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0. Introduction

In [15, Theorem 4.18′], Dai, Liu and Ma established the full off-diagonal asymptotic
expansion of the Bergman kernel of the spinc Dirac operator on high tensor powers
of a line bundle on a compact symplectic manifold. This paper is a continuation of
their work.

For some applications, it is necessary to compute the first two coefficients b0, b1

of the asymptotic expansion. The approach of [15] is to relate the heat kernel and
the Bergman kernel expansions. The computation of the coefficients of the Bergman
kernel expansion is done by using the corresponding coefficients of the heat kernel.
Thus, b0 is calculated in [15, Theorem 1.1] and b1 in [15, Theorem 1.3], the latter
only in the Kähler case. These results brought a new proof of [14, 22, 27, 28].

Considering the symplectic case, the coefficient of t1 in the Taylor expansion of
the rescaled operator does not vanish, thus it is complicate to compute b1 in this
way. However, we developed in [24, Sec. 1.5] a method of formal power series to
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compute the coefficients for the renormalized Bochner–Laplacian. The main result
of this paper is Theorem 2.1, where we compute the coefficient b1 in the asymptotic
expansion of the Bergman kernel associated to the spinc Dirac operators by applying
the method in [24, Secs. 1.5, 2.3]. Comparing with [24, Sec. 2.3], the contribution
from the coefficient of t1 in the Taylor expansion of the rescaled operator Lt

2 in
(2.7) is quite complicate here. But after taking the trace in (2.2), we refind the
Hermitian scalar curvature of [17]. For more details on our approach we also refer
the readers to our recent book [25].

Another feature of the paper is that we do not suppose that the almost complex
structure polarizes the curvature of the line bundle, that is we allow bundles with
mixed curvature (negative and positive eigenvalues). In Sec. 1, we explain that the
arguments in [15] still work well under this condition (cf. (1.6)). Then we compute
the coefficient b1 in Sec. 2.

1. Bergman Kernel of the Spinc Dirac Operator

This section is organized as follows. In Sec. 1.1, we recall the Lichnerowicz formula
for the spinc Dirac operator Dp. As a consequence we exhibit the spectral gap for
D2

p without assumption that the almost complex structure J polarizes the sym-
plectic form ω. This is done in Sec. 1.2. We explain in Sec. 1.3 the full off-diagonal
asymptotic expansion for the Bergman kernel. Then we show how to handle the
operator ∂ + ∂

∗
, which is the content of Sec. 1.4, we explain also its relation to the

tangential Cauchy–Riemann complex in Sec. 1.5.

1.1. The spinc Dirac operator

Let (X, ω) be a compact connected symplectic manifold of real dimension 2n.
Assume that there exists a Hermitian line bundle L over X endowed with a
Hermitian connection ∇L with the property that

√−1
2π RL = ω, where RL = (∇L)2

is the curvature of (L,∇L). Let (E, hE) be a Hermitian vector bundle on X with
Hermitian connection ∇E and its curvature RE .

Let J be an almost complex structure on TX and gTX be a Riemannian metric
on X compatible with J , i.e. gTX(·, ·) = gTX(J ·, J ·). We designate by ∇TX the
Levi–Civita connection on (TX, gTX) and by RTX and rX its curvature and scalar
curvature, respectively.

The almost complex structure J induces a splitting TX ⊗R C = T (1,0)X ⊕
T (0,1)X , where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to
the eigenvalues

√−1 and −√−1 respectively. Then P (1,0) = 1
2 (1 − √−1J) is the

projection from TX ⊗R C onto T (1,0)X . For any v ∈ TX ⊗R C with decomposition
v = v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X , let v∗1,0 ∈ T ∗(0,1)X be the metric dual of v1,0.
Then c(v) =

√
2(v∗1,0∧−iv0,1) defines the Clifford action of v on Λ(T ∗(0,1)X), where

∧ and i denote the exterior and interior product respectively.
Let ∇T (1,0)X = P (1,0)∇TXP (1,0) be the connection on T (1,0)X induced by ∇TX ,

with curvature RT (1,0)X . Let ∇Cliff be the Clifford connection on Λ(T ∗(0,1)X)
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induced canonically by ∇TX (cf. [23, Sec. 2])a and let RCliff be its curvature.
Let ∇XJ be the covariant derivative of J induced by ∇TX . Let {ei}1≤i≤2n be
an orthonormal basis of TX . From the definitions, we get (cf. also [24, (0.12)])

RT (1,0)X = P 1,0

[
RTX − 1

4
(∇XJ) ∧ (∇XJ)

]
P 1,0 ,

RCliff =
1
4
〈RTXel, em〉 c(el) c(em) +

1
2
Tr [RT (1,0)X ].

(1.1)

Let ∇Ep be the connection on Ep := Λ(T ∗(0,1)X)⊗Lp⊗E induced by ∇Cliff , ∇L and
∇E . The spinc Dirac operator Dp :=

∑
i c(ei)∇Ep

ei and acts on Ω0,•(X, Lp ⊗ E) =⊕n
q=0 Ω0,q(X, Lp⊗E), the direct sum of spaces of (0, q)-forms with values in Lp⊗E.

We content ourselves to describe the operator D2
p in the sequel.

Let 〈·, ·〉Ep be the metric on Ep induced by gTX , hL and hE . Let dvX be the
Riemannian volume form of (TX, gTX). The L2-scalar product on Ω0,•(X, Lp⊗E),
the space of smooth sections of Ep, is given by

〈s1, s2〉 =
∫

X

〈s1(x), s2(x)〉Ep dvX(x) . (1.2)

We denote the corresponding norm with ‖ · ‖L2.
Let

(∇Ep
)∗ be the formal adjoint of ∇Ep with respect to (1.2). Set

c(R) =
1
2

(
RE +

1
2
Tr [RT (1,0)X ]

)
(el, em) c(el) c(em). (1.3)

Then the Lichnerowicz formula [4, Theorem 3.52] (cf. [23, Theorem 2.2]) for D2
p is

D2
p =

(∇Ep
)∗ ∇Ep +

1
4
rX +

1
2
p RL(el, em) c(el) c(em) + c(R). (1.4)

The Bergman kernel Pp(x, x′), (x, x′ ∈ X), is the smooth kernel with respect
to dvX(x′) of the orthogonal projection Pp from Ω0,•(X, Lp ⊗ E) on KerDp. Then
Pp(x, x) is an element of End (Λ(T ∗(0,1)X) ⊗ E)x .

1.2. Spectral gap of the spinc Dirac operator

We choose the almost complex structure J such that ω is J-invariant, i.e. ω(·, ·) =
ω(J ·, J ·). But we do not suppose that ω(·, J ·) is positive in Secs. 1.2–1.4. This is
the difference comparing with the assumption in [15, 23, 24].

Let J : TX → TX be the skew-adjoint linear map which satisfies the relation

ω(u, v) = gTX(Ju, v) (1.5)

for u, v ∈ TX . Then J commutes with J. Thus J ∈ End(T (1,0)X), and for any
x ∈ X , we can diagonalize Jx, i.e. find an orthonormal basis {wj}n

j=1 of T (1,0)X

aIn [23, (2.3)], one missed a term “+ 1
2
Tr T (1,0)XΓ” in the right-hand side of the first line, and the

second line should be read as “= d +
P

lm{〈Γwl, wm〉wm ∧ iwl
+”.
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such that Jxwj =
√−1
2π aj(x)wj with aj(x) ∈ R. As ω is non-degenerate, the number

of negative eigenvalue of Jx ∈ End(T (1,0)
x X) does not depend on x, and we denote

it by q (in [15, 23, 24], we suppose that q = 0). From now on, we assume that

Jxwj =
√−1
2π

ajwj , aj(x) < 0 for j ≤ q and aj(x) > 0 for j > q. (1.6)

Then the vectors {wj}q
j=1 span a sub-bundle W of T (1,0)X . Set

ωd(x) = −
n∑

j=1

aj wj ∧ iwj
+

q∑
j=1

aj =
q∑

j=1

ajiwj
∧ wj −

n∑
j=q+1

aj wj ∧ iwj
,

τ(x) = πTr |TX(−J2)1/2 =
n∑

j=1

|aj | = −
q∑

j=1

aj +
n∑

j=q+1

aj , (1.7)

µ0 = inf
x∈X, j

|aj(x)|.
Then we have

1
2
RL(el, em) c(el) c(em) = −2ωd − τ. (1.8)

The following result extends [23, Theorem 2.5] to the current situation. We
denote by Ω �=q(X, Lp ⊗ E) =

⊕
k �=q Ω0,k(X, Lp ⊗ E).

