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Abstract. We study Berezin—Toeplitz quantization on Kéhler manifolds. We ex-
plain first how to compute various associated asymptotic expansions, then we compute
explicitly the first terms of the expansion of the kernel of the Berezin—Toeplitz operators,
and of the composition of two Berezin—Toeplitz operators. As an application, we estimate
the norm of Donaldson’s Q-operator.
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0. Introduction

Berezin—Toeplitz operators are important in geometric quantization and the proper-
ties of their kernels turn out to be deeply related to various problems in Kédhler geometry
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2 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

(see e.g. [16], [17]). In this paper, we will study the precise asymptotic expansion of
these kernels. We refer the reader to the book [24] for a comprehensive study of the
Bergman kernel, Berezin—Toeplitz quantization and its applications. See also the survey
[23].

The setting of Berezin—Toeplitz quantization on Kéhler manifolds is the following.
Let (X,w,J) be a compact Kédhler manifold of dim¢ X = n with Kéhler form » and com-
plex structure J. Let (L, h%) be a holomorphic Hermitian line bundle on X, and let (E, h%)
be a holomorphic Hermitian vector bundle on X. Let VX, V£ be the holomorphic Hermi-
tian connections on (L,h%), (E,h%) with curvatures RE = (V1)?, RE = (VF)?, respec-
tively. We assume that (L, 2%, V¥) is a prequantum line bundle, i.e.,

v—1
0.1 =-—R"
(0.1) »=—

Let g7*(-,-) := w(-,J-) be the Riemannian metric on 7X induced by w and J. The
Riemannian volume form dvy of (X,g"™¥) has the form dvy = w"/n!. The L?>-Hermitian
product on the space ¢ (X,L” ® E) of smooth sections of L? ® E on X, with
L? := L®P is given by

(0.2) (51,8 = [<s1,80(X) doy (x).
X

We denote the corresponding norm by || - ||;. and by L*(X,L? ® E) the completion of
¢ (X,L" ® E) with respect to this norm.

Given a continuous smoothing linear operator K : L*(X,L” @ E) — L*(X,L? ® E),
the Schwartz kernel theorem [24], Theorem B.2.7, guarantees the existence of an integral
kernel with respect to dvy, denoted by K(x,x') e (LY ® E), ® (L’ ® E),,, for x,x’ € X,
Le.,

(0.3) (KS)(x) = [ K(x,x")S(x")dvy(x"), SeLl*X,L’ ®E).

Consider now the space H(X,L? ® E) of holomorphic sections of L” ® E on X and let
P,: L*(X,L” ® E) — H°(X,L? ® E) be the orthogonal (Bergman) projection. Its kernel
P,(x,x") with respect to dvy(x’) is smooth; it is called the Bergman kernel. The Berezin—
Toeplitz quantization of a section f € ¢”(X,End(E)) is the Berezin—Toeplitz operator
{Ts.p},cn which is a sequence of linear operators 7y, , defined by

(0.4) Ty, : L*(X,L? ® E) — L*(X,L? ® E), Ty, = P,fP,.

The kernel Ty ,(x,x") of Ty , with respect to dvy(x') is also smooth. Since End(L) = C, we
have Ty ,(x,x) € End(E), for x € X.

We introduce now the relevant geometric objects used in Theorems 0.1, 0.2 and 0.3.
Let 719X be the holomorphic tangent bundle on X, and 7*(19X its dual bundle. Let
V¥ be the Levi-Civita connection on (X,g7¥). We denote by R”Y = (V7*)? the curva-
ture, by Ric the Ricci curvature and by r the scalar curvature of V¥ (cf. (3.3)).
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 3
We still denote by V£ the connection on End(E) induced by V£. Consider the (posi-
tive) Laplacian A acting on the functions on (X,¢”¥) and the Bochner Laplacian A on

%”(X,E) and on 4” (X,End(E)). Let {ex} be a (local) orthonormal frame of (TX,g"¥).
Then

(0.5) _—Z(VEVE VTX ).

€k~ €k

Let Q%" (X,End(E)) be the space of (g,r)-forms on X with values in End(E), and
let

(0.6) V0. Q?*(X,End(E)) — Q""" (X,End(E))
be the (1,0)-component of the connection VE. Let (VE)*, vI:% 9 be the adjoints of V£,
V1.0 0% respectively. Let D0, D%! be the (1,0) and (0, 1) components of the connection
vIX . @* (X, T*X) —» ¢*(X,T*X ® T*X) induced by V7,

In the following, we denote by

(e 1 Q5 (X,End(E)) x Q5 (X, End(E)) — ¢” (X, End(E))

the C-bilinear pairing e ® f,f ® ¢>, = {a, > f - g, for forms o, f € Q" *(X) and sections
f,9€€*(X,End(E)) (cf. (0.14), (0.16), (0.17)). Put

0.7) RE = (RE, ),
Let Ric,, = Ric(J+,-) be the (1, 1)-form associated to Ric. Set

|Rica,|2 = ERicw(e,-,ej)z, |RTX|2 =3 Z(RTX(e,-,ej)ek,el>2,

i<j i<j k<l
and let
ATy 1 2,
by = — 28 T 96 RZ|" - |R1C“’| 18"
v—1 . 1
by = T (2VR£ — 4<R1Cw7 RE>w + AER/I\;) - g (Rf)z
(0.8) 1 \
L RE RE > AEx l,O*RE
+ g < ) >w —+ 16 vV ’
r V-1 1

We use now the notation from (3.6). By our convention (cf. (3.5)), we have at
X0 € X 5

oy dzy NdZp, Brgdze ndZy) = —4oymP, 7 Oing dZm @ dZg, Pry dzic @ dz;) = dazgfy,

(note that |dz,|* = 2). Then by Lemma 3.1, (5.3) and (5.4), we have at x; € X,
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4 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Ric,; = 2R =2R,. i, r=8R,;. Ric, = V-IRic,dz ndz,
VETRE = 2RE, by =~ (R + R,
(0.9) bye = — % +é kimg” “lkgm %R/iququm + %RfiqukEmmv
bae = RER i~ REgRizyn + 5 (RERE, — REGRE)

1 E E
+ Z (_Rkl;;mﬁz + 3le€; krﬁ)‘

We say that a sequence ©, € ¢ (X ,End(E )) has an asymptotic expansion of the form
(0.10)  ©,(x) = f;) A(X)p" 4 O(p~), A, 6 (X,End(E)),
if for any k,/ e N, there exists C; > 0 such that for any p € N*, we have
(0.11) 0,(x) — Z A, (x)p"" < Cka”_k_l,
where | - |,y I8 the %'-norm on X.
Theorem 0.1. For any f € ¢ (X,End(E)), we have
(0.12) Ty p(x,x) = i)br,f(x)p"’ +0(p~"), b.ye€”(X,End(E)).
=

Moreover,

o e Vol ey_ Lk
(0.13) boh/_f, b17_f—8nf+ e (RAf+fRA) 4nA f.

If fe€”(X), then

1 1 V-1 _
(0.14)  7%by s = i*bof + = A*f — —=rAf — ~=—(Ric,, 0f >
’ 32 32 8
Vv _1 EpE 1 1,0x pE
g A VIR0 + 5,0 VIR,

l = =gk V-1 el = E
—5q TRy, = e (ANRE + <03 RE,.

Theorem 0.2. For any f,ge%”(X,End(E)), the kernel of the composition
Ty, o T, p has an asymptotic expansion on the diagonal

(0.15)  (Ty.p o Typ)(x,x) = E%bnf,g(X)P”_r +0(p™),  bryy€%” (X, End(E)),
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 5

in the sense of (0.11). Moreover, by ., = fg and

1 v—=1
(0.16) biyg= @”fg —I—?(Rffg +f9R/€)

1 I =
= 4 ([A"g + (A"f)g) +5_<0%f V"),

If f,g €67 (X), then

(0.17) b27f7g :fb27g+gb27f—fgb2

1( 1« 1 - L5
nE {_ 5 <O OG> — < CONT, 09> + 5 <O, 0g )by

~ 4O R0 RES, 4 F - Bg D13 D %)

The existence of the expansions (0.12) and (0.15) and the formulas for the leading
terms hold in fact in the symplectic setting and are consequences of [27], Lemma 4.6 and
(4.79), or [24], Lemma 7.2.4 and (7.4.6), (cf. Lemma 2.2). The novel point of Theorems 0.1,
0.2 is the calculation of the coefficients by ¢, b> s, b1 s, and b, r ,. Note that the precise for-
mula b; s for a function f € €™ (X) was already given in [24], Problem 7.2. In Theorem
5.1, we find a general formula of b, s for any f € ¢ (X, End(E)).

If /=1, then Ty , = P,, and the existence of the expansion (0.12) and the form of the
leading term was proved by [30], [6], [33]. The terms b;, b, were computed by Lu [22] (for
E = C, the trivial line bundle with trivial metric), X. Wang [32], L. Wang [31], in various
degree of generality. The method of these authors is to construct appropriate peak sections
as in [30], using Hormander’s L?> d-method. In [8], §5.1, Dai—Liu—Ma computed b; by
using the heat kernel, and in [25], §2, [26], §2 (cf. also [24], §4.1.8, §8.3.4), we computed b,
in the symplectic case.

The expansion of the Bergman kernel P,(x,x) on the diagonal, for E = C, was re-
derived by Douglas and Klevtsov [11] by using path integral and perturbation theory. They
give physics interpretations in terms of supersymmetric quantum mechanics, the quantum
Hall effect and black holes (cf. also [12]).

An interesting consequence of Theorem 0.2 is the following precise computation of
the expansion of the composition of two Berezin—Toeplitz operators.

Theorem 0.3. Let f,g e €~ (X , End(E)). The product of the Toeplitz operators Ty,
and T, , is a Toeplitz operator, more precisely, it admits the asymptotic expansion

.
(0.18) TypoTyy= ZOP_VTCr(f-,g),p +0(p™7),
where C, are bidifferential operators, in the sense that for any k = 0, there exists ¢, > 0 with

1

(0.19) <ap T,

k
-
TrpoTyp— I;)P Tc,(1,9).p
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6 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

where || - || denotes the operator norm on the space of bounded operators. We have
Go(f9) = 19,
1 _
(020) Cl (f7 g) = - E <V170f7 aEg>a) e6” (X7 End(E))7

G(f,9) =bofg—bo gy —b1c(r.g)-

If f,g € 6*(X), then

V=1 _
17 {Ric,, f A dg)

021) o .g) = g (D07, D"NGg> +

1 _
- m@f A ag,RE>w-

The existence of the expansion (0.18) is a special case of [27], Theorem 1.1, (cf. also
[24], Theorems 7.4.1 and 8.1.10), where we found a symplectic version in which the
Toeplitz operators (0.4) are constructed by using the projection to the kernel of the Dirac
operator. Note that the precise values of b, are not used to derive (0.21) (cf. Section 5.3).

The existence of the expansion (0.18) for £ = C was first established by Bordemann,
Meinrenken and Schlichenmaier [3], Schlichenmaier [29] (cf. also [19]) using the theory of
Toeplitz structures by Boutet de Monvel and Guillemin [4]. Charles [7] calculated C;(f, g)
for £ = C. The asymptotic expansion (0.18) with a twisting bundle £ was derived by
Hawkins [18], Lemma 4.1, up to order one (i.e., (0.19) for k = 0).

Also, there is related work of Englis [13], [14] dealing with expressing asymptotic
expansions of Bergman kernel and coefficients of the Berezin—Toeplitz expansion (0.18)
in terms of the metric. Englis [14], Corollary 15, computed C,(f,g) and C»(f,g) for a
smoothly bounded pseudoconvex domain X = {ze€ C": ¢(z) > 0}, where ¢ is a defining
function such that —logg is strictly plurisubharmonic, and for the trivial line bundle
L = C over X, equipped with the nontrivial metric #- = ¢ of positive curvature.

Note that we work throughout the paper with a non-trivial twisting bundle £. More-
over, we have shown in [27], §5-6, (cf. also [24], §7.5) that Berezin—Toeplitz quantization
holds for complete Kéhler manifolds and orbifolds endowed with a prequantum line bun-
dle. The calculations of the coefficients in the present paper being local in nature, they hold
also for the above cases.

For some applications of the results of this paper to Kéhler geometry see the paper
[17] by Fine.

We close the introduction with some remarks about the Berezin—Toeplitz star-
product. Following the ground-breaking work of Berezin [1], one can define a star-product
by using Toeplitz operators. Note that formal star-products are known to exist on symplec-
tic manifolds by [9], [15]. The Berezin—Toeplitz star-product gives a very concrete and geo-
metric realization of such product. For general symplectic manifolds this was realized in
[24], [27] by using Toeplitz operators obtained by projecting on the kernel of the Dirac
operator.
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 7

Consider now a compact Kéhler manifold (X, ®) and a prequantum line bundle L.
For every f,ge€ ¥ (X) one defines the Berezin—Toeplitz star-product (cf. [19], [29] and
[24], [27] for the symplectic case) by

(0.22) frg = :Zo Colf > )i € 6 (X)[A].

This star-product is associative. Moreover, for f,g € € (X) we have (cf. [24], (7.4.3), [27],
(4.89))

0.23)  Co(f.9) = fg=Colg.f), Ci(f.9) - Cilg,f) = V—1{f,g},

where {f, g} is the Poisson bracket associated to 2zw. Therefore

v—1 B
(0.24) [Tf,pv Tg,p] = 7 T{f,g}ﬁp +O(p 2)» p — C.

Consider a twisting holomorphic Hermitian vector bundle £ and f,g € €™ (X ,End(E )) as
in Theorem 0.3. This corresponds to matrix-valued Berezin—Toeplitz quantization, which
models a quantum system with » = rank £ degrees of freedom. By (0.18), this Berezin—
Toeplitz quantization has the expected semi-classical behaviour. Moreover, by [24], Theo-
rem 7.4.2, [27], Theorem 4.19, we have

(0.25) Jim (177, = /1l = )., Sup o) (@) / Ll

Fuek,,xeX

Corollary 0.4. Let f,g e ¢” (X,End(E)). Set

(0.26) frgi= kio Cu(f, g)i* € € (X, End(E)) [,

where C,(f,g) are determined by (0.18). Then (0.26) defines an associative star-product on
%” (X,End(E)). Set moreover

1 - _
(0.27) {f gk = 2m/_—1(<V1’°g, O = V05 0),,).
If fg = gf on X we have
—1
(0.28) (Ty.ps Ty.p) = g Trgppt+ O(p~?), p— .

