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ABSTRACT. Let X be an abstract compact orientable CR manifold of dimension 2n � 1,
n > 2, and let Lk be the k-th tensor power of a CR complex line bundle L over X.
We assume that condition Y (q) holds at each point of X. In this paper we obtain a
scaling upper-bound for the Szegö kernel on (0; q)-forms with values in Lk, for large
k. After integration, this gives weak Morse inequalities, analogues of the holomorphic
Morse inequalities of Demailly. By a refined spectral analysis we obtain also strong Morse
inequalities. We apply the strong Morse inequalities to the embedding of some convex-
concave manifolds.
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k 17
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The purpose of this paper is to establish analogues of the holomorphic Morse inequal-
ities of Demailly for CR manifolds. Demailly [16] proved remarkable asymptotic Morse
inequalities for the @ complex constructed over the line bundle Lk as k ! 1, where
L is a holomorphic hermitian line bundle. Shortly after, Bismut [8] gave a heat equa-
tion proof of Demailly’s inequalities which involves probability theory. Later Demailly
[17] and Bouche [11] replaced the probability technique by a classical heat kernel ar-
gument. The book [27] introduced an argument based on the asymptotic of the heat
kernel of the Kodaira Laplacian by using rescaling of the coordinates and functional an-
alytic techniques inspired by Bismut-Lebeau [9, §11] (see also Bismut-Vasserot [10]). A
different approach was introduced by Berndtsson [7] and developed by Berman [5, 6];
they work with the Bergman kernel and use the mean value estimate for eigensections
of the Kodaira Laplacian. The idea of all these proofs is localization of the analytic ob-
jects (eigenfunctions, kernels) and scaling techniques. See also Fu-Jacobowitz [22] for
related results on domains of finite type.

Inspired by Bismut’s paper, Getzler [23] gave an expression involving local data for
the large k limit of the trace of heat kernel of the @b-Laplacian on Lk, where L is a CR
line bundle over a CR strongly pseudoconvex manifold. But Getzler didn’t infer Morse
inequalities for the @b-complex from these asymptotics.

In this paper we introduce a method that produces Morse inequalities with computable
bounds for the growth of the @b coholmology and also allows more general CR manifolds
to be considered. Our approach is related to the techniques of Berman [5] and Shaw-
Wang [32].

In a project developed jointly with R. Ponge [31], we use the heat kernel asymp-
totics and Heisenberg calculus to prove holomorphic Morse inequalities for a line bundle
endowed with the CR Chern connection. This method predicts similar results and appli-
cations as of the present paper.

For a complex manifold with boundary, the @b-cohomology of the boundary is linked
to the @-cohomology of the interior, cf. Kohn-Rossi [26], Andreotti-Hill [2, 3]. Stephen
S.T. Yau [34] exhibited the relation between the @b-cohomology of the boundary of a
strictly pseudoconvex Stein analytic space with isolated singularities and invariants of
the singular points. Holomorphic Morse inequalites for manifolds with boundary were
obtained by Berman [6] and in [29, 30] (cf. also [27, Ch. 3]). The bounds in the Morse
inequalities appearing in this paper are similar to the boundary terms in Berman’s result
[6]. For the relation between the boundary and interior cohomology of high tensor
powers Lk see also [28].

On the other hand, the study of the @b-complex on an abstract CR manifold has im-
portant consequences for the embedability and deformation of the CR-structure, see the
embedding theorem of Boutet de Monvel [13] for strictly pseudoconvex CR manifolds
and the paper of Epstein-Henkin [20].

In this paper we will study the large k behavior of the Szegö kernel function � (q)
k (x),

which is the restriction to the diagonal of the integral kernel of the projection � (q)
k on

the harmonic (0; q)-forms with values in Lk. The Szegö kernel for functions on a strictly
pseudoconvex CR manifold was studied by Boutet de Monvel [12] and Boutet de Monvel-
Sjöstrand [14] and has important applications in complex analysis and geometry.
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1.1. Terminology and Notations. Let (X;T 1;0X) be a CR manifold of dimension 2n�1,
n > 2, i.e. T 1;0X is a subbundle of rank n � 1 of the complexified tangent bundle CTX
satisfying T 1;0X \ T 1;0X = f0g and the integrability condition (see e.g. [15, Def. 7.1.1]).
We shall always assume that X is compact, connected and orientable.

Fix a smooth Hermitian metric h � ; � i on CTX so that T 1;0X is orthogonal to T 0;1X :=
T 1;0X and hu; vi is real if u, v are real tangent vectors. Then there is a real non-vanishing
vector field T on X which is pointwise orthogonal to T 1;0X � T 0;1X.

Denote by T �1;0X and T �0;1X the dual bundles of T 1;0X and T 0;1X, respectively. They
can be identified with subbundles of the complexified cotangent bundle CT �X. Define
the vector bundle of (0; q) forms by �0;qT �X := �qT �0;1X. The Hermitian metric h � ; � i on
CTX induces, by duality, a Hermitian metric on CT �X and also on the bundle of (0; q)
forms �0;qT �X. We shall also denote all these induced metrics by h � ; � i.

Let D � X be an open set. Let 
0;q(D) denote the space of smooth sections of �0;qT �X
over D. Similarly, if E is a vector bundle over D, then we let 
0;q(D;E) denote the space
of smooth sections of �0;qT �X 
 E over D. Let 
0;q

c (D;E) be the subspace of 
0;q(D;E)
whose elements have compact support in D.

If w 2 T �0;1z X, let (w^)� : �0;q+1T �zX ! �0;qT �zX; q > 0, be the adjoint of the left
exterior multiplication w^ : �0;qT �zX ! �0;q+1T �zX, u 7! w ^ u :

(1.1) hw ^ u; vi = hu; (w^)�vi ;
for all u 2 �0;qT �zX, v 2 �0;q+1T �zX. Notice that (w^)� depends C-anti-linearly on w.

In the sequel we will denote by h � ; � i both scalar products as well as the duality bracket
between vector fields and forms.