Theorem 1.1. There exists C > 0 such that for any p ∈ N

‖Dps‖2
L2 ≥ (2pµ0 − C)‖s‖2

L2, for s ∈ Ω �=q(X, Lp ⊗ E). (1.9)

Proof. By (1.4) and (1.8), for s ∈ Ω0,•(X, Lp ⊗ E) ,

‖Dps‖2
L2 =

{‖∇Λ0,•⊗Lp⊗Es‖2
L2 − p〈τ(x)s, s〉} − 2p〈ωds, s〉

+
〈(

1
4
rX + c(R)

)
s, s

〉
. (1.10)

We consider now s ∈ C∞(X, Lp ⊗ E′), where E′ = E ⊗Λ(T ∗(0,1)X). We apply
[23, Corollary 2.4] which is a direct consequence of the Lichnerowicz formula (cf.
also [20, Theorem 1], [10, Theorem 2.1], [13, Theorem 4.4]), to the almost complex
structure J ′ ∈ End(TX) defined by

J ′wj = −√−1wj for j ≤ q and J ′wj =
√−1wj for j > q,

then we get there exists C > 0 such that for any p > 0, s ∈ C∞(X, Lp ⊗ E′), we
have ∥∥∇Lp⊗E′

s
∥∥2

L2 − p〈τ(x)s, s〉 ≥ −C‖s‖2
L2. (1.11)

If s ∈ Ω �=q(X, Lp ⊗ E), the second term of (1.10), −2p 〈ωds, s〉 is bounded below
by 2pµ0‖s‖2

L2, while the third term of (1.10) is O(‖s‖2
L2). The proof of (1.9) is

completed.

Set
D+

p = Dp|Ω0,even , D−
p = Dp|Ω0,odd ,

oq = − if q is even; oq = + if q is odd.
(1.12)
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By using the trick of the proof of Mckean–Singer formula and Theorem 1.1, the
same proof as in [23, Sec. 3] gives the following extension of [23, Theorem 1.1]. For
any operator A, we denote by Spec(A) the spectrum of A.

Theorem 1.2. There exists C > 0 such that for p ∈ N,

Spec(D2
p) ⊂ {0} ∪ [2pµ0 − C, +∞[. (1.13)

For p large enough, we have

KerDoq
p = {0}. (1.14)

1.3. Off-diagonal asymptotic expansion of Bergman kernel

The existence of the spectral gap expressed in Theorem 1.2 allows us to obtain
immediately as in [15, Proposition 4.1] the far off-diagonal behavior of the Bergman
kernel. Namely, for any l, m ∈ N and ε > 0, there exists Cl,m,ε > 0 such that for
p ≥ 1, x, x′ ∈ X , d(x, x′) > ε,

|Pp(x, x′)|Cm(X×X) ≤ Cl,m,ε p−l. (1.15)

We denote by Idet( W
∗
)⊗E the orthogonal projection from E := Λ(T ∗(0,1)X)⊗E

onto det( W
∗
) ⊗ E. Let π : TX ×X TX → X be the natural projection

from the fiberwise product of TX on X . Let ∇End(E) be the connection on
End(Λ(T ∗(0,1)X) ⊗ E) induced by ∇Cliff and ∇E .

We use now normal coordinates centered at x0 ∈ Y . We identify LZ ,
EZ and (Ep)Z for Z ∈ BTx0X(0, ε) to Lx0 , Ex0 and (Ep)x0 by parallel
transport with respect to the connections ∇L,∇E and ∇Ep along the curve
γZ : [0, 1] � u → expX

x0
(uZ). Under this identification and (1.15), we will

view Pp(x, x′) as a smooth section Pp,x0(Z, Z ′), (Z, Z ′ ∈ BTx0X(0, ε)), of
π∗(End(Λ(T ∗(0,1)X) ⊗ E)) on TX ×X TX . And ∇End (E) induces naturally a
Cm-norm for the parameter x0 ∈ X .

Let dvTX be the Riemannian volume form on (Tx0X, gTx0X). Let κ(Z) be the
smooth positive function defined by the equation

dvX(Z) = κ(Z)dvTX(Z), (1.16)

with κ(0) = 1. We denote by detC for the determinant function on the complex
bundle T (1,0)X , and |Jx0 | = (−J2

x0
)1/2. Denote by ∇U the ordinary differentiation

operator on Tx0X in the direction U . On Tx0X � R
2n, set

L0
2,C = −

∑
j

(
∇ej +

1
2
RL

x0
(Z, ej)

)2

− τx0 . (1.17)

Let P (Z, Z ′) be the Bergman kernel of L0
2,C, i.e. the smooth kernel of the orthogonal

projection from L2(R2n, C) onto KerL0
2,C. Then for Z, Z ′ ∈ Tx0X ,

P (Z, Z ′) = detC(|Jx0 |) exp
(
−π

2
〈|Jx0 |(Z − Z ′), (Z − Z ′)〉 − π

√−1〈Jx0Z, Z ′〉
)

.

(1.18)

The main result of this part is the following extension of [15, Theorem 4.18′].
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Theorem 1.3. There exist polynomials Jr(Z, Z ′) ∈ End(Λ(T ∗(0,1)X)⊗E)x0 (x0 ∈
X), in Z, Z ′ with the same parity as r and with deg Jr ≤ 3r, whose coefficients are
polynomials in RTX , RT (1,0)X , RE (and RL) and their derivatives of order ≤ 2r−1
(respectively, ≤ 2r) and reciprocals of linear combinations of eigenvalues of J at x0,

such that by setting

P (r)
x0

(Z, Z ′) = Jr(Z, Z ′)P (Z, Z ′), J0(Z, Z ′) = detC(|Jx0 |)Idet( W
∗
)⊗E , (1.19)

the following statement holds: there exists C′′ > 0 such that for any k, m, m′ ∈ N,

there exist N ∈ N and C > 0 with∣∣∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′

(
1
pn

Pp(Z, Z ′) −
k∑

r=0

P (r)(
√

pZ,
√

pZ ′)κ−1(Z ′)p−r/2

)∣∣∣∣∣
Cm′

(X)

≤ Cp−(k+1−m)/2(1 + |√pZ| + |√pZ ′|)N exp(−
√

C′′µ0
√

p|Z − Z ′|) + O(p−∞).

(1.20)

for any α, α′ ∈ N
n, with |α| + |α′| ≤ m, any Z, Z ′ ∈ Tx0X with |Z|, |Z ′| ≤ ε and

any x0 ∈ X, p ≥ 1.

Here Cm′
(X) is the Cm′

-norm for the parameter x0 ∈ X . We say that a term
T = O(p−∞) if for any l, l1 ∈ N, there exists Cl,l1 > 0 such that the C l1-norm of
T is dominated by Cl,l1p

−l.