The associativity of the star-product (0.26) follows immediately from the associativity
rule for the composition of Toeplitz operators, (7y,, 0 T, ,) 0 Tk, = Ty, p o (Ty,p o Tk,p) for
any f,g9,ke€” (X , End(E)), and from the asymptotic expansion (0.18) applied to both
sides of the latter equality.

Due to the fact that {{f,g}} = {f, ¢} if E is trivial and comparing (0.24) to (0.28),
one can regard {{f, g}} defined in (0.27) as a non-commutative Poisson bracket.
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8 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Remark 0.5. Throughout the paper we suppose that g’* (u,v) = w(u, Jv). The re-
sults presented so far still hold for a general non-Kéhler J-invariant Riemannian metric
g™ . To explain this point we follow [24, §4.1.9].

Let us denote the metric associated to w by g/* := w(-,J-). We identify the 2-form

RY with the Hermitian matrix RY € End(T q’O)X ) via g7¥. Then the Riemannian volume

form of gI* is given by dvy ., = (2r) " detl(RL) dvy (where dvy is the Riemannian volume
cC

form of 7). Moreover, hZ := det (2—> h% defines a metric on E. We add a subscript @
n

to indicate the objects associated to g?*, ht and hE. Hence (-, -),, denotes the L? Hermi-

tian product on € (X, L? ® E) induced by g[*, h%, hE. This product is equivalent to the

product ¢{-,-> induced by g™*, hl, ht.

Moreover, H°(X,L” ® E) does not depend on the Riemannian metric on X
or on the Hermitian metrics on L, E. Therefore, the orthogonal projections from
(¢ (X,L? ® E),{-,>,) and (¢”(X,L? Q E),<-,-») onto H*(X,L” ® E) are the same.
Hence P, = P, ., and therefore Ty , = Ty , ., as operators. However, their kernels are dif-
ferent. If Ty , ., (x,x), (x,x" € X), denotes the smooth kernels of 7y ,, with respect to
dvy (x"), we have

(0.29) Ty, (x,x") = (21) " det(RE) (X)) Ty .o (x, X').
For the kernel 77, ,,(x, x"), we can apply Theorem 0.1 since g2 ¥(-,-) = w(-,J-) is a Kéhler

metric on 7X. We obtain in this way the expansion of T ,(x,x) for a non-Kéhler metric
g™ on X. By (0.29), the coefficients of these expansions (0.12), (0.18) satisfy

b, s = (2n) " det(R")b, /.,
C(f,9) = Crolf,9)

(0.30)

This paper is organized as follows. In Section 1, we recall the formal calculus on C”
for the model operator ., which is the main ingredient of our approach. In Section 2, we
review the asymptotic expansion of the kernel of Berezin—Toeplitz operators and explain
the strategy of our computation. In Section 3, we obtain explicitly the first terms of the
Taylor expansion of our rescaled operator .%,. In Section 4, we study in detail the contri-
bution of O, O4 to the term %4 from (2.20). In Section 5, by applying the formal calculi
on C" and the results from Section 4, we establish Theorems 0.1, 0.2 and 0.3. We also
verify that our calculations are compatible with the Riemann—Roch—Hirzebruch Theo-
rem. In Section 6, we estimate the ¥™-norm of Donaldson’s Q-operator, thus continuing
[20], [21].

We shall use the following notations. For a = (a,...,0,) e N”, ZeC", we set

m
|| := > oy and Z* := Z]" - .- Z*. Moreover, when an index variable appears twice in a
J=1
single term, it means that we are summing over all its possible values.
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out some interesting references. X. M. thanks the Institut Universitaire de France for sup-
port. G. M. was partially supported by SFB/TR 12 and Fondation Sciences Mathéma-
tiques de Paris. We were also supported by the DAAD Procope Program.

1. Kernel calculus on C”

In this section we recall the formal calculus on C”" for the model operator % intro-
duced in [27], §2, [24], §7.1, (with a; = 2x therein), and we derive the properties of the cal-
culus of the kernels (F2)(Z,Z’), where F € C[Z,Z'] and #(Z,Z’) is the kernel of the pro-
jection on the null space of the model operator .#. This calculus is the main ingredient of
our approach.

Let us consider the canonical coordinates (Zi, ..., Z,,) on the real vector space R>".
On the complex vector space C" we consider the complex coordinates (zi, ..., z,). The two
sets of coordinates are linked by the relation z; = Zy; 1 + V=125, j=1,...,n.

1/2
We consider the L2-norm || - ||,> = ( INE |2dZ) on R*", where dZ = dZ; - - - dZ»,

2n

is the standard Euclidean volume form. We define the differential operators:

0 _ . 50 _ _ +
(11) [),‘——2(3—Zl‘—|—7'lf21'7 bi —26—2i+ﬂzl, b—(b],...,bn), g—;blbl s
which extend to closed densely defined operators on (L*(R*), || - [|;2). As such, b;" is the

adjoint of b; and % defines as a densely defined self-adjoint operator on (L?(R*), || - ||..).
The following result was established in [25], Theorem 1.15, (cf. also [24], Theorem 4.1.20).

Theorem 1.1.  The spectrum of £ on L*(R*) is given by
(1.2) Spec(¥) = {4n|a| : « € N"}.

Each 2 € Spec(¥) is an eigenvalue of infinite multiplicity and an orthogonal basis of the cor-
responding eigenspace is given by

N e
1

(1.3) B; = {b*(Pe ) : e N" with dn|a| = A, € N"}

and \J{B;, : /. € Spec(#)} forms a complete orthogonal basis of L*(R*"). In particular, an
orthonormal basis of Ker( %) is

2 oo
(14) {W)—(% R /Z:ﬂeN"}.

Let 2(Z,Z') denote the kernel of the orthogonal projection 2 : L>(R*") — Ker(%)
with respect to dZ'. Let 2+ = Id — 2. We call 2(-,-) the Bergman kernel of .%.

Obviously 2(Z,Z') = > ps(2)pp(z’) so we infer from (1.4) that
B

(1.5) 22,7 :exp(—gz(\zi\2+]25\2—2212;))
=1
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10 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

In the calculations involving the kernel #(-,-), we prefer however to use the orthog-
onal decomposition of L?(R*") given in Theorem 1.1 and the fact that 2 is an orthogonal
projection, rather than integrating against the expression (1.5) of 2(-,-). This point of view
helps simplify a lot the computations and understand better the operations. As an example,

-7 |4,
if p(Z) = b*(Pe 7 | ) with o, f € N”, then Theorem 1.1 implies immediately that
—n Y |zil/2
(1.6) (P9)(Z) = {Zﬁe T, i e =0,
0, if |o| > 0.

The following commutation relations are very useful in the computations. Namely, for any
polynomial ¢(z,Z) in z and Z, we have

[bi, "] = bibj” — b bi = —4ndy,
[bi, b)) = bi", b1 = 0,

i 7]

(17) 0(z.2).5] = 2 g2, 2),

0(2:2).87) = ~250(2.2).
For a polynomial F in Z, Z’, we denote by F# the operator on L*(R*") defined by the
kernel F(Z,Z"\?(Z,Z") and the volume form dZ according to (0.3).

The following very useful lemma ([24], Lemma 7.1.1), describes the calculus of the
kernels (F?)(Z,Z') .= F(Z,Z"\?(Z,Z’).

Lemma 1.2. For any F,G € C|Z,Z'] there exists a polynomial #'[F,G| e C[Z,Z’]
with degree deg A'[F, G| of the same parity as deg F + deg G, such that

(1.8) (F2) o (G2))(Z2,Z") = X'|F,G)(2,2"\?(Z,Z").

2. Expansion of the kernel of Berezin—Toeplitz operators

In this section, we review some results from [25], [27] (cf. also [24], §7.2). We explain
then how to compute the coefficients of various expansions considered in this paper. We
keep the notations and assumptions from the Introduction.

Kodaira—Laplace operator. Let 0X"®E* be the adjoint of the Dolbeault operator
oL'®E Let [, =0 ®5* 0" ®F be the restriction of the Kodaira Laplacian to
% (X,L” ® E). Let A"®F be the Bochner Laplacian on ¢ (X, L” ® E) associated to
VL VE gTX, defined as in (0.5). Then we have (cf. [24], Remark 1.4.8)

_ALreE _ VL
r 2

(2.1) 20 RE(e;, Je;) — 2np.

Moreover, by Hodge theory (cf. [24], Theorem 1.4.1) we have

(2.2) Ker((,) = H*(X,L’ ® E).
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 11

This identification is important since the computations are performed by rescaling [], and
expanding the rescaled operator.

Normal coordinates. Let a* be the injectivity radius of (X,g’™). We denote by
B¥(x,¢) and BT*¥(0,¢) the open balls in X and 7, X with center x and radius &, respec-
tively. Then the exponential map 7,X 3 Z — expX(Z) e X is a diffeomorphism from
BT-X(0,¢) onto B¥(x,¢) for ¢ < a¥. From now on, we identify B-¥(0,¢) with B¥(x,e)
via the exponential map for ¢ < a*. Throughout what follows, ¢ runs in the fixed interval
10,a* /4],

Basic trivialization. We fix xoe€ X. For Ze B™0%(0,¢) we identify (Lz, h%),
(Ez,h%) and (L? ® E), to (Ly,,hL), (Ex,, hf) and (L? ® E),, by parallel transport with

respect to the connections VX, VE and VE'®F along the curve y,: [0,1] 2 u — exp; (uZ).
This is the basic trivialization we use in this paper.

Using this trivialization we identify f € €% (X, End(E)) to a family {fy,}, .y where
fx is the function f in normal coordinates near xo, i.e., fy, : B70%(0,¢) — End(E,,),
fo(Z) = foexp(Z). In general, for functions in the normal coordinates, we will add
a subscript xo to indicate the base point xo € X. Similarly, P,(x,x’) induces in terms
of the basic trivialization a smooth section (Z,Z') — P, (Z,Z') of n*End(E) over
{(Z,Z") e TX xx TX :|Z|,|Z'| < &}, which depends smoothly on xy. Here we identify a

section S € 4 (TX xx TX,n* End(E)) with the family (S.), . y, where Sy = S|,

Coordinates on T, X. Let us choose an orthonormal basis {w;};_, of T)EJ’O)X . Then

(wj 4+ w;) and ey = (wj—wj), j=1,...,n, form an orthonormal basis of

1 V-1
R V2

Ty, X. We use coordinates on Ty X =~ R2" given by the identification

(2.3) R¥ 5 (Z1,...,Z5) — Y. Zie; € Ty, X.

In what follows we also use complex coordinates z = (zy,...,z,) on C" ~ R*".

Volume form on T, X. If dvry is the Riemannian volume form on (7, X,g70%),
there exists a smooth positive function xy, : Ty, X — R, Z +— Ky, (Z), defined by

(2.4) dvy(Z) = Ky, (Z) dvrx (Z), Ky (0) =1,
where the subscript xj of x,(Z) indicates the base point xj € X.

Sequences of operators. Let ©, : L>(X,L? ® E) — L*(X,L? ® E) be a sequence of
continuous linear operators with smooth kernel ®,(-, -) with respect to dvy (e.g. ®, = Ty ,).
Let n: TX xy TX — X be the natural projection from the fiberwise product of TX
on X. In terms of our basic trivialization, ®,(x, y) induces a family of smooth sections
Z,7'— 0, (Z,Z') of n*End(E) over {(Z,Z') e TX xx TX :|Z|,|Z'| < &}, which de-
pends smoothly on xy.

We denote by (0, +,(Z,Z’)|4iy) the € ! norm with respect to the parameter xo € X.
We say that ©, (Z,Z') =O(p~®) if for any /,m e N, there exists C;,, > 0 such that
©p, 5 (Z,Z)|gm(x) = Crmp™.
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12 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds
Notation 2.1. Recall that 2, = 2 was defined in (1.5). Fix k e N and &' €]0,a*].

Let {Or x }o< <k xoex D€ @ family of polynomials O, v, € End(E), [Z,Z'] in Z, Z', which
is smooth with respect to the parameter xo € X. We say that

k
(25)  p0, (2,2 = 2 (Orx ) (VPZ, VPZ)p~? +0(p~ IR,
on{(Z,Z")e TX xx TX : |Z|,|Z'| < &'} if there exist Cy > 0 and a decomposition

k
(2.6)  p"@, (2,2 (2)kY(Z") - 32 (0r ) (WPZ, VpZ)p~?
PA,k,Xo(ZvZ/) + O(p_oo)v

where ¥, . ., satisfies the following estimate on {(Z,Z') e TX xx TX :|Z|,|Z’| < ¢'}: for
every [ € N there exist Ci; > 0, M > 0 such that for all p e N*

(27) ’LPILkA,Xo(Zv Z/>’(€’(X) = Ck71p7(k+l)/2(1 + \/]_)’Z| + \/ﬁlz/‘)Meic“\/ﬁ\Z—Z/"

The sequence P,. By [8], Proposition 4.1, we know that the Bergman kernel decays
very fast outside the diagonal of X x X. Namely, for any /;m e N, ¢ > 0, there exists
Ci.m,: > 0 such that for all p = 1 we have

(2.8)  |Py(x,X ) £ Crmep™ on{(x,x') e X x X :d(x,x") = ¢}
Here the ¥™-norm is induced by VX, VE, V¥ and ht, hE, g7¥

By [8], Theorem 4.18’, there exist polynomials J, ,(Z,Z') € End(E), in Z, Z' with
the same parity as r, such that for any k € N, ¢ € |0, a¥ /4[, we have

(2.9) p"Pp, VO(Z,Z’) Z(erog)xo)(\/_z \/—Z I 2+0( -5

r=0

);

ontheset {(Z,Z') e TX xx TX : |Z|,|Z'| < 2¢}, in the sense of Notation 2.1.

The sequence Ty, ,. From (2.9), we get the following result (cf. [27], Lemma 4.6, [24],
Lemma 7.2.4).

