p \geq p_0.
\]
(19)
Now, for \(x \neq x_0, \mathcal{I}(p\psi)_x = \mathcal{O}_{X,x}\) hence \(\mathcal{O}_{X,x} / \mathcal{I}(p\psi)_x = 0\). Moreover \(\mathcal{I}(h^p)_x = \mathcal{O}_{X,x}\) since \(h\) is continuous at \(x_0\). Hence
\[
H^0(X, L^p \otimes \mathcal{I}(h^p) \otimes \mathcal{O}_X / \mathcal{I}(p\psi)) = L^p_{x_0} \otimes \mathcal{I}(h^p)_{x_0} \otimes \mathcal{O}_{X,x_0} / \mathcal{I}(p\psi)_{x_0}
\]
(20)
so
\[
H^0(X, L^p \otimes \mathcal{I}(h^p)) \to L^p_{x_0} \otimes \mathcal{O}_{X,x_0} / \mathcal{I}(p\psi)_{x_0} \to 0, \quad p \geq p_0.
\]
(21)
Denote by \(\mathcal{M}_{X,x_0}\) the maximal ideal of \(\mathcal{O}_{X,x_0}\) (that is, germs of holomorphic functions vanishing at \(x_0\)). We have \(\mathcal{I}(p\psi)_{x_0} \subset \mathcal{M}_{X,x_0}^{[p\psi]_x - n + 1}\) and \(\dim \mathcal{O}_{X,x_0} / \mathcal{M}_{X,x_0}^{k+1} = \binom{k+n}{k}\), which together with (21) implies the conclusion.

\[\square\]

Proof of Theorem 4.2. We will apply Theorem 4.1 to the meromorphic transforms \(\Phi_p\) from \(X\) to the multi-projective space \((\mathbb{C}_p, \omega_p)\) defined above, and the BP measures \(\nu_p := \sigma_p\) on \(X_p\). For \(t \in \mathbb{R}\) and \(\varepsilon > 0\) let
\[
R_p := R(X_p, \omega_p, \sigma_p), \quad \Delta_p(t) := \Delta(X_p, \omega_p, \sigma_p, t),
\]
(22)
\[E_p(\varepsilon) := \bigcup_{\|\phi\|_{L^2} \leq 1} \{ s \in X_p : |\langle [s = 0] - \gamma_1, \ldots, \gamma_m, \phi \rangle | \geq d_p \varepsilon \}.\]

It follows from Siegel’s lemma [MM1, Lemma 2.2.6] and Proposition 4.7 that there exists \(C_3 > 0\) depending only on \((X, L_k, h_k)_{1 \leq k \leq m}\) and \(p_0 \in \mathbb{N}\) such that
\[
p^n / C_3 \leq d_{k,p} \leq C_3 p^n, \quad p \geq p_0, \quad 1 \leq k \leq m.
\]
By the last two inequalities in Lemma 4.6 we obtain for \(p \geq p_0\) and \(t \geq 0\),
\[
R_p \leq m C_2 C_3^2 (1 + \log(m C_3 p^n)) \leq C_4 \log p,
\]
(23)
\[\Delta_p(t) \leq C_2 (m C_3 p^n)^t \exp \left(-\frac{\alpha t}{m C_3} \right) \leq C_4 p^n e^{-t/C_4},\]
where \(C_4\) is a constant depending only on \((X, L_k, h_k)_{1 \leq k \leq m}\). Now set
\[
\varepsilon_p := \lambda_p / p, \quad \eta_p := \varepsilon_p d_p / \delta_p - 3 R_p.
\]
Lemma 4.4 implies that \(d_p \approx p^n, \delta_p \lesssim p^{m-1}\), so
\[
\eta_p \geq C_5 \lambda_p - 3 C_4 \log p, \quad p \geq p_0,
\]
where C_5 is a constant depending only on $(X, L_k, h_k)_{1 \leq k \leq m}$. Note that for all p sufficiently large,
\[\eta_p > \frac{C_5}{2} \lambda_p, \quad \text{provided that} \quad \lim_{p \to \infty} \frac{\lambda_p}{\log p} > 6C_4/C_5. \]
If $E_p = E_p(c_p)$ then it follows from Theorem 4.1 and Lemma 4.5 that for all p sufficiently large
\[\sigma_p(E_p) \leq \Delta_p(\eta_p) \leq C_4 p^{\xi n} \exp \left(\frac{-C_5 \lambda_p}{2C_4} \right), \]
where for the last estimate we used (23). Let
\[c = \max \left(\frac{6C_4}{C_5(1 + \xi n)}, \frac{2C_4}{C_5}, C_4, \| c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_m, h_m) \| \right). \]
If \(\lim_{p \to \infty} (\lambda_p / \log p) > (1 + \xi n)c \) then for all p sufficiently large
\[\sigma_p(E_p) \leq C_4 p^{\xi n} \exp \left(\frac{-C_5 \lambda_p}{2C_4} \right) \leq c p^{\xi n} \exp \left(\frac{-\lambda_p}{c} \right). \]
On the other hand we have by the definition of E_p that if $s_p \in X_p \setminus E_p$ and ϕ is a $(n - m, n - m)$ form of class \mathcal{C}_2 then
\[\left| \frac{1}{p^m} \left[s_p = 0 \right] - \gamma_{1,p} \wedge \ldots \wedge \gamma_{m,p}, \phi \right| \leq \frac{d_p}{p^m} \frac{\lambda_p}{\log p} \| \phi \|_{\mathcal{C}_2} \leq c \frac{\lambda_p}{p} \| \phi \|_{\mathcal{C}_2}. \]
In the last inequality we used the fact that $d_p \leq c \rho^m$ by Lemma 4.4.