Proof. By using Theorems 1.1 and 1.2, we know the arguments in [15, Secs. 4.1–
4.3] go through without any change. By (1.4), (1.8), as in [15, (4.105)], the corre-
sponding limit operator here is still

L0
2 = L0

2,C − 2ωd,x0. (1.21)

Let e−uL0
2,C(Z, Z ′), e−uL0

2(Z, Z ′) be the smooth kernels of e−uL0
2,C , e−uL0

2 with
respect to dvTX(Z ′). Now from (1.21) (cf. [8, (6.37), (6.38)]), we need to replace
[15, (4.106)] by the following equations

e−uL0
2,C(Z, Z ′) = detC

( |Jx0 |
1 − e−4πu|Jx0 |

)
exp

(
−1

2

〈
π|Jx0 |

tanh(2πu|Jx0 |)
Z, Z

〉
− 1

2

〈
π|Jx0 |

tanh(2πu|Jx0 |)
Z ′, Z ′

〉
+
〈

π|Jx0 |
sinh(2πu|Jx0 |)

e−2π
√−1uJx0Z, Z ′

〉)
, (1.22)

e−uL0
2(Z, Z ′) = e−uL0

2,C(Z, Z ′)e2uωd,x0 .

Observe that for ωd,x0 ∈ End(Λ(T ∗(0,1)X))x0 , by (1.7),

Kerωd,x0 = det(W
∗
)x0 ,

ωd,x0 ≤ −µ0 on (det(W
∗
)x0)⊥= the orthogonal complement of det(W

∗
).

(1.23)

Thus from [15, Secs. 4.4, 4.5], we get Theorem 1.3.
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If we take Z, Z ′ = 0 in Theorem 1.3, we infer the following result by the same
argument in [15, Sec. 4.5].

Theorem 1.4. There exist smooth coefficients br(x) ∈ End(Λ(T ∗(0,1)X) ⊗ E)x

which are polynomials in RTX , RT (1,0)X , RE (and RL) and their derivatives of order
≤ 2r − 1 (respectively, ≤ 2r) and reciprocals of linear combinations of eigenvalues
of J at x, such that

b0 = detC(|J|)Idet( W
∗
)⊗E (1.24)

and for any k, l ∈ N, there exists Ck,l > 0 with∣∣∣∣∣Pp(x, x) −
k∑

r=0

br(x)pn−r

∣∣∣∣∣
Cl

≤ Ck,lp
n−k−1, (1.25)

for any x ∈ X and p ∈ N. Moreover, the expansion is uniform in that for any
k, l ∈ N, there is an integer s such that if all data (gTX , hL,∇L, hE ,∇E) run over a
set which are bounded in Cs and with gTX bounded below, there exists the constant
Ck, l independent of gTX , and the C l-norm in (1.25) includes also the derivatives
on the parameters.

1.4. Holomorphic case revisited

In this section, we suppose that (X, J) is a complex manifold with complex struc-
ture J and E, L are holomorphic vector bundles on X . We assume that ∇E , ∇L

are the holomorphic Hermitian (i.e. Chern) connections on (E, hE), (L, hL) and
moreover, ω :=

√−1
2π RL defines a symplectic form on X . Therefore the signature of

the curvature RL (i.e. number of negative and positive eigenvalues) with respect
to any Riemannian metric compatible with J will be the same. Let gTX be any
Riemannian metric on TX compatible with J . Since gTX is not necessarily Kähler,
J �= J in (1.5) in general. Recall the number q is defined by (1.6), i.e. is the number
of negative eigenvalues of RL. Set

Θ(X, Y ) = gTX(JX , Y ). (1.26)

Then the 2-form Θ need not to be closed (the convention here is different to [7,
(2.1)] by a factor −1).

Let ∂
Lp⊗E,∗

be the formal adjoint of the Dolbeault operator ∂
Lp⊗E

on the
Dolbeault complex Ω0,•(X, Lp ⊗ E) with the scalar product induced by gTX , hL,
hE as in (1.2). Set

Dp =
√

2
(
∂

Lp⊗E
+ ∂

Lp⊗E,∗)
. (1.27)

We denote by �Lp⊗E = ∂
Lp⊗E

∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E

the Kodaira–Laplacian.
Then D2

p = 2�Lp⊗E it is twice the Kodaira–Laplacian and preserves the Z-grading
of Ω0,•(X, Lp ⊗ E). By Hodge theory, we know that for any k, p ∈ N,

KerDp|Ω0,k = KerD2
p|Ω0,k � H0,k(X, Lp ⊗ E), (1.28)
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where H0,•(X, Lp ⊗ E) is the Dolbeault cohomology. Here Dp is not a spinc Dirac
operator on Ω0,•(X, Lp ⊗ E), and D2

p is not a renormalized Bochner–Laplacian as
in [24], so we cannot apply directly Theorems 1.1 and 1.2. Now we explain how to
recover the conclusions of these theorems in the case of Dp . The first step is to
exhibit the spectral gap.

Theorem 1.5. The statements of Theorems 1.1 and 1.2 still hold for the operator
Dp defined by (1.27). In particular, for p large enough,

H0,k(X, Lp ⊗ E) = 0 for k �= q. (1.29)

Proof. As we will use [7, Theorem 2.3] to study the Bergman kernel in the sequel,
we prove Theorem 1.5 by explaining [7, Theorem 2.3].

Let S−B denote the 1-form with values in the antisymmetric elements of
End(TX) which satisfies

〈S−B(U)V, W 〉 =
√−1

2
((∂ − ∂)Θ)(U, V, W ), for U, V, W ∈ TX. (1.30)

The Bismut connection ∇−B on TX is defined by

∇−B = ∇TX + S−B. (1.31)

Then by [7, Proposition 2.5], ∇−B preserves the metric gTX and the com-
plex structure of TX . Let ∇det be the holomorphic Hermitian connection on
K∗

X := det(T (1,0)X) whose curvature is denoted Rdet. Then these two connec-
tions induce naturally an unique connection on Λ(T ∗(0,1)X) which preserves its
Z-grading, and with the connections ∇L,∇E , we get a connection ∇−B,Ep on
Λ(T ∗(0,1)X)⊗Lp⊗E. Let (∇−B,Ep)∗ be the formal adjoint of ∇−B,Ep . Let C(TX)
be the Clifford bundle of TX . We define a map c : Λ(T ∗X) → C(TX), by
sending ei1 ∧ · · · ∧ eij to c(ei1) · · · c(eij ) for i1 < · · · < ij. For B ∈ Λ3(T ∗X),
set |B|2 =

∑
i<j<k |B(ei, ej , ek)|2. Then we can formulate [7, Theorem 2.3] as

following:

D2
p = (∇−B,Ep)∗∇−B,Ep +

rX

4
+ c

(
RE + pRL +

1
2
Rdet

)
+

√−1
2

c(∂∂Θ) − 1
8
|(∂ − ∂)Θ|2. (1.32)

((1.32) can be seen as a Bochner–Kodaira–Nakano type formula.) By using (1.8),
(1.11) and (1.32), as in Theorems 1.1 and 1.2, we see that the conclusions of these
theorems still hold for the operator Dp defined in (1.27). In particular (1.9) holds.
Now from (1.9) and (1.28), we get (1.29).

Remark 1.6. The vanishing result (1.29) is Andreotti–Grauert’s coarse vanishing
theorem [1, Sec. 23] (where it is proved by using the cohomology finiteness theorem
for the disc bundle of L∗). It can also be deduced, as shown by Griffiths [19, p. 432],
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from the usual Bochner–Kodaira–Nakano formula [16, 19, 26]. The latter implies
the following inequality for u ∈ Ωm,k(X, Lp ⊗ E):
3
2
(‖∂Lp⊗E

u‖2 + ‖∂Lp⊗E,∗
u‖2) ≥

∫
X

〈[√−1 (pRL + RE), Λ]u, u〉 dvX

− 1
2
(‖Tu‖2+ ‖T ∗u‖2+ ‖Tu‖2 + ‖T ∗

u‖2) (1.33)

where Λ = i(Θ) denotes the interior product with Θ and T = [Λ, ∂Θ] is the torsion
of the metric gTX . We have pointwise

〈[√−1RL, Λ]u, u〉 ≥ (a1 + · · · + ak − am+1 − · · · − an)|u|2, (1.34)

where a1 ≤ a2 ≤ · · · ≤ an are the eigenvalues of RL with respect to gTX as in
Sec. 1.2. If m = 0, the right-hand side becomes (−ak+1 − · · · − an)|u|2. As in [26,
Lemma4.3], we can restrict ourselves to those metrics gTX such that the negative
eigenvalues a1, . . . , aq are very large and the positive ones aq+1, . . . , an are very
small in absolute value. Therefore, for k < q there exists a constant µ1 > 0 such that
−ak+1−· · ·−an ≥ µ1 on X . By (1.33), we obtain (1.9) for u ∈ Ω0,<q(X, Lp⊗E) =
⊕k<qΩ0,k(X, Lp ⊗ E).