Locally we can choose an orthonormal frame !1; : : : ; !n�1 of the bundle T �1;0X. Then
!1; : : : ; !n�1 is an orthonormal frame of the bundle T �0;1X. The real (2n � 2) form
! = in�1!1 ^ !1 ^ � � � ^ !n�1 ^ !n�1 is independent of the choice of the orthonormal
frame. Thus ! is globally defined. Locally there is a real 1-form !0 of length one which is
orthogonal to T �1;0X�T �0;1X. The form !0 is unique up to the choice of sign. Since X is
orientable, there is a nowhere vanishing (2n�1) form Q on X. Thus, !0 can be specified
uniquely by requiring that ! ^ !0 = fQ, where f is a positive function. Therefore !0, so
chosen, is globally defined. We call !0 the uniquely determined global real 1-form. We
choose a vector field T so that

(1.2) kTk = 1 ; hT; !0i = �1 :
Therefore T is uniquely determined. We call T the uniquely determined global real
vector field. We have the pointwise orthogonal decompositions:

CT �X = T �1;0X � T �0;1X � f�!0; � 2 Cg ;
CTX = T 1;0X � T 0;1X � f�T ; � 2 Cg :(1.3)

Definition 1.1. For p 2 X, the Levi form Lp is the Hermitian quadratic form on T 1;0
p X

defined as follows. For any U; V 2 T 1;0
p X, pick U ;V 2 C1(X; T 1;0X) such that U(p) = U ,

V(p) = V . Set

(1.4) Lp(U; V ) = 1

2i

Dh
U ;V

i
(p) ; !0(p)

E
;

where
h
U ;V

i
= U V � V U denotes the commutator of U and V. Note that Lp does not

depend of the choices of U and V.
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Consider an arbitrary Hermitian metric h � ; � i on T 1;0X. Since Lp is a Hermitian form
there exists a local orthonormal basis fU1; : : : ;Un�1g of (T 1;0X; h � ; � i) such that Lp is
diagonal in this basis, Lp(Ui;U j) = �ij�i(p). The diagonal entries f�1(p); : : : ; �n�1(p)g
are called the eigenvalues of the Levi form at p 2 X with respect to h � ; � i.

Given q 2 f0; : : : ; n� 1g, the Levi form is said to satisfy condition Y (q) at p 2 X, if Lp
has at least either max (q + 1; n� q) eigenvalues of the same sign or min (q + 1; n� q)
pairs of eigenvalues with opposite signs. Note that the sign of the eigenvalues does not
depend on the choice of the metric h � ; � i.

For example, if the Levi form is non-degenerate of constant signature (n�; n+), where
n� is the number of negative eigenvalues and n� + n+ = n � 1, then Y (q) holds if and
only if q 6= n�; n+.

1.2. CR complex line bundles, Semi-classical @b-Complex and �b. Let

(1.5) @b : 

0;q(X)! 
0;q+1(X)

be the tangential Cauchy-Riemann operator. We say that a function u 2 C1(X) is
Cauchy-Riemann (CR for short) if @bu = 0.

Definition 1.2. Let L be a complex line bundle over X. We say that L is a Cauchy-
Riemann (CR) complex line bundle over X if its transition functions are CR.

From now on, we let (L; hL) be a CR Hermitian line bundle over X, where the Her-
mitian fiber metric on L is denoted by hL. We will denote by � the local weights of the
Hermitian metric. More precisely, if s is a local trivializing section of L on an open subset
D � X, then the local weight of hL with respect to s is the function � 2 C1(D;R) for
which

(1.6) js(x)j2hL = e��(x) ; x 2 D:
Let Lk, k > 0, be the k-th tensor power of the line bundle L. The Hermitian fiber metric

on L induces a Hermitian fiber metric on Lk that we shall denote by hLk . If s is a local
trivializing section of L then sk is a local trivializing section of Lk. For f 2 
0;q(X;Lk),
we denote the poinwise norm jf(x)j2 := jf(x)j2hLk . We write @b;k to denote the tangential
Cauchy-Riemann operator acting on forms with values in Lk, defined locally by:

(1.7) @b;k : 

0;q(X;Lk)! 
0;q+1(X;Lk) ; @b;k(s

ku) := sk@bu;

where s is a local trivialization of L on an open subset D � X and u 2 
0;q(D). We
obtain a @b;k-complex (
0;�(X;Lk); @b;k) with cohomology

(1.8) H�
b (X;L

k) := ker @b;k= Im @b;k:

We denote by dvX = dvX(x) the volume form onX induced by the fixed Hermitian metric
h � ; � i on CTX. Then we get natural global L2 inner products ( j )k, ( j ) on 
0;q(X;Lk)
and 
0;q(X), respectively. We denote by L2

(0;q)(X;L
k) the completion of 
0;q(X;Lk) with

respect to ( j )k. Let

(1.9) @
�
b;k : 


0;q+1(X;Lk)! 
0;q(X;Lk)

be the formal adjoint of @b;k with respect to ( j )k . The Kohn-Laplacian with values in Lk

is given by

(1.10) �(q)
b;k = @

�
b;k@b;k + @b;k@

�
b;k : 


0;q(X;Lk)! 
0;q(X;Lk):
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We extend �(q)
b;k to the L2 space by �(q)

b;k : Dom�
(q)
b;k � L2

(0;q)(X;L
k)! L2

(0;q)(X;L
k), where

Dom�(q)
b;k := fu 2 L2

(0;q)(X;L
k);�(q)

b;ku 2 L2
(0;q)(X;L

k)g. Consider the space of harmonic
forms

(1.11) H q
b (X;L

k) := Ker�(q)
b;k :

Now, we assume that Y (q) holds. By [25, 7.6-7.8], [21, 5.4.11-12], [15, Props. 8.4.8-9],
condition Y (q) implies that �(q)

b;k is hypoelliptic, has compact resolvent and the strong
Hodge decomposition holds. Hence

(1.12) dimH q
b (X;L

k) <1 ; H q
b (X;L

k) � 
0;q(X;Lk) ; H q
b (X;L

k) �= Hq
b (X;L

k) :

Let fj 2 
0;q(X;Lk), j = 1; : : : ; N , be an orthonormal frame for the space H q
b (X;L

k).
The Szegö kernel function is defined by

(1.13) �
(q)
k (x) =

NX
j=1

jfj(x)j2hLk =:
NX
j=1

jfj(x)j2 :

It is easy to see that � (q)
k (x) is independent of the choice of orthonormal frame and

(1.14) dimH q
b (X;L

k) =
Z
X
�

(q)
k (x)dvX(x):

1.3. The main results. We will express the bound of the Szegö kernel with the help of
the following Hermitian form.

Definition 1.3. Let s be a local trivializing section of L and � the corresponding local
weight as in (1.6). For p 2 D we define the Hermitian quadratic form M�

p on T 1;0
p X by

(1.15) M�
p (U; V ) =

1

2

�
U ^ V ; d

�
@b�� @b�

�
(p)
�
; U; V 2 T 1;0

p X;

where d is the usual exterior derivative and @b� = @b�.

