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Moser-Trudinger inequalities
and complex Monge-Ampère equation

TIEN-CUONG DINH, GEORGE MARINESCU, AND DUC-VIET VU

Abstract. We present a version of the Moser-Trudinger inequality in the setting
of complex geometry. As a very particular case, our result already gives a new
Moser-Trudinger inequality for functions in the Sobolev spaceW 1;2 of a domain
in R2. We also deduce a new necessary condition for the existence of a Hölder
continuous solution of the complex Monge-Ampère equation with right-hand side
a given measure on a compact Kähler manifold.

Mathematics Subject Classification (2020): 32Uxx (primary); 32W20, 46E35
(secondary).

1. Introduction

Moser-Trudinger inequalities are important in Functional Analysis and Partial Dif-
ferential Equations. There exist various versions of the Moser-Trudinger inequali-
ties, see [2,4,21,22,25] and the references therein, to cite just a few. We just recall
here a well-known version of this inequality in the real two-dimensional setting.

Let � be a domain in C ⇡ R2. Let W 1;2
.�/ be the Sobolev space of square

integrable functions on � whose partial derivatives of order one are also square
integrable on �. We will denote by Leb the Lebesgue measure in the Euclidean
spaces.

Theorem 1.1 ([21]). Let K be a compact subset of �. There exist strictly positive
constants ˛ and c such that Z

K

e
˛juj2

d Leb  c (1.1)

for every u 2 W 1;2
.�/ of W 1;2-norm at most 1.
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In higher real dimension n, in the present literature, a similar inequality holds if
we consider the Sobolev space W 1;n instead of W 1;2 and the term juj2 in (1.1) is
replaced by juj n

n�1 .
Our aim in this paper is to give a version of the classical Moser-Trudinger

inequality in the setting of complex geometry. Our result is already new in the
case of complex dimension one as shown by Corollary 1.4 below and the comment
following it. Let us first set some notation.

Let n be a positive integer and � be a domain in Cn ⇡ R2n. Let W 1;2
.�/ be

the set of square integrable functions on � whose partial derivatives of order one
are also square integrable on �. Let W 1;2

⇤ .�/ be the set of u 2 W 1;2
.�/ such that

there exists a closed positive .1; 1/-current T D Tu of bounded mass on � with

i@u ^ @u  T: (1.2)

This functional space was introduced in [10] in the context of complex dynamics
and studied in more detail in [26], see [7, 29] for recent applications to complex
dynamics. For u 2 W 1;2

⇤ .�/; put

kuk2
⇤ WD kuk2

L2 C inf
˚
kT k W T satisfies (1.2)

 
:

Note that by the compactness of the space of closed positive currents, the last in-
fimum is actually a minimum. The last formula defines a norm on W 1;2

⇤ .�/ that
becomes a Banach space with respect to this norm ( [26, Proposition 1]). In dimen-
sion one, we have W 1;2

⇤ .�/ D W
1;2
.�/.

We set d c D 1
2⇡
.@� @/, so that dd c D i

⇡
@@. In the complex one-dimensional

case, dd c is simply the Laplace operator. We will need some notions from the
pluripotential theory. We refer to [1,3,5,18,19,24] for an introduction to this topic.
Recall that a plurisubharmonic (or p.s.h. for short) function v on � satisfies that
dd

c
v is a closed positive .1; 1/-current on�. A subsetA of� is said to be pluripo-

lar if there exists a p.s.h. function v 6⌘ �1 on � such that A ⇢ fv D �1g. By
a classical result of Josefson [16, 19], a locally pluripolar set is pluripolar. Hence,
we don’t need to precise the ambient domain when we talk about a pluripolar set,
see also [28].

Let v1; : : : ; vn be bounded p.s.h. functions on �. It is classical in the pluripo-
tential theory that the intersection dd c

v1 ^ � � � ^ dd
c
vn is well-defined and is a

positive measure on � having no mass on pluripolar subsets of �. In general,
that measure can be singular with respect to the Lebesgue measure on �, see for
example [14, 27]. Here is our main result.

Theorem 1.2. Let � be a domain in Cn and K be a compact subset of �. Let
v1; : : : ; vn be p.s.h. functions which are Hölder continuous of exponent ˇ 2 .0; 1/
on �. Let u 2 W

1;2
⇤ .�/. Assume that kvj kC ˇ  1 for 1  j  n and kuk⇤ 

1. Then there exist strictly positive constants ˛ and c depending on �;K; ˇ but
independent of u; v1; : : : ; vn such thatZ

K

e
˛juj2

dd
c
v1 ^ � � � ^ dd c

vn  c: (1.3)
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In particular, u belongs to Lp
loc with respect to the measure dd c

v1 ^ � � � ^ dd c
vn

for every p 2 Œ1;1/.

Let us stress two features of Theorem 1.2. Firstly, unlike other known higher di-
mensional versions of Moser-Trudinger inequalities, we get the term juj2 as in the
complex one-dimensional case. Secondly, (1.3) holds for much more general mea-
sures than the Lebesgue measure. Let us make some more comments about (1.3).
Firstly, since the elements in W 1;2

⇤ .�/ are a priori only measurable functions with
respect to Lebesgue measures, it is not obvious that the integral in the left-hand
side of (1.3) makes sense. To simplify the situation, one can consider for the mo-
ment u continuous in (1.3) with values in R[f˙1g and the last inequality tells us
that the integral is bounded uniformly in u. Actually, every u 2 W

1;2
⇤ .�/ can be

represented, in a canonical way, by Borel functions defined on� except possibly a
pluripolar subset of �, and such two representatives are equal outside a pluripolar
set. So the integral in (1.3) is the integral of one of such representatives of u and
it is independent of the choice of such a representative, see Theorem 2.10 below
and [26]. Note that the Hölder continuity of vj in Theorem 1.2 is necessary; see
Example 3.7 for a counter-example if vj ’s are merely continuous.

We now present some consequences of Theorem 1.2. Let .X; !/ be a compact
Kähler manifold of dimension n. Let ' be a bounded !-p.s.h. function on X .
Recall that ' is called !-p.s.h. if ' is locally the sum of a p.s.h. and a smooth
function and dd c

' C ! � 0 in the sense of currents. The measure � WD .dd
c
' C

!/
n is called a Monge-Ampère measure. These measures are central objects of

study in complex geometry and pluripotential theory. If ' is Hölder continuous,
� is called a Monge-Ampère measure with Hölder potentials. The following is a
direct consequence of our main result.

Corollary 1.3. Let X be a compact Kähler manifold. Let � be a Monge-Ampère
measure with Hölder potentials on X . Then there exist strictly positive constants ˛
and c such that Z

X

e
˛juj2

d�  c

for every u 2 W 1;2
⇤ .X/ with kuk⇤  1:

Here we define W 1;2
⇤ .X/ in a way similar to that of W 1;2

⇤ .�/. The last result
gives us a necessary condition to test whether a given measure is a Monge-Ampère
measure with Hölder potentials. We refer to [8,17,20,30] and the references therein
for related results. The readers can also consult [6, Theorems 2.1 and 4.6] for a
Moser-Trudinger type inequality for quasi-psh functions of finite energy.

We give now another application of Theorem 1.2. Let Y be a smooth generic
Cauchy-Riemann (real) submanifold of �, i.e., given any point a 2 Y , the tangent
space of Y at a is not contained in any complex hyperplane of the tangent space
of � at the point. The simplest example is Y WD Rn \ �, where Rn ⇡ Rn C
i 0 ,! Cn WD Rn C iRn. Let K be a compact subset of Y . Since Cn ⇢ Pn (the
complex projective space of dimension n), using [27], we see that the restriction of
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a Lebesgue measure of Y toK is a Monge-Ampère measure with Hölder potentials
on � (here by a Lebesgue measure, we mean the volume with respect to a smooth
Riemannian metric on Y ). Hence, Theorem 1.2 immediately gives us the following
result.

Corollary 1.4. Let � be a domain in Cn and Y be a smooth generic Cauchy-
Riemann submanifold of �. Let K be a compact subset of Y and let Leb denote a
fixed Lebesgue measure on Y . Then there exist strictly positive constants ˛ and c
such that Z

K

e
˛juj2

d Leb  c

for every u 2 W 1;2
⇤ .�/ with kuk⇤  1.

Observe that the last result is already new even if we apply it to the simplest situa-
tion where � D D is the unit disc in C and K b R \ D. We also obtain from the
last result applied to Y D � the following corollary.

Corollary 1.5. Let .uk/k be a bounded sequence in W 1;2
⇤ .�/ converging to a

function u 2 W 1;2
⇤ .�/ in the sense of currents. Then uk converges to u in Lp

loc for
every 1  p < C1.