For the last conclusion of Theorem 4.2 we proceed as in [DMM, p. 9]. The assumption on $\lambda_p / \log p$ and (a) imply that
\[\sum_{p=1}^{\infty} \sigma_p(E_p) \leq c' \sum_{p=1}^{\infty} \frac{1}{p^\eta} < \infty \]
for some $c' > 0$ and $\eta > 1$. Hence the set
\[E := \{ s = (s_1, s_2, \ldots) \in \Omega : s_p \in E_p \text{ for infinitely many } p \} \]
satisfies $\sigma(\infty) = 0$. Indeed, for every $N \geq 1$, E is contained in the set
\[\{ s = (s_1, s_2, \ldots) \in \Omega : s_p \in E_p \text{ for at least one } p \geq N \}, \]
whose $\sigma(\infty)$-measure is at most
\[\sum_{p=N}^{\infty} \sigma_p(E_p) \leq c' \sum_{p=N}^{\infty} \frac{1}{p^\eta} \to 0 \text{ as } N \to \infty. \]

The proof of the theorem is thereby completed.

\[\square \]

Proof of Theorem 1.2. Theorem 1.2 follows directly from Theorem 4.2 and Proposition 3.1 (iii).
5. Equidistribution with convergence speed for Hölder singular metrics

In this section we prove Theorems 1.4 and 1.5. We close with more examples of Hölder metrics with singularities. Theorem 1.4 follows at once from Theorem 4.2 and the next result.

Theorem 5.1. In the setting of Theorem 1.4, there exists a constant \(c \) depending only on \((X, L, h_1, \ldots, L_m, h_m) \) such that for all \(p \) sufficiently large the estimate

\[
\left| \left(\frac{1}{p^m} \sum_{k=1}^{m} \gamma_{k,p} - \frac{m}{p} \sum_{k=1}^{m} c_1(L_k, h_k), \phi \right) \right| \leq c \left(\frac{\log p}{p} + \frac{1}{p} \log \text{dist}(\text{supp} \, dd^c\phi, \Sigma) \right) \| \phi \|_{\mathcal{C}^2}
\]

holds for every \((m - n, m - n)\) form \(\phi \) of class \(\mathcal{C}^2 \) which satisfies \(dd^c\phi = 0 \) in a neighborhood of \(\Sigma \).