In order to consider the case k > q, we apply again (1.33) and (1.34) for (n, q)
Lp ⊗ K∗

X ⊗ E-valued forms, which involves another change of metric, for which
a1, . . . , aq are small and aq+1, . . . , an are large in absolute value. Thus we get (1.9)
also for u ∈ Ω0,>q(X, Lp ⊗E) = ⊕k>qΩ0,k(X, Lp ⊗ E), but for yet another class of
metrics gTX . Of course, the estimates just obtained entail immediately (1.29).

We see however that by using (1.33), the essential estimate (1.9) for a fixed
metric gTX seems out of reach, as well as the existence of the spectral gap (1.13).

By Theorem 1.5, the kernel of D2
p is concentrated in degree q, for p large enough.

We consider thus the Bergman kernel of D2
p in this particular degree. Let P 0,q

p (x, x′)
be the smooth kernel with respect to dvX(x′) of the orthogonal projection from
Ω0,q(X, Lp ⊗ E) on KerD2

p .

Theorem 1.7. The Bergman kernel P 0,q
p (x, x′) has a full off-diagonal asymptotic

expansion analogous to (1.20) with J0 = detC(|J|)Idet( W
∗
)⊗E as p → ∞.

Proof. We use now the connection ∇−B,Ep instead of ∇Ep in [15, Sec. 3]. Then
by (1.9) and (1.32), everything goes through perfectly well and as in [15, Theorem
4.18], so we can directly apply the result from [15] to get the full off-diagonal
asymptotic expansion of the Bergman kernel. As the above construction preserves
the Z-grading on Ω0,•(X, Lp ⊗ E), we can directly work on Ω0,q(X, Lp ⊗ E).

Remark 1.8. From the arguments here and [23], [24, Sec. 3.5], we get naturally
the covering version and orbifold version of Secs. 1.2–1.4.

1.5. Relation to the tangential Cauchy–Riemann complex

If q = 0, i.e. J has only positive eigenvalues, Theorem 1.7 boils down to
[24, Theorem 3.9]. Theorem 1.7 for x = x′ is first due to Zelditch [28] and Catlin [14]
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and is based on the Boutet de Monvel–Sjöstrand parametrix [12] for the Szegö pro-
jector on CR functions on the boundary of the “Grauert tube” associated to L. For
general q �= 0, Berman and Sjöstrand [5] recently studied the asymptotic expansion
Pp(x, x′), too. They use an approach of Melin–Sjöstrand originating in the theory
of Fourier integral operators with complex phase.

In this section, we briefly discuss the link between our analysis for q �= 0 and the
the kernel of the Szegö projector on (0, k) forms on the boundary of the Grauert
tube. We use the notations and assumptions from Sec. 1.4.

Let Y = {u ∈ L∗, |u|hL∗ = 1} be the unit circle bundle in L∗. Y is a real
hypersurface in the complex manifold L∗ which the boundary of the disc bun-
dle D = {u ∈ L∗, |u|hL∗ < 1}, with defining function 	 = |u|hL∗ − 1. The
Levi form of 	 restricted to the complex tangent plane of Y coincides with the
pull-back of ω through the canonical projection π : Y → X . Hence it has q

negative and n − q positive eigenvalues. We denote by T ∗(0,1)(Y ) = T ∗(0,1)L∗ ∩
(T ∗Y ⊗R C) the bundle of (0, 1)-forms tangential to Y and by Ω0,k(Y ) the space
of smooth sections of Λk(T ∗(0,1)Y ). The ∂ operator on the ambient manifold L∗

induces as usual a tangential Cauchy–Riemann complex on the hypersurface Y

[21, 2, 3].

0 → Ω0,0(Y ) ∂b−→ Ω0,1(Y ) ∂b−→ · · · ∂b−→ Ω0,n(Y ) → 0. (1.35)

The ∂b operator commutes with the action of S1 on Y .
The connection ∇L on L induces a connection on the S1-principal bundle π :

Y → X , and let T HY ⊂ TY be the corresponding horizontal bundle. Let us
introduce the Riemannian metric gTY = π∗(gTX)⊕ dϑ2 on TY = T HY ⊕TS1. We
will denote by ∂

∗
b the formal adjoint of ∂b with respect to this metric and form the

Kohn–Laplacian

�b = ∂b∂
∗
b + ∂

∗
b∂b. (1.36)

The operators ∂
∗
b and �b also commute with the action of S1 on Y . Consider

the space C∞(Y )p of smooth functions f on Y which transform under the action
(y, ϑ) �→ eiϑy of S1 according to the law

f(eiϑy) = eipϑf(y). (1.37)

This space of functions can be identified naturally with the space of smooth sections
Ω0,0(X, Lp). More generally, the space of sections Ω0,k(Y )p which transform under
the action of S1 according to the law (1.37) can be naturally identified with the
space Ω0,k(X, Lp). Therefore, for each integer p, we get a subcomplex

(
Ω0,•(Y )p, ∂b

)
of the tangential Cauchy–Riemann complex (1.35), isomorphic to the Dolbeault
complex

(
Ω0,•(X, Lp), ∂

Lp)
. Moreover, the action of �b on Ω0,•(Y )p is identical

to the action of the Kodaira–Laplacian �Lp

on Ω0,•(X, Lp), via the the complex
isomorphism just mentioned.
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Let us consider the spaces of �b-harmonic spaces

H 0,k(Y ) = ker�b|Ω0,k(Y ), H 0,k(Y )p = ker�b|Ω0,k(Y )p
. (1.38)

Then

H 0,k(Y ) = ⊕p∈ZH 0,k(Y )p
∼= ⊕p∈ZH0,k(X, Lp) (1.39)

where H0,k(X, Lp) := ker�Lp |Ω0,k(X,Lp) is the space of harmonic forms (1.28).
The Szegö projector Π0,k is by definition the orthogonal projection from Ω0,k(Y )

to H 0,k(Y ). The Szegö projector Π0,k has finite-dimensional range for the degrees
k �= q, n− q. This follows from the decomposition (1.39) and the vanishing theorem
of Andreotti–Grauert (1.29) applied for both L and L∗. It shows that there exits
p0 ∈ N such that H0,k(X, Lp) = 0 for all p ∈ Z with |p| ≥ p0 and all k �= q, n − q

(note that RL∗
= −RL has n − q negative and q positive eigenvalues).

On the other hand, the Szegö projector Π0,k has infinite-dimensional range
for the degrees k = q, n − q as shown by (1.29) combined with the Riemann–
Roch–Hirzebruch formula, which in turn is a consequence of the integration of the
asymptotic expansion from Theorem 1.7 over the manifold X . To obtain the result
for k = n − q we have to replace L by L∗ in the above mentioned results.

The description of the dimension of the harmonic spaces is consistent with
the general geometric information from [2, 3] and [11, p. 626], where general
hypersurfaces Y are considered, with non-degenerate Levi form of signature
(q, n − q).