In the next section, we present some facts about the spaceW 1;2
⇤ . In the last section,

we prove the main result and Corollary 1.5. Our proof of Theorem 1.2 consists
of two steps. Firstly, we use the Hölder continuity of v1; : : : ; vn and arguments
similar to those in [8, 9] to reduce the question to the case where v1; : : : ; vn are
smooth. In the second step, we use slicing of currents to make a reduction to a
lower dimension case and then we apply Theorem 1.1. The case with vj smooth is
enough to obtain Corollary 1.5.

2. Properties of functions in the complex Sobolev space

Let� be a domain in Cn. We present properties of the spaceW 1;2
⇤ .�/. To simplify

the notation, we writeW 1;2
⇤ instead ofW 1;2

⇤ .�/ if no confusion arises. We will use
some basic results in pluripotential theory and refer the reader to [1,3,5,19,24] for
details.

Standard regularization. The following approximation of functions and currents
will be used several times in this paper. Let � be a smooth non-negative cut-off
radial function with support in a ball B.0; R/ of center 0 and radius R in Cn such
that

R
Cn �d Leb D 1. For every real number " > 0, put �".x/ WD "

�2n
�."

�1
x/.

We have
R
Cn �" d Leb D 1 and the support of �" is contained in the ball of center

0 and radius R". For every function u 2 L1
loc.�/, we define the convolution

u".x/ WD u ⇤ �".x/ D
Z
Cn

u.x � y/�".y/ d Leb.y/:
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This is a smooth function defined on �" WD fx W dist.x; @�/ > R"g. We call it
a standard regularization of u. Since � is non-negative radial, if u is p.s.h., u" is
smooth, p.s.h. and decreases to u when " decreases to 0, thanks to the submean
inequality.

Let T be a closed positive .1; 1/-current on �. Write T D dd
c
' locally and

define T" WD dd
c
'", where '" is the standard regularization of '. Observe that

T" is independent of the choice of ' (because if '0 is another local potential of
T , then dd c

.'
0 � '/ D 0, hence we obtain dd c

'
0
✏ D dd

c
'✏). Therefore, we

obtain a closed positive .1; 1/-current T" defined on�" that we also call a standard
regularization of T .

Wedge-product of currents and continuity. Let R be a closed positive current on
�. Recall that if v is a bounded p.s.h. function, then dd c

v ^ R WD dd
c
.vR/ is

a closed positive current. Hence, for bounded p.s.h. functions v1; : : : ; vl , we can
define inductively dd c

v1 ^ : : :^dd c
vl ^R. It is well-known that both v1dd

c
v2 ^

: : :^ dd c
vl ^R and dd c

v1 ^ : : :^ dd c
vl ^R depend continuously on v1; : : : ; vl

by taking sequences of p.s.h. functions decreasing to v1; : : : ; vl . So, we can apply
this property for the standard regularization of vj described above.

Let v1 and v2 be bounded p.s.h. functions on �. If A > 0 is a large enough
constant, we have vj C A � 0 and hence .vj C A/

2 and .v1 C v2 C 2A/
2 are

p.s.h. functions. It follows that .v1 � v2/
2 is the difference of two bounded p.s.h.

functions because we can write

.v1 � v2/
2 D

⇥
2.v1 C A/

2 C 2.v2 C A/
2
⇤

� .v1 C v2 C 2A/
2
:

This, together with the identity dd c
v

2 D 2.dv^d c
vCvdd c

v/, allow us to define

d.v1 � v2/ ^ d c
.v1 � v2/ ^R WD 1

2
dd

c
.v1 � v2/

2

^R � .v1 � v2/dd
c
.v1 � v2/ ^R:

(2.1)

Capacity and convergence in capacity. Let K be a Borel subset of �. Recall that
the capacity of K in � is the quantity

cap.K;�/ WD sup
⇢Z

K

.dd
c
v/

n W 0  v  1 p.s.h. on �
�
:

This notion was introduced in [1]. Every pluripolar set in � is of zero capacity in
�. Recall that � is called hyperconvex if there exists a continuous p.s.h. function
⇢ W � ! .�1; 0/ such that f⇢ < cg is relatively compact in � for every constant
c < 0. Examples of such domains are balls in Cn. If � is hyperconvex, then a
subset A of � is pluripolar if and only if cap⇤

.A;�/ D 0, where

cap⇤
.A;�/ WD inf

˚
cap.U;�/ W A ⇢ U ⇢ �; U open

 
;

see [1, 19].
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Let uk be a Borel function defined everywhere on � except on a pluripolar
subset of � for k 2 N. We say that .uk/k2N is a Cauchy sequence with respect to
capacity if for every constant ı > 0, every open subset U in � and every compact
set K in U , we have

lim
N !1

sup
fk;l�N g

cap
�
K \ fjuk � ul j � ıg; U

�
D 0: (2.2)

Similarly, given a Borel function u defined on � except maybe on a pluripolar set,
we say that uk converges to u in capacity as k ! 1 or u is a capacity limit of
.uk/k if for every open set U ⇢ �, every compact set K b U , and every constant
ı > 0, we have

cap
�
K \ fjuk � uj � ıg; U

�
! 0 (2.3)

as k ! 1, see [19] for details. One can check that capacity limits of a given
sequence only differ on pluripolar sets. Notice also that if uk converges to some
function u in capacity as k ! 1, then .uk/k is a Cauchy sequence with respect to
capacity. The above two notions are local because

cap.K [K 0
; �/  cap.K;�/C cap.K 0

; �/

for K ⇢ �;K
0 ⇢ � and cap.K;�/  cap.K;�0

/ when K ⇢ �
0 ⇢ �.

Two other notions of convergence. Let uk 2 W
1;2

⇤ for k 2 N and u 2 W
1;2

⇤ .
We say that uk ! u in the weak topology of W 1;2

⇤ if uk ! u in the sense of
distributions and kukk⇤ is uniformly bounded. SinceW 1;2

⇤ is continuously embed-

ded in W 1;2, by Rellich’s theorem, we have uk ! u in L
2n

n�1

loc (or Lp
loc for every

1  p < 1 when n D 1). In particular, we have uk ! u in L2
loc. Note that

Corollary 1.5 in Introduction gives a much stronger property. Assume that uk ! u

weakly in W 1;2
⇤ as above. Assume also that i@uk ^ @uk  Tk for some closed

positive .1; 1/-current Tk converging to a current T . Then we have i@u^ @u  T ,
see [26, page 251].

We say that uk ! u nicely if uk ! u weakly in W 1;2
⇤ and for every x 2 �,

there exist an open neighbourhood Ux of x and a p.s.h. function 'k on Ux such that

i@uk ^ @uk  dd
c
'k

for every k and 'k decreases to some p.s.h. function on Ux .
For K ⇢ � and R a current on �, we denote by kRkK the mass of R on K.

We will need the following important estimates, see [3, 19].

Lemma 2.1. Let K b � be a compact set. Let v1; : : : ; vm be bounded p.s.h.
functions on � and ' another p.s.h. function on �. Let R be a closed positive
.p; p/-current on � with 0  p  n � 1. Then, there exists a positive constant c
depending only on K and � such that

kdd c
v1 ^ � � � ^ dd c

vm ^RkK  ckv1kL1.�/ � � � kvmkL1.�/kRk�;
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for 1  m  n � p and

kd.v1 � v2/ ^ d c
.v1 � v2/ ^RkK

c
�
kv1kL1.�/ C kv2kL1.�/

�
kv1 � v2kL1.�/kRk�;

and for every constant N > 0,

cap
�
f'  �N g \K;�

�
 cN

�1k'kL1.�/:

Proof. For the first and third estimates, we refer to [19, page8 and Proposition1.10],
see also [3]. The proof of the first estimate is based on an induction on m and the
use of integration by parts. We use the same techniques together with (2.1) in order
to get the second estimate. We give here the details as we will need them later.