In Proposition 6.1 we show that in the embedded case M�
p is the restriction of the

Chern curvature of the holomorphic extension of L. But in the abstract case the definition
of M�

p depends on the choice of local trivializations. However, set

R�(p); q =
n
s 2 R; M�

p + sLp has exactly q negative eigenvalues

and n� 1� q positive eigenvalues
o
:

(1.16)

Note that, although the eigenvalues of the Hermitian quadratic form M�
p + sLp, s 2 R,

are calculated with respect to some Hermitian metric h � ; � i, their sign does not depend
on the choice of h � ; � i, cf. also Definition 1.1.

It is not difficult to see that if Y (q) holds at each point of X then
(1.17)

R�(x); q is locally uniformly bounded at each point x 2 X, for all local weights �.

Note that (4.11) implies that if R�(x); q is bounded for one weight �0 at x, then it is
bounded for all weights � at x.

Denote by det(M�
x + sLx) the product of all the eigenvalues of M�

x + sLx. It turns out
(see Proposition 4.2) that the integral

(1.18)
Z
R�(x);q

���det(M�
x + sLx)

��� ds 2 R

5



Chin-Yu Hsiao & George Marinescu Szegö kernel and Morse inequalities on CR manifolds

does not depend on the choice of �. Assuming (1.17) holds, the function

(1.19) X �! R ; x 7�!
Z
R�(x);q

���det(M�
x + sLx)

��� ds
is well-defined. Since M�

x and Lx are continuous functions of x 2 X, we conclude that
the function (1.19) is continuous. One of the main results of this work is the following.

Theorem 1.4. Assume that condition Y (q) holds at each point of X. Then

(1.20) sup
n
k�n� (q)

k (x) : k 2 N; x 2 X
o
<1:

Furthermore, we have

(1.21) lim sup
k!1

k�n� (q)
k (x) 6

1

2(2�)n

Z
R�(x);q

���det(M�
x + sLx)

��� ds ; for all x 2 X.

From (1.14), Theorem 1.4 and Fatou’s lemma, we get weak Morse inequalities on CR
manifolds.

Theorem 1.5. Assume that condition Y (q) holds at each point of X. Then for k!1

(1.22) dimHq
b (X;L

k) 6
kn

2(2�)n

Z
X

Z
R�(x);q

���det(M�
x + sLx)

��� ds dvX(x) + o(kn) :

By the classical work of Kohn [25, Th. 7.6], [21, Th. 5.4.11–12], [15, Cor. 8.4.7–8], we
know that if Y (q) holds, then �(q)

b;k has a discrete spectrum, each eigenvalues occurs with
finite multiplicity and all eigenforms are smooth. For � 2 R, let H q

b;6�(X;L
k) denote

the spectral space spanned by the eigenforms of �(q)
b;k whose eigenvalues are less than or

equal to �. We denote by� (q)
k;6� the restriction to the diagonal of the integral kernel of the

orthogonal projector on H q
b;6�(X;L

k) and call it the Szegö kernel function of the space
H q

b;6�(X;L
k). Then � (q)

k;6�(x) =
PM
j=1 jgj(x)j2, where gj(x) 2 
0;q(X;Lk), j = 1; : : : ;M ,

is any orthonormal frame for the space H q
b;6�(X;L

k).

Theorem 1.6. Assume that condition Y (q) holds at each point of X. Then for any sequence
�k > 0 with �k ! 0 as k!1, there is a constant C 0

0 independent of k, such that

(1.23) k�n� (q)
k;6k�k(x) 6 C

0
0

for all x 2 X. Moreover, there is a sequence �k > 0, �k ! 0, as k ! 1, such that for any
sequence �k > 0 with limk!1

�k
�k

= 0 and �k ! 0 as k!1, we have

(1.24) lim
k!1

k�n� (q)
k;6k�k(x) =

1

2(2�)n

Z
R�(x);q

���det(M�
x + sLx)

��� ds;
for all x 2 X.

By integrating (1.24) we obtain the following semi-classical Weyl law:

Theorem 1.7. Assume that condition Y (q) holds at each point of X. Then there is a
sequence �k > 0, �k ! 0, as k!1, such that for any sequence �k > 0 with limk!1

�k
�k

= 0

and �k ! 0 as k!1, we have

dimH q
b;6k�k(X;L

k) =
kn

2(2�)n

Z
X

Z
R�(x);q

���det(M�
x + sLx)

��� ds dvX(x) + o(kn):
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From Theorem 1.7 and the linear algebra argument from Demailly [16] and [28], we
obtain strong Morse inequalities on CR manifolds (see §6):

Theorem 1.8. Let q 2 f0; : : : ; n� 1g. If Y (j) holds for all j = 0; 1; : : : ; q, then as k!1
qX
j=0

(�1)q�jdimHj
b (X;L

k)

6
kn

2(2�)n

qX
j=0

(�1)q�j
Z
X

Z
R�(x);j

���det(M�
x + sLx)

��� ds dvX(x) + o(kn):

(1.25)

If Y (j) holds for all j = q; q + 1; : : : ; n� 1, then as k!1
n�1X
j=q

(�1)q�jdimHj
b (X;L

k)

6
kn

2(2�)n

n�1X
j=q

(�1)q�j
Z
X

Z
R�(x);j

���det(M�
x + sLx)

��� ds dvX(x) + o(kn):

(1.26)

Remark 1.9. (i) Assume that the Levi form of X has at least q + 1 negative and q + 1
positive eigenvalues, q 2 f0; : : : ; n � 2g. Then Y (j) hods for all j = 0; 1; : : : ; q and
j = n� q � 1; : : : ; n� 1.
(ii) Let n+; n0; n� 2 f0; 1; : : : ; n�1gwith n++n0+n� = n�1. Assume that the Levi form
of X has n� everywhere negative eigenvalues, n+ everywhere positive eigenvalues and
n0 eigenvalues which vanish at some point on X. (The Levi form is non-degenerate if
and only if n0 = 0.) Then Y (j) holds for all j 6 minfn�; n+g�1 and j > maxfn�; n+g+
n0+1. Thus Theorem 1.8 shows that (1.25) holds for all q 6 minfn�; n+g�1 and (1.26)
holds for all q > maxfn�; n+g+ n0 + 1.
(iii) Theorems 1.4 –1.8 have straightforward generalizations to the case when the forms
take values in Lk 
 E, for a given CR vector bundle E over X. In this case the right side
gets multiplied by rank(E). For example, (1.21) becomes

lim sup
k!1

k�n� (q)
k (x) 6

1

2(2�)n
rank(E)

Z
R�(x);q

���det(M�
x + sLx)

��� ds ; for all x 2 X,

and similarly for other results.