Lemma 2.2. Let f € 4” (X,End(E)). There exists a family {Q, v, (f )}reN,xoeXD de-
pending smoothly on the parameter xo € X, where Q, ,(f) € End(E), [Z,Z'] are polyno-
mials with the same parity as r and such that for every k € N, ¢ € |0, aX / 4],

k
(210) P Ty (Z.20) = 22 (Qrn (1) %) (WPZ, VPZ)p " + O(p™ D),

on the set {(Z,Z') e TX xy TX : |Z|,|Z’'| < 2¢}, in the sense of Notation 2.1. Moreover,
Oy.x,(f) are expressed by

- , 0*fe
(2~11) Qr,XO(f) - Z va Jrl-,xov 07 (0) 12 X0

ri+r+a|=r
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 13

Especially,

(2.12) Qo,x (/) = /(o).

Our goal is of course to compute the coefficients O, y,(f). For this we need J, y,,
which are obtained by computing the operators %, ,, defined by the smooth kernels

(2.13) T Z,2") = 0 (2, ZNP(Z2,Z")

with respect to dZ’. Our strategy (already used in [24], [25]) is to rescale the Kodaira—
Laplace operator, take the Taylor expansion of the rescaled operator and apply resolvent
analysis. In the remaining of this section we outline the main steps and continue the calcu-
lation in Section 3.

Rescaling (1, and Taylor expansion. For se ¢*(R* E, ), Z € R*", |Z| < 2, and
1
for t = —, set
(Si5)(2) == s(Z/1),
V) =S L' OEs,
(2.14)
V, =S e PVE O g — 4 1 2 (12)Vi ™2 (12),

%= S22 20,12,

Then by [24], Theorem 4.1.7, there exist second order differential operators O, such that we
have an asymptotic expansion in ¢ when ¢ — 0,

m
(2.15) L= Lo+ S0, + 0(m).
r=1

From [24], Theorems 4.1.21 and 4.1.25 (cf. also Theorem 3.2), we obtain

(2.16) Ly=S b =&, 0,=0.
J
Resolvent analysis. We define by recurrence f,(4) € End(L?(R*, E))) by

@17) ) =(— L), ﬁw=<x—zo>‘i0jﬁ,-u>.

Let 0 be the counterclockwise oriented circle in C of center 0 and radius 7/2. Then by [25],
(1.110), (cf. also [24], (4.1.91))

1 )
(2.18) Ty = T [ fo(2) .
—19
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Authenticated | 172.16.1.226
Download Date | 3/14/12 1:16 PM




14 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Since the spectrum of % is well understood we can calculate the coefficients %, ,,.
Recall than 2+ = Id — 2. From Theorem 1.1, (2.16) and (2.18), we get

99707)(0 = E@7 eg‘jl,X() = 07
(2.19) Ty = =L\ P02 — 20,97 P
Ty = =L\ PLO P — 20,97 P
and

(2.20) Fang = 27{\1/——1;5[ (A= L)' PHO2 + Oufi) ()

+ %@(Ozfz + O04f0)(2) | d2

=27 '2r0, 9 ' PL0 P — ' PLOL2
+ PO, L\ PrO, Pt — 2O, P
+ L7 \PL020, L\ P — PO, 2P0, P
— PO, POLL 2P — P+ P 720,20,2.

In particular, the first two identities of (2.19) imply
(2.21) Joo =1, Jix =0.

Remark 2.3. % is a formally self-adjoint elliptic operator on ¥*(R*", E,,) with re-
spect to the norm || - ||;» induced by A%, dZ. Thus %, and O, are also formally self-adjoint
with respect to || - || .. Therefore the third and fourth terms in (2.20) are the adjoints of the
first and second terms, respectively. In Lemma 4.1, we will show that 20,2 = 0, hence the
last two terms in (2.20) vanish. Set

(2.22) Ty = L'\ PrO, 7' Pr 0,2 — 7 P02

3. Taylor expansion of the rescaled operator .Z;

In this section we compute the operators %y and O; (for 1 < i < 4) from (2.15) (see
Theorem 3.2), which will be used in Sections 4, 5 for the evaluation of the coefficients of the
expansion of the kernels of the Berezin—Toeplitz operators.

We denote by <-,-> the C-bilinear form on TX ®g C induced by g’¥. Let R be the
curvature of the Levi—Civita connection V7¥. Let Ric and r be the Ricci and scalar curva-
ture of V7¥. Then we have the following well know facts: for U, V, W, Y vector fields
on X,
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 15

R™ (U, VYW + R™ (v, W)U + R™ (W, U)V =0,
3.1
>0 RU V)W, Yy =R (W, Y)U, V)= (R (V, U)W, Y).

Now we work on T\, X ~ R?" as in (2.3). Recall that we have trivialized L, E. Let Vy
denote the ordinary differentiation operator on 7, X in the direction U.

We adopt the convention that all tensors will be evaluated at the base point xyp € X
and most of time, we will omit the subscript xy.

For W e T\, X, Z € R*", let W(Z) be the parallel transport of W with respect to V¥

along the curve [0, 1] 3 u — uZ. Because the complex structure J is parallel with respect
o VT¥ we know that

(3.2) I W(Z) =T W (Z).
Recall that {e;} is a fixed orthonormal basis of (T, X, g’™). Then for U, V € Ty, X,

(3.3) Ric,, (U, V) = —<RTX(U, eV, €Dy Ty = —<RTX(e,-,ej)e,-,ej>xO.

We define
R e (T"X @ A (T"X) ® End(TX))
RIY, e (T7X)®? @ A(T*X) ® End(TX)) _,
Ric. e (T*X @ (T* X)®2)
Le(T"X @A (T°X) ® End(E)) _,
e (T7X)®* @ AXT*X) ® End(E))
by
<RTX(em,e])eq,e, (Ve KR™ (8m, 8))24,8) "
<R;T(giﬁe/>(em,e])eq,e, ( Ve (R™¥ (emae])eqael>)
(3.4) Ric,, (e;,¢;) = (Ve Ric( e,,e,))xO,
e,,ej ( e,,ej )x ,
R?ek o €ir€)) (Ve/VekR e,,e]))

We will also use the complex coordinates z = (zy, ..., z,). Note that

0 0 0 0 0 0
(3.5) ezj,l—aZ—Zj_l—a—Zj-i-a—Zj, ezj_@_v_1<6_zj_5_fj>’
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16 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Set

) . 0 0
(3.6) Riy, = Rica (£ 7).
o o\ o 0 0 0
Rigvas ={ R (= ,—) — RE =RE | —,—
kinlq; s < L <aZk 02,,,) 62/ an> kq;s e aZk’afq )
and in the same way, we define Ry/g.5, Riicg. 5o Ricg:s, Rk 5 R,‘fq -

Since R™ is a (1,1)-form and V¥ is the Chern connection on (E,h?), we deduce
from (3.1)—(3.3) the following.

Lemma 3.1. (1) ka/q R/mkq qu/m R/[]kﬁh r= 8Rmt]qr7n (R]g)* = RZ;

(2) Rinegs = Rimkg.s = Rigeimss = Rogiims-

(3) Ric is a symmetric (1, 1)-tensor and Ric,,; = 2R, iz RiCmgs = 2R pio .

4) RLY, RIZ ) are (1,1)-forms with values in End(Tx, X)) which commute with Jy,.

(5) RE, RY

e’ (ex,er)

€ End(E,,).
Let div(Ric) be the divergence of Ric. By [28], §2.3.4, Proposition 6,
(3.7) dr = 2div(Ric) = 2(V] ¥ Ric)(&y, ).
Lemma 3.1 and (3.7) entail
R =R

R =R

(3.8) tlminsk Llmk;im’ (lmin; k Ll ki m?
—(Ar)x() = 2e4e (Ric(éq, ém))x[] = 32qu§;m]; = 32Rmﬁqu; 2
Set
1
(3.9) R:=>Zei=2Z, Vo=Vt ERXLO(R, ..
. . . 0
Thus R is the radial vector field on R*". We also introduce the vector fields z = Zz,-a—
- Zl

0 .
and Z = Zfl-a—_. By [24], Proposition 1.2.2, (3.2), we have
i Zi

(3.10) R=%YZg, z= sz% =Y

i i

j}ll

By (0.1) and (1.1), we get

(1) b=V, b =2V, .. = 2V 1T, oDy,

XO
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Let 417,427 € (T*X )®2 be polynomials in Z with values symmetric tensors, defined

by
Aiz(eie) = <RTX 2(R.e)R. e,

(3.12)
Axz(er,e) = <RIX(R, )R, RIX (R, )R,

Recall that the operator ¥ was defined in (1.1). Set

1
(3.13) 0, = 3 <RXTOX(R, ei)R,¢;>Vo,¢, Vo, — 2R,f,;

2.
+ <<§R£X(Z7Z)R, €j> +§ Ricy, (R, ¢;) — Rf;(R, ej)>V07ej,

and
O—LA—EA (ei,€/)Vo,e, V.
41 =20 1z 3 27 J\€is€j)V0,e; V0,¢5
On = | 2 — (L a1y — - dsy ) (e1,0) — —— Ric(R, R)?
2= T80 T 360722 )\ 288
<
+ = Ric(R,R)?,
144
(3.14) |
043 = —— Ric(R,R)Z Ric(R, R),
144
T V8 B 0 1 2
Ou = {30 z(Z,e) —EAzz(Z,ez) 8Z < A1z+45Azz> (eire))
0 (1 1
_a—Zi(EAIZ+EAZZ)(ej’ej)}Vo7e”
and
0ss :{ (RTY (R, )R, RT¥ (R, ex)er s,
1 .
— 5 <REV(R )R, 0>, Ric(R, ¢;)
1 1,
43 CRIN (R e0) R ey RE (R, ) = 3 RE 7)(Roer) Vo,
(3.15)
)
Oue = —%Azz(f, 2) + (Z e) (Z Z)R €/>XO

4
- _<R Y (2,2)R, emy, Ric(R, €m) + = 5 Ricy Ric, 7 22,

4 TX (. = E
9 k/mq Ric/i ZkZg t 7 <7ZR Xo (Za Z)Rv €m >Rx0 (Rv em)
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18 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

1. 1 _
+3 Ric(R, ) RE (R, €m) + 3 (RGRE; + RERE )22,

l

0 0
E —_— —
4 ZE/ (R es) — R (2,7) (62/’62/)

The following result extends [24], Theorem 4.1.25, where %, Oy, O, were computed.

Theorem 3.2. The following identities hold for the operators O, introduced in (2.15):

(3.16a) Ly =S b = L ==Y Vo Vo. —2mn, O =0,
J i
/ 1 : ”xo

(316b) 02 = 02 — 5 RleO (R, Ej)voﬁej — ?,

and
1 TX
(3178.) 03 = 6 <R;Z (R, €,')R7 ej>x0V0,€iV0,ej

2 1
—Z (R¥(z,2)R, >y, + 7 Ric,2(R, )

6

2
——R;EZ(R, )| Vo.e

1
+ g <R7](_:]A/(R7 ej)R7 ei >x0 3

1
+ % (RIY(2,2)R, €0y, — ¢ Rici, (R, )
— % Ric.z(e;, e;) — %R;’i(R, e;) — —”2_1 RE (e;, Je;)

(3.17b) O4 = 041 + Os2 + O43 4+ Os4 + Os5 + Ogs.

Proof. Recall that ¢;(Z) is the parallel transport of e; with respect to V¥ along the
curve [0,1]su — uZ. Let (Z) = ( (Z)) , be the 2n x 2n-matrix such that

G.18) o= 0(2)5(2), 5(2) = (02) )

Taking into account the Taylor expansion of 0} at 0 we have (cf. [24], (1.2.27))

oanl Z“
319 % (@O T = R Rg)Ro8
From this equation, we obtain first that
(3.20) ¢(Z) = ¢(2) + - <R Y (R, )R, ey, 8 (Z) + O(|Z]).

From (3.4), (3.10), (3.12), (3.19) and (3.20), we get further
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1
(3.21) 0; 51,+ <RTX(R e)R. €Dy, + o (R (R, e)R, ¢y,

1 1 1
20 < AlZ(etuej) + 6AZZ(eZ’ej)) + (9<|Z‘5>

Set g;;(Z) = g™* (e, ¢;)(Z) = <ei, ;) and let (g7 (Z)) be the inverse of the matrix (g;(Z)).
Then by (3.12), (3.18) and (3.21), we have

(3.22) 94(Z) = 0(Z)0(Z)
:511 + = <RTX(R ez)R ej>xO + = <RTX(R el)R ej>xo
1 2
+20A12(8,,€])+ AZZ(elaej) +(Q(|Z| )

In view of the expansion (1 +4) ' =1 —a+4a?+---, we obtain

1

(3.23) 971(Z2) =9 3<RTX(R &R, €Dy, — ! <RTX(R e)R. €y,

1 1
— 5o 1z(en¢) + 5 Aaz(ei ) + o(|1Z).
If T/ are the Christoffel symbols of V™ with respect to the frame {¢;}, then
(VI¥e;)(Z) =T}(Z)e,. By the explicit formula for V¥, we get (cf. [24], (4.1.102)) with
0

|
(324)  TH(Z) =59 (O + 09k — 0k94)(Z)

1
= 3 [<RTX(R ej)ei, €/>x0 + <RxTOX(R, ei)ej, €/>xo] + (9(|Z’2)~

For j fixed, F;(Z) = %g/k(zajgjk — Orgj7)(Z), thus by (3.22) and (3.23),

2 1
(3.25) r(z)= 3 (RI¥(R,¢)ej ey, + - [4<R (R, e))ej ey,

+ 2R (R, )R, erdy, + <R (R, ¢)ej, Ry,
2
_§<R)Z;X(R, e )R, RIX (R ¢))e>,

0 1 2
+5Zj (20A12—|— 5A22> (ej,e/)

1 6 /1 2
—= —Aiz+—A4 e,e)+0(|Z
262] 20 1z 45 2Z (]7 ]) (l | )
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20 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Note that
det(él] + a,]) =1+ Za” + Z(a”a]] aijaji) + ...
i i<j
and
1/4 13,
(1+a) —1+4a 32a +-

By (3.3) and (3.22), we get

(3.26)
K(Z) 1/2 }det(g,/ Z))|1/4

=1 +E<RXTOX(R, ¢)R, ey,

1 1
——Ric.z2(R,R) + s=A4iz(ej, ;) +

1
90
+362(<R”’(R e)R, e (RIX(R,¢)R, €5, — (RI¥ (R, )R, e/>%)

1<j o
1 ? 5
56 (SRR R, ) + 002

1 1
=1 ——2R1C(R R) ——4R1C Z(R R)

1 1
(80AIZ 360 AZZ) (¢j>¢)

1 5
+ 328 Ric(R, R)* + 0(|Z]°).