The relation between the Bergman kernels P 0,q
p considered in Theorem 1.7 and

the Szegö kernel Π0,q is given by

P 0,q
p (x, x) =

1
2π

∫
S1

Π0,q(eiϑy, y)e−ipϑ dϑ (1.40)

where x ∈ X and y ∈ Y satisfy π(y) = x. This means that the P 0,q
p (x, x) represent

the Fourier coefficients of the distribution Π0,q(y, y). Since we know the asymptotic
expansion of P 0,q

p (x, x) as p → ∞ given in Theorem 1.7, we can recover from (1.40)
the restriction on the diagonal of the Szegö kernel Π0,q.

It could also be possible to work in the opposite direction and start with the
Szegö kernel. Namely, using a similar analysis as the one of Boutet de Monvel and
Sjöstrand [12], one can find the parametrix of the Szegö kernel Π0,q and determine
its singularity on the diagonal. Then, working as Zelditch [28] (where the case q = 0
is considered), one can deduce the asymptotic of P 0,q

p (x, x) for p → ∞.
The same discussion applies to Π0,n−q and the Bergman kernels P 0,n−q

p associ-
ated to L∗.

2. The Coefficient b1

This section is organized as follows. In Sec. 2.1, we state our main result, the
formula for the coefficient b1 for the spinc Dirac operator. In Sec. 2.2, we obtain an
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asymptotic expansion of the rescaled spinc Dirac operator Lt
2 (cf. (2.4)) in normal

coordinates. In Sec. 2.3, we finally compute the coefficient b1.

2.1. Main result

We use the notation in Sec. 1.1. We denote by IC⊗E the projection from
Λ(T ∗(0,1)X) ⊗ E onto C ⊗ E under the decomposition Λ(T ∗(0,1)X) = C ⊕
Λ>0(T ∗(0,1)X). For any tensor ψ on X , we denote by ∇Xψ the covariant derivative
of ψ induced by ∇TX . Thus ∇XJ ∈ T ∗X ⊗ End(TX), ∇X∇XJ ∈ T ∗X ⊗ T ∗X ⊗
End(TX). Let {wj} be an orthonormal basis of (T (1,0)X, gTX), and its dual basis
{wj}. Let {ei}1≤i≤2n be an orthonormal basis of (TX, gTX). Then we denote by
|∇XJ |2 :=

∑
ij |(∇X

ei
J)ej |2.

The following result is the main result of this paper.

Theorem 2.1. If J = J, then for b1 in (1.25), we have

b1(x) =
1
8π

[
rX +

1
4
|∇XJ |2 + 4RE(wj , wj)

]
IC⊗E − 1

144π

∑
kl

∣∣(∇X
wk

J
)
wl

∣∣2IC⊗E

+
1

288π

〈(∇X
wk

J
)
wl, wm

〉〈(∇X
wk

J
)
wi, wj

〉
wl ∧ wmIC⊗Eiwj

∧ iwi

− 1
8π

(
1
3
〈RTXwi, wi〉 + RE

)
(wl, wm)wl ∧ wmIC⊗E

+
1
8π

(
1
3
〈
RTXwi, wi

〉
+ RE

)
(wl, wm)IC⊗Eiwm

∧ iwl
. (2.1)

Especially,

Tr |Λ(T∗(0,1)X)[b1(x)] =
1
8π

[
rX +

1
4
|∇XJ |2 + 4RE(wj , wj)

]
. (2.2)

The term rX + 1
4 |∇XJ |2 in (2.2) is called the Hermitian scalar curvature

in the literature [17], [18, Chap. 10], [24] and is a natural substitute for the
Riemannian scalar curvature in the almost-Kähler case. It was used by Donald-
son [17] to define the moment map on the space of compatible almost-complex
structures.

2.2. Taylor expansion of the operator Lt
2

To compare with [24, Sec. 1.2], in this part, we assume that ω(·, J ·) is positive, i.e.
q = 0 in (1.6).

We fix x0 ∈ X . From now on, we identify BTx0X(0, ε) with BX(x0, ε) by the
exponential map Tx0X � Z → expX

x0
(Z) ∈ X . We identify LZ , EZ and (Ep)Z for

Z ∈ BTx0X(0, ε) to Lx0 , Ex0 and (Ep)x0 by parallel transport with respect to the
connections ∇L,∇E and ∇Ep along the curve γZ : [0, 1] � u → uZ. Let {ei}i be
an oriented orthonormal basis of Tx0X . We also denote by {ei}i the dual basis of
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{ei}. Let ẽi(Z) be the parallel transport of ei with respect to ∇TX along the above
curve.

Let SL be an unit vector of Lx0 . Using SL and the above discussion, we get an
isometry Ep � (Λ(T ∗(0,1)X)⊗E)x0 =: Ex0 on BTx0X(0, ε). Under our identification,
hEp is hEx0 on BTx0X(0, ε).

For s ∈ C∞(Tx0X,Ex0), set

‖s‖2
0,0 =

∫
R2n

|s(Z)|2
h
Λ(T∗(0,1)X)⊗E
x0

dvTX(Z). (2.3)

Denote by ∇U the ordinary differentiation operator on Tx0X in the direction
U . If α = (α1, · · · , α2n) is a multi-index, set Zα = Zα1

1 · · ·Zα2n
2n . Let (∂αRL)x0 be

the tensor (∂αRL)x0(ei, ej) = ∂α(RL(ei, ej))x0 . We denote by R =
∑

i Ziei = Z

the radial vector field on R2n. Recall that the function κ was defined in (1.16). For
s ∈ C∞(BTx0X(0, ε),Ex0) and Z ∈ BTx0X(0, ε), for t = 1√

p , set

(Sts)(Z) = s(Z/t) , ∇t = S−1
t tκ

1
2∇Epκ− 1

2 St ,

∇0, · = ∇· +
1
2
RL

x0
(R, ·) , Lt

2 = S−1
t t2κ

1
2 D2

pκ− 1
2 St .

(2.4)

By our trivialization, Lt
2 is self-adjoint with respect to ‖ · ‖0,0 on

C∞
0 (BTx0X(0, ε/t),Ex0). Note that comparing with [15, (4.37)], we conjugate with

κ1/2 in (2.4), which simplifies the computation of the coefficient b1.
We adopt the convention that all tensors will be evaluated at the base point

x0 ∈ X , and most of the time, we will omit the subscript x0. Let L0,O1,O2 be
the operators defined in [24, Theorem 1.4] associated the renormalized Bochner-
Laplacian ∆p,0. Recall that τ =

∑
j RL(wj , wj), ωd = −RL(wl, wm)wm ∧ iwl

.
Thus we have

L0 = −
∑

j

(∇0,ej )
2 − τx0 ,

O1(Z) = −2
3
(∂jR

L)x0(R, ei)Zj∇0,ei −
1
3
(∂iR

L)x0(R, ei) − (∂Rτ)x0 ,

O2(Z) =
1
3
〈
RTX

x0
(R, ei)R, ej

〉
x0
∇0,ei∇0,ej +

[
2
3
〈
RTX

x0
(R, ej)ej , ei

〉
−
1

2

∑
|α|=2

(∂αRL)x0

Zα

α!
+ RE

x0

 (R, ei)

∇0,ei

− 1
4
∇ei

∑
|α|=2

(∂αRL)x0

Zα

α!
(R, ei)

− 1
9

∑
i

[∑
j

(∂jR
L)x0(R, ei)Zj

]2

− 1
12
[
L0,

〈
RTX

x0
(R, ei)R, ei

〉
x0

]− ∑
|α|=2

(∂ατ)x0

Zα

α!
.