Since the problem is local, we can assume that � is the unit ball. By subtract-
ing from v1; v2 a same constant, we can assume that

vj  �1
2

max
�
kv1kL1.�/; kv2kL1.�/

�
:

LetA>0 be equal to a large enough constant (depending onK) times kv1kL1.�/C
kv2kL1.�/. Then we replace vj by v0

j WD max.vj ; A.kxk2 �1//, where x denotes
the standard coordinates in Cn. We can choose A large enough so that v0

j D vj

on K and v0
j D A.kxk2 � 1/ outside a fixed ball L such that K b L b �. Since

jv0
1 � v

0
2j  jv1 � v2j, this step doesn’t affect our problem. In this way, we can

assume for simplicity that v1 D v2 D A.kxk2�1/ outsideL and hence v1�v2 D 0

there. Let ! denote the standard Kähler form on Cn. We have using (2.1)

kd.v1 � v2/^d c
.v1 � v2/ ^RkK 

Z
�

d.v1 � v2/̂ d
c
.v1�v2/^R ^ !n�p�1

D1
2

Z
�

dd
c
.v1 � v2/

2 ^R ^ !n�p�1 �
Z

�

.v1 � v2/dd
c
.v1 � v2/^R ^ !n�p�1

:

As v1 � v2 D 0 on � n L, the first integral in the last line vanishes by integration
by parts. The second one is bounded by

kv1 � v2kL1.�/

⇥
kdd c

v1 ^RkL C kdd c
v2 ^RkL

⇤
:

We obtain the second estimate in the lemma by applying the first one to L instead
of K.

We have the following elementary property of a Cauchy sequence with respect
to capacity.
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Lemma 2.2. Let .uk/k be a sequence of continuous functions on �. Assume that
.uk/k is a Cauchy sequence with respect to capacity. Then there exists a Borel
function u1 defined everywhere on � except on a pluripolar set such that:

(i) uk converges to u1 in capacity; if uk converges to another function u0
1 in

capacity, then u0
1 D u1 outside a pluripolar set;

(ii) There exists a sequence .jk/k ⇢ N converging to 1 such that ujk
! u1

pointwise except on a pluripolar set as k ! 1;
(iii) If .j 0

k
/k ⇢ N is another sequence converging to 1 such that uj 0

k
converges

pointwise to some function u0
1 outside a pluripolar set, then u0

1 D u1 out-
side a pluripolar set.

Proof. Assume (ii) for the moment. We explain how to get (i) and (iii). The second
assertion in (i) is clear. Let .ujk

/k be a subsequence of .uk/k such that ujk
! u1

pointwise except on a pluripolar set. LetU be an open subset of� andK a compact
subset of U . Let " > 0 be a constant. By (2.2), there exists N 2 N big enough so
that

cap
�
K \ fjul1

� ul2
j � ı=2g; U

�
 "

for every l1; l2 � N . Applying the last inequality to l2 D jk and letting k ! 1
give

cap
�
K \ fjul1

� u1j � ıg; U
�

 "

for every l1 � N . This implies that ul1
! u1 in capacity as l1 ! 1. Hence,

(i) follows. Let .j 0
k
/k and u0

1 be as in (iii). Then by the above arguments, we get
uk ! u

0
1 in capacity. Hence, u0

1 D u1 outside a pluripolar set.
It remains to prove (ii). Let .�s/s2N be a countable covering of � by open

balls. As observed above, �s is hyperconvex for every s. Let .�0
s/s2N be another

covering of � by open balls such that �0
s b �s for every s. Fix s 2 N. Let ı > 0

be a constant. By (2.2), there exists a sequence .j s
k
/ ! 1 such that for every k,

we have
cap

�
E

s
k \�0

s; �s

�
 cap

⇣
E

s
k \�0

s; �s

⌘
 ı=2

k
;

where Es
k

WD
˚
juj s

k
� uj s

kC1
j > 2

�k
 

which is an open set. Hence, for Es
ı

WD
[1

kD1
E

s
k
; the sequence .uj s

k
/k converges uniformly on �0

snEs
ı
.

Observe that cap.Es
ı

\�
0
s; �s/  ı. For ı D 1=m, by a diagonal argument,

we can assume that uj s
k

converges uniformly on�0
snEs

1=m
for everym. Hence, uj s

k

converges pointwise on �0
sn.\mE

s
1=m

/. Since

cap
⇣
E

s
1=m \�0

s; �s

⌘
 1=m

for everym, we obtain that cap⇤
.\mE

s
1=m

\�0
s; �s/ D 0. Hence, \mE

s
1=m

\�0
s is

pluripolar. This implies that uj s
k

converges pointwise on �0
s except on a pluripolar

set.
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Applying the above arguments to s D 1; 2; : : : and using a diagonal argument
again, we obtain a sequence .jk/k ⇢ N converging to 1 such that ujk

converges
pointwise on �0

s except on a pluripolar set for every s. Thus, (ii) follows. This
finishes the proof.

The following result provides a good regularization for functions in W 1;2
⇤ ,

see [26].

Lemma 2.3. Let u be a function inW 1;2
⇤ .�/ and let u" be the standard regulariza-

tion of u as above. Then we have ku"k⇤;�"
 kuk⇤;�, ku"kL1.�"/  kukL1.�/,

and if u � 0, we have u" � 0 for every ". Moreover, for every sequence ."k/k

decreasing to 0, we have u"k
! u nicely in W 1;2

⇤ .�
0
/ for every open set �0 b �.

Proof. It is clear from the definition of u" that ku"kL1.�"/  kukL1.�/ and
u" � 0 if u � 0. It is also clear that ku"kL2.�"/  kukL2.�/ and u" ! u

in L2
.�

0
/ for every �0 b �. Let T be a closed positive .1; 1/-current on �

with kT k minimal such that (1.2) holds. Denote by T" the standard regularization
of T . By [26, Lemma 5]) (see also the proof of Lemma 3.3 below), we have
i@u"^@u"  T" on�": So we deduce that u" 2 W 1;2

⇤ .�"/ and its ⇤-norm bounded
by kuk⇤;�. We conclude that u"k

! u nicely in W 1;2
⇤ .�

0
/ as we have seen that if

we write T D dd
c
', then '" decreases to ' when " decreases to 0. This finishes

the proof.

Note that Lipschitz functions belong to W 1;2
⇤ . The following result shows

that W 1;2
⇤ is closed under basic operations on functions and allows us to produce

functions in this space, see [10].

Lemma 2.4. Let ⌧ W R ! R be a Lipschitz function and u 2 W
1;2

⇤ . Define
u

˙ WD maxf˙u; 0g.

(i) We have ⌧.u/ 2 W
1;2

⇤ and k⌧.u/k⇤  c.j⌧.0/j C kuk⇤/ for some constant
c > 0 independent of u: In particular, we have uC

; u
�
; juj 2 W

1;2
⇤ and

maxfu1; u2g 2 W 1;2
⇤ if u1; u2 2 W 1;2

⇤ ;
(ii) If uk ! u weakly in W 1;2

⇤ , then ⌧.uk/ ! ⌧.u/ weakly in W 1;2
⇤ . If uk ! u

nicely in W 1;2
⇤ , then ⌧.uk/ ! ⌧.u/ nicely in W 1;2

⇤ ;
(iii) Assume that� is bounded. Let v be a p.s.h. function on an open neighborhood

e� of� such that 0  v  1. Then v belongs toW 1;2
⇤ .�/ and kvk⇤ is bounded

by a constant depending only on � and e�.

Proof. As in [10, Proposition 4.1 and Lemma 4.2], we easily obtain (i) and (ii)
using that j⌧.t/j  j⌧.0/j C Ajt j and i@⌧.u/ ^ @⌧.u/  A

2
i@u ^ @u if ⌧ is A-

Lipschitz. We also used here that the maps t 7! t
C
; t

�
; jt j are 1-Lipschitz and

maxfu1; u2g D .u1 � u2/
C C u2. The assertion (iii) is a direct consequence of (i)

by using i@v ^ @v  i@@v
2 and by observing that v2 is a p.s.h function.
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We will need the following estimates, see also Proposition 2.13 below. We
note that results related to the inequality (2.4) below were proved in [23, 26].

Lemma 2.5. Let u 2 W
1;2

⇤ \ C 0
.�/ with kuk⇤  1 and let v1; : : : ; vn be p.s.h.

functions on � with values in Œ0; 1ç. Let K be a compact subset of �. Then there
is a constant c > 0 depending only on K and � such that

Z
K

u
2
dd

c
v1 ^ � � � ^ dd c

vn  c; (2.4)

and if i@u^@u  dd
c
' for some p.s.h. function ' on� such that 0  '  1, then

Z
K

u
2
dd

c
v1 ^ � � � ^ dd c

vn  c

✓Z
�

u
2
.dd

c
' C !/

n

◆1=2n

;

where ! is the standard Kähler form on Cn.

Proof. By regularization, we can assume that u is smooth. The point here is that
the constant c is independent of u. Let T be a closed positive .1; 1/-current so that
kT k  1 and

i@u ^ @u  T:

In order to get (2.4) it is enough to prove by induction on 0  l  n that
Z

K

u
2
dd

c
v1 ^ � � � ^ dd c

vl ^ !n�l  c

for some constant c depending only on K and �. The case where l D 0 is clear,
see the beginning of this section. Assume this property for l � 1 instead of l and
for every K. We now prove it for l .