In section 6.1, we will state our main results in the embedded case, that is, when
X is a real hypersurface of a complex manifold M and the bundle L is the restriction
of a holomorphic line bundle over M . In this case the form M�

p is the restriction to
T 1;0
p X of the curvature form RL. To wit, we deduce from the weak Morse inequalities

(Theorem 1.4):

Corollary 1.10. Let M be a complex manifold of dimension n and let D = fp 2 M :
r(p) < 0g be a strongly pseudoconvex compact domain with smooth definition function r :
M ! R which is strictly plurisubharmonic in a neighbourhood of X = @D. Let (L; hL) be
a Hermitian holomorphic line bundle whose curvature is proportional to the Levi form of D
on X, i.e. there exists a smooth function � : X ! R such that RL = �Lr on the holomorphic
tangent bundle of X. Then dimHq

b (X;L
k) = o(kn) as k!1 for all 1 6 q 6 n� 2.

Example 1.11. Let N be a compact complex manifold of dimension n and (E; hE) be
a positive line bundle on N . Let D = fv 2 E�; jvjhE� < 1g be the Grauert tube, set
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X = @D and let � : X ! N be the canonical projection. Then we can apply Corollary
1.10 and we obtain that the @b-cohomology of the CR line bundle L := ��E satisfies
dimHq

b (X;L
k) = o(kn+1) as k!1 for all 1 6 q 6 n� 1.

To exemplify the use of the strong Morse inequalities on CR manifolds, we formulate
a condition to guarantee that high tensor powers of a CR line bundle have many CR
sections in the embedded case.

Theorem 1.12. Let M 0 be a complex manifold and let X � M 0 be a compact real hyper-
surface, X = ��1(0) for some � 2 C1(M 0), d�jX 6= 0. We assume that the Levi form Lx
of X has at least two negative and two positive eigenvalues everywhere. Furthermore, let L
be a Hermitian holomorphic line bundle over M 0 with curvature RL. We denote by RL

X the
restriction of RL to T 1;0X. Assume that

(1.27)
Z
X

Z
R�(x);0

���det(RL
X + sLx)

��� dsdvX(x) > Z
X

Z
R�(x);1

���det(RL
X + sLx)

��� dsdvX(x):
Then there is a positive constant c independent of k, such that dimH0

b (X;L
k) > ckn.

When RL is positive we formulate a condition to guarantee that (1.27) is satisfied:

Theorem 1.13. With the same notations as in Theorem 1.12. We assume that the Levi
form of X has at least two negative and two positive eigenvalues everywhere and RL > 0.
Let �1 � : : : � �n�1 be the eigenvalues of the Levi form with respect to RL

X . Assume that
�n��1 = �n� < 0 < �n�+1 = �n�+2 on X. Then there is a positive constant c independent
of k, such that dimH0

b (X;L
k) � ckn.

In §6, we will give examples which satisfy the assumptions of Theorem 1.13. Now we
wish to give an application in the context of pseudoconvex-pseudoconcave manifolds.
Keeping in mind the notion of q-pseudoconvexity and q-pseudoconcavity of Andreotti-
Grauert [1] we introduce the following.

Definition 1.14. A complex manifold M with dimCM = n is called a (n � 2)-convex-
concave strip if there exists a smooth proper map � : M ! R whose Levi form @@� has
at least three negative and three positive eigenvalues on M . The function � is called an
exhaustion function.

In particular an (n�2)-convex-concave strip is (n�2)-concave in the sense of Andreotti-
Grauert, thus Andreotti-pseudoconcave (see [27, Def. 3.4.3]). For such manifolds one
can extend the concept of big line bundle, well-known in the case of compact mani-
folds (e. g. [27, Def. 2.2.5]). Let L be a holomorphic line bundle over an Andreotti-
pseudoconcave manifold. By [27, Th. 3.4.5] there exists C > 0 such that

(1.28) dimH0(M;Lk) 6 Ck %k ; for k > 1;

where %k = maxMnBk rank�k is the maximum rank of the Kodaira map

(1.29) �k :M nBk ! P(H0(M;Lk)�) ; �k(p) = fs 2 H0(M;Lk) : s(p) = 0g ;
and Bk is the base locus of H0(M;Lk). We can thus define the Kodaira-Iitaka dimension
of L by �(L) := maxf%k : k 2 Ng. The line bundle is called big if �(L) = dimM .

If M is connected we can consider the field of meromorphic functionsMM on M . Also
by [27, Th. 3.4.5] this is an algebraic field of transcendence degree a(M) over C and
�(L) 6 a(M) 6 dimM .

8
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Theorem 1.15. LetM be a connected (n�2)-convex-concave strip with exhaustion function
�. Let a 2 R be a regular value of � and set X := f� = ag. Assume that there exists a
holomorphic line bundle L ! M whose curvature form RL satisfies (1.27). Then the line
bundle L is big. Therefore, the transcendence degree of the meromorphic function fieldMM

equals n = dimCM and the Kodaira map �k : M � � � �! P(H0(M;Lk)�) is an immersion
outside a proper analytic set.

1.4. Sketch of the proof of Theorem 1.4. To simplify the exposition we consider only
the case q = 0, i.e. we show how to pointwise estimate the function lim sup

k!1
�

(0)
k . It is

easy to see that for all x 2 X we have

�
(0)
k (x) = S

(0)
k (x) := sup

�2H0
b
(X;Lk);k�k=1

j�(x)j2 ;

where S(0)
k (x) is called the extremal function. For a given point p 2 X, by definition,

there is a sequence uk 2 H0
b (X;L

k), kukk = 1, such that lim supk!1 k
�nS(0)

k (p) =
limk!1 k�n juk(p)j2. Near p, take local coordinates (x; �) = (z; �) = (x1; : : : ; x2n�2; �),
zj = x2j�1 + ix2j, j = 1; : : : ; n � 1, (x(p); �(p)) = 0, such that @

@zj
= 1

2
( @
@x2j�1

� i @
@x2j

),
j = 1; : : : ; n � 1, is an orthonormal basis for T 1;0

p X and the Levi form and local weight
are given by Lp = Pn�1

j=1 �jdzj 
 dzj and

� = �� +
n�1X
j; t=1

�j; t zjzt +R(z) +O(jzj j�j) +O(j�j2) +O(j(z; �)j3);

where R(z) = O(jzj2), @
@zj
R = 0, j = 1; : : : ; n � 1. Let Fk(z; �) := ( zp

k
; �
k
) be the

scaling map. For r > 0, let Dr = f(z; �) = (x; �); jxjj < r; j�j < r; j = 1; : : : ; 2n� 2g.
Now, we consider the restriction of uk to the domain Fk(Dlog k). The function �k :=

k�
n
2F �

k (e
�kRuk) 2 C1(Dlog k), satisfies lim supk!1 k

�nS(0)(p) = limk!1 j�k(0)j2, where
F �
k f 2 C1(Dlog k) denotes the scaled function f