(2.5)
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Theorem 2.2. There are second order differential operators L0
2,Qr(r ≥ 1) which

are self-adjoint with respect to ‖ · ‖0,0 on C∞
0 (R2n,Ex0), and

L0
2 = L0 − 2ωd,x0,

Q1 = O1 − π
√−1

〈(∇X
RJ

)
x0

el, em

〉
c(el) c(em) + (∂Rτ)x0 ,

Q2 = O2 − RCliff
x0

(R, el)∇0,el
− π

2
√−1〈(∇X∇XJ)(R,R),x0el, em〉 c(el) c(em)

+
1
2

(
RE

x0
+

1
2
Tr

[
RT (1,0)X

x0

])
(el, em) c(el) c(em) +

∑
|α|=2

(∂ατ)x0

Zα

α!
+

1
4
rX
x0

(2.6)

such that

Lt
2 = L0

2 +
∞∑

r=1

Qrt
r. (2.7)

Proof. Set gij(Z) = gTX(ei, ej)(Z) = 〈ei, ej〉Z and let (gij(Z)) be the
inverse of the matrix (gij(Z)). By [4, Proposition 1.28] (cf. [15, Lemma 4.5]),
we have

gij(Z) = δij +
1
3
〈
RTX

x0
(R, ei)R, ej

〉
x0

+ O(|Z|3),

κ(Z) = | det(gij(Z))|1/2 = 1 +
1
6
〈
RTX

x0
(R, ei)R, ei

〉
x0

+ O(|Z|3).
(2.8)

If Γl
ij is the connection form of ∇TX with respect to the basis {ei}, we have

(∇TX
ei

ej)(Z) = Γl
ij(Z)el. Owing to (2.8) (cf. [24, (1.32)]),

Γl
ij(Z) =

1
3
〈
RTX

x0
(R, ej)ei + RTX

x0
(R, ei)ej , el

〉
x0

+ O(|Z|2). (2.9)

Let ΓE , ΓL, ΓCliff be the connection forms of ∇E , ∇L, ∇Cliff with respect
to any fixed frames for E, L, Λ(T ∗(0,1)X) which are parallel along the curve γZ

under our trivializations on BTx0X(0, ε). By [4, Proposition 1.18], the Taylor coef-
ficients of Γ•(ej)(Z) at x0 to order r are only determined by those of R• to order
r − 1, and∑

|α|=r

(∂αΓ•)x0(ej)
Zα

α!
=

1
r + 1

∑
|α|=r−1

(∂αR•)x0(R, ej)
Zα

α!
. (2.10)

Equations (2.4) and (2.10) yield on BTx0X(0, ε/t),

∇t,ei |Z = κ
1
2 (tZ)

[
∇ei +

(
1
t
ΓL(ei) + tΓE(ei) + tΓCliff(ei)

)
(tZ)

]
κ− 1

2 (tZ)

= κ
1
2 (tZ)

[
∇ei +

(
1
2
RL

x0
+

t

3
(∂kRL)x0Zk

+
t2

4

∑
|α|=2

(∂αRL)x0

Zα

α!
+

t2

2
RE

x0
+

t2

2
RCliff

x0

)
(R, ei) + O(t3)

]
κ− 1

2 (tZ).

(2.11)
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By the definition of ∇Cliff , for Y, U ∈ C∞(X, TX),[∇Cliff
U , c(Y )

]
= c(∇TX

U Y ). (2.12)

For ψ ∈ T ∗X ⊗ End(Λ(T ∗(0,1)X)) � T ∗X ⊗ (C(TX) ⊗R C), where C(TX) is the
Clifford algebra bundle of TX , we still denote by ∇Xψ the covariant derivative of ψ

induced by ∇TX . By using (2.12), we observe that

∇X
Y (ψ(ẽj)c(ẽj)) = (∇X

Y ψ)(ẽj)c(ẽj) + ψ(∇TX
Y ẽj)c(ẽj) + ψ(ẽj)c(∇TX

Y ẽj))

= (∇X
Y ψ)(ẽj)c(ẽj). (2.13)

Thus for k ≥ 2,(
RL(ẽl, ẽm) c(ẽl) c(ẽm)

)
(tZ)

=
k∑

r=0

∂r

∂tr
[(

RL(ẽl, ẽm

)
c(ẽl) c(ẽm)

)
(tZ)

]|t=0
tr

r!
+ O(tk+1)

=
(
RL

x0
+ t

(∇X
RRL

)
x0

+
t2

2
(∇X∇XRL)(R,R),x0

)
(el, em) c(el) c(em) + O(t3).

(2.14)

Owing to (1.4), (2.4), (2.11) and (2.13)–(2.14),

Lt
2 = −gij(tZ)

(∇t,ei∇t,ej − t Γl
ij(tZ)∇t,el

)
+

t2

4
rX(tZ)

+
1
2

{[
RL + t2

(
RE +

1
2
Tr [RT (1,0)X ]

)]
(ẽl, ẽm) c(ẽl) c(ẽm)

}
(tZ)

= −gij(tZ)
(∇t,ei∇t,ej − tΓl

ij(tZ)∇t,el

)
+

1
2

(
RL

x0
+ t

(∇X
RRL

)
x0

+
t2

2
(∇X∇XRL)(R,R),x0

)
(el, em) c(el) c(em)

+
t2

2

(
RE

x0
+

1
2
Tr

[
RT (1,0)X

x0

])
(el, em) c(el) c(em) +

t2

4
rX
x0

+ O(t3). (2.15)

Note that ∇XgTX = 0. Comparing (1.5), (1.8), (2.8), (2.11), (2.15), with [24,
(1.37)], we get (2.7).

To prove the self-adjointness of L0
2, and Qr(r ≥ 1) with respect to ‖ · ‖0,0 on

C∞
0 (R2n,Ex0), we observe that it follows from the fact that Lt

2 is self-adjoint with
respect to ‖ · ‖0,0 on C∞

0 (BTx0X(0, ε/t),Ex0).

Let PN , PN be the orthogonal projections from (L2(R2n,Ex0), ‖ · ‖0,0) onto
N = KerL0, KerL0

2, and let PN (Z, Z ′), PN (Z, Z ′) be the smooth kernel of PN ,
PN with respect to dvTX(Z). Set PN⊥

= Id − PN , PN⊥
= Id − PN . Recall that

q = 0 in (1.6), thus ωd ≤ −µ0 on Λ>0(T ∗(0,1)X), by (2.6),

PN (Z, Z ′) = PN (Z, Z ′)IC⊗E . (2.16)
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Theorem 2.3. We have the relation

PNQ
1
PN = 0. (2.17)

Proof. By [24, (1.92), (1.94), (1.96)], we have

(∇X
U RL)(V, W ) = −2π

√−1〈(∇X
U J)V, W 〉,

(∇Rτ)x0 = −2π
√−1

〈(∇X
RJ

)
wi, wi

〉
, (2.18)

PNO1P
N = 0.

By (2.6), (2.16) and (2.18), we get (2.17).

Set

F2 = (L0
2)

−1PN⊥Q1(L
0
2)

−1PN⊥Q1P
N − (L0

2)
−1PN⊥Q2P

N

+ PNQ1(L
0
2)

−1PN⊥Q1(L
0
2)

−1PN⊥ − PNQ2(L
0
2)

−1PN⊥

+ PN⊥
(L0

2)
−1Q1P

NQ1(L
0
2)

−1PN⊥ − PNQ1P
N⊥

(L0
2)

−2Q1P
N . (2.19)

Then by Theorem 2.3 and the same argument as in [24, Sec. 1.5, 1.6], we get

b1(x0) = F2(0, 0). (2.20)

By Theorem 2.2, the third and fourth terms in (2.19) are adjoint of the first two
terms, thus we only need to compute the first two terms and the last two terms
in (2.19).

2.3. Computing the coefficient b1

From now on, we assume that J = J . By [24, (2.13)],

∇X
U J is skew-adjoint and the tensor 〈(∇X· J)·, ·〉 is of the type

(T ∗(1,0)X)⊗3 ⊕ (T ∗(0,1)X)⊗3.
(2.21)

In what follows, we will use the complex coordinates z = (z1, . . . , zn), such that
wi =

√
2 ∂

∂zi
is an orthonormal basis of T

(1,0)
x0 X . Then Z = z + z and will also

identify z to
∑

i zi
∂

∂zi
and z to

∑
i zi

∂
∂zi

when we consider z and z as vector fields.
Remark that∣∣∣∣ ∂

∂zi

∣∣∣∣2 =
∣∣∣∣ ∂

∂zi

∣∣∣∣2 =
1
2
, so that |z|2 = |z|2 =

1
2
|Z|2. (2.22)

It is very useful to rewrite L0 by using the creation and annihilation operators.
Set

bi = −2∇0, ∂
∂zi

= −2
∂

∂zi
+ πzi, b+

i = 2∇0, ∂
∂zi

= 2
∂

∂zi
+ πzi, b = (b1, . . . , bn).