Since the problem is local, we can assume that � is the unit ball in Cn. Fix
a compact set K in �. As in the proof of Lemma 2.1, we can assume that all vj

are smooth outside a compact set L with K b L b � and kvj kC 2.�nL/  1. Fix
a smooth function 0  ⌧  1 with ⌧ D 1 on a neighbourhood of L such that ⌧ is
supported by a compact set K 0 in �. Define

Imax WD sup
v0

j

Z
�

⌧u
2
dd

c
v

0
1 ^ � � � ^ dd c

v
0
l ^ !n�l

;

where the supremum is taken over all p.s.h. functions v0
j with 0  v

0
j  1 and

kv0
j kC 2.�nL/  1. Define

I WD
Z

�

⌧u
2
dd

c
v1 ^ � � � ^ dd c

vl ^ !n�l

and R WD dd
c
v2 ^ � � � ^ dd c

vl ^ !n�l
:

(2.5)
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Since u is smooth, we can perform integration by parts to obtain

I D �
Z

�

u
2
d⌧ ^ d c

v1 ^R � 2
Z

�

⌧udu ^ d c
v1 ^R:

Denote by I1; I2 the first and second integral in the right-hand side of the last
equality.

Observe that d⌧ ^ d c
v1 ^ R is a bounded form because d⌧ vanishes outside

K
0 nL and kvj kC 2.K0nL/  1. Therefore, jI1j is bounded by a constant because u

has bounded L2
.�/-norm. For I2, since i@u ^ @u  T , we obtain

du ^ d c
u ^R D ⇡

�1
i@u ^ @u ^R  R ^ T:

This, together with the Cauchy-Schwarz inequality and Lemma 2.1, give

jI2j 
✓Z

�

⌧du ^ d c
u ^R

◆1=2 ✓Z
�

⌧u
2
dv1 ^ d c

v1 ^R
◆1=2


✓Z

�

⌧R ^ T
◆1=2 ✓Z

�

⌧u
2
dd

c
v

2
1 ^R

◆1=2


✓Z

�

⌧u
2
dd

c
v

2
1 ^R

◆1=2

. .Imax/
1=2

(for the last inequality, we used that v2
1 is p.s.h., 0  v

2
1  1 and kv2

1kC 2.�nL/ is
bounded). It follows that jI j D jI1 C 2I2j . 1C .Imax/

1=2 for every vj as above.
Therefore, we deduce from the definition of Imax that Imax . 1C .Imax/

1=2. Thus,
Imax is bounded by a constant and the inequality (2.4) is proved.

We now prove the second inequality in the lemma. Using (2.4), we can reduce
slightly � and assume that

Q WD
Z

�

u
2
.dd

c
' C !/

n

is bounded by a constant. It follows that Q . Q
1=2l

for 0  l  n. We can now
follow the main lines of the proof of (2.4) but we replace each ! by dd c

' C !.
Denote by I 0

; R
0
; I

0
1; I

0
2 the quantities defined as I;R; I1; I2 but we replace ! by

dd
c
' C !. With the same arguments, we get jI 0

1j . Q . Q
1=2l

. The estimate
of jI 0

2j is slightly different. By Cauchy-Schwarz inequality, the inequality idu ^
d

c
u  dd

c
', Lemma 2.1 and the induction hypothesis, we get

jI 0
2j 

✓Z
�

⌧u
2
du ^ d c

u ^R0
◆1=2 ✓Z

�

⌧dv1 ^ d c
v1 ^R0

◆1=2

.
✓Z

�

⌧u
2
dd

c
' ^R0

◆1=2

.
⇣
Q

1=2l�1
⌘1=2

;
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where we bound
R

�
⌧dv1 ^ d c

v1 ^ R0 by using Lemma 2.1 and the fact that 0 
vj ; �  1. We conclude that jI 0j D jI 0

1 C 2I
0
2j . Q

1=2l
which ends the proof of

the lemma.

Lemma 2.6. Let .uk/k ⇢ W
1;2

⇤ \C 0
.�/ be a sequence converging to 0 weakly in

W
1;2

⇤ . For each j D 1; : : : ; n, let .vj;k/k be a sequence of bounded p.s.h. functions
on � decreasing to some bounded p.s.h. function vj when k tends to infinity. Then
we have for every compact set K in �

lim
k!1

Z
K

jukjdd c
v1;k ^ � � � ^ dd c

vn;k D 0:

In particular, if we assume moreover that .uk/k is uniformly bounded, then

lim
k!1

Z
K

u
2
kdd

c
v1;k ^ � � � ^ dd c

vn;k D 0:

Proof. By Lemma 2.1, the mass of dd c
v1;k ^ � � � ^dd c

vn;k onK is bounded by a
constant. Therefore, the second assertion of the lemma is a direct consequence of
the first one. We prove now the first assertion.

By replacing uk with jukj, we can assume that uk � 0, see Lemma 2.4. Then,
using the standard regularization, we can assume that uk is smooth. Since the prob-
lem is local, as in the proof of Lemma 2.1, we can assume that kvj;kkC 2.�nL/  1

for some compact set L such that K b L b �. We can also assume that

i@uk ^ @uk  Tk

for some closed positive .1; 1/-current Tk such that kTkk  1. Choose a smooth
non-negative function ⌧ with compact support in � which is equal to 1 in a neigh-
bourhood of L. It is enough to prove by induction on l that

lim
k!1

Z
�

⌧ukdd
c
v1;k ^ � � � ^ dd c

vl;k ^ !n�l D 0:

The case where l D 0 is clear because uk ! 0 in L2
loc by hypothesis, see the

beginning of this section. Assume that the desired property holds for l � 1 instead
of l . We need to prove it for l .

Define

Rk WDdd c
v2;k ^ � � � ^ dd c

vl;k ^!n�l and R WD dd
c
v2 ^ � � � ^ dd c

vl ^!n�l
:

Let v1;k;" and v1;" be the standard regularizations of v1;k and v1 for " > 0 a
small constant (since ⌧ has compact support, we can reduce � slightly in order
to avoid problems near the boundary of�). Define v0

1;k;"
WD v1;k �v1;k;". Observe
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that when k tends to infinity, v1;k;" decreases to v1;" and hence v0
1;k;"

tends to
v

0
1;" WD v1 � v1;" pointwise. Write

Z
�

⌧ukdd
c
v1;k ^Rk D

Z
�

⌧ukdd
c
v1;k;" ^Rk C

Z
�

⌧ukdd
c
v

0
1;k;" ^Rk :

As k tends to infinity, the first term in the last sum converges to 0 by the induction
hypothesis. Denote the second term by Ik."/. It remains to check that

lim
"!0

lim sup
k!1

Ik."/ D 0:

By integration by parts, we get

Ik."/ D �
Z

�

ukd⌧ ^ d c
v

0
1;k;" ^Rk �

Z
�

⌧duk ^ d c
v

0
1;k;" ^Rk :

The first integral in the last line tends to 0 when k tends to infinity because uk ! 0

in L2
loc.�/, d⌧ vanishes outside L and d⌧ ^ d c

v
0
1;k;"

^ Rk is bounded uniformly
on � nL. The second integral, denoted by Jk."/, satisfies the following estimates,
thanks to the Cauchy-Schwarz inequality

jJk."/j2 
✓Z

�

⌧duk ^ d c
uk ^Rk

◆✓Z
�

⌧dv
0
1;k;" ^ d c

v
0
1;k;" ^Rk

◆

.
✓Z

�

⌧Tk ^Rk

◆✓Z
�

⌧dv
0
1;k;" ^ d c

v
0
1;k;" ^Rk

◆
:

The first factor in the last line is uniformly bounded, thanks to Lemma 2.1 and the
fact that kTkk  1. By integration by parts, the second factor is equal to

�
Z

�

v
0
1;k;"d⌧ ^ d c

v
0
1;k;" ^Rk �

Z
�

⌧v
0
1;k;" ^ dd c

v
0
1;k;" ^Rk :

Taking k ! 1 and then " ! 0, we see that the first term tends to 0 because d⌧
vanishes outside L and v0

1;k;"
d⌧ ^ d

c
v

0
1;k;"

^ Rk is smooth and tends uniformly
to 0 on � n L thanks to properties of the convolution operator. By continuity of
wedge-product described at the beginning of this section, when k tends to infinity,
the second term tends to

Z
�

⌧v
0
1;" ^ dd c

v
0
1;" ^R:

Finally, when " decreases to 0, since v1;" decreases to v1, the last expression tends
to 0, again, by using the continuity of the wedge-product. This ends the proof of
the lemma.
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We have the following result which will be extended later in Proposition 2.13
to every u 2 W 1;2

⇤ which is not necessary continuous.