�
xp
k
; �
k

�
, f 2 C1(Fk(Dlog k)). Moreover,

�k is harmonic with respect to the scaled Kohn-Laplacian �(0)
s;(k) (cf. (2.21)). The point

is that �(0)
s;(k) converges in some sense to the model Laplacian �(0)

b;Hn on Hn := Cn�1 � R
(cf. (2.33)). In fact, �(0)

b;Hn is the Kohn-Laplacian defined with respect to the CR structure
Uj;Hn := @

@zj
� 1p

2
i�jzj

@
@�

, j = 1; : : : ; n� 1, and the weight e� 0,  0 = ��+
Pn�1
j;t=1 �j; tzjzt.

Since Y (q) holds, �(0)
s;(k) is hypoelliptic with loss of one derivative. Thus, the standard

techniques for partial differential operators (Rellich’s theorem and Sobolev embedding
theorem) yield a subsequence �kj converging uniformly with all the derivatives on any
compact subset of Hn to a smooth function �, which is harmonic with respect to �(0)

b;Hn.
This implies that

lim sup
k!1

k�nS(0)
k (p) = j�(0)j2 6 S(0)

Hn(0) := sup
�
(0)
b;Hn

f=0;kfk 0=1

jf(0)j2 :

Computing the extremal function in the model case explicitly (see §4) finishes the proof
of (1.21).

This paper is organized as follows. In §2 we first introduce the extremal function and
we relate it to the Szegö kernel function. Then we introduce the scaled Kohn-Laplacian
�(q)
s;(k) and prove the rough upper-bound for the Szegö kernel function (1.20) (cf. Theorem

9
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2.7). Moreover, by comparing the scaled operator �(q)
s;(k) to the Kohn-Laplacian �(q)

b;Hn on
the Heisenberg group we estimate in Theorem 2.9 the Szegö kernel function on X in
terms of the extremal function on the Heisenberg group. The latter is computed ex-
plicitely in §3. In §4 we use this information in order to prove the local Morse inequali-
ties (1.21) and by integration the weak Morse inequalities (1.22). In §5 we analyse the
spectral function of �(q)

b;(k) and deduce the semi-classical Weyl law, thus proving Theo-
rems 1.6–1.8. In §6 we specialize the previous results to the case of an embedded CR
manifold and prove Theorems 1.12 and 1.15. Moreover, we exemplify our results in two
concrete examples, one of a Grauert tube over the torus and the other of a quotient of
the Heisenberg group.

2. THE ESTIMATES OF THE SZEGÖ KERNEL FUNCTION �
(q)
k

In this section, we assume that condition Y (q) holds at each point of X.

2.1. The Szegö kernel function � (q)
k (x) and the extremal function S

(q)
k;J(x). We first

introduce some notations. For p 2 X, we can choose a smooth orthonormal frame
e1; : : : ; en�1 of T �0;1X over a neighborhood U of p. We say that a multiindex J =
(j1; : : : ; jq) 2 f1; : : : ; n � 1gq has length q and write jJ j = q. We say that J is strictly in-
creasing if 1 6 j1 < j2 < � � � < jq 6 n�1. For J = (j1; : : : ; jq) we define eJ := ej1^� � �^ejq .
Then feJ : jJ j = q, J strictly increasingg is an orthonormal frame for �0;qT �X over U .

For f 2 
0;q(X;Lk), we may write

f jU =
X0

jJ j=q
fJeJ ; with fJ = hf; eJi 2 C1(U ; Lk) ;

where
P0 means that the summation is performed only over strictly increasing multi-

indices. We call fJ the component of f along eJ . It will be clear from the context what
frame is being used. The extremal function S(q)

k;J along the direction eJ is defined by

(2.1) S
(q)
k;J(y) = sup

�2H q
b
(X;Lk); k�k=1

j�J(y)j2 :

Lemma 2.1. For every local orthonormal frame feJ(y); jJ j = q, J strictly increasingg of
�0;qT �X over an open set U � X, we have � (q)

k (y) =
P0
jJ j=q S

(q)
k;J(y), for every y 2 U .

Proof. Let (fj)j=1;:::;N be an orthonormal frame for the space H q
b (X;L

k). On U we write
�

(q)
k (y) =

P0
jJ j=q�

(q)
k;J(y), where � (q)

k;J(y) :=
P
j jfj;J(y)j2. It is easy to see that � (q)

k;J(y) is
independent of the choice of the orthonormal frame (fj). Take � 2 H q

b (X;L
k) of unit

norm. Since � is contained in an orthonormal base, obviously j�J(y)j2 6 � (q)
k;J(y). Thus,

(2.2) S
(q)
k;J(y) 6 �

(q)
k;J(y) ; for all strictly increasing J , jJ j = q.

Fix a point p 2 U and a strictly incresing multiindex J with jJ j = q. For simplicity, we
may assume that �(p) = 0. Put

u(y) =
�PN

j=1 jfj;J(p)j2
��1=2

�PN
j=1 fj;J(p)fj(y) :

10
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We can easily check that u 2 Hq
b (X;L

k) and kuk = 1. Hence, juJ(p)j2 6 S(q)
k;J(p), therefore

�
(q)
k;J(p) =

NX
j=1

jfj;J(p)j2 = juJ(p)j2 6 S(q)
k;J(p) :

By (2.2), � (q)
k;J = S

(q)
k;J for all strictly increasing multiindices J with jJ j = q, so the lemma

follows. �

2.2. The scaling technique. For a given point p 2 X, let U1(y); : : : ; Un�1(y) be an or-
thonormal frame of T 1;0

y X varying smoothly with y in a neighborhood of p, for which
the Levi form is diagonal at p. Furthermore, let s be a local trivializing section of L on
an open neighborhood of p and jsj2hL = e��. We take local coordinates (x; �) = (z; �) =
(x1; : : : ; x2n�2; �), zj = x2j�1 + ix2j, j = 1; : : : ; n� 1, defined on an open set D of p such
that

!0(p) =
p
2d� ; (x(p); �(p)) = 0 ;

h @
@xj

(p);
@

@xt
(p)i = 2�j;t h @

@xj
(p);

@

@�
(p)i = 0 ; h @

@�
(p);