Thus

(3.27)

1
K(Z) VP =1+

. 1
B Ric(R,R) + = Ric.z(R, R)

24

1 1 1 1
(80/112 360A22>(e,,e])+<144 288>RIC(R R)* + 0(Zf).

Observe that J is parallel with respect to V¥, thus (Jej,e); = {Jej,e),,. From
(3.9), (3.10), (3.18) and (3.21), we get

—1 . .
(3.28) ‘/2:1{5(72, er) = 0/(Z)<J&,8y,Z; = 0)(Z){IR, ey,

1
D (R (RIR)R, ey,
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 21

1
+40< ZZ)(R JR)R €/>xO

+ 030 CREX(RIRYR, REX (R, )R>, + (1)),

Let T* =T% T'l and R* = RY, RL, respectively. By [24], Lemma 1.2.4, the Taylor
coefficients of I'*(e/)(Z) at xo up to order r are only determined by those of R® up to order
r—1, and

aTe ZO(_ 1 ape g
32) SO0 = $ R Ree) T

Thus by (3.28), (3.29) and since R7¥ is a (1, 1)-form, we obtain

R™(R,JR) = =2V—1R""(2,2), <(RIZ 5(RIR)R, €Dy, = =2V —1412(Z, ¢;)

and

(330)  7'THe)(1Z) = —aV/—TUR, edy, — P2 (RI¥ (2, 2R, €1y,

6

T T
- 13—<R;TZX (z,2)R, ey, — t4@A12(2, er)

A (1>
4 180A22(Z e)+0(t )

By (2.14), (3.4), (3.20), (3.29) and (3.30), for t = %, we get

1 1
T(e)(2) = 5 RE(R, ) + 5 RE (R, )

1

8 (REZ 2) (R,ei) + = <RTX(R e)R, ek>\0R (R, ek)>

(3.31) +0(z*),

1
Vie=Ve+ - Tl (e))(tZ) 4 T E(e)(12)

t2
= Voo, — g<nR;jf(z OR, ey, + = RE(R e) + O(F).
y (2.1) and (2.14), we get
(332) L= -w(2)Pg 2V, Y, — TV, (Z2)r(12)

—1
— tzTRE(éi,Jé,»)(tZ) — 27n.

We will derive now (3.16a) and (3.16b) (they were already obtained in [24], Theorem
4.1.25). By using the Taylor expansion of the expressions from (3.32) (see (3.23), (3.24),
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22 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

(3.26), (3.27), (3.31)) we obtain immediately the formulas for %, and O; given in
(3.16a).

In order to compute O,, observe first that by (3.1) and the fact that R™ is a (1,1)-
form with values in End(7X), we get

) 0 0 0
v NN X -. O o0 TX (. 5. Y
=0.

Thus from (3.13), (3.23), (3.24), (3.26), (3.31)~(3.33), we have

1
(3.34) 0, =05+ ["%’E Ric(R, R)] :

By the formula of % (see (3.16a)) and since
[%, Ric(R, R)] = —4Ric(R, ¢;)Vo,, — 2Ric(e;, ¢),
we get from (3.34) the formula for O, given in (3.16b).

From (3.32), we have also
1
(3.35) 05 =¢ (R (R, e)R, >, V0.6 Vo,

2n 2
- |:_ E <R;2X(Z7 Z_)R7 ei>xo + § RyEZ(,R’7 ei):| Vo’ei

0

n - 1

3
1, . .
+135 [4Ric.z(R, e1) + 2{R (R, ¢))R, e1), + Ric., (R, R)| Vo,

1 V-1
+ [g’o, 54 Ric. z(R, R)} — TR;EZ(ei, Je;).

In (3.35), the first (resp. second and third, resp. fourth, resp. fifth) term is the contribution
of the coefficient of 3 in g¥(¢Z) (resp. Vi, > TESP. (TL(t), resp. k'/?(tZ)). By the same argu-

ment in (3.33) and the formula of % given in (3.16a), we get

0 _ _
G—Z,- <R;2X(Zv Z)R7 ei>x0 = <R;€;Y(Z7 Z)Rv ej>x07

(3.36) (%0, Ric,2(R, R)] = —2(Ric..,(R, R) + 2Ric.£(R. ¢)) Vo,
—4 RiC;@[(R, e,') -2 RiC;Z(E,’, e,~).
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 23

From (3.35) and (3.36) we get the formula for O; asserted in (3.17a). Moreover,
(3.37)  O4=0p+ [(’)2, Ric(R, R)} + Ou3 4 Oa1 + 3 <RTX(R &R, €y,

‘ { (—%@R; (2.2)R. ¢y, + RE(R, eﬂ)wa

(-
(-

1
{0t [ frrli) + 5 R R R, 0 RE Rcr)

1 0 _ 2
8 07, <7ZR>Z;X(23 Z)Ra ei>x0 - 5 <R)Z;,X (Ra ei)eja el>x0V0,el}
i

<7'[RTX(Z )R, ey, + 1R (R e;) ——<R (R ej)ej, ey )

O'\|>—‘

1
(RR[¥(2,2)R ey, + 5 RE(R. e,-))

O\I'—‘

2 . 1
5 CREV(R, )R, 013, Ric(R, ) + 1 RE, (R Vo

1
Q R-,E(Z,Z) (R, ei)

_i(_iAlZ(faei) ——Azz( )+8

0Z; \ 60 180

1
+ ﬁ <R)Z;X(R7 ei)R7 ek>x0R)€,(R7 ek))
V-1
— Tsz,Z)(ei7 Je,-).

Here

* Oy is the contribution of the coefficients of ¢* in x'/?(¢Z) and x~'/%(¢Z),

e the second term is the contribution of the coefficients of > in x'/?(1Z), k~'/*(tZ)
and in —g%(12)(V, ,V; , — T (1Z)V] ),

e (g4 is the contribution of the coefficients of ¢? in x!/2(¢Z) and x~'/%(tZ),
e Oy is the contribution of the coefficients of ¢* in g7(¢Z),

e the fifth term is the contribution of the coefficients of #* in —¢¥(¢Z) and in
(V;,E,'V;,Cj - tr/(tz)vt (/)

e the sixth, seventh and eight terms are the contributions of the coefficients of #* in
—(V,.o Vi — T (1Z)V] ,,): the sixth term is the contribution of the coefficients of % in

4 tF/ (tZ) and #? in V’ ; the seventh and eighth terms are the contributions of the

tep

coefficients of 74 in Vi and tF/(tZ)
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24 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

Now by (3.13),

(3.38) % (0, Ric(R, R)]

1

=% (RI¥(R,e)R, e;>,, (4Ric(R, ;) Vo,c, + 2Ric(e;, ¢)))

+1 RTX( )R, +2R1C(R ) — RE(R,e) | Ric(R,¢))
6 3 z,Z e 3 € o (X, e ,€)-

And the same argument used to obtain (3.33) shows that

(R{F(R,e)R, ¢ o (2 0)R e = (RY (R, e)R, R (2, 2)er,

0
>x0 a—Zl <R)C0

oo (12(2,) = o CRTS (5 IR, 031 = 2R 0 (520D
(339) 5 ] o
iz (A2z(2,e1)) = a_Zl-<R’ (z,2)R, R Y(R,er)R)y,

TX . = TY
= (R (z,2)e;, R (R, ei) Ry,

+<(R¥(z,2)R, ¢, Ric(R, ¢;).
Finally, by (3.1) and since R™ is a (1, 1)-form, we obtain

(RI¥(z,2)er, RI¥ (R, e/)RY = (RI¥(z,2)es, en»(RI¥ (R, /)R, em) = 0,
(3.40)

(RIY(R,e/)R, em)y, Ric(es, e) = —8R, 7, Ricsin 2kZ,.

Thus
1
(3.41) 21 Oy — — <RTX(Z R, R (z,2)R) — ZRf; (R,e,)*
Y
+=Z <7ZRTX(Z Z)R e]>R)€)(Ra ej) +%<R;7("§,e,»)(z?z)nv ei>x0

1
- % (R™(2,2)R, ¢, Ric(R, ¢)) + 5 Ric(R,¢)) Ric(R, )

X0

1 . 1.
+ g 18 <RTX(R7 ei)R, e, Ric(e;, ¢;) + g Ric(R, e.i)Rﬁ] (R, ¢)

1 . E ¢ 0

Putting together Lemma 3.1, (3.12), (3.14), (3.40), (3.41) and the fact that R™ isa (1,1)-
form, we infer (3.17b). The proof of Theorem 3.2 is completed. []
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Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 25
4. Evaluation of 7 from (2.20)

We calculate in this section an explicit formula for the operator 4, defined by (2.13)
and appearing in the Bergman kernel expansion (2.9). This is necessary in Section 5 in
order to evaluate the expansion of the kernel of the Berezin—Toeplitz operators. We use
formula (2.20) to achieve our aim. Recall that explicit formulas for the operators &, O,
Oy appearing in (2.20) were given in Theorem 3.2.

This section is organized as follows. In Section 4.1, we determine the terms in (2.20)
which involve O,. In Section 4.2, we calculate the terms in (2.20) which involve O4. In Sec-

tion 4.3, we obtain the formula for %4(0,0) (cf. Theorem 4.5).

We adopt the convention that all tensors will be evaluated at the base point xy € X
and most of time, we will omit the subscript x.

4.1. Contribution of O, to 74(0,0).

Lemma 4.1. The following identities hold.:

(4.1a) PO,P =0,

— - 1 ’
(4.1b) (£70:20,271)(0,0) = <kZ Rk t ;R/f/?> )

m

1
3672 leEqi Rk”_’/ q

1 (4 2\ /4 -
T2 <§ R jimi + qu) <§ Riag T R/q> :

(4.1¢) (20,2 720,2)(0,0) =

Proof. Note that by (1.1) and (1.5),
(4.2) (b2 2,2y =0, (P)Z,Z')=2n(z;—2)P(Z,Z").

For ¢ € T*X, by (3.5), (3.11) and (4.2), we have

0 0 0 0 0 0
4z = () 20(5) o deme=o(2 )0 —o( 25 )
¢(ei)V0,ei@(Z’ O) = —27‘C¢(Z)?(Z, O)'

By Lemma 3.1, (3.1), (3.6), (3.16b), (4.3) and the fact that R™ is a (1,1)-form, we
get

1 1 1
(44) 02 =3 Rungzrzcbnby + 3 RiqrmziZm(byb; +b)by) + 3 RmegZmZby by

4 2 _ n o
- §Rmr7tq1] + <§ Rkﬁlﬂzzm - §er7z/qZkZqu b[+
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2 n
- <§ R gz + 3 Rkﬁz/qZkZ_mZ/> by

0 0
o E_ o Ef=z Y + E v
2RE - R (z, az/>bf +R <z, az_q>bq.

By Lemma 3.1, (1.7) and (4.4), we get [Ryjnsgzizs, bmbg) = quRkE/qZ/ + 8 Rz, and

1 T
(45) 0, = gbmbququZkZ/ + bq (— ng,;,/qZkZ/fm + 2R{I€k¢72/ + R}%Z{)

2b _ 7 o _ _
+ (Tq Rinrgziczm — §Rkqukzmzq + 2R, ;)= 2m + Rgnzm> bj

1 .
+ § Rk,;z/qzmqu,jb?.

Thus Lemma 3.1, (1.7), (4.2) and (4.5) yield

1 b,
(4.6) O, P = —bmbqu,;l/qZkZ/ + bq — szrh/qZkZ/ el + Z,/n
3 3 2n
+ 2Rl1€k¢72/ + R;‘;Z;) }37

T

1 4
= {6 bmbquﬁ,@ZkZ/ + gbqRﬁquZ/ 3 bqun?/qZkZ/Z;/n + bqR/%Z/}@.
Now, (4.1a) follows from Theorem 1.1, (1.6) and (4.6). These imply also

bub,

b b ., b
487 Rigmirgziczr + iRﬂ;qu/ — éRkﬁl/qZkZ/Z}{n + —qR/EqZ/}@.

-1 o
47 & 02@_{ g

Due to (1.7) and (4.7) we have

_ bmb b, (4
(g 102,@) (Z, 0) = {W;Rkﬁl/ézsz + é <§R/l;kz] + R;}) Z/}Q(Z, 0),
(4.8)

_ 1
(271'0,2)(0,2) = — 5 (Roningg + RI)2(0,2).

Since O0,, & are symmetric (as explained in Remark 2.3) and (qu)* = RqE/-, we get by (1.1),
(3.6) and (4.8), /

(20,2710,2) = (£7'0.2)(Z2,0))"

2|R 2 biby ‘R RE b 0,2
(4,9) —{ |: ubgsZvZs 487 + <§ qivs T qg)zsﬂ]}( s )7
_ _ . 1
(20,271(2,0) = ((£7'0,2)(0,2)) :—E(Rquq+qu)9(Z,0).
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Note that 2(0,0) = 1 by (1.5). From (1.6), (1.7), (4.2), (4.8) and (4.9), we get (4.1b), and

(4.10) (20,4 720,2)(0,0)

3272
T

1 /4 4
- 4r <3 Rqssz + RE)Zf (3 tkkg + Rf!i) Z/}J (0’ O)'

Let ¢ € C[b, z] be a polynomial in b, z. By (1.7), (4.2), we have

by

(Zkp(b,2)P)(Z,0) = ¢(b, ) @(Z 0) = <bk 1 d¢

2 7 0z

)z,
@4.11)  (E2(b,2)2)(Z,0) = (§(b, 2)2:212) (Z,0)

(bkbl bi 0 b o 1 0 )g)(z 0).