Lemma 2.7. Let ⌧ be a smooth function with compact support in �. Then there is
a constant c > 0 such that for every u 2 W 1;2

⇤ \ C 0
.�/ with kuk⇤  1 and every

p.s.h. functions v1; : : : ; vn�1; w1; w2 on � with values in Œ0; 1ç, we have
ˇ̌
ˇ̌
Z

�

⌧udd
c
.w1 � w2/ ^ dd c

v1 ^ � � � ^ dd c
vn�1

ˇ̌
ˇ̌  ckw1 � w2k1=2

L1.�/
:

Proof. Let T be as in the proof of Lemma 2.5. As in that lemma, by regularisation,
we can assume u smooth. Definew WD w1 �w2 andR WD dd

c
v1 ^� � �^dd c

vn�1.
Let U b � be an open set containing the support of ⌧ . By integration by parts, we
get

Z
�

⌧udd
c
w ^R D �

Z
�

ud⌧ ^ d c
w ^R �

Z
�

⌧du ^ d c
w ^R:

Denote by I1; I2 the first and second term in the right-hand side of the last equality.
By Cauchy-Schwarz inequality, (2.1) and Lemma 2.1, one has

jI2j . kdu ^ d c
u ^Rk1=2

U kdw ^ d c
w ^Rk1=2

U

. kR ^ T k1=2
U kwk1=2

L1.�/
. kwk1=2

L1.�/
:

Similarly,

jI1j 
��u2

d⌧ ^ d c
⌧ ^R

��1=2

U
kdw ^ d c

w ^Rk1=2
U . kwk1=2

L1.�/

by Lemmas 2.1 and 2.5. The result follows.

In general, the potentials of a currentT satisfying (1.2) are not locally bounded.
We will introduce below an operator which produces, from a bounded function
u 2 W 1;2

⇤ , new bounded functions inW 1;2
⇤ such that their associated .1; 1/-currents

have bounded potentials.

Lemma 2.8. Let u 2 W 1;2
⇤ be such that juj  1 and let T be as in (1.2). Assume

moreover that T D dd
c
' for some negative p.s.h. function ' on �. Define 'N WD

maxf';�N g CN for a constant N � 1. Then the function w WD 'Nu belongs to
W

1;2
⇤ .�

0
/ for every open set �0 b � and it satisfies

i@w ^ @w  2⇡N
2
dd

c
�
'

2
N C 'N C1

�
:

Proof. Observe that 0  'N  N and both 'N and '2
N are p.s.h. So the estimate

in the lemma implies that w belongs to W 1;2
⇤ .�

0
/ and we only need to prove this

estimate.
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Particular Case. Consider first the case where ' is continuous. Since @w D
u@'N C 'N @u, by Cauchy-Schwarz inequality, we have

i@w ^ @w  2u
2
i@'N ^ @'N C 2'

2
N i@u ^ @u  2⇡N

2
�
dd

c
'

2
N C dd

c
'
�
:

This implies the desired estimate because ' D 'N C1 on the open set f' > �N�1g
which contains the closed set f' � �N g and w is supported by the last one.

General Case. Denote by u" and '" the standard regularizations of u and '. We
reduce slightly the domain � in order to avoid problems near the boundary. We
have seen in the proof of Lemma 2.3 that i@u" ^ @u"  dd

c
'". Define as above

the functions '";N and w" associated to '" and u". We obtain from the last case
that

i@w" ^ @w"  2⇡N
2
dd

c
�
'

2
";N C '";N C1

�
:

When " decreases to 0, it is easy to see that w" converges almost everywhere to w
and the right-hand side of the last inequality converges to 2⇡N 2

dd
c
.'

2
N C 'N C1/

because '" decreases to '. The desired inequality in the lemma follows, see also
the beginning of this section for the weak convergence in W 1;2

⇤ .

The following lemma gives a link between the nice convergence and the con-
vergence in capacity. A related result was given in [26].

Lemma 2.9. Let .uk/k 2 W
1;2

⇤ \ C 0
.�/ be a sequence converging nicely to 0.

Then uk converges to 0 in capacity as k ! 1.

Proof. Since the problem is local, we can assume that there are closed positive
.1; 1/-currents Tk and negative p.s.h. functions 'k such that

i@uk ^ @uk  Tk D dd
c
'k and kTkk  1: (2.6)

Since uk ! 0 nicely, we can also assume that 'k decreases to some negative p.s.h.
function ' on�. LetK be a compact subset of� and ı > 0. We need to show that

lim
k!1

cap.fjukj � ıg \K;�/ D 0:

Consider a large positive constant N . By definition of capacity and Lemma 2.5,
we have

cap.fjukj � N g \K;�/.N�2 sup
⇢Z

K

u
2
k.dd

c
v/

n
; 0  v  1 p.s.h.

�
.N�2

:

On the other hand, by Lemma 2.4, min.jukj; N / converges to 0 nicely. Therefore,
replacing uk with min.jukj; N / allows us to assume that the sequence .uk/k is
uniformly bounded.

Define 'k;N WD max.'k;�N/ C N and u0
k

WD 'k;Nuk . By Lemma 2.8, we
have i@u0

k
^ @u0

k
 dd

c
'

0
k

with '0
k

WD 2⇡N
2
.'

2
k;N

C 'k;N C1/. Observe that '0
k
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decreases to the bounded p.s.h. function '0 WD 2⇡N
2
.'

2
N C'N C1/ as 'k decreases

to the p.s.h. function '. Thus, u0
k

converges to 0 nicely. Since 'k � ', we have
'k;N � 1 on f' � �N C 1g. It follows that ju0

k
j � jukj on f' � �N C 1g. On

the other hand, using Lemma 2.1, we obtain

cap
�
f' < �N C 1g \K;�

�
. N

�1
:

It follows that

cap
�
fjukj � ıg \K;�

�
. cap

�
fju0

kj � ıg \K;�
�

CN
�1
:

Therefore, since the last estimate holds for every N , we only need to check that

lim
k!1

cap.fju0
kj � ıg \K;�/ D 0:

By definition of capacity and Lemma 2.5, we have

cap
�
fju0

kj � ıg \K;�
�

 ı
�2 sup

⇢Z
K

u
02
k .dd

c
v/

n
; 0  v  1 p.s.h.

�

.
✓Z

�

u
02
k .dd

c
'

0
k C !/

n

◆1=2n

:

By Lemma 2.6, the last integral tends to 0 as k tends to infinity. The lemma
follows.

Here is the main result of this section which generalizes results by Vigny in
[26], see also Corollary 2.11 below.

Theorem 2.10. Let u 2 W 1;2
⇤ . Then there exists a Borel function Qu defined every-

where on � except on a pluripolar set such that Qu D u almost everywhere and the
following properties hold:

(i) For every open set U ⇢ � and every sequence .uk/k ⇢ W
1;2

⇤ .U / \ C 0
.U /

such that uk ! u nicely in W 1;2
⇤ .U /, we have uk ! Qu in capacity as k !

1. In particular, there exists a subsequence .ujk
/k of .uk/k such that ujk

converges pointwise to Qu everywhere on U except on a pluripolar set;
(ii) For every constant " > 0, there exists an open subsetU of�with cap.U;�/ 

" such that Qu is continuous on �nU ;
(iii) If Qu0 is another Borel function satisfying .i/, then Qu0 D Qu on � except on a

pluripolar set.

We see that Qu is unique modulo pluripolar sets. In analogy with the case of p.s.h.
functions, we consider the above property (ii) as a quasi-continuity property of
functions in W 1;2

⇤ .
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Proof. By Lemma 2.2, (iii) is a direct consequence of (i). Moreover, (ii) follows
from (i) by using exactly the arguments to prove the quasi-continuity of p.s.h. func-
tions, see [19, Th. 1.13]. We now prove (i) and start with the construction of Qu.

Let u" be the standard regularization of u. Choose a sequence of positive
numbers ."k/k decreasing to 0. We first prove the following claim.