Proof. If \(\phi \) is as in the statement, then using Proposition 3.1 and (13) we can write

\[
\left(\frac{1}{p^m} \sum_{k=1}^{m} \gamma_{k,p} - \frac{m}{p} \sum_{k=1}^{m} c_1(L_k, h_k), \phi \right) = \sum_{k=1}^{m} I_k,
\]

where

\[
I_k = \left\langle c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_{k-1}, h_{k-1}) \wedge \left(\frac{\gamma_{k,p}}{p} - c_1(L_k, h_k) \right) \wedge \frac{\gamma_{k+1,p}}{p} \wedge \ldots \wedge \frac{\gamma_{m,p}}{p}, \phi \right\rangle
\]

\[
= \left\langle c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_{k-1}, h_{k-1}) \wedge \frac{dd^c \log P_{k,p}}{2p} \wedge \frac{\gamma_{k+1,p}}{p} \wedge \ldots \wedge \frac{\gamma_{m,p}}{p}, \phi \right\rangle.
\]

Since \(\log P_{k,p} \) is continuous on \(\text{supp} \, dd^c\phi \) we have

\[
I_k = \left\langle c_1(L_1, h_1) \wedge \ldots \wedge c_1(L_{k-1}, h_{k-1}) \wedge \frac{\gamma_{k+1,p}}{p} \wedge \ldots \wedge \frac{\gamma_{m,p}}{p}, \frac{\log P_{k,p}}{2p} \, dd^c\phi \right\rangle.
\]

By (13) the masses of \(\frac{\gamma_{k,p}}{p} \) and \(c_1(L_k, h_k) \) are equal. Moreover, by Theorem 2.1 there exist a constant \(c' > 1 \) and \(p_0 \in \mathbb{N} \) such that for all \(z \in X \setminus \Sigma \) and all \(p \geq p_0 \) one has

\[-c' \leq \log P_{k,p} \leq c' \log p + c' \left| \log \text{dist}(z, \Sigma) \right|, \quad 1 \leq k \leq m.
\]

It follows that

\[
|I_k| \leq \frac{c}{m} \left(\frac{\log p}{p} + \frac{1}{p} \left| \log \text{dist}(\text{supp} \, dd^c\phi, \Sigma) \right| \right) \| \phi \|_{\mathcal{C}^2}, \quad \forall \ p \geq p_0, \ 1 \leq k \leq m,
\]

with some constant \(c = c(X, L_1, h_1, \ldots, L_m, h_m) > 0 \), and the proof is complete. \(\square \)

Finally, we turn our attention to the proof of Theorem 1.5. To this end we need the following:

Theorem 5.2. Let \((X, \omega) \) be a compact Kähler manifold of dimension \(n \) and \((L, h) \) be a singular Hermitian holomorphic line bundle on \(X \) such that \(h \) is Hölder with singularities in a finite set \(\Sigma = \{x_1, \ldots, x_I\} \subset X \), and \(c_1(L, h) \geq \epsilon \omega \) for some \(\epsilon > 0 \). Let \(\gamma_p \) be the
Fubini-Study current of $H^0_{(2)}(X, L^p)$ defined in (10). Then there exist a constant $C > 0$ and $p_0 \in \mathbb{N}$ which depend only on (X, ω, L, h) such that

$$\left| \int_X \chi \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) \right| \leq C \frac{\log p}{p^{1/3}} \| \chi \|_{\mathcal{C}^2},$$

for every $p > p_0$ and every function χ of class \mathcal{C}^2 on X.

Proof. Throughout the proof we will denote by $C > 0$ a constant that depends only on (X, ω, L, h) and may change from an estimate to the next. Let $r \in (0, 1)$ be a number to be chosen later such that there exist coordinate balls $\overline{B}(x_j, 2r)$ centered at x_j, $1 \leq j \leq J$, which are disjoint. Let $0 \leq \chi_j \leq 1$, $1 \leq j \leq J$, be a smooth function with $\text{supp} \chi_j \subset B(x_j, 2r)$, $\chi_j = 1$ on $\overline{B}(x_j, r)$, and set $\chi_0 = 1 - \sum_{j=1}^J \chi_j$. Then

$$\| \chi_j \|_{\mathcal{C}^2} \leq C/r^2, \quad 0 \leq j \leq J,$$

for some constant $C > 0$.