472 b+ 272 0z; ' 2n2 Oz | w2 0z 0z

Let F(Z) be a homogeneous degree 2 polynomial in Z. By (4.2),

1 62F 62F b]' 1 62F b,'b]'
4 S [ — Y I — E 7
(4.12) (F(Z)'@) (£.0) (2 0z;0z; i 0z;0Z; K 2rn 2 0z;0z 4n 2,0

Thus from (1.6), (4.11) and (4.12), we have

O°Fz* 1 O°F
PFP)(Z,0) = —+— 2(Z,0
(PF2)(2.0) (lézaz« o naz,-az-,-> (2.0,
(4.13)
. 1 0°F

y (4.10) and (4.13), we get (4.1c). The proof of Lemma 4.1 is completed. []
Lemma 4.2. The following identity holds:

4.14) (2 '2+0,2710,2)(0,0)

25 47 1
— R Rmm/ q +<oR Rmmqtj

T~ 333 R, g7 Ricrieq — 54 Nk g kel
- 1RER i — L RE R I(RERE ~3RZR}).
Qe mmgq e Sz tmiml g it g\ ad /

Proof- Set

7z
I, = {3 bkb/Rsk,/ZsZt + b/[ 3 Sk[/ZsZtZk + (2Rm/ + RE) } }

(4.15)

bmby by (4 E
X [48 Rzm]qzz j +4 <3 R/”q +R > ]
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28 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

2b T
I, = [T/Rskq/zszk §Rskq/ZSZkZ/ + (2Rssqk + RE )Zk:|

(4.15)
by, 4 E
X FRiﬁquZl'Zj + §le‘qu] + lequ] .

Then by Lemma 3.1, (1.7), (4.2), (4.5) and (4.8), we get as in (4.10) that

4.16)  (0,.27'0,2)(Z,0) = {11 +1, + 2n

9 Rm&qt_ZSZtRkﬁt/z}Zka}@(Z, O)

Let A(z) = Zh zi, W'(z) = Zh’zl with h;, h! € C, and let F(Z) be a homogeneous degree 2
polynomial in Z. By Theorem 1.1, (1.6), (1.7), (4.2), (4.11) and (4.12), we have

1 0°F
l P —
(4.17a) (2LF2)(0,0) = A

(4.17b) (L' 2Lhb;2)(0,0) = (£ 'b;h2)(0,0) = —%hi,

(4.17¢) (2 'PLF2)(0,0) = 1L OF
' ’ N 4-7Z2 82,‘52,‘7
(4.17d) (27 'biFb;2)(0,0) = —(L'bb;F2)(0,0) = 1 oF
: 0 )= " " 2w 0z;0z]
@ite) (2P m)(0,0) = 212 (b + 2258, ) 00,0y = — 2 LF
’ m S 0z; 27 0z;0z;
bib; 3 0°F
“1plpss. _ p-lpl j o
(4.17f) (¢ 2 Fz;z;2)(0,0) P F @(O 0) = = 5237
bi 1 *F
4.1 b Fz: =9 ' F == = .
(4.17g) (L b Fz12)(0,0) = £ by o 2(0,0) a7 32002
oF :
In (4.17¢c) and (4.17d), we have used Fb; = b;F + 25. Observe that (1.5), (1.7) imply that
for every homogeneous degree k polynomial G in Z, and every o € N”, we have
0, if |o| * k,
(4.18) (b*G2)(0,0) = ka G
]l =

By Theorem 1.1, (1.6) and (1.7), we also have

b;b; b; 1
 peh ) 2(0,0) = 3 (k] ~ ),

(4.19a) (L bk’ 2)(0,0) = (

1 3
Ry ik —
(4196) (L7 P hbl'b;2)(0,0) = — o hyhi — ik,
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where we use in the last equation that hb;h'b; = bihh'b; 4+ 2h;h'b; and further (4.17b),
(4.174).

Let ¢(z) = ¢;ziz;, ¥ = Y;;ziz; be degree 2 polynomials in z with symmetric matrices
(¢;), (). Then by Theorem 1.1, (1.7), (4.11), (4.17d), (4.17¢) and (4.19a), we obtain

(4.20a) (L bsbegbh?)(0,0) = (b by gy 4 bji" §—¢h> 2(0,0)
Zj
2 @ k)
T 3n 0z,0z).0z; (¢/j fuc+ ughe),
(4.20b) (L bigbsbh?) (0,0) = (b/»bk(/ﬁ + 2by §¢>b h2(0,0)
-2 (¢h)
R 0z,0z).0z; 7 (¢k’h/ + Pucy),
(4.20c) —n( L brgpz,b;h?)(0,0) = — % L bgbi(bsh + 2h,)2(0,0)
1 ) 1
T 3n 0z,0zx0z; T Puily
and
» (bkb ib; )
(4.21a) (L biehbibp2)(0,0) = hy + (b hy + b)) 2(0,0)
27 o)
371, azkﬁzléz] (lpklh + lpkj )
(4.21b) (L byhzbp2)(0,0) = £~ bihb; ( W +l gg’) (0,0)
/
—1 &y 1
32 02/5(Zk0)z F <l//kjh/ + w/jhk)’

1 53(h¢)
(4.21c) —n( L hzkz by 2)(0,0) = 612 6zlazkéz 2‘p/kh

In fact, by (4.2), (4.11) implies

n(hz2,bjpP)(Z,0) = % (bkhbjtﬁ/ + <2hkbj¢ + 2hb; 2‘”) be )7(2 0),

so from (4.17d), (4.19b) and (4.21b) we get (4.21c¢).
Set Ring(2) = Rinigzrzi- By (1.7) and Lemma 3.1,
Rg/?(z)bmbqRﬁﬁ(Z) = (bmbqRy;(Z) + 8meq§/1€Z/ + 8Rm§qlz) R,;@(Z),
Brought to you by | College of Business Education (College of Business Education)

Authenticated | 172.16.1.226
Download Date | 3/14/12 1:16 PM



30 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds
thus Theorem 1.1, (4.11), (4.20b) and (4.21a) show that

(g_lbskayzbmbquﬁ(]y) (07 O)

bmb 2by, 1
= bsbk < 1677': RG]; + ¥Rq§{%2/ + anqu;> R,;,q@(o, 0)

4 3 .
_ 1 "(RgRrg) 16 0" (R /i Rig) —|—§R R
T

—— — i -
m 02,024 02,0zy 3m  0z,0z40zp gk sk

422) (L iz Rbub R;7)(0,0)
1 OR OR-
= —gilbk (5 bsRS,];bmbqRﬁu} + —Skbmbanﬁg + Rﬂ;bmbq —a q) e@(O, 0)

0z Zs
_ 1 O(RgRag) | 8 O(RygqzRag)
~ 6n 02,0202, 02y~ 3m 02,020z,

4 16

; micﬂ; smkq — ;Rsiql;Rmﬁ’kQ'

Due to (4.15), (4.17a)—(4.22), we get

(4.23) (2 '12)0,0)

+ 4R, Roing

—i Z 84(R55Rr7!é) _§53(Rq§finqu)
- 6 0z,02,02,,0zy 3 0z,02,0zp, miqi

144

&’ (2R + Rf;)ZuRﬁlq)
02,021,024

— 16R iRz — 2

ssqt
+ 12(2R i + R Riimg

4
| R:(=R,;,.+RE )z,
1 1 ( 3t<3 /kkq+ /Q>Z{> 4

— [-= 4R (=R, + RE
12|73 02,0z,0z, - ”q’(S kg T "’)

4 E
— RSSZ‘IT(gRq];k(? + qu)

1 E 4 E

4
E E
e 1) (g 85|
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But from Lemma 3.1, we have

0*(R;7Rzz)
02,02,02m02, AR50 Rsimig + 4Ry51i Ryningg + 16R 5, Ry
63 (RYEU_Z Ry, _)
(4'24) WM - 2Rss'tt_Rm'716157 + 4Rss'qt'Rmr71tqa
0*(R,si70Ring)
W = 2R3 Ry + AR Rumgq-

. . . . 1
Plugging (4.24) in (4.23) we see that the coefficient of R ;R in the term Taa [
1 /56 32

(4.25)  2A(27'12)(0,0)

1 10 1
- m ? yrqufRSl’;Z[q - ﬁRgﬁqt_Rmﬁltq
1 —10 1 —20 1
* M'T+E'T+§} Riifnad
4 1 -5 5
- 4+ .~ 4+~ |RER _ _
Tl 3t 12] i
(4 1 8 107, 1, pe g
Tt ﬁ} R iR + g (RiiRy5 — RyiRyg)
5 1 1
=53.38 R, 54 Rsimg — 77 RsyiRmimg + gngszmrhqq
lRER 1RER ! RERE _ RERE
+ 1 RiiRuigq — ¢ RyiRminig + g (R R — Ry:Rig).

From (4.15), (4.17c¢), (4.17f), (4.17g), (4.21b), (4.21c) and (4.24), we get
(4.26) (£ 'L,2)(0,0)

17 18 (R zuRia
[_ - M + 4Ry, i Ryiimg

18| 2 024020z,

3 2
+ 3 R,50iRsinig + 3(2Ryigs + R:;) (‘ Z) Rmmsq:|

1 1 e (4 p
+ [— 5 Rsar = 3 (QRuzgs + ng)] <§ R+ qu>

1 5 E 1 EpE
- 3_Rm§qt_ smtq 6 Rsiqt_Rm"mq - quRtiqt_ - Z quRtQ‘
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By (4.17f), we get

1

1 2n
(427) (g 1 9 msthSZlem/qZkZ/y> (07 0) = — @ijqusﬁth-

Relations (4.16), (4.25), (4.26) and (4.27) imply the desired formula (4.14). ]

4.2. Contribution of O4 to 74(0,0). We will use the following remark repeatedly in
our computation.

Remark 4.3. Let ® be a polynomial in b, z, b, Z. Due to (1.7) and (4.2), the value of
the kernels of 202, 02, ¥ 2+ 0P at (0,0) consists of the terms of ® whose total
degree in b and Z is the same as the total degree in " and z.

Lemma 4.4. We have the following identity:

Ar 23 41

(428) n’ (371049) (0’ O) - - 96 108 Rmsqthmtq 54 RssqtRmmﬂ?
1
+R __-RE + RE 4 3RE E pE
mingk k‘] 8 ( mim; qq 3qu mq) + Zququz'

Proof. By (1.7), (3.14), (4.2) and (4.3), as in (4.4), we have

1 4 0 0
(4.29) —(0n2)(2,0) = {20 (AIZ 3Azz> (8_2‘,’6_2) bib;

and

1 1 J0 0 1
o1 — pl A T 2
(430) LT OpP =P |:4 (801412 360 Azz) <5zj , 52j> 7 RIC(Z Z) :|9

From (3.12), (3.14), (4.2) and (4.3), and since R™¥ is (1, 1)-form, we have
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—(0u?)(Z,0) = 27?{3%/412(57 Z)+ (aé‘z < : Aiz +425 Azz)) (Z,¢))

T o (1 4 o 0
T Aoy , A Aoy ) =, =) Yp(Z,0),
. 042252 55 (10 AT ) (azj az) } (2,0)
' 2 1 .
—(0452)(Z,0) = Zn{ 5 (R™(R,er)z, RIX (R, er)z) — §<RTX(Z, 2)R, ex) Ric(R, ex)
1 1
+ Z <RTX(27 Z)Rv ej>RE(R7 ej) - ZR;E(Z,Z)(Zv Z_) }g(zv 0)
Let ;. be degree 3 polynomials in z which are symmetric in 7, j. By (1.7), (4.2), we get

L Wbibhi?)(2,0)

(4.32)  WuZiZa?)(Z,0) = o

lpyk +4bb awyk

8 aZj

1
= @ {bibjbkwl'jk + 2b,’b]

2 2 3
P, gy P g PV

+8bi 0z; 0z 0z;0z; 62,62_,02/(}@(1 0)-

Thus by Theorem 1.1, (1.1) and (4.32), we obtain

(4.33) (L P zizi22)(0,0)

v
1 {bbbk%kJr bib Wi 1 bib Wi

T8 12 47 oz T2 o

Vi RV
. g
2l b (0.0

11 a lPtjk
2472 0zlazlazk

2

Since , Lemma 3.1, (3.6), (3.12) and the fact that R”¥ is a (1, 1)-form entail

N —

aZj
A12(2,2) = (RIS 4)(2,2)z, 2,

Aaz (Z? Z_) =2¢{R ™ (Zv Z)Za R™ (Z> 2)2> = _4Ru§vt_Rkﬁqtc}ZquZvZkzmzqa

o 0 w (. 0\ @
wy Aeln) = (KB )2

)2
0z4 0z 0z4 0Z4

= 2(Rq§kiR{qm + Rq&tﬁR/qk[‘)fsfquZ/-
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By Remark 4.3, we can replace 41z(Z,Z) by 2Ry, i7kZmZsZ4ZsZ; in our computation. We
deduce from (4.33) and (4.34) that

B o 11
n,2 (g IQLAIZ(Z’ Z)'@) (07 O) = - @ (Rmﬁtqz};tt_ + 2Rtr7zq(];mt_)>
(4.35) "
(L' P 4y7(2,2)2)(0,0) = 3 (R,5,iRyinig + 2R 7 Romineg) -

Let Fj; be homogeneous degree 2 polynomials in Z. Then by (1.1), (4.11) and (4.17f), we
obtain

1 0*F;
1) L .. = — — v
(4.36a) (77 Fyziz;7)(0,0) 2 0z;0z;
B B 5(Fff) 3 azF“
lplz Ai=izi) 4 = Y
(4.36b) (g 7= 7)(0,0) yr= g
O(FyZiZ))

(Note that by Remark 4.3 the contributions of Z;
same, so (4.36b) follows from (4.17f).)