(2.23)
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Then for any polynomial g(z, z) on z and z,

[bi, b
+
j ] = bib

+
j − b+

j bi = −4πδi j ,

[bi, bj ] = [b+
i , b+

j ] = 0,

[g(z, z), bj ] = 2
∂

∂zj
g(z, z), (2.24)

[g(z, z), b+
j ] = −2

∂

∂zj
g(z, z) .

As J = J , aj = 2π in (1.7). By (2.5) and (2.6) (cf. [24, (2.23)]),

O1 = −4π
√−1
3

bi

〈(∇X
z J

)
z,

∂

∂ zi

〉
+

4π
√−1
3

〈(∇X
z J

)
z,

∂

∂zi

〉
b+
i ,

L0 = bjb
+
j , L0

2 = bjb
+
j + 4π wj ∧ iwj

.

(2.25)

We found the following result in [24, Theorem 1.15].

Theorem 2.4. The spectrum of the restriction of L0 on L2(R2n) is given by

Spec L0|L2(R2n) =

{
4π

n∑
i=1

αi : α = (α1, . . . , αn) ∈ N
n

}
(2.26)

and an orthogonal basis of the eigenspace of 4π
∑n

i=1 αi is given by

bα

(
zβ exp

(
−π

2

∑
i

|zi|2
))

, with β ∈ Nn . (2.27)

From (2.27), we get

PN(Z, Z ′) = exp

(
−π

2

∑
i

(|zi|2 + |z′i|2 − 2ziz
′
i

))
. (2.28)

As J = J here, we know the function τ therein is 2πn. By (2.6), (2.21)–(2.23),

Q1 = O1 − 2π
√−1

[〈(∇X
z J

) ∂

∂ zl
,

∂

∂ zm

〉
d zld zm

+ 4
〈(∇X

z J
) ∂

∂zl
,

∂

∂zm

〉
i ∂

∂ zl

i ∂
∂ zm

]
,

Q2 = O2 + RCliff
x0

(
R,

∂

∂ zi

)
bi − RCliff

x0

(
R,

∂

∂zi

)
b+
i (2.29)

− π

2
√−1

〈
(∇X∇XJ)(R,R)el, em

〉
c(el) c(em)

+
1
2

(
RE

x0
+

1
2
Tr [RT (1,0)X

x0
]
)

(el, em) c(el) c(em) +
1
4
rX
x0

.

Recall that by [24, (1.98), (2.24)] and (2.23),

b+
i PN = 0, (biP

N )(Z, Z ′) = 2π( zi − z′i)P
N (Z, Z ′), (O1P

N )(Z, 0) = 0. (2.30)



July 7, 2006 19:57 WSPC/133-IJM 00366

754 X. Ma & G. Marinescu

By (2.16), (2.21), (2.25), (2.28)–(2.30), as in [24, (2.24)],

(Q1P
N )(Z, Z ′)

=
[
−2

√−1
3

bibj

〈(∇X
∂

∂ zj

J
)
z′,

∂

∂ zi

〉
− 4π

√−1
3

bi

〈
(∇X

z′J) z′,
∂

∂ zi

〉
−√−1

〈(∇X
∂

∂ zk

J
) ∂

∂ zl
,

∂

∂ zm

〉
d zld zm(bk + 2π z′k)

]
PN (Z, Z ′)IC⊗E . (2.31)

Thus by Theorem 2.4 and relations (2.21), (2.25) and (2.31),

((L0
2)

−1PN⊥Q1P
N )(Z, Z ′)

= −√−1
[
bibj

12π

〈(
∇X

∂
∂ zj

J
)

z′,
∂

∂ zi

〉
+

bi

3

〈(∇X
z′J

)
z′,

∂

∂ zi

〉
+
〈(

∇X
∂

∂ zk

J
) ∂

∂ zl
,

∂

∂ zm

〉
d zld zm

(
bk

12π
+

z′k
4

)]
PN (Z, Z ′)IC⊗E . (2.32)

By (2.21), (2.30) and (2.32),

(PN⊥
(L0

2)−1Q1P
N )(0, Z ′) = −

√−1
12

〈(∇X
z′J

) ∂

∂ zl
,

∂

∂ zm

〉
d zld zmPN (0, Z ′)IC⊗E ,

(PN⊥
(L0

2)−1Q1P
N )(Z, 0) = −

√−1
6

〈(∇X
z J

) ∂

∂ zl
,

∂

∂ zm

〉
d zld zmPN (Z, 0)IC⊗E .

(2.33)

Recall that L0
2,Q1 are self-adjoint with respect to ‖ · ‖0,0 on C∞

0 (R2n,Ex0). After
taking the adjoint of (2.33), by (2.22) and (2.28), we get

(PNQ1(L
0
2)

−1PN⊥
)(Z ′, 0) =

√−1
3

〈
(∇X

z′J)
∂

∂zl
,

∂

∂zm

〉
IC⊗Ei ∂

∂ zm
i ∂

∂ zl

PN(Z ′, 0),

(PNQ1(L
0
2)

−1PN⊥
)(0, Z) =

2
√−1
3

〈
(∇X

z J)
∂

∂zl
,

∂

∂zm

〉
IC⊗Ei ∂

∂ zm
i ∂

∂ zl

PN (0, Z).

(2.34)

Note that
∫

C
|z|2e−π|z|2 = 1/π. By (2.21), (2.22), (2.28), (2.33) and (2.34),

(
PN⊥

(L0
2)

−1Q1P
NQ1(L

0
2)

−1PN⊥)
(0, 0)

=
1

36π

〈(
∇X

∂
∂ zk

J
) ∂

∂ zl
,

∂

∂ zm

〉〈(
∇X

∂
∂zk

J
) ∂

∂zi
,

∂

∂zj

〉
d zld zmIC⊗Ei ∂

∂ zj

i ∂
∂ zi

,

(2.35)
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− (
PNQ1P

N⊥
(L0

2)
−2Q1P

N
)
(0, 0)

= − 1
9π

〈(
∇X

∂
∂zk

J
) ∂

∂zi
,

∂

∂zj

〉〈(
∇X

∂
∂ zk

J
) ∂

∂ zl
,

∂

∂ zm

〉
IC⊗Ei ∂

∂ zj

i ∂
∂ zi

d zld zmIC⊗E

= − 1
9π

〈(
∇X

∂
∂ zk

J
) ∂

∂ zl
,
(∇X

∂
∂zk

J
) ∂

∂zl

〉
. (2.36)

Let hi(Z) (respectively, F (Z)) be polynomials in Z with degree 1 (respectively, 2),
then by Theorem 2.4, (2.24), (2.25) and (2.30),(

L−1
0 PN⊥

hibiP
N
)
(0, 0) =

(
L−1

0 PN⊥
bihiP

N
)
(0, 0) = − 1

2π

∂hi

∂zi
,

(
L−1

0 PN⊥
FPN

)
(0, 0) = − 1

4π2

∂2F

∂zi∂ zi
,

(
(L0

2)
−1Fd zld zmPN

)
(0, 0) =

1
2π

(
(L0

2)
−1 ∂2F

∂zi∂ zi
(bizi + 2)d zld zmPN

)
(0, 0) (2.37)

=
1

8π2

∂2F

∂zi∂ zi

((
bizi

3
+ 1

)
d zld zmPN

)
(0, 0)

=
1

24π2

∂2F

∂zi∂ zi
d zld zmIC⊗E .