Let now χ be a function of class \mathcal{C}^2 on X. Using its Taylor expansion near x_j we have $|\chi(x) - \chi(x_j)| \leq Cr \| \chi \|_{\mathcal{C}^1}$ for $x \in B(x_j, 2r)$, hence

$$\| \chi(x) \chi_j(x) - \chi(x_j) \chi_j(x) \|_{\mathcal{C}^2} \leq C r \| \chi \|_{\mathcal{C}^2} \chi_j(x), \quad \forall x \in X.$$

If P_p is the Bergman kernel function of the space $H^0_{(2)}(X, L^p)$ defined in (4) then using (13) we obtain

$$\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n = \frac{1}{2p} dd^c \log P_p \wedge R_p, \quad \text{where } R_p = \sum_{\ell=0}^{n-1} \left(\frac{\gamma_p}{p} \right)^{n-1-\ell} \wedge c_1(L, h)^\ell.$$

Using a similar argument to that in the proof of Proposition 3.1 one shows that all of these currents are well defined (see also [CM1, Lemma 3.3 and Remark 3.5]). Moreover,

$$\| R_p \| = \int_X R_p \wedge \omega = n \int_X c_1(L, h)^{n-1} \wedge \omega, \quad \int_X \frac{1}{p^n} \gamma_p^n = \int_X c_1(L, h)^n.$$

Set $X_r = X \setminus \bigcup_{j=1}^J B(x_j, r)$. By Theorem 2.1 there exist $C > 0$ and p_0 depending only on (X, ω, L, h) such that for $p > p_0$,

$$\| \log P_p \|_{L^\infty(X_r)} \leq C (\log p - \log r).$$

Since R_p is closed we have

$$\int_X \chi \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) = \sum_{j=0}^J \int_X \chi \chi_j \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) =$$

$$\frac{1}{2p} \int_X (\log P_p) R_p \wedge dd^c (\chi_0) + \sum_{j=1}^J \int_X \chi \chi_j \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right).$$

Note that $\chi_0 = 0$ on $\bigcup_{j=1}^J B(x_j, r)$, so we deduce by (24) and (26) that

$$\frac{1}{2p} \left| \int_X (\log P_p) R_p \wedge dd^c (\chi_0) \right| \leq \frac{C \| \chi \|_{\mathcal{C}^2}}{p^{n-2}} (\log p - \log r).$$
For \(j \geq 1 \) we obtain using (25),
\[
\left| \int_X \chi x_j \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) \right| \leq \left| \int_X \chi(x_j) x_j \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) \right| + \\
+ \int_X ||\chi x_j - \chi(x_j) x_j| | \left(\frac{1}{p^n} \gamma_p^n + c_1(L, h)^n \right) \\
\leq \frac{1}{2p} \left| \chi(x_j) \right| \left| \int_X (\log P_p) R_p \wedge \omega \right| + C r \left\| \chi \right\|_{\psi^2}.
\]
Since \(dd^c \chi \) is supported on \(X_r \), we use again (24) and (26) to get
\[
\left| \int_X \chi x_j \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) \right| \leq C \left\| \chi \right\|_{\psi^2} (\log p - \log r) + C r \left\| \chi \right\|_{\psi^2},
\]
for \(1 \leq j \leq J \). By (27), (28), (29) we conclude that
\[
\left| \int_X \chi \left(\frac{1}{p^n} \gamma_p^n - c_1(L, h)^n \right) \right| \leq C \left\| \chi \right\|_{\psi^2} \left(\frac{\log p - \log r}{pr^2} + r \right).
\]
The proof is finished by choosing \(r = p^{-1/3} \) in the last estimate.

Proof of Theorem 1.5. This follows directly from Theorem 5.2 and Theorem 4.2. Indeed, one applies Theorem 4.2 with \(m = n \), \((L_k, h_k) = (L, h) \), and for the sequence \(\lambda_p = (2 + \xi n) \log p \).

Let us close the paper with more examples of H"older metrics with singularities.