— and 2F;z;Z; to (4.36b) are the
0Zk '

d 0
By Remark 4.3 and (4.34), only the term —2R kg riZmZkZiZs from A7 <8—’6‘—‘> has
’ Zq 0Z4
a nontrivial contribution in our computation at (0,0), and from (4.17f), (4.36a) and
(4.36b), we get

0 0 2
(g’LAlz <6—zq ; 5—2) g)) (0,0) = 2 (Ryiimg: 17 + Rz mi)»
(8 o 0
A m - A Y A= 70
2 (g 7z azmAlz(azq azq> gj) (0,0)
_ o 0 3
= (g IQLAIZ (8_24 ) 6_Zq> 9) (0) O) = 4—7_53 (Rqﬁzmq; it Rqﬁnq;mt_)’

0 0 2
(437) (@J—Azz (— s —_> g) (0, 0) = — ﬁ (qus‘fRW?m + 3Rq§m’qum),

3
- H (qusz‘Ruqm + 3Rq§m'qum).
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Remark 4.3, (4.3), (4.17c) and (4.17f) yield
(272 (RIS (2 DR, em) 1, 2)(0,0)
= 2(L ' PH(Rigrmms — Rigms: i) 21242022 (0,0) = 0,
(27 "2 (R¥(z,2)R, e, Ric(R, ) 2)(0,0)

=2(Z'?+(—RsszRic, ; + R, - Rickg) 2,22,z ?) (0,0) = 0,

(4.38)
(Z7'2 Ric(R, ¢4)RE (R, ¢4)27)(0,0)

=2(27'2*(~Ricyy R + Ricys RiZ)z2,2)(0,0) =0,

(Z7'2" R4 ) (R,e)2)(0,0)
=2(2L7'P(RE, 5 — RE15)2k242)(0,0) = 0.
By (3.39), (3.40), (4.3) and (4.38), we know that for o = 1,2,

(z-lgﬂ a%q (Auz (2, eq)),q’) (0,0) =0,

(4.39)

By (3.5) and (4.17f), we have
(7' PR (R &)z, R (Ro e1)2>4,2) (0, 0)
= 4(3719L(Rkam,;uq + R . Risug)Zszrzmzq?)(0,0)

3
=35 (RissiR iz + 3R i Ricsuz)

(4.40) (g,1gl<nR£X(27 2R, ex»RE (R, ex)2)(0,0)

- o 3
=2(L ' PH(—RuqRE — R, i RG)Z12,242m?) (0,0) = 5 R

_ _ 3
(g lglR;E(z,z)(Za Z)g) (0,0) = —H(Rg;qq + R(ﬁ:;sq)-

Note that by Lemma 3.1, Ric(R, R) = 2 Ricy; zxZ,, and by (1.2), (1.7) and (4.2),
(4.41) L Ric(R, R)P = 2b,b;: Ricyg 247,7 = 4byy Ricks 24 2.
Thus by (3.14), (4.19b) and (4.41), we obtain
1 b
(4.42) —(L7'210412)(0,0) = 8 (3‘&% Ricyz ziby Ricks zkﬁy> (0,0)

1 . . . .
=7 (Ricyz Ricyz + 3 Ric,g Ricy).
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_pkE
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From (4.29)—(4.39) and (4.42), we get

(4.43) -7 ( 1((941 + Osp + Os3 + O44)2? )(0 0)

2 11
15 R

1 11
+ E 3 (R/Yuns/uq + 2Rs§qﬁR/Zuq)

(0qq; uit + 2Ru/_q1};/12)

23 1
+ <_ g . Z + E) (Rqﬁ,mq; ui T an‘m[]; mit)

123 2
( 15 4 90> (Rqs‘i‘uquuL + 3RCJWMRS[1MU)

| . . . 1
+ 7 (Ric,; Ricyz + Ricsg Ric ;) — 7 (Ric, 7 Ricgz + 3 Ricyz Ric ;)

2 13 19
= 45 R//'qq; wi T 45 Ruiqq; it 9 Rfsuns/uq + R“‘]“R/’(m}‘

Moreover, (4.31), (4.38) and (4.40) yield

_ 2
(4.44) —”2(3 10459)(()’0) = _§( klti qkuq + 3R/kqu k/uq)
3 RE E
2 R//qukq T3 ( 179 T N, /q)'

Further, (3.15), (4.17c), (4.35), (4.38) and (4.40) imply

7 11 1. .
(4.45) —12(L 7 0462)(0,0) = 108 (RrsgiR 7,5+ 2RssqiR,7,5) + 5 Ricig Ric
1 1 P
9 o Rizge Ricrg — B //qukq T ququ - ER// i
11 23 1
= mRﬁqﬁRsZuq + gRss'qﬂRfiuq > Rf/qukq
1 E 1 E
+4quR - ER// i

By (3.8), (3.17b), (4.43)—(4.45), we get (4.28). The proof of Lemma 4.4 is completed. []

4.3. Evaluation of 74(0, 0).
Theorem 4.5. The following identity holds:

(4.46) '97479»’0(0’ 0) = bs.
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Proof. By Lemmas 4.2, 4.4 and (2.22), we have

Ar 7 1 1
2
(447) T %1 (07 0) = - % + 7_2 RmS‘quRsﬁmz] - § RsS‘qLiRmﬁzug =+ g RsS'mZRmﬁu/ci
1 E 1 E
+ Z Rm;Rmn_u]q - 6 qu}Rmﬁmzj
1 E pE E pE E E
+ g (Rudquj - RqﬁRuzj - Rmrﬁ;q(} + 3Rqr71;m¢7)'

Remark 2.3, Lemmas 3.1, 4.1, (0.9), (2.20), (4.47) and formula #(0,0) = 1 entail

L] 2
(448) U0 (0,0) = F(0.0) + F 0.0 + 11 |5 Ry + 5 RE]

mq q
1 1 (4 2 (4 .
=b.

The proof of Theorem 4.5 is completed. []

5. The first coefficients of the asymptotic expansion

The lay-out of this section is as follows. In Section 5.1, we explain the expansion of
the kernel of Berezin—Toeplitz operators and verify its compatibility with the Riemann-—
Roch—Hirzebruch Theorem. In Section 5.2, we establish Theorem 0.1. The results from
Sections 4.1, 4.2 play an important role here. In Section 5.3, we prove Theorems 0.2, 0.3,
i.e., the expansion of the composition of two Berezin—Toeplitz operators.

We use the notations and assumptions from the Introduction and Section 3.

5.1. Expansion of the kernel of Berezin—Toeplitz operators. For U € TX, we have

(cf. (3.2))
oy = 0 0\ — . 0 0\ —
X w0 0 X = x 0 0 \ =
(5.1) Vi dz 2<VU 62j762m> dzy,, Vi ©dz 2<VU 8zj’62m> dz,,.
For g = Zachgk /\c?f; e Q"' (X,End(E)), by [24], Lemma 1.4.4, (0.6) and (5.1), we get
kq
FRrl AN
L0+ _ _[HvE ~ _ g 9 O Jymx ¢ O -
Ve = <2V£;qu + 4akq<V[§m e 6zm> + 4aml<V£" p 62q>> dz,,
(5.2)

. FRrl o 0\~
o < Vﬁak + qu<vafm azq’ PEn + 40 Vj FEAY . 21
We evaluate now (5.2) at the point x, (identified to 0 € R*"). By using (3.29) applied for
r = 0,1 associated with the vector bundles E, T(L9 X, we get
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38 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

(30,,1- _ AEx 60_ m
(VI}O*O_)XO -2 62 q (0) qu7 (aE U)M 2a—k(0)d k>
(5.3) !
S 00k
@V o) =47 oz @+ AR p w0

Note that by (0.9), (3.6) and (5.3), we have at xy,

V-1
sa O oy dzy ndz,, Tr[R™""¥] = Rickz dzi Adz, = —V/—1 Ric,,
RF = R dzy ndz,, VVRF = 2Ry dz,, 0% R® =2R[ dz.

For f e % (X,End(E)), recall that Ty ,(x,x’) is the smooth kernel of the Berezin—
Toeplitz operator T, , defined according to (0.4). Then by (3.29), at xo,

2
(53 2 (0) = (VAVES) () ~5[RE f(w)). A% = 4

0z 0z

s,

0z40Z,

(0).

In view of Lemma 3.1, (0.7) and (5.5), we introduce the following coefficients:

2 2
L fxo fvo
(56) b@f = Rmmqq 0z aZk ( ) lkkq Oz 62/ (
:_3% Ef—Tl<RICw,V1 05Ef — [RE,f]>

and

af’Co 5 E 1 E afw
by = (0) <6 kku_ﬁun q> +4Rmum 0z, (0)

1 5 of. 1 of,
RE _RE_ 0 0
+ (6 kk;u 12 “Q§4> aZ_u (O) 4 azu (0) um;m

1
_<VI,O*RE7 V1,0f>w

1 _
25 V" 2V=105RE 4 SV RE), —

48

+ % (OEf 0E*REY,, + % QV—1VI'ORE — 55 RE OEfS,

(5.7) 1 0%, 1 0%f,
ber2 =37 6zk( Ri=3% 62'/( IR
1 af‘xo a f‘Co
+_ ‘ifazk(?zk( ) - /"6 102/ 0)
- —%[RfA [+ (A"F)RR] + §<V17°5Ef—%[RE,f],RE>

1 - 1
+§<RE7V1’OaEf_§[RE7f]> :
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The following result implies Theorem 0.1.

Theorem 5.1.  Let f € ¢ (X,End(E)). There exist smooth sections b, ;(x) € End(E),,
such that (0.12) and (0.13) hold and

(58)  7bys = bycf(x0) +% (bZE + 116 (Rf)2>f (x0) + %f (o) (sz + 1—16 (Rf)2>

1
RAf(xo)RA T35 (AE) f + by + by + by

Before giving the proof, we verify that Theorem 0.1 is compatible with the Riemann—
Roch-Hirzebruch Theorem. Note that by (0.1), the first Chern class ¢;(L) of L is repre-
sented by w. By the Kodaira Vanishing Theorem and the Riemann—Roch-Hirzebruch
Theorem, we have for p large enough:

(5.9)  dimH°(X,L” ® E)

= [Td(T"YX) ch(E)e!”
X

— " n I'k(E) " 1pn 1
_I‘k(E))}[Wp +X|:<C1(E)+TQ(X)>W
+ ] (ETATO) + Ja(alE) + @ ) 2L

+0(p" ).

As usual, ch(-), ¢;(+), Td(-) are the Chern character, the first Chern class and the Todd class
of the corresponding complex vector bundles, {-}(4) is the degree 4-part of the correspond-
ing differential forms. Note that

x2

al —1+ +
I —e> 12

thus {Td(T"9x)}® = % (1 (X)* + ¢2(X)). Let RT""X be the curvature of the Chern

connection on 719X which is the restriction of the Levi—Civita connection in our case.
Then by (5.4), we have the following identities at the cohomology level:

{ch(E)}W = —é Tr[(RE)?], «(X) = 2i Ric,,
(5.10) a 4
(AT = o (Rico) + gy TH(RT )2

By Lemma 3.1 and (5.4), we have
1 .
3_2 <(R10w 27 2/2> - 5 (RuinRk;;qq - RuitqﬁRkEUq)’
(5.11)
1 (1,0) 1
% <Tr[(RT X) ] 2/2> = (RkWIURukvq R”Z;‘IL-‘Rk/;vL])’
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40 Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds

eh(E)}Y, /2> = 5 THRERE — RERE)

(5.11)
1 1 ~
<2 1 (X)cl(E),w2/2> o) Tr(R RIqu RquE R,fq).

We set now f =1 in Theorem 0.1, take the pointwise trace of the expansion (0.12)
relative to £ and then integrate the result over X with respect to the volume form w”/n!.
Taking into account (0.9) and (5.10), (5.11), we recover the expansion up to ¢(p"~3) given
in (5.9) for the Hilbert polynomial. Thus the value of b, obtained in Theorem 0.1 is com-
patible with the Riemann—Roch—Hirzebruch Theorem.

5.2. Proof of Theorem 5.1. The first part of Theorem 5.1 follows from Lemma 2.2.
Moreover, by (2.10), we have for any r € N,

(5.12) by s (x0) = Q2r,x,(/)(0,0).

Thus by (2.12), the formula by = f, and by (2.11) and (2.21), we get

(513)  Qualh) = ATl 4 AV S + S 1522007

Further, (1.8), (2.13) and (2.19), entail

(5.14) AL, f (X0} 2} 2 = —f (x0)POL.L ™ P+,
5.14
%/[J;xo,f(Xo)]g = _(g_lgl()%@)f(xo)'

From (1.8) and (4.13), we deduce

519 S0 Z]szo=(5 L0l D o)szo

=2 =2 o0z ol 7 0z;0Z;

Lemma 3.1, (4.8), (4.9), (5.5) and (5.12)—(5.15) yield the formula for b, ; from (0.12).

It remains to compute b, ; for a self-adjoint section /' € ¢ (X,End(E)) in order to
complete the proof of Theorem 5.1. Set

_ a f’»o
(5.16) Hyp = 2_2%”[ T (0)—Jz xo]

By (2.11) and (2.21), we get

(5.17) 0.5, () = AL, f(x0)Ja,x] + A [J2,x05 S (X0) T2, x0] + A [Ja,xy, [ (X0)]

xfxo fxo
0z> '0Z;

+ Z %/|:J2,xoa

z (0) —] + Ay + 3{/[

(O)ZiJS,xo]

eeon] g o]
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Since % and O, are formally self-adjoint, (2.17) and (2.18) show that (7, )" = Z; 4.
Hence, in the right-hand side of (5.17), the first, fourth and sixth terms are adjoints of the
third, fifth and seventh terms, respectively. When we take f = 1 in (5.17), we get

(5.18) Jaxg = A1, Ja ) + H [T, x5 J2, ) + H [ 5, 1],
which is also a direct consequence of (2.19), (2.20) and (4.1a), as by (1.8),
A1, Ja )P = PO,L PO, 77 \PL — 20,97 ' P+ — 20,9 720,2,
(5.19) H T4y |12 = L7\ PLO, 27\ P 0,2 — 7' P02 — 20,9 720,2,
H [ J2xgs J2.x)|P = L'\ PL 0120, 7' P+ + 20,9720, 2.

Set
Ar 5 5 1
Ky = — 9%t 72 Ryisgs Ruimog — 9 Ruigs Rinmvg + 3 R Rninggs
K42 = Z RUERWW;MI‘? 6 RqURmﬁwc?
1 E pE E pE E E
(520) g (Ruuqu - 3RqLRUq Rmm qq + 3qu mq)
1 E E 1
Kzf = Z (Rmrhqq + qu)f(xo)( wiivi + Rw) +3z 36 mkq/Rk’"/qf(xo)

1 (4 4
+4<3qu/+R )f( )(gR/,;querq).

By (2.22), (4.1c), (4.47) and (5.19), we have
1
(5.21) H'[J4, %, 1](0,0) = - (Ka1 + Ky2).

By (1.8) and (2.19), we see as in (5.19) that

(5.22) H[Ja o [ (X0) 2.2, |P = LT PO f (x0) PO, 2 ' P+
+ ,@Ozg‘lf(xo)g‘l(%,@.