@

@�
(p)i = 2 ;

for j; t = 1; : : : ; 2n� 2,

(2.3) Uj =
@

@zj
� 1p

2
i�jzj

@

@�
� 1p

2
cj�

@

@�
+O(j(z; �)j2); j = 1; : : : ; n� 1;

and

� =
n�1X
j=1

(�jzj + �jzj) + �� +
n�1X
j;t=1

(aj;tzjzt + aj;tzjzt) +
n�1X
j;t=1

�j; tzjzt

+O(jzj j�j) +O(j�j2) +O(j(z; �)j3);
(2.4)

where � 2 R; cj; �j; aj;t; �j; t 2 C, �j;t = 1 if j = t, �j;t = 0 if j 6= t, @
@zj

= 1
2
( @
@x2j�1

� i @
@x2j

),
for j; t = 1; : : : ; n� 1 and �j, j = 1; : : : ; n� 1, are the eigenvalues of Lp. This is always
possible, see [4, p. 157–160]. In this section, we work with this local coordinates and we
identify D with some open set in R2n�1. Put

R(z; �) =
n�1X
j=1

�jzj +
n�1X
j;t=1

aj;tzjzt ;(2.5)

�0 = ��R(z; �)�R(z; �) = �� +
n�1X
j;t=1

�j; tzjzt +O(jzj j�j) +O(j�j2) +O(j(z; �)j3) :
(2.6)

Let ( j )k� and ( j )k�0 be the inner products on the space 
0;q
c (D) defined as follows:

(f j g)k� =
Z
D
hf; gie�k�dvX ; (f j g)k�0 =

Z
D
hf; gie�k�0dvX ;

where f; g 2 
0;q
c (D). We denote by L2

(0;q)(D; k�) and L2
(0;q)(D; k�0) the completions of


0;q
c (D) with respect to ( j )k� and ( j )k�0, respectively. We have the unitary identification

(2.7)

8>>><>>>:
L2
(0;q)(D; k�0)$ L2

(0;q)(D; k�)

u! eu = ekRu;

u = e�kR eu eu:

11
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Let @ �;k�b : 
0;q+1(D)! 
0;q(D) be the formal adjoint of @b with respect to ( j )k�. Put

�(q)
b;k� = @b@

�;k�
b + @

�;k�
b @b : 


0;q(D)! 
0;q(D) :

Let u 2 
0;q(D;Lk). Then there exists û 2 
0;q(D) such that u = skû and we have
�(q)
b;ku = sk�(q)

b;k�û. In this section, we identify u with û and �(q)
b;k with �(q)

b;k�. Note that
ju(0)j2 = jû(0)j2 e�k�(0) = jû(0)j2.

Recall that �^ is the operator of left exterior multiplication with a form �. The adjoint
of this operator is denoted by (�^)� (cf. (1.1)).

If u 2 
0;q(D) \ L2
(0;q)(D; k�0), using (2.7), we have @b eu = g@su = ekR@su, where

(2.8) @s = @b + k(@bR) ^ :

Let (ej(z; �))j=1;:::;n�1 denote the basis of T �0;1(z;�)X, dual to (U j(z; �))j=1;:::;n�1. Then @b =Pn�1
j=1

�
ej ^U j+(@bej)^ (ej^)�

�
. Note that (ej^)� equals the interior product iUj with U j.

Thus,

(2.9) @s =
n�1X
j=1

ej^
�
U j + k(U jR)

�
+

n�1X
j=1

(@bej) ^ (ej^)�

and correspondingly

(2.10) @
�
s =

n�1X
j=1

(ej^)�
�
U

�;k�0
j + k(UjR)

�
+

n�1X
j=1

ej ^ (@bej^)�;

where @ �;k�b eu = ekR@
�
s u and U

�;k�0
j is the formal adjoint of U j with respect to ( j )k�0,

j = 1; : : : ; n� 1. We can check that

(2.11) U
�;k�0
j = �Uj + k(Uj�0) + sj(z; �);

where sj 2 C1(D), sj is independent of k, j = 1; : : : ; n� 1. Put

(2.12) �(q)
s = @s@

�
s + @

�
s @s : 


0;q(D)! 
0;q(D):

We have

(2.13) �̃(q)
s u = ekR�(q)

s u = �(q)
b;k� eu:

Proposition 2.2 ([24, Prop. 2.3]). We have

�(q)
s = @s@

�
s + @

�
s @s

=
n�1X
j=1

�
U

�;k�0
j + k(UjR)

��
U j + k(U jR)

�

+
n�1X
j; t=1

ej ^ (et^)�
h
U j + k(U jR) ; U

�;k�0
t + k(UtR)

i
+ �(U + k(UR)) + �(U

�;k�0
+ k(UR)) + f(z; �);

(2.14)

where �(U +k(UR)) denotes remainder terms of the form
P
aj(z; �)

�
U j+k(U jR)

�
with aj

smooth, matrix-valued and independent of k, for all j, and similarly for �(U �;k�0
+ k(UR))

and f(z; �) 2 C1 independent of k.

12
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For the convenience of the reader we recall some notations we used before. For r >
0, let Dr = f(z; �) = (x; �) 2 R2n�1; jxjj < r; j�j < r; j = 1; : : : ; 2n� 2g. Let Fk be the
scaling map: Fk(z; �) = ( zp

k
; �
k
). From now on, we assume that k is large enough so that

Fk(Dlog k) � D. We define the scaled bundle F �
k�

0;qT �X on Dlog k to be the bundle whose
fiber at (z; �) 2 Dlog k is

F �
k�

0;qT �(z;�)X :=
�X0

jJ j=q aJeJ(
zp
k
; �
k
); aJ 2 C; jJ j = q

�
:

We take the Hermitian metric h � ; � iF �
k

on F �
k�

0;qT �X so that at each point (z; �) 2 Dlog k ,�
eJ
�
zp
k
; �
k

�
; jJ j = q, J strictly increasing

�
;

is an orthonormal basis for F �
k�

0;qT �(z;�)X. For r > 0, let F �
k


0;q(Dr) denote the space of
smooth sections of F �

k�
0;qT �X over Dr. Let F �

k

0;q
c (Dr) be the subspace of F �

k

0;q(Dr)

whose elements have compact support in Dr. Given f 2 
0;q(Fk(Dlog k)) we write f =P0
jJ j=q fJeJ . We define the scaled form F �

k f 2 F �
k


0;q(Dlog k) by:

F �
k f =

X0

jJ j=q
fJ

�
zp
k
;
�

k

�
eJ

�
zp
k
;
�

k

�
:

Let P be a partial differential operator of order one on Fk(Dlog k) with C1 coefficients.
We write P = a(z; �) @