Observe that for a monomial Q in bi, zi, b+
i , zi, if the total degree of bi, zi is not

the same as the total degree of b+
i , zi, then (QPN )(0, 0) = 0. Theorem 2.4 and

relations (2.22), (2.25), (2.29), (2.30), (2.33) and (2.37) imply that

((L0
2)

−1PN⊥Q1(L
0
2)

−1Q1P
N )(0, 0)

=
(

(L0
2)

−1PN⊥
(−8π

√−1)
〈

(∇X
z J)

∂

∂zi
,

∂

∂zj

〉
× i ∂

∂ zi

i ∂
∂ zj

× −√−1
6

〈
(∇X

z J)
∂

∂ zl
,

∂

∂ zm

〉
d zld zmPN

)
(0, 0)IC⊗E (2.38)

=
4π

3

(
(L0

2)
−1PN⊥

〈(∇X
z J

) ∂

∂zl
, (∇X

z J)
∂

∂ zl

〉
PN

)
(0, 0)IC⊗E

= − 1
3π

〈(
∇X

∂
∂zk

J
) ∂

∂zl
,
(
∇X

∂
∂ zk

J
) ∂

∂ zl

〉
IC⊗E .

Now we will compute ((L0
2)−1PN⊥Q2P

N )(0, 0). By (1.1) and (2.21),

Tr [RT (1,0)X ] = 2
〈

RTX ∂

∂zj
,

∂

∂ zj

〉
+

1
2

〈(
∇X

∂
∂zl

J
) ∂

∂zj
,
(
∇X

∂
∂ zm

J
) ∂

∂ zj

〉
d zm ∧ dzl. (2.39)

By definition, for U, V ∈ TX , we have

(∇X∇XJ)(U,V ) − (∇X∇XJ)(V,U) = [RTX(U, V ), J ]. (2.40)
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By [24, (2.19)], for u1, u2, u3 ∈ T (1,0)X , v1, v2 ∈ T (0,1)X ,

(∇X∇XJ)(u1,u2)u3, (∇X∇XJ)( u1, u2)u3 ∈ T (0,1)X,

(∇X∇XJ)( u1,u2) u3 ∈ T (0,1)X,

2
√−1

〈
(∇X∇XJ)(u1, v1)u2, v2

〉
=
〈
(∇X

u1
J)u2, (∇X

v1
J) v2

〉
. (2.41)

By (1.1), (2.16), (2.28)–(2.30) and (2.39),

PN⊥
(Q2 −O2)PN

= PN⊥
{

1
2
Tr [RT (1,0)X ]

(
R,

∂

∂ zi

)
bi

−
〈(

RTX

(
R,

∂

∂ zi

)
bi − 2π

√−1(∇X∇XJ)(R,R)

)
∂

∂zl
,

∂

∂ zl

〉
+
〈(

1
2
RTX

(
R,

∂

∂ zi

)
bi − π

√−1(∇X∇XJ)(R,R)

)
∂

∂ zl
,

∂

∂ zm

〉
d zld zm

+
(

RE +
1
2
Tr [RT (1,0)X ]

)(
∂

∂ zl
,

∂

∂ zm

)
d zld zm

}
PN . (2.42)

Thus by (2.30), (2.37), (2.40) and (2.42),

−((L0
2)

−1PN⊥
(Q2 −O2)PN )(0, 0)

=
{

1
4π

Tr [RT (1,0)X ]
(

∂

∂zi
,

∂

∂ zi

)
− 1

2π

〈
RTX

(
∂

∂zi
,

∂

∂ zi

)
−√−1

(
2(∇X∇XJ)( ∂

∂zi
, ∂

∂ zi
)

−
[
RTX

(
∂

∂zi
,

∂

∂ zi

)
, J

])
∂

∂zl
,

∂

∂ zl

〉
− 1

24π

〈
RTX

(
∂

∂zi
,

∂

∂ zi

)
−√−1

(
2(∇X∇XJ)( ∂

∂ zi
, ∂

∂zi
)

+
[
RTX

(
∂

∂zi
,

∂

∂ zi

)
, J

])
∂

∂ zl
,

∂

∂ zm

〉
d zld zm

− 1
8π

(
RE +

1
2
Tr [RT (1,0)X ]

)(
∂

∂ zl
,

∂

∂ zm

)
d zld zm

}
IC⊗E . (2.43)

From (2.39), (2.41) and (2.43), we have

−((L0
2)

−1PN⊥
(Q2 −O2)PN

)
(0, 0)

=
{

1
4π

Tr [RT (1,0)X ]
(

∂

∂zi
,

∂

∂ zi

)
− 1

2π

〈(
RTX

(
∂

∂zi
,

∂

∂ zi

)
− 2

√−1(∇X∇XJ)( ∂
∂zi

, ∂
∂ zi

)) ∂

∂zl
,

∂

∂ zl

〉
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+
[

1
24π

〈
RTX

(
∂

∂zi
,

∂

∂ zi

)
∂

∂ zl
,

∂

∂ zm

〉
− 1

8π

(
RE +

1
2
Tr [RT (1,0)X ]

)(
∂

∂ zl
,

∂

∂ zm

)]
d zld zm

}
IC⊗E

=
{

3
8π

〈
(∇X

∂
∂zl

J)
∂

∂zj
,
(∇X

∂
∂ zl

J
) ∂

∂ zj

〉
− 1

12π

〈
RTX

(
∂

∂ zl
,

∂

∂ zm

)
∂

∂zi
,

∂

∂ zi

〉
d zld zm

− 1
8π

RE(
∂

∂ zl
,

∂

∂ zm
)d zld zm

}
IC⊗E . (2.44)

By [24, (2.39)],

−(L−1
0 PN⊥O2P

N )(0, 0)

=
1
2π

{〈
RTX

(
∂

∂zi
,

∂

∂ zj

)
∂

∂zj
,

∂

∂ zi

〉
+ RE

(
∂

∂zi
,

∂

∂ zi

)}
IC⊗E . (2.45)

By (2.19), (2.20), (2.35), (2.36), (2.38), (2.44), (2.45), and the discussion after
(2.20), we get

b1(x) =
1
π

[〈
RTX

(
∂

∂zi
,

∂

∂ zj

)
∂

∂zj
,

∂

∂ zi

〉
+ RE

(
∂

∂zj
,

∂

∂ zj

)
− 1

36

∑
kl

∣∣∣∣(∇X
∂

∂ zk

J
) ∂

∂ zl

∣∣∣∣2
]

IC⊗E +
1

36π

〈(
∇X

∂
∂ zk

J
) ∂

∂ zl
,

∂

∂ zm

〉
×
〈(∇X

∂
∂zk

J
) ∂

∂zi
,

∂

∂zj

〉
d zl ∧ d zmIC⊗Ei ∂

∂ zj

∧ i ∂
∂ zi

− 1
8π

(
2
3

〈
RTX ∂

∂zi
,

∂

∂ zi

〉
+ RE

)(
∂

∂ zl
,

∂

∂ zm

)
d zl ∧ d zmIC⊗E

+
1
2π

(
2
3

〈
RTX ∂

∂zi
,

∂

∂ zi

〉
+ RE

)(
∂

∂zl
,

∂

∂zm

)
IC⊗Ei ∂

∂ zm
∧ i ∂

∂ zl

. (2.46)

Moreover, we learn from [24, Lemma 2.2] that

rX = −〈RTX(ei, ej)ei, ej〉 = 8
〈

RTX

(
∂

∂zi
,

∂

∂ zj

)
∂

∂zj
,

∂

∂ zi

〉
− 1

4
|∇XJ |2. (2.47)

We are now ready to conclude. By (2.46) and (2.47), we get the formula (2.1)
for b1. We obtain then (2.2) by taking the trace of (2.1). The proof of Theorem 2.1
is complete.
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[28] S. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Notices 6 (1998)
317–331.