Claim. .u"k
/k is a Cauchy sequence inW 1;2

⇤ .�
0
/with respect to capacity for every

open set �0 b �.
Assume by contradiction that the claim is not true. By replacing ."k/k with

a subsequence, we have the following property for some compact set K and some
open set U with K b U b �:

cap
�
fju"2m

� u"2mC1
j > ıg \K;U

�
� 

for every m D 1; 2; : : :, where ı and  are some positive numbers.
By Lemma 2.3, we have u"k

! u nicely. So we can write locally i@u"k
^

@u"k
 dd

c
 k for some p.s.h. function  k which decreases to a p.s.h. function

when k tends to infinity. Observe that by Cauchy-Schwarz inequality

i@
�
u"2m

� u"2mC1

�
^ @

�
u"2m

� u"2mC1

�

 2i@u"2m
^ @u"2m

C 2i@u"2mC1
^ @u"2mC1

 dd c
�
2 2m C 2 2mC1

�
:

Therefore, u"2m
� u"2mC1

tends to 0 nicely and hence in capacity, according to
Lemma 2.9. This contradicts the above estimate on capacity for u"2m

� u"2mC1

and completes the proof of the claim.
We apply Lemma 2.2 to the sequence .u"k

/k and obtain a function Qu equal
almost everywhere to u such that u"k

! u in capacity. Now, the function Qu is
constructed. It remains to prove the first part of the assertion (i). Since uk ! u

nicely, we can write locally i@uk ^ @uk  dd
c
'k for some p.s.h. function 'k

decreasing to a p.s.h. function when k goes to infinity. Using that both i@u"k
^@u"k

and i@uk ^ @uk are bounded by dd c
. k C 'k/, we see that the sequence

u"1
; u1; u"2

; u2; : : :

converges to u nicely. As above, we can show that this is a Cauchy sequence with
respect to capacity. Therefore, Lemma 2.2 implies that uk ! Qu in capacity.

From now on, by a good representative of u, we always mean a function Qu
as in Theorem 2.10. It coincides with the representative constructed by Vigny
in [26]. Theorem 2.10(i) shows that the good representatives do not depend on the
coordinates on�. Therefore, this notion is well defined for functions on manifolds.
If no confusion arises, when refer to functions inW 1;2

⇤ , we often use implicitly their
good representatives. The requirement that uk is continuous in Theorem 2.10(i) is
actually superfluous as shown in the following result.
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Corollary 2.11. Let u 2 W
1;2

⇤ and uk 2 W
1;2

⇤ for k 2 N. Assume that uk ! u

nicely as k ! 1. Then Quk ! Qu in capacity as k ! 1, where Qu; Quk are good
representatives of u and uk respectively (we often say that uk ! u in capacity for
simplicity).

Proof. Note that the problem is local and we can always reduce the domain � in
order to avoid problems near the boundary. By hypothesis, we can write i@uk ^
@uk  dd

c
'k for some p.s.h. function 'k decreasing to a p.s.h. function when k

tends to infinity.
We can apply Lemma 2.3 for uk instead of u. Then we apply Theorem 2.10(i)

for the obtained sequence of functions. We deduce the existence of u0
k

2 W
1;2

⇤ \
C 1

.�/ such that

��u0
k � uk

��
L2  1=k; cap

⇣˚ˇ̌
u

0
k � Quk

ˇ̌
� 1=k

 
\K;�

⌘
 1=k;

��u0
k

��
⇤  c

for some constant c independent of k and i@u0
k

^ @u
0
k

 dd
c
'

0
k

, where '0
k

is a
p.s.h. function. We can obtain '0

k
from 'k using the standard regularization, see the

proof of Lemma 2.3. Since the sequence .'k/k decreases to a p.s.h. function, we
can choose u0

k
(inductively on k D 1; 2; : : :) so that .'0

k
/k also decreases to some

p.s.h. function. It follows that u0
k

! u nicely in W 1;2
⇤ . This allows us to apply

Theorem 2.10(i) again to infer that u0
k

! Qu in capacity. Finally, the above capacity
estimate (involving u0

k
� Quk) implies the result.

We also need the following observation in order to work directly with good
representatives.

Lemma 2.12. Let ⌧ W R ! R be a Lipschitz function. Let u 2 W
1;2

⇤ and Qu a
good representative of u. Then, ⌧. Qu/ is a good representative of ⌧.u/ 2 W

1;2
⇤ . In

particular, the functions QuC
; Qu�

; j Quj are good representatives of uC
; u

�
; juj, and if

u1; u2 2 W
1;2

⇤ , then maxf Qu1; Qu2g is a good representative of maxfu1; u2g, where
Quj is a good representative of uj for j D 1; 2.

Proof. Let uk WD u"k
be as in Lemma 2.3. By Lemma 2.4(ii), we have ⌧.uk/ !

⌧.u/ nicely. Thus, the result is a direct consequence of the second assertion of
Theorem 2.10(i).

Let v1; : : : ; vn be bounded p.s.h. functions on� and define� WD dd
c
v1^� � �^

dd
c
vn. Note that� is a positive measure having no mass on pluripolar sets because

the capacity of every pluripolar set is zero. Theorem 2.10 allows us to integrate any
non-negative u 2 W

1;2
⇤ against � by putting h�; ui WD h�; Qui. The definition is

independent of the choice of a good representative Qu of u. More generally, we
can defined in the same way h�; �.u/i for any positive Borel function � defined
everywhere on R:

For every set A ⇢ � and every signed measure ⌫, denote by k⌫kA the mass of
⌫ on A. The following properties will be useful in practice.
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Proposition 2.13. The estimate (2.4) and Lemma 2:7 hold for all functions u 2
W

1;2
⇤ with kuk⇤  1 which are not necessarily continuous. Moreover, if uk ! u

in W 1;2
⇤ nicely, then

lim
k!1

k.uk � u/�kK D 0

for every compact set K ⇢ �.

Proof. We first prove (2.4) for every u 2 W
1;2

⇤ with kuk⇤  1. By Lemmas 2.4
and 2.12, without loss of generality, we can suppose that u is a bounded function.
The point here is that the constants involving in our estimates do not depend on
u. By Lemma 2.3, we can find a sequence of smooth uk 2 W

1;2
⇤ (shrinking � if

necessary) so that

kukkL1  kukL1 ; kukk⇤  kuk⇤

and uk ! u nicely. By Theorem 2.10 and extracting a subsequence if necessary,
we can assume that uk ! u pointwise except on a pluripolar set. This together
with Lebesgue’s dominated convergence theorem gives

Z
K

juj2d� D lim
k!1

Z
K

jukj2d�:

The last integral is bounded uniformly by a constant times kukk2
⇤ according to

Lemma 2.5. Hence, (2.4) holds for every u.
Observe that Lemma 2.7 for general u can be obtained using the above func-

tions uk and the last assertion in the proposition. Therefore, it remains to prove this
assertion. Since �  .dd

c
.v1 C� � �Cvn//

n, we can replace all vj by v1 C� � �Cvn

and assume that � is a Monge-Ampère measure with bounded potential. Using
Lemmas 2.4 and 2.12, we can assume that uk and u are non-negative. Let N be a
big constant. Define

uk;N WD minfuk; N g and uN WD minfu;N g:

We have 0  uk;N  N , uk;N D uk on fuk � N g and similar properties for u
in place of uk . Observe that uk;N ! uN nicely as k ! 1, see Lemma 2.4(ii).
Hence, by Corollary 2.11, we have uk;N ! uN in capacity.

Using the first assertion in the proposition, we have

k.uk � uk;N /�kK 
Z

K\fuk�N g
ukd�  N

�1

Z
K

jukj2d� . 1=N

and a similar estimate for .u � uN /�. Together with the equality

uk � u D .uk � uk;N /C .uk;N � uN /C .uN � u/;

we infer
k.uk � u/�kK  k.uk;N � uN /�kK CO.1=N/:
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Denote by Ik the left-hand side of the last inequality. Let ı > 0 be a small con-
stant. Using that � is a Monge-Ampère measure with bounded potential and the
inequalities 0  uk;N ; uN  N , we deduce from the last estimate that

Ik 
 Z

K\fjuk;N �uN j�ıg
juk;N � uN jd�

!

C
 Z

K\fjuk;N �uN j<ıg
juk;N � uN jd�

!
C c=N

 c

h
N cap

�
K \ fjuk;N � uN j � ıg; �

�
C ı C 1=N

i

for some constant c independent of k;N; ı. Letting k tend to infinity, since uk;N !
uN in capacity, we obtain

lim sup
k!1

Ik  cŒı C 1=N ç

for every ı;N > 0. Thus, limk!1 Ik D 0 and the proof is complete.

3. Proof of the main results

We will consider Corollary 1.5 at the end of this section. The proof of Theorem 1.2
consists of two main steps. In Step 1, we show how to reduce the question to the
case where v1; : : : ; vn are smooth. In Step 2, we prove the desired result in the
latter case. Here is the precise formulation for Step 1.

Proposition 3.1. If Theorem 1:2 holds for vj .x/ D kxk2 for every 1  j  n,
then it holds (possibly with different constants ˛ and C ) for every Hölder contin-
uous p.s.h. function v1; : : : ; vn with Hölder exponent ˇ 2 .0; 1ç on � such that
kvj kC ˇ  1 for 1  j  n.