@�
+
P2n�2
j=1 aj(z; �)

@
@xj

, a; aj 2 C1(Fk(Dlog k)), j = 1; : : : ; 2n�2. The
partial diffferential operator P(k) on Dlog k is given by

(2.15) P(k) =
p
kF �

ka
@

@�
+

2n�2X
j=1

F �
kaj

@

@xj
=
p
ka
�
zp
k
;
�

k

�
@

@�
+

2n�2X
j=1

aj

�
zp
k
;
�

k

�
@

@xj
:

Let f 2 C1(Fk(Dlog k)). We can check that

(2.16) P(k)(F
�
k f) =

1p
k
F �
k (Pf):

The scaled differential operator @s;(k) : F �
k


0;q(Dlog k) ! F �
k


0;q+1(Dlog k) is given by
(compare to the formula (2.9) for @s):

@s;(k) =
n�1X
j=1

ej

�
zp
k
;
�

k

�
^
�
U j(k) +

p
kF �

k (U jR)
�

+
n�1X
j=1

1p
k
(@bej)

�
zp
k
;
�

k

�
^
�
ej

�
zp
k
;
�

k

�
^
��
:

(2.17)

From (2.9) and (2.16), we can check that if f 2 
0;q(Fk(Dlog k)), then

(2.18) @s;(k)F
�
k f =

1p
k
F �
k (@sf):

Let ( j )kF �
k
�0 be the inner product on the space F �

k

0;q
c (Dlog k) defined as follows:

(f j g)kF �
k
�0 =

Z
Dlog k

hf; giF �
k
e�kF

�
k
�0(F �

km)(z; �)dv(z)dv(�) ;

where dvX = mdv(z)dv(�) is the volume form, dv(z) = 2n�1dx1 � � � dx2n�2, dv(�) =p
2d�. Note that m(0; 0) = 1. Let @ �s;(k) : F

�
k


0;q+1(Dlog k) ! F �
k


0;q(Dlog k) be the formal

13
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adjoint of @s;(k) with respect to ( j )kF �
k
�0. Then, we can check that (compare the formulas

for @ �s , see (2.10) and (2.11))

@
�
s;(k) =

n�1X
j=1

�
ej

�
zp
k
;
�

k

�
^
���
� Uj(k) +

p
kF �

k (UjR) +
p
kF �

k (Uj�0) +
1p
k
F �
k sj

�

+
n�1X
j=1

1p
k
ej

�
zp
k
;
�

k

�
^
�
(@bej)

�
zp
k
;
�

k

�
^
��
;

(2.19)

where sj 2 C1(Dlog k), j = 1; : : : ; n� 1, are independent of k. We also have

(2.20) @
�
s;(k)F

�
k f =

1p
k
F �
k (@

�
s f); f 2 
0;q+1(Fk(Dlog k)) :

We define now the scaled Kohn-Laplacian:

(2.21) �(q)
s;(k) := @

�
s;(k)@s;(k) + @s;(k)@

�
s;(k) : F

�
k


0;q(Dlog k)! F �
k


0;q(Dlog k):

From (2.18) and (2.20), we see that if f 2 
0;q(Fk(Dlog k)), then

(2.22) (�(q)
s;(k))F

�
k f =

1

k
F �
k (�

(q)
s f):

From (2.3) and (2.5), we can check that

(2.23) U j(k) +
p
kF �

k (U jR) =
@

@zj
+

1p
2
i�jzj

@

@�
+ �kZj;k ; j = 1; : : : ; n� 1;

onDlog k, where �k is a sequence tending to zero with k!1 and Zj;k is a first order diffe-
rential operator and all the derivatives of the coefficients of Zj;k are uniformly bounded
in k on Dlog k, j = 1; : : : ; n� 1. Similarly, from (2.5) and (2.6), we can check that

� Ut(k) +
p
kF �

k (UtR) +
p
kF �

k (Ut�0) +
1p
k
F �
k st

= � @

@zt
+

1p
2
i�tzt

@

@�
� 1p

2
i�tzt� +

n�1X
j=1

�j; t zj + �kVt; k ; t = 1; : : : ; n� 1;
(2.24)

onDlog k, where �k is a sequence tending to zero with k!1 and Vt;k is a first order diffe-
rential operator and all the derivatives of the coefficients of Vt;k are uniformly bounded
in k on Dlog k, t = 1; : : : ; n � 1. From (2.23), (2.24) and (2.17), (2.19), (2.21), it is
straightforward to obtain the following.

Proposition 2.3. We have that

�(q)
s;(k) =

n�1X
j=1

��
� @

@zj
+

ip
2
�jzj

@

@�
� ip

2
�jzj� +

n�1X
t=1

�t; j zt

��
@

@zj
+

ip
2
�jzj

@

@�

��

+
n�1X
j; t=1

ej

�
zp
k
;
�

k

�
^
�
et

�
zp
k
;
�

k

�
^
����

�j; t � ip
2
�j�j; t�

�
+
p
2i�j�j; t

@

@�

�
+ "kPk;

on Dlog k, where "k is a sequence tending to zero with k!1, Pk is a second order differen-
tial operator and all the derivatives of the coefficients of Pk are uniformly bounded in k on
Dlog k.
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Chin-Yu Hsiao & George Marinescu Szegö kernel and Morse inequalities on CR manifolds

Let D � Dlog k be an open set and let W s
kF �

k
�0(D; F �

k�
0;qT �X), s 2 N0 := N [ f0g,

denote the Sobolev space of order s of sections of F �
k�

0;qT �X over D with respect to the
weight e�kF

�
k
�0. The Sobolev norm on this space is given by

(2.25) kuk2kF �
k
�0;s;D

=
X0

�2N2n�1
0 ; j�j6s
jJ j=q

Z
D

���@�x;�uJ ���2 e�kF �k�0(F �
km)(z; �)dv(z)dv(�);

where u =
P0
jJ j=q uJeJ

�
zp
k
; �
k

�
2 W s

kF �
k
�0(D; F �

k�
0;qT �X) and m is the volume form. If

s = 0, we write k�kkF �
k
�0;D

to denote k�kkF �
k
�0;0;D

. We need the following

Proposition 2.4. For every r > 0 with D2r � Dlog k and s 2 N [ f0g, there is a constant
Cr;s > 0 independent of k, such that

(2.26) kuk2kF �
k
�0;s+1;Dr

6 Cr;s
�
kuk2kF �

k
�0;D2r

+



�(q)

s;(k)u



2
kF �

k
�0;s;D2r

�
; u 2 F �

k

0;q(Dlog k) :