Thus by (4.8), (4.9) and (5.22), as in Lemma 4.1, we get
1
(523) *%/[JZX()?f(xo)‘]z,xo](QO) = ?Kzf‘

We next compute the fifth term in (5.17). From (2.19) and (5.16), we get

0"
Nz (0)

(5.24) 1@,_?2 ( L0, — 20,7724,
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For a degree 2 polynomial F(Z) we have by Remark 4.3, (1.6), (1.7), (4.2) and (4.8)

(5.25)  —(PF2L7'0,2)(0,0)

*F  _ (byb, b, (4
= — (9 32,05, ZuZU{ 437 kaqukZl +— i (3 RlEkq + Rg) z,}@) (0’ ())

O°F z, (4 E
= — (@m = <§ Rll;kc} + Rlé) 219> (Ou 0)

1 *F (4 v
= T3 aE (§Rll€kc7 + Rlé)’

where we have used (1.6), (1.7) and (4.13) in the last two equalities.

By (4.9), (4.13), (5.24) and (5.25), we get

1 2f 1 zf
2 il R, 50: + RE - 0 R R
(5 6) %f (0 0) 27_[2 821021 (0)( mingq ) 272 anaZ (0) < Ikkq lq>

By Lemma 3.1, (5.6), (5.7) and (5.26), we get

2
LR”;k_ J fX(i (
3n? " kK4 0z,0z,

. 1
(5.27) Har (0,0) + #4(0,0)" = —5 (bes + ber2) —

We compute now the last term in (5.17). By Remark 4.3, (1.8) and (4.13), we have

aocf;m ZOC 1 6fx0
(5.28) 29{[1, 7 (O)H] 0,0) =575 02,02,0%;02, (0).

|or|=4

We next turn to the computation of the sixth term in (5.17). Set

1 1 af,
(529) K3f = <8Rk1€mrﬁ;ﬁ - §Rk/;m[t;771> -

afm IR
—R” _ —R”_ _

(1 RE lRE_ ) AT (0) +1 %(O)RE

1 ) Of,

aZu ( ) + <6 Rkkmm u §Rklzur71;m (O)

6 kiu 2 ugq afu 3 52, um;m:*
Lemma 5.2.  The following identity holds with K3, defined in (5.29):
U U
07,
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Proof of Lemma 5.2. Set

1 2r
(5313) B] (b, Z) = {6 Rkyq;,;leZ/bsbq + — ngkq;,ﬁZSZk

3

2n 1 1 2
[15 RigrsimzrZq + 3 3 R, jisim — §Rk§qﬁ1;é - §lei;m zicby
27n 2 2
15 ~= Risgin g2iZs — 3 R/qu?z;z} T3 N iqgim
2 E =
T 3qu i~ 2R m}
272 o 8n _
(5.31b) Bi(Z) = = Risrg.imzkzsZsZq2m + 13 Ricsgim; 52k ZsZm
dr o 2 E E
+ ?Rk‘g;,;,ZstZm ~3 [Ry7yma T Rizgzim — Rymng T 3Rozm

Then by Lemma 3.1, (4.2), we have

(532)  Bi(b,Z)P(Z,0)

472 o 2n _
= {T Risrg.mzizrzsZg + 3 R 5i5.mZszk

2n 1 1 2
[15 RigrsmzrZq + 5 3 R psm — ngiqr?z;& - gR/g;ﬁ, Z) - 2mZg
2n .2 2
B Ekaqu;t?ZkZS B ng’fqn? q §R/qu i
2 E E =
+ 3qu i 2qu i 0Zm?(Z,0)
— B\(2)2(Z,0).

Observe that the commutation relations (1.7) imply that

Risrgmzizebsbybym = bbb Risrg.mziczs + bsbm (8 Rysig: i + 4Rusgim: )k
+ bm(gqusézﬁl + 16Rss'qr7l;t})'
By (1.7), (4.2) and (5.31b), we have
(533)  Bi(2)2(Z.0)
1 1 2 1
_ { <20 Rkslq mZkZ/b —+ ISRkSqm g%k + 3Rks mZk)b b

1
3
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1

1 (bbb, 2 1
:;{ SZ% ans/qukZ/+bb ( qskqm+3Rksqmq+3Rksm> Zk

1 1
+ bm <E RS&I’;;’;’ + RSSQ 3 Rg m + szm q) }'@(Z’ 0)

Note that by Theorem 1.1 and (4.2), we have (2+2,2)(Z,0) = (#z,2)(Z,0) = 0. Taking
into account that 2(0,0) = 1 and relations (1.8), (2.13) and (2.19), we get

U
0Z,

u

(5.34) 9{[13 22 (0)Z ] (0,0):-(55)‘%0@%(0)@@)(0,0)

- <9>03$—19>L % (0);,@) (0,0).

By Remark 2.3, (20,2~ '2,%)(0,0) is the adjoint of (?z,%~'2+0;2)(0,0), thus we will
compute only the latter. By Lemma 3.1, (1.7), (3.17a) and (4.3), we get as in (4.4),

1 2r
= — Rysvg. 22k2ebsbg + — Rysng: 2252k + ¢s(b, b, Z)bS

(5.35) 03=<¢ S

2n 1 1 _ 2

< 15 Regis 22024 + 3 3 Rijis.z T3 (quks g7 — Rk, gZm) — §R1§;2> zichs
2n

+ E (Rks'/z]; g%t — Rkiqﬁt;qzm)zkz_s -

2 2 E E
- ngiqq;Z 3 (Rké:, g7k = Ry, qu) 2qu z

2R

3 Zr + R

(kG q (lqin;q m)

and ¢;(b,b*, Z) are polynomials in b,b", Z, whose precise formula will not be used, and

.0 .
Rigrs.z, RE. , are defined by replacing = by Z in (3.6).
; -

From Lemma 3.1, (1.7), (5.31a) and (5.35) we deduce that the only term in O3 not
containing b and having total degree in b, Z bigger than its degree in z, is B (b, Z). Now,
Theorem 1.1, Remark 4.3, (1.6), (1.7), (5.32), (5.33) and (5.35) imply

(5.36) —(22,27'210:2)(0,0) = — (22,2 ' 2+ B, (b, 2)2)(0,0)
by (1 1, v
— yzu4n2 ER_EWI_FRSA:‘IW’ 3me+quq P (0,0)

1 1 1
) (E Rgg.0 + Rasging — 3 Rf i jo;g)~
By Remark 4.3, (1.6), (1.7) and (5.35), we also have
(537) —(Z7'210:22,2)(0,0) = —(Z ' P+ By (b, 2)2,2)(0,0)

_ _{g—lgﬂ [Zugl(b, z) - za%mb,z)]@}(o,m-
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Lemma 3.1, (4.17c), (4.17f), (4.33), (5.31b) and (5.32) yield
(538) —(2'2'z,Bi(b,2)2)(0,0)

= —(27'242,8/(2)2)(0,0)

11 2 3 16 4 4
M2 = (4Rs§mﬁ;ﬁ1 + 2Rs§qé];ﬁ) +53- <_ Rs&qz);(] +3 RSE i + ngu m)

T 24725 gn2 \15 3
1 3RE
T o2 (R/an;q + R/qu;a qu it qu i)
1 /29 1 2
= ; <% Rs&mﬁ;rﬁ + gRSfl]é? it 3 Rﬁu m>

Moreover, by (5.31a),

0
(539) Gb (b Z) Rka/u mZkZebsZm

u
21 1 1 2 . )
<15 RigrisimzrZq + 3 3 R piaim — ngﬁqrh:,t? - ngz;;m)Zanr

Lemma 3.1, (4.2), (4.17c), (4.17f) and (5.39) yield

(5.40) (.fflgﬂ ( 6; B (b, Z))@) (0,0)

308 1 /1 ! 2
= — @ : E : 2Rs§m12;n_1 + m <§ quqlft;h? - §Rmﬁqn‘1;é 3 erm m>
2 1

o o E
5712 Rssmu;m 61 ) Rmu m*

Formulas (5.37)—(5.40) entail altogether
20 o1l 1 1
(541) —n (¥ 2-0:22,2)(0,0) = 6 Rz im + SRSMMM + 3R e
Combining (5.34), (5.36) with (5.41), we get
(5.42) nzxf[.lixo, U 0)Z }(0,0)

U
oz, (0)

1 1 1
= = Rgmain + = Rssgga + 5 Rl
<6 SSmu; + 5 544 +3 3 miu; m)

1 1 1 1 o,
+ (_%Rsiqé;u - 2RSSMl]q + 6Rssu - ZRLZ q) azx()( )

af X0 af X0
0z,
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o
07,

_ Ofx, 1 1
Rg; sun;m RYY u R
azu ( )<6 53 +z 5 99 +3 3 um; m)

(5.43) nzf[ 0 )ZMJMO] (0,0)

v, 1 1 1 . 1
+ 0z, ( ) (_ ERSSCIQ;M - ERSM]M q 6 Rsv i 2qu¢;q :
Finally, (5.42) and (5.43) deliver (5.30). The proof of Lemma 5.2 is completed. []

We continue with the proof of Theorem 5.1. We’ll write now the formulas in terms
of connections. For f € ¥ (X,End(E)), we obtain by (2.1) (as in (3.32)) the following
formula in normal coordinates:

(544)  (A")(2)=—g"(ViVe TV S, VEf =df +[T5(), f].

ij'e
By (3.31),
(545  VEVE= 0—2+RE(R ei) d (R,ei)RE(R, e;)
’ 0Z? 0Z; ! o
2 1
+§RF( ,l) + RE(Re)

1 1
+§ <2R;€Z,e;)(Rv ei) +§<RTX(R7 ei)eiaek>RE(R7 ek)) + (0(|Z|3)

2

0Z2
and taking into account that RZ(e,,, ¢;) is anti-symmetric in m, i, and Ric(e,, ¢;) is symmet-
ric in m, i, we infer

@2
(5.46) ( o7 VivE ) (0)

Note that by (3.4), szﬂei) (R,e;) = ZRfemei)(em,ei) = 0. Thus from (3.1), (4.3), (5.45),

a4f;60 E azfxo
= 072072 (0) 42| R (em: 1), 5757 (0)
1k _ E ) 2| ok 5fm
3 RS e, [RF e, (5] + 3 [ RE, (om0, Z220)

160 (0) — 4[RE. [RE, f(x0)]
aZianafian ke? ‘K’

81pe Uy | _8|pe U
+ 3 |:qu;m7 an (0):| 3 |:qu m’ a— (0) .

By (3.3), (3.25), (3.31) and (5.44),
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2

072

(5.47) (TVEN)0)

2
4 Rt (5 00+ SR e

1 . . .
~% (4Ric.q, (em, es) — 2Ric.., (e, e/) + Ric.e, (em, em)) =5

32 . P
- ? Rlcmz 62/62,,,

(0)

5 (<R1 3+ Ri6,5,7) L2 (0) + (Ricsn + Ricms) L0 >) .

Formulas (3.3), (3.23), (3.31), (5.5) and (5.44)—(5.47) yield

(548)  ((A%)*f)(x0)

2
(;ZzAf)m

:%Ric(ei,eq)(VEVfl )(0 )+<a—2vaf )() i (TiVE/)(0)

0z, 0Z2
16—t (o) Ric,, Lo (o) —a(RE (R /(o))
a 6zi82q52,-82q 3 m¢ aZ/aZm kU ke 0
8 E af:‘fo 8 E afxo
+ 3 |:Rmtf;ﬁ1’ azq (0):| 3 |:qu m) ,q (0)
af, . , . :
- g ((Rlcmg;ﬁl + Rlcmﬁl;{) 6](0 (0) + (RlC(m m+ RlCmm /) 6](0 ( ))

By Lemma 5.2, the discussion after (5.17), formulas (5.17), (5.21), (5.23), (5.27) and (5.28),
we have

(5.49) Q4,2 ()(0,0) = 2Ky1 f (x0) + Kan f (x0) + [ (x0) Kz + Koy + K3f

1 *f, 1 3,
e +be = 3R 55, O +3 5 amaz, O

Note that [RE, [RE. f(x0)]] = RERE(xo) = 2REf(xo)RE + f (xo)RERE, so by (3.8).

(5.12), (5.48) and (5 49) we get (5.8). The proof of Theorem 5.1 is completed.
5.3. Composition of Berezin—Toeplitz operators: Proofs of Theorems 0.2 and 0.3.

Proof of Theorem 0.2. By Lemma 2.2, we deduce as in the proof of Lemma 2.2, that
for Z,Z' € T\, X, |Z|,|Z'| < /4, we have (cf. [27], (4.79), [24], (7.4.6))
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(5.50) p"(Typo Tg,p)x (z,7)
NZ(QVXO(f g) xO)(fZ VPZ')p~ 2+0(P Z)a

where

(5.51) Orxi(f19) = 32 A1 .x(f) Orxi(9)] € End(E), [Z, Z,

ritr=r
is a polynomial in Z, Z’ with the same parity as r.

The existence of the expansion (0.15) and the expression of b s , follow from (2.12),
(5.50) and (5.51); we get also

(5.52) br.1.4(x0) = Qar.x(f,9)(0,0).

By (5.51),

(553) Q2,x0(f7 g) = ‘%/[f(xo)v QZ,xo(g)] + %[Ql,xo(f)v Ql,x()(g)]
+ A (02, (f), 9(x0)].

Formulas (1.8), (5.13)—(5.14) yield

%/[QZ,XO(J[)?Q(XO)]Q = (QZ,xo(f)y)gg(xo)

zxfx()
= (2% S0 %7 - 270100 ot
(5.54)
H[f(x0), 02,3,(9)]2 = [ (x0)2 (02,5, (9)2)
=f (Xo)<9§:2 37 (0)— g(xo)y(’)zglgﬂ).

Using (0.9), (4.8), (4.9), (4.13), (5.5) and (5.54), we obtain

102 (1961 0.0) = = - (85 a0) + 3 611 x) o),
(5.55)

A0, 02,0 (@](0.0) = 50 = 3 B E0)(0) + 5 o) o) ).
By (1.8), (2.11) and (2.21), we have (cf. [24], (7.4.14)),

536 0u(NZ2Z) = # |1 02 2.2) -T2 0

Brought to you by | College of Business Education (College of Business Educatlon)
Authenticated | 172.16.1.226
Download Date | 3/14/12 1:16 PM

af X0

(0)2



Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 49

Thus from (4.13), (5.55), we get as in [24], (7.4.15) (cf. also [24], (7.1.11)),

"1

i=17 az_l

551 A0l @100 = 3 T2 0) L 0),

Now, (5.52), (5.53), (5.55) and (5.57) imply the formula for b; / , given in (0.16).