For every Hölder continuous function v on�, recall that the standard Hölder norm
kvkC ˇ is given by

kvkC ˇ WD sup
x;y2�;x 6Dy

jv.x/ � v.y/j
jx � yjˇ :

Proof. Without loss of generality, we can assume u � 0, see Lemma 2.4. Let
K b � be a compact set. By hypothesis, there exist strictly positive constants ˛
and c such that for every u 2 W 1;2

⇤ .�/ with kuk⇤  1; we have
Z

K

e
˛u2

d Leb  c: (3.1)
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Let ! be the standard Kähler form on Cn. Let l be an integer in Œ0; nç: Put uN WD
minfu;N g which is in W 1;2

⇤ with bounded ⇤-norm.

Claim. There exist positive constants ˛ and c such that for every constant N > 0;

we have Z
K

.u � uN /dd
c
v1 ^ � � � ^ dd c

vl ^ !n�l  ce
�˛N 2

;

uniformly in p.s.h. functions v1; : : : ; vl on� and u2W 1;2
⇤ .�/ such that kvj kC ˇ 

1 for every 1  j  l and kuk⇤  1.

Note that since u � uN � 1 on fu � N C 1g, the claim with l D n implies the
following inequality

Z
fu�N C1g\K

dd
c
v1 ^ � � � ^ dd c

vn  ce
�˛N 2

:

From this estimate, we easily deduce the desired assertion (1.3) (we change the
constants ˛ and c if necessary).

It remains to prove the claim and this will be done by induction on l . When
l D 0; the claim is a direct consequence of (3.1) (again, we change the constants c
and ˛ if necessary). Assume that the claim holds for l � 1 instead of l . We need
to prove it for l . Choose a non-negative smooth function ⌧ supported by a compact
set K 0 b � such that ⌧ D 1 on K. Since u � uN � 0, we only need to bound the
integral

I WD
Z

�

⌧.u � uN /dd
c
v1 ^ � � � ^ dd c

vl ^ !n�l
:

Let v1;" be the standard regularization of v1 for 0 < " < 1, see the beginning of
Section 2. As v1;" is obtained from v1 by convolution and kv1kC ˇ  1, we have
kv1;" � v1kL1 . "

ˇ and kv1;"kC 2 . "
�2. By induction hypothesis applied to K 0

instead of K, one gets

I1 WD
Z

�

⌧.u � uN /dd
c
v1;" ^ dd c

v2 ^ � � � ^ dd c
vl ^ !n�l . "

�2
e

�˛N 2

for some constant ˛ > 0. Define

I2 WD
Z

�

⌧.u � uN /dd
c
.v1 � v1;"/ ^ dd c

v2 ^ � � � ^ dd c
vl ^ !n�l

:

By Lemma 2.7 and Proposition 2.13, we have

I2 . kv1 � v1;"k1=2
L1 . "

ˇ=2
:

Since I D I1 C I2, we deduce that

I . "
�2
e

�˛N 2 C "
ˇ=2
:

Letting " WD e
�2.4Cˇ/�1˛N 2

gives I . e
�ˇ.4Cˇ/�1˛N 2

: We obtain the desired
claim by changing ˛ to ˇ.4C ˇ/

�1
˛. This ends the proof of the proposition.
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It remains to prove Theorem 1.2 for vj D kxk2. In this case, � WD dd
c
v1 ^

� � �^dd c
vn is the standard volume form on�. The idea is to use suitable slicing in

order to reduce the problem to the case of dimension 1. We first recall some facts
about the slicing theory of closed positive currents. We refer to [11,13] for details.
Our setting is simpler because we only work with .1; 1/-currents.

Slicing theory. Let U and V be bounded open subsets of Cm1 and Cm2 respec-
tively. Let ⇡U W U ⇥ V ! U and ⇡V W U ⇥ V ! V be the natural projections.
Observe that if R is a form with L1

loc coefficients (which is not necessarily closed
or positive), we can always define the restriction Rz of R to the fiber ⇡�1

V .z/ for
almost every z 2 V (with respect to the Lebesgue measure on V ).

Consider now a closed positive .1; 1/-current R on U ⇥ V . Write R D dd
c
w

locally, where w is a p.s.h. function. For z 2 V , we define the slice Rz of R
on ⇡�1

V .z/ to be dd c
�
w.�; z/

�
which is a closed positive .1; 1/-current on ⇡�1

V .z/.
Let A be the set of z so that w.�; z/ ⌘ �1. Observe that A is pluripolar and for
z 62 A, the slice Rz is well-defined. One can see that the definition of the slice Rz

is independent of the choice of a local potential w of R.
Let �m2

be a non-negative smooth radial function with compact support on
Cm2 such that

R
Cm2 �d Leb D 1 and for every constant " > 0, we put �m2;".z/ WD

"
�2m2�m2

."
�1
z/. The following result is straightforward. We just notice that (iii)

is a direct consequence of (ii).

Lemma 3.2.

(i) Let ˆ be a smooth form of suitable bi-degree with compact support in U ⇥ V .
Let ‚.z/ be a smooth volume form on V . Then we have

hR;ˆ ^‚.z/i D
Z

z2Z

hRz; ˆi‚.z/I

(ii) Then for z0 62 A, we have

lim
"!0

R ^ ⇡⇤
V

�
�".z � z0/Leb.z/

�
D Rz0

;

where we identified Rz0
with a current on U ⇥ V (when R is a .1; 1/-form

withL1
loc coefficients which is not necessarily closed or positive, then the same

conclusion holds for almost every z 2 V );
(iii) LetR0 be another closed positive .1; 1/-current on U ⇥V or a real .1; 1/-form

with L1
loc coefficients. Assume that R0  R on U ⇥ V . Then for almost every

z 2 Z, we have R0
z  Rz .

We continue the proof of Theorem 1.2 for vj D kxk2. We will need the following
lemma.

Lemma 3.3. Let ⌘.x; z/ be a .1; 0/-form withL2 coefficients on U ⇥V . Let T be a
closed positive .1; 1/-current of mass at most 1 on U ⇥V such that i ⌘^ ⌘  T on
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U ⇥V . Define Q⌘.x/ WD
R

z2V
⌘.x; z/d Leb.z/. Then there exists a positive constant

C independent of ⌘ and T such that

i Q⌘ ^ Q⌘  C .⇡U /⇤
�
T ^ Leb.z/

�
;

where Leb.z/ denotes both the Lebesgue measure and the standard volume form
on V . Moreover, .⇡U /⇤

�
T ^Leb.z/

�
is a closed positive .1; 1/-current on U whose

mass is bounded by a constant independent of ⌘ and T .

Proof. Let ˆ be a weakly positive smooth form of right bi-degree with compact
support on U . Using the Cauchy-Schwarz inequality implies that

hi Q⌘ ^ Q⌘;ˆi D
Z

.z;z0/2V 2

hi ⌘z ^ ⌘z0 ; ˆid Leb.z; z0
/

 1

2

Z
.z;z0/2V 2

�
hi ⌘z ^ ⌘z; ˆi C hi ⌘z0 ^ ⌘z0 ; ˆi

�
d Leb.z; z0

/

.
Z

V

hi ⌘z ^ ⌘z; ˆid Leb.z/

D
Z

U ⇥V

i ⌘^⌘^Leb.z/^⇡⇤
V .ˆ/ 

˝
.⇡U /⇤

�
T ^ Leb.z/

�
; ˆ
˛
:

(3.2)

This implies the first assertion in the lemma.
If !.x/ denotes the standard Kähler form on U , then the mass of .⇡U /⇤

�
T ^

Leb.z/
�

is equal to the mass of the measure

T ^ Leb.z/ ^ !.x/m1�1
:

Clearly, this mass is bounded by a constant because the mass of T is at most equal
to 1 by assumption. It remains to show that .⇡U /⇤

�
T ^ Leb.z/

�
is closed. Let

0  �k.z/  1 be a sequence of smooth functions with compact support in V
which increases to 1. We have

.⇡U /⇤
�
T ^ Leb.z/

�
D lim

k!1
.⇡U /⇤

�
T ^ �k.z/Leb.z/

�
:

Observe that �k.z/Leb.z/ is closed because it is of maximal degree in z. There-
fore, the current T ^�k.z/Leb.z/ is also closed. Since ⇡U is proper on the support
of T ^ �k.z/Leb.z/, we deduce that .⇡U /⇤

�
T ^ �k.z/Leb.z/

�
is closed and the

last identity implies the result.