1. Consider a projective manifold \(X \) and a smooth divisor \(\Sigma \subset X \). By [Ko, TY], if \(L = K_X \otimes \Theta_X(\Sigma) \) is ample, there exist a complete Kähler-Einstein metric \(\omega \) on \(M := X \setminus \Sigma \) with \(\text{Ric}_\omega = -\omega \). This metric has Poincaré type singularities, describe as follows. We denote by \(\mathbb{D} \) the unit disc in \(\mathbb{C} \). Each \(x \in \Sigma \) has a coordinate neighborhood \(U_x \) such that
\[
U_x \cong \mathbb{D}^n, \quad x = 0, \quad U_x \cap \Sigma \cong \{z = (z_1, \ldots, z_n) : z_1 = 0\}, \quad U_x \cap M \cong \mathbb{D}^* \times \mathbb{D}^{n-1}.
\]
Then \(\omega = \frac{1}{2} \sum_{j,k=1}^n g_{j,k} dz_j \wedge d\bar{z}_k \) is equivalent to the Poincaré type metric
\[
\omega_p = \frac{i}{2} \frac{dz_1 \wedge d\bar{z}_1}{|z_1|^2 (\log |z_1|^2)^2} + \frac{i}{2} \sum_{j=2}^n dz_j \wedge d\bar{z}_j.
\]
Let \(\sigma \) be the canonical section of \(\Theta_X(\Sigma) \) (cf. [MM1, p. 71]) and denote by \(h_\sigma \) the metric induced by \(\sigma \) on \(\Theta_X(\Sigma) \) (cf. [MM1, Example 2.3.4]). Note also that \(c_1(\Theta_X(\Sigma), h_\sigma) = [\Sigma] \) by [MM1, (2.3.8)]. Consider the metric
\[
h_{M,\sigma} := h^{KM} \otimes h_\sigma \text{ on } L \mid M = K_M \otimes \Theta_X(\Sigma) \mid M \cong K_M.
\]
Note that \(L \) is trivial over \(U_x \) and the metric \(h_{M,\sigma} \) has a weight \(\varphi \) on \(U_x \cap M \cong \mathbb{D}^* \times \mathbb{D}^{n-1} \) given by \(e^{2\varphi} = |z_1|^2 \det [g_{j,k}] \). So \(dd^c \varphi = -\frac{1}{2}\gamma_p \text{Ric}_\omega > 0 \) and \(\varphi \) is psh on \(U_x \cap M \). We see as in [CM1, Lemma 6.8] that \(\varphi \) extends to a psh function on \(U_x \), and \(h_{M,\sigma} \) extends uniquely to a positively curved metric \(h^L \) on \(L \). By construction, \(h^L \) is a H"older metric with singularities.
(2) Let us specialize the previous example to the case of Riemann surfaces. Let X be a compact Riemann surface of genus g and let $\Sigma = \{p_1, \ldots, p_d\} \subset X$. It is well-known that the following conditions are equivalent:

(i) $U = X \setminus \Sigma$ admits a complete Kähler-Einstein metric ω with $\text{Ric}_\omega = -\omega$,

(ii) $2g - 2 + d > 0$,

(iii) $L = K_X \otimes \mathcal{O}_X(\Sigma)$ is ample,

(iv) the universal cover of U is the upper-half plane \mathbb{H}.

If one of these equivalent conditions is satisfied, the Kähler-Einstein metric ω is induced by the Poincaré metric on \mathbb{H}. In local coordinates z centered at $p \in \Sigma$ we have $\omega = \frac{1}{2} gdz \wedge d\overline{z}$ where g has singularities of type $|z|^{-2} \log |z|^2)^{-2}$. Note that ω extends to a closed strictly positive $(1,1)$-current on X. By [CM1, Lemma 6.8] there exists a singular metric h^L on L such that $c_1(L, h^L) = \frac{1}{2\pi} \omega$ on X. The weight of h^L near a point $p \in \Sigma$ has the form $\varphi = \frac{1}{2} \log(|z|^2 g)$, which is Hölder with singularities.