We prove next (0.17). It suffices to consider f,g € (X, R), which we henceforth
assume. By (2.9), we have O, ,,(1) = J, y,. Hence, taking f =1 in (5.51), we get

(558) Q4,x(g) = %[13 Q4.x(g)] + L%/[JZA,xa Q27x(g)] + %[JS,xa Ql,x(g)]
+g(x) A [Ja x, 1].
Taking g = 1 in (5.51) yields
(5.59)  OQux(f) = f(X)A (L Ja] + A Q1 x(f), T35l + A (Do, (), 2]
+ %[Qﬁl,x(f): 1]
By (2.12) and (5.51), we get
(560) Q47X0 (fv g) = ‘%/[f(xo)? Q4,x0(g>] + ‘%/[Ql,xo (f)? Q3,xo(g>]

+ A (02,3 (f), Q2.3 (9)] + H (D3, (f): 1.5, (9)]

+ A [Qa,%, (1), 9(x0)]-
Set

Qm@zf[am®254+fhwwwm}

%Gy , o Z”
A |1 2 (0)—

a“g_x Z(x axgx Z(x
tpg = |1 £ S0 2] oL 5 S 2 |

|u[=2 |a[=2
Note that by (2.13) and (2.19), we have
(5.62) 3 = A T3 5] + H '35, 1]
and (2.11), (2.21) together with (5.62) imply
(5.63) 03, (9) = 9(x0)J3.x, + O3, (9)-
Since g € 4 (X, R), (5.13) entails

2|
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By Remark 4.3, (5.18), (5.58)—(5.64), we get

(5.65) 04,5, (f59) = [(x0)Q4,x,(9) + 9(x0) Qs %, (f) — [ (x0)g(x0)Ja, %,
+ f[Ql,xo(f); Q3,x0 (g)] + %[Q&xo (f)a Ql,xo(g)} + 147.}(7!/'

y (4.13) and (5.15), we get

(5.66) (14,7.42)(0,0)

B Pt gy, 2% 1 0%gy,
- {gﬁzz ozv O g ( 2o Ot 7 sz, (O))@}(O’O)

1 (1 azon azg:m azfXO azg«m
=z (5 5z, Vanaz, O ez Va0 )

By Remark 2.3, Qi y,(f), O3 x,(g) are self-adjoint for f, g € € (X, R), thus by (5.63),

(5.67) (03,5, (/); Q1,5 (9)] = H[Q1,4(9): O34, ()]
Thus we only need to compute the fourth term in (5.65).

An examination of (4.4) shows that in each term of the sum giving O, the total de-
gree in b, z equals the total degree in b, z. Hence Remark 4.3, (1.8), (2.19), (4.8), (4.9),
(4.13), (5.25) and (5.56) yield

(5.68) f{gl,xo(f),%[l,ggzm(O)Zqu,xO”gi(o,O)

- (»Z202 220272 ) 0.0

1 af’fo 09)50
=3 0z, Oz,

4
(0) [5 (Rssqq+RE) 3Rul€1a REE :

Using (2.19), and the formula (2+z,2)(Z,0) = (2z,2)(Z,0) = 0 (cf. (1.6)), we get

(5.69) <%[J27xo,ag“’ 0)Z } )(2,0)

I 8g){o
(,/2 vz (0)qu> (2.0)

_ (—gloz,@ 005 (02, — 20, -1 p+ P00 (O)Z-qgl> (Z,0).
0z4 0z4

By Remark 4.3, (1.7), (1.8), (5.56) and (5.69), we obtain as in (5.68)

Brought to you by | College of Business Education (College of Business Education)
Authenticated | 172.16.1.226
Download Date | 3/14/12 1:16 PM



Ma and Marinescu, Berezin—Toeplitz quantization on Kdihler manifolds 51
agxo
(5.70) H | Q1,3 () A T30 5 (O)Z 2(0,0)
~ (7L Oz [Jz W 0z,|7) 00

=- Qafjm( 0)z,% ‘Oﬂag“ (0)z,2 ) (0,0) = 0,
0z, 0z4

since by (1.6) and (4.11) we have (22,62 2)(Z,0) = 0 for |«| = 1.
Note that for homogeneous degree 3 polynomials H in Z the analogue of formula

(4.12) holds for (H2)(Z,0). Using this analogue together with (1.6) and (4.11) we ob-
tain

O*H z* z, O°H
71 PHP)Z,0) = > — =+ ———)2(Z,0).
(5.71) (PHZ)(Z,0) <a=3 FECa - azqﬁziaz",)y( ,0)

Finally, (1.8), (4.13), (5.56), (5.71) and the equality #(0,0) = 1 imply

0%gx 1 of, g,
72 / WD), A1, " = (0) =%z (0).
57) et S S0 ][00 =5 ot o
By Lemma 3.1, (3.23), (3.25) and (5.44) for E = C, we get
8 8 Jx 4 . agx
5.73 2 (Ag)(0) = —4—"%_(0) + 2 Ric_-2T% (0).
(5.73) 5z, B0 = —4 57 (O H 3 Rie 52 (0)

Lemma 3.1, (5.61) and (5.68)—(5.73) entail

(574) 7 H(Q15(/), 0s.4,(9)](0,0)

afxo 639960
- 0Zu (0) 62,,82,-62 (0)

l af:Yo
2 0z,

0dx, 4
(0)8—20(0) 5uv(Rs§q(¥ + R;;}) 3Rul€kv R:fﬁ

- é (0f ,0Ag) + % COf ;09 (Rysqq + Rig) — é (3f ndg,RED,,.
From (5.67) and (5.74), we have
(575) 22 AH1Q5,,(f): C1.:(9)](0,0)
= 5 OO, 8> + 3 O 09> (Ragq + RE) — 5 GO A9, RE,,

By (0.9), (5.5), (5.65), (5.66), (5.74) and (5.75), we get (0.17). The proof of Theorem 0.2 is

completed. []
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Proof of Theorem 0.3. The existence of the expansion (0.18) and formula
Co(f,g) = fg were established in [27], Theorem 1.1 (cf. also [24], Theorem 7.4.1) in general
symplectic settings.

By (0.18), (2.10), (5.12), (5.50) and (5.52), we obtain (cf. also [24], (7.4.9)),

(5'76) G (fa g) = (QZ,X(f) g) - Q2,x(fg))(0’0) = bl,f,g - bl,fg-

Hence (0.5), (0.13), (0.16) and (5.76) yield the formula for C;(f,g) given in (0.20). More-
over, (0.18), (5.12) and (5.52) imply the formula for C;(f, g) from (0.20).

We will prove (0.21) now. Let {e;} be an orthonormal frame of (TX,g™*), and {w;}
be an orthonormal frame of 79X, Let [J = 0*0 4+ 00* be the Kodaira Laplacian on
A(T*X) ®r C, and let A be the Bochner Laplacian on A(7*X) ®p C associated with the
connection VAT ™) on A(T*X) induced by V7 (cf. (0.5)). Let RMT " X) be the curvature
of the holomorphic Hermitian connection on A(7*(:9X). By the Lichnerowicz formula
[24], Remark 1.4.8, and (5.4), we have

(5 77) RA(T*(I,O)X) _ —<RTXW1, Wk>wl A iwm
200 = A— RMT N0, iw,) + QRMT X L Ric) (wy, i)W Ay,

Since (X,w,J) is Kéhler, [J commutes with the operators 9, 0, d (cf. [24], Corollary
1.4.13), and (5.77) shows that 2[]f = Af for any f € ¥ (X). From Lemma 3.1, (5.4) and
(5.77), we have for any f € € (X):

Adf = 0Af — Ric(-, wi)wi(f),
(5.78) Adf = OAf — Ric(-, wi) W (f),
Adf = dAf — Ric(-, ¢)e (/).
Thus (0.5), (5.78) yield for any f,g € € (X):
A(f9) = gAf + fAg — 2{df , dg>,
= <6Af7 5g> + <6fa 5Ag> - 2<VT*X6f7 VT*ng>
— 2Ric(Wp, Wy) Wi (g)wy(f)-

(5.79)

Using (0.5), (5.78) and (5.79), we infer

(5.80)  A*(fg) = fA*g+ gN*f +2(Af)Ag — 4dASf, dgy — 4df ,dAg)
+ VT Xaf VI ¥dgy + 4Ric(e;, ¢))ei(g)e;(f).

We examine now closely the expression of 72Cy(f,g) given by (0.20). Using (0.14),
(0.17), (0.20), we see that the term of differential order 0 in f, g from the expression of
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n?Cs(f, g) is zero, and the term of total differential order 2 in f, g, disregarding the term
involving RE, in 72 Cy(f, g) is

(5.81) Cy = g (Ricy, —f80g — gdof + 00(fg)>.
The term of total differential order 4 in f, g in the expression of 72 C»(f, g) is
(582)  Cos= 53/ Ng 55N — (O 00g) — 5 BT 29> + 1¢ (A)Ag
+32 <D0 'of, D009y — 15 A (fg) — —A<5f, 9.
y (5.79), (5.80), (5.82) and by the formula <D'°0f, D%'6g> = <D%'of, D"00g>, we get
(5.83) Coy = <D1 09f, D%g> + \/—<Rlcw, f AOg — g NOfD.

Finally, by inspecting (0.14), (0.17), (0.20), we see that the term involving R¥ in the
expression of 72Cy(f,g) is

% (/A — 9A + M) RE + 3 <900 + [30g — 03(fy), R,

-1 = 1 - —1 =
YN ag0RE ~ Lo nog. REs, + S or aRE.

(5.84)

Combining (5.81), (5.83) and (5.84), we get (0.21). The proof of Theorem 0.3 is completed.
0

6. Donaldson’s Q-operator

In this section we study the asymptotics of the sequence of operators introduced by
Donaldson [10]. We suppose henceforth that £ = C. Set Vol(X, dvy) := jdv x. Following
[10], §4, set

(6.1) K, (x,x") := |Py(x, x’)|i€p®h€p*, R, = (dim H°(X,L"))/Vol(X,dvy).

Let K, Ok, be the integral operators associated to K, defined for /'€ ¢ (X) by

62) (K = [Kle SOV dox(s), Ok () = 5 Kol
X 4

Recall that, just as the Bergman kernel appears when comparing a Kdhler metric w to its
algebraic approximations w, (i.e. pull-backs of the Fubini—Study metrics by the Kodaira
embeddings), the operators Qk, appear when one relates infinitesimal deformations of the
metric w to the corresponding deformations of the approximations w,. The asymptotics of
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the operator K, were obtained in [21], Theorem 26," and used in [16]. The following result
refines [21], Theorem 26, and is applied in the recent paper [17].

Theorem 6.1. For every me N, there exists C > 0 such that for any f € €*(X),
peN,

< CpAf
%WI(X)

(671)1+3(X) or Cp72|f (gm+4(X).

1 1
(6.3) ‘ﬁKpf—f+%(—rf+2Af)

Proof. By (2.9) with Z =0, (2.13), (2.19) and (2.21), we get

1 k ) ,
(6.4 \ (ﬁKP,XOm,Z’)KM (Z') - (1 30, ﬁ?Z’)>e‘””Z )
r=2

c"(X)
< Cp IR+ 1 pZ'|) Y exp(—=Cov/pIZ'|) + O(p™),
with
(6.5) J5(0,Z") = (J2+ 12)(0, Z").
Now we have the analogue of [21], (32),
k
(66) LRV (R Wl AN )
|Z'| e r=2
_ 72
x e VS (Z") dvr, x(Z)
@"(X)
< Cp "R flgn -
But as in the proof of [2], Theorem 2.29 (2), we get
72
(6.7) p" o TN0,\pZNe N £ (2" dvr, x(Z)) < Clf lgmx)-
c"(X)

1z <e

D Note that in the present context [21], Theorem 26, should be modified as follows:

. Vol(X,v) .
1 =— "7 "X
PLHOIQ Ox, f Vol(X,de)”f in §"(X),
or
Vol(X,v _ _
O f — MYl G fly, o8 Gl

\/YOI(/Y7 de) ¢ (X)

since the right-hand side of the second equation of [21], (33), and [21], (34), should read as convergence in €™ (X)
without the speed, or Cp’1/2|f|(gm+1(x) or Cp | flymxy-
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Moreover

68) |07 | e AZ) o (2 F ) + 5 (A)0)|

|Z'| <e (X)

< Cp A f

(gm+3 (X) or Cp_2|f (6"’+4(X) .

Finally, by (4.9) (cf. also [24], (4.1.110)), we have

(6.9) [ J(0,2")|2*(0,2")dZ'
Z'eC"
= [ 2(0,2")y(Z',0)2(Z',0)dZ’
Z'eC"
1

= (21,2)(0,0) = —(20,27'2%)(0,0) = et

Thus

©610) | | Jﬁ(o,ﬁzve”P'Z’me<z’>dvnox<2/>—(if)@co)

Z|<e 8z

%" (X)

< O P|flgmay or Cplf

(6;m+2(X) .

The proof of Theorem 6.1 is completed. []
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Addendum to

“Berezin—Toeplitz quantization
on Kéahler manifolds™

(J. reine angew. Math. 662)

By Xiaonan Ma at Paris and George Marinescu at K6ln and Bucharest

In our paper [1], we compute the term b, from the asymptotic expansion of the Berg-
man kernel. Actually, in Theorem 0.1 of this paper we consider the expansion of a Toeplitz
operator with symbol f. By taking f = 1 we obtain the Bergman kernel.

Here we wish to simplify our formula for ;. The Bianchi identity reads [VZ, RE] = 0.

Take the derivative of
0 0 0
E RE IR [
[V ’ ] (62,-’ 6zk’ 8Zk> 0,

and use [1], (3.10), (3.20), (3.31), which imply

EE__E Txii 0 2 EE—O 2
[az,-’ 64 — 3R (L )R+ ez, [6 6Zk] — o(1zp)).

We conclude that

E _ pE
mk;km 7 kkymim

The term

1(—RE +3RE. )

4 kkc; mm mk; kim
. 1 . .
in [1], (0.9), can be thus replaced by Engémn‘f Equivalently, by using [1], (5.5), one can
replace 7

vV —1 EpE 3 AExy71,0x pE
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VT

in [1], (0.8), by — 7AER,’{" . Thus the term b,z in [1], (0.8), (0.9), equals
1 1
(1) bor = RGR G — Rz +5 (RegRus — RygRy) +5RE
V-1

. 1 1
= (rRE — 2(Ric,,, REY,, — AERE) — S (REY? + g (RE RF»,.
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