Proof. Since Y (q) holds, we see from the classical work of Kohn ([25, Th. 7.7], [21,
Prop. 5.4.10], [15, Th. 8.4.3]), that �(q)

s;(k) is hypoelliptic with loss of one derivative and

we have (2.26). Since all the derivatives of the coefficients of the operator �(q)
s;(k) are

uniformly bounded in k, if we go through the proof of [15, pp. 193–199] (see also Re-
mark 2.5 below), it is straightforward to see that Cr; s can be taken to be independent of
k. �

Remark 2.5. Put

A = fall the coefficients of �(q)
s;(k), @s;(k), @

�
s;(k),

h
U j(k) ; Ut(k)

i
, U j(k), Ut(k);

j; t = 1; : : : ; n� 1; and of kF �
k�0, F

�
kmg

and B = fall the eigenvalues of Lpg. From the proof of Kohn, we see that for r > 0,
s 2 N0, there exist a semi-norm P on C1(D2r) and a strictly positive continuous function
F : R! R+ such that

(2.27) kuk2kF �
k
�0;s+1;Dr

6
� P
f2A

F (P (f)) +
P
�2B

F (�)
��


u


2

kF �
k
�0;D2r

+



�(q)

s;(k)u



2
kF �

k
�0;s;D2r

�
;

where u 2 F �
k


0;q(Dlog k). Roughly speaking, the constant Cr;s in (2.26) depends contin-
uously on the eigenvalues of Lp and the elements of A in the C1(D2r) topology. (See
also the proof of [32, Lemma 4.1].)

Lemma 2.6. Let �k 2 F �
k


0;q(Dlog k) with �(q)
s;(k)�k = 0 and k�kkkF �

k
�0;Dlog k

6 1. Then,

there is a constant C > 0 such that for all k we have j�k(0)j2 6 C.

Proof. Fix r > 0, r small and let � 2 C1
0 (Dr), � = 1 on D r

2
. Identify �k with a form in

R2n�1 by extending with zero. Then

j�(0)�k(0)j =
����Z

R2n�1
d��k(�)d����� = ����Z

R2n�1
(1 + j�j2)�n

2 (1 + j�j2)n2 d��k(�)d�����
6
�Z

R2n�1
(1 + j�j2)�nd�

� 1
2
�Z

R2n�1
(1 + j�j2)n jd��k(�)j2 d�� 1

2

6 ec k�kkkF �
k
�0;n;Dr

;

15
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where d��k denotes the Fourier transform of ��k. From (2.26) and using induction, we
get

k�kk2kF �
k
�0;n;Dr

� C
�
k�kk2kF �

k
�0;Dr0

+
nX

m=1




(�(q)
s;(k))

mu



2
kF �

k
�0;Dr0

�
for some r0 > 0, where C > 0 is independent of k. Since �(q)

s;(k)u = 0, we conclude that
k�kkkF �

k
�0;n;Dr

6 C. The lemma follows. �

Now, we can prove the first part of Theorem 1.4 (estimate (1.20)).

Theorem 2.7. There is a constant C0 > 0 such that for all k and all x 2 X we have

(2.28) k�n� (q)
k (x) 6 C0

Proof. Let uk 2 Hq
b (X;L

k), kukk = 1. Set �k := k�
n
2F �

k (e
�kRuk) 2 F �

k

0;q(Dlog k). We

recall that R is given by (2.5). (See also (2.7).) We check that k�kkkF �
k
�0;Dlog k

6 1.

Using (2.22) and (2.13), it is not difficult to see that �(q)
s;(k)�k = 0 on Dlog k. From

this and Lemma 2.6, we see that there exists C(0) > 0 such that for all k we have
j�k(0)j2 = k�n juk(0)j2 6 C(0). We can apply this procedure for each point x 2 X, so we
can replace 0 by x in the previous estimate. In view of Remark 2.5, we see that we can
find C(x) > 0 and a neighborhood Dx of x such that for all k and all y 2 Dx we have
k�n juk(y)j2 6 C(x). Since X is compact we infer that

C 0
0 = supfk�n juk(x)j2 : k 2 N; x 2 Xg <1

Thus, for a local orthonormal frame feJ ; jJ j = q, J strictly increasingg we have

supfk�nS(q)
k;J(x) : k 2 N; x 2 Xg 6 C 0

0

(see (2.1) for the definition of S(q)
k;J). From this and Lemma 2.1, the theorem follows. �

2.3. The Heisenberg group Hn. We pause and introduce some notations. We identify
R2n�1 with the Heisenberg group Hn := Cn�1 � R. We also write (z; �) to denote the
coordinates of Hn, z = (z1; : : : ; zn�1) 2 Cn�1, zj = x2j�1 + ix2j, j = 1; : : : ; n � 1, and
� 2 R. Then �

Uj;Hn =
@

@zj
� 1p

2
i�jzj

@

@�
; j = 1; : : : ; n� 1

�
�
Uj;Hn ; U j;Hn ; T = � 1p

2

@

@�
; j = 1; : : : ; n� 1

�
are orthonormal bases for the bundles T 1;0Hn and CTHn, respectively. Then�

dzj ; dzj ; !0 =
p
2d� +

n�1X
j=1

(i�jzjdzj � i�jzjdzj) ; j = 1; : : : ; n� 1
�

is the basis of CT �Hn which is dual to fUj;Hn ; U j;Hn ;�T ; j = 1; : : : ; n � 1g. We take the
Hermitian metric h � ; � i on �0;qT �Hn such that fdzJ : jJ j = q, J strictly increasingg is an
orthonormal basis of �0;qT �Hn. The Cauchy-Riemann operator @b;Hn on Hn is given by

(2.29) @b;Hn =
n�1X
j=1

dzj ^ U j;Hn : 
0;q(Hn)! 
0;q+1(Hn):

16
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Put  0(z; �) = ��+
Pn�1
j;t=1 �j; tzjzt 2 C1(Hn; R), where � and �j; t, j; t = 1; : : : ; n�1, are

as in (2.4). Note that

(2.30) sup
(z;�)2Dlog k

jkF �
k�0 �  0j ! 0; as k!1:

Let ( j ) 0 be the inner product on 
0;q
c (Hn) defined as follows:

(f j g) 0 =
Z
Hn
hf; gie� 0dv(z)dv(�) ; f; g 2 
0;q

c (Hn) ;

where dv(z) = 2n�1dx1dx2 � � � dx2n�2, dv(�) =
p
2d�. Let @ �; 0b;Hn : 
0;q+1(Hn) ! 
0;q(Hn)

be the formal adjoint