(3) Let X be a complex manifold, (L, h^0) a holomorphic line bundle on X with smooth Hermitian metric such that $c_1(L, h^0)$ is a Kähler metric. Let Σ be a compact divisor with normal crossings. Let $\Sigma_1, \ldots, \Sigma_N$ be the irreducible components of Σ, so Σ_j is a smooth hypersurface in X. Let σ_j be holomorphic sections of the associated holomorphic line bundle $\mathcal{O}_X(\Sigma_j)$ vanishing to first order on Σ_j and let $|\cdot|_j$ be a smooth Hermitian metric on $\mathcal{O}_X(\Sigma_j)$ so that $|\sigma_j|_j < 1$ and $|\sigma_j|_j = 1/\varepsilon$ outside a relatively compact open set containing Σ. Set

$$\Theta_\delta = \Omega + \delta dd^c F,$$

where $\delta > 0$, $F = -\frac{1}{2} \sum_{j=1}^N \log(-\log |\sigma_j|_j)$.

For δ sufficiently small Θ_δ defines the generalized Poincaré metric [MM1, Lemma 6.2.1], [CM1, Section 2.3]. For $\varepsilon > 0$,

$$h^L_\varepsilon = h^0 \prod_{j=1}^N (\log |\sigma_j|_j)^\varepsilon$$

is a singular Hermitian metric on L which is Hölder with singularities. The curvature $c_1(L, h^L_\varepsilon)$ is a strictly positive current on X, provided that ε is sufficiently small (cf. [MM1, Lemma 6.2.1]). When X is compact the curvature current of h^L_ε dominates a small multiple of Θ_δ on $X \setminus \Sigma$.

(4) Let X be a Fano manifold. Fix a Hermitian metric h_0 on K_X^{-1} such that $\omega := c_1(K_X^{-1}, h_0)$ is a Kähler metric. We denote by $PSH(X, \omega)$ the set of ω-plurisubharmonic functions on X. Let Σ be a smooth divisor in the linear system defined by K_X^ℓ, so there exists a section $s \in H^0(X, K_X^\ell)$ with $\Sigma = \text{Div}(s)$.

Fix a smooth metric h on the bundle $\mathcal{O}_X(\Sigma)$ and let $\beta \in [0,1)$. A conic Kähler metric $\tilde{\omega}$ on X with cone angle β along Σ, cf. [Do, T2], is a current $\tilde{\omega} = \omega + dd^c \varphi \in c_1(X)$ where $\varphi = \psi + |s_h^{2\beta}| \in PSH(X, \omega)$ and $\psi \in C^\infty(X) \cap PSH(X, \omega)$. In a neighbourhood of a point of Σ where Σ is given by $z_1 = 0$ the metric $\tilde{\omega}$ is equivalent to the cone metric $\frac{1}{2}(|z_1|^{2\beta} - 2dz_1 \wedge d\overline{z}_1 + \sum_{j=2}^n dz_j \wedge d\overline{z}_j)$.
The metric $\hat{\omega}$ defines a singular metric $h_{\hat{\omega}}$ on K_X^{-1} which is Hölder with singularities. Its curvature current is $\text{Ric}_{\hat{\omega}} := c_1(K_X^{-1}, h_{\hat{\omega}}) = (1 - \ell \beta)\hat{\omega} + \beta [\Sigma]$, where $[\Sigma]$ is the current of integration on Σ.

REFERENCES

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244-1150, USA
E-mail address: dcoman@syr.edu

UNIVERSITÄT ZU KÖLN, MATHEMATISCHES INSTITUT, WEYERTAL 86-90, 50931 KÖLN, DEUTSCHLAND & INSTITUTE OF MATHEMATICS ‘ȘIMION STOILOW’, ROMANIAN ACADEMY, BUCHAREST, ROMANIA
E-mail address: gmarines@math.uni-koeln.de

MATHEMATIQUE-BÂTIMENT 425, UMR 8628, UNIVERSITÉ PARIS-SUD, 91405 ORSAY, FRANCE
E-mail address: VietAnh.Nguyen@math.u-psud.fr