Lemma 3.4. Let U; V be open subsets in Cm1 ;Cm2 respectively. Let u be a locally
integrable function inU⇥V such that @u 2 L2

loc.U⇥V /. Let T be a closed positive
.1; 1/-current on U ⇥V such that i@u^ @u  T: Then, for almost every z 2 V , we
have that @.ujU ⇥fzg/ 2 L2

loc.U / and

i@.ujU ⇥fzg/ ^ @.ujU ⇥fzg/  T jU ⇥fzg: (3.3)
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Proof. By Fubini’s theorem, for almost everywhere z, the forms @.ujU ⇥fzg/ and
@.ujU ⇥fzg/ ^ @.ujU ⇥fzg/ are equal to the slice of @u, @u ^ @u along U ⇥ fzg,
respectively. This combined with Lemma 3.2 gives the desired assertion.

Let D be the unit disk in C. We will need the following basic observation
which can be deduced using the Riesz representation of subharmonic functions
(see [15, Theorem 3.3.6]).

Lemma 3.5. Let ' be a negative subharmonic function on D and '.0/ � �1. Let
K be a compact subset of D. Then there exists a constant C independent of ' such
that ki@@'kK  C .

End of the proof of Theorem 1:2. We prove (1.3) by induction. For n D 1, this is
Theorem 1.1. We assume that (1.3) holds for every dimension at most n � 1. We
need to prove that (1.3) holds for dimension n. Let u 2 W 1;2

⇤ with kuk⇤ D 1: Let
T be a closed positive current of bi-degree .1; 1/ such that

i@u ^ @u  T (3.4)

and kT k�  1: Let K b �. Since our problem is local, by solving the dd c-
equation, without loss of generality, we can assume that T D dd

c
' for some

p.s.h. function ' on � and k'kL1.�/  C , where C is a constant independent
of T (see [29, Lemma 2.1] for example). Thus, for every constant M > 0 and
FM WD fj'j  M g, we get

Leb.�nFM / D
Z

fj'j>M g
!

n  M
�1

Z
fj'j>M g

j'j!n .M
�1
: (3.5)

By decomposing K into the union of a finite number of small compact sets, it
suffices to consider the case where the diameter ofK is as small as we want. Hence,
by using a change of coordinates, we can assume that the closure of the unit ball B
is contained in � and K is contained in f3=4  kxk  4=5g. By (3.5), we see that
if M is big enough, there is a point a 2 B with kak  1=100 so that '.a/ > �M .
Using a linear change of coordinates again, we can assume furthermore that a D 0.
Thus, '.0/ > �M for some fixed constantM big enough and independent of u; T:

The set of complex lines passing through the origin is parameterized by the
complex projective space Pn�1. For y 2 Pn�1, denote by Ly the complex line
given by y and Dy WD B \ Ly which is the unit disc of Ly . Put Ay WD fx 2 B W
kxk > 1=10g \ Dy . We can identify Ay with an annulus A WD fz 2 D W jzj >
1=10g in D (here we consider a linear isometry from Dy to the unit disk D). Let
uy WD ujLy

for every y 2 Pn�1 and

u.y/ WD
Z

z2Ay

uy.z/d Leb.z/; Quy WD uy � u.y/:

The last functions are well-defined for almost every y. Denote by T jDy
the slice

of T along Dy . Recall that T jDy
D dd

c
.'jDy

/. Observe that since 'jDy
.0/ D
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'.0/ > �M , the mass of T jDy
on Dy is bounded by a constant independent of

y; T (note here that B ⇢ �). On the other hand, by Lemma 3.4, for almost every
y, we have that uy 2 W 1;2

⇤ .Dy/ and using the definition of Quy ,

k Quyk2
⇤ . k Quyk2

L2 C kT jDy
k . kT jDy

k

by Poincaré’s inequality ( [12, page 275]). It follows that

k Quyk⇤ . kT jDy
k . 1: (3.6)

Let ˛ > 0 be a fixed small constant. LetA0 WD fz 2 D W 2=3  jzj  5=6g which is
compact in A. Let A0

y be the image of A0 under the natural identification Dy ⇡ D.
By construction, we haveK ⇢ [y2Pn�1A

0
y . Note that juy j2  2.j Quy j2 C ju.y/j2/.

By this and Fubini’s theorem, we get
Z

K

e
˛juj2

d Leb .
Z

y2Pn�1

✓Z
A0

y

e
˛juy j2

d Leb
◆
d Leb.y/

.
Z

y2Pn�1

✓Z
A0

y

e
2˛.j Quy j2Cju.y/j2/

d Leb
◆
d Leb.y/

.
Z

y2Pn�1

✓Z
A0

y

e
4˛j Quy j2

d Leb
◆
d Leb.y/

C
Z

y2Pn�1

e
4˛ju.y/j2

d Leb.y/

by Hölder’s inequality. Denote by I1; I2 the first and second terms respectively in
the right-hand side of the last inequality. By (3.6) and induction hypothesis, the
number I1 is uniformly bounded in u for some constant ˛ > 0 independent of u
(note that A0

y ⇡ A
0 b A ⇡ Ay). It remains to check that I2 is also uniformly

bounded.
Cover Pn�1 by a finite number of small local charts U such that U ⇥ A is

identified with a chart in B and fyg ⇥ A is identified with Ay for every y 2 U .
Thus, we get

kukL2.U / . kukL2.B/ . 1:

By (3.4) we can apply Lemma 3.3 to ⌘.y; z/ WD u.y; z/ on U ⇥ A. Hence one
obtains

i@u ^ @u . ⇡⇤
�
T ^ .idz ^ d Nz/

�
;

where ⇡ denotes the natural projection from U ⇥ A to the first component. More-
over, the right-hand side of the last inequality is a closed positive .1; 1/-current
on U with bounded mass. We deduce that u 2 W

1;2
⇤ .U / with ⇤-norm uniformly

bounded. By induction hypothesis applied to u, the integral I2 is bounded uni-
formly for some constant ˛ > 0 (we can slightly reduce U in order to apply the
induction hypothesis). This finishes the proof.



952 TIEN-CUONG DINH, GEORGE MARINESCU, AND DUC-VIET VU

We have the following result.

Proposition 3.6. Let K be a compact subset of an open set � in Cn. Let .uk/k ⇢
W

1;2
⇤ .�/ be a sequence converging weakly to a function u 2 W

1;2
⇤ .�/. Assume

that kukk⇤  1. Then there is a positive constant ˛ depending only on K and �
such that

lim
k!1

���e˛.uk�u/2 � 1
���

L1.K/
D 0:

Proof. Observe that kuk⇤  1 and hence kuk � uk⇤  2. Define vk WD uk � u,
and for N 2 R>0, define Kk;N WD fjvkj � N g \ K. Note that kvkk⇤ is bounded
uniformly in k. By this and Theorem 1.2, there are positive constants ˛ and c such
that (we change the constant ˛ in order to get the factor 2)Z

K

e
2˛jvk j2

d Leb  c:

Using that jvkj � N on Kk;N , we deduce that

Leb.Kk;N /  e
�2˛N 2

Z
Kk;N

e
2˛jvk j2

d Leb  ce
�2˛N 2

and by Cauchy-Schwarz inequality
Z

Kk;N

e
˛jvk j2

d LebLeb.Kk;N /
1=2

 Z
Kk;N

e
2˛jvk j2

d Leb

!1=2

ce�˛N 2

: (3.7)

On another hand, on K nKk;N with N fixed, we have jvkj  N and hence e˛v2
k �

1 . v
2
k

. As mentioned at the beginning of Section 2, Rellich’s theorem implies that
kvkkL2.K/ ! 0. We deduce that

lim
k!1

���e˛v2
k � 1

���
L1.KnKk;N /

D 0:

This, together with (3.7), imply that

lim sup
k!1

���e˛v2
k � 1

���
L1.K/

 ce
�˛N 2

:

Since this estimate holds for every N , the proposition follows.

Proof of Corollary 1:5. By Hölder’s inequality, we can assume that p � 2. Then
the corollary is a direct consequence of Proposition 3.6 because jt jp .e˛t2 �1.

Example 3.7. We consider the 1-dimensional case. Let D be the unit disc in C.
Let u WD .1 � log jzj/1=3 for z 2 D. One can check directly that u 2 W

1;2
⇤ .D/.

Consider f .x/ WD x
�1
.� log jxj/�3 for x 2 .0; 1=2ç, and the positive measure

� WD 1Œ0;1=2çf .x/dx. Observe that log jzj is in L3=2
.�/ but not in L3

.�/. We
have � D dd

c
v for v.w/ WD

R
D log jz � wjd�.w/. Using the concrete form of

f , one can prove that v is continuous on D, and e˛u2
is not locally integrable with

respect to � for any ˛ > 0.
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[8] T.-C. DINH and V.-A. NGUYÊN, Characterization of Monge-Ampère measures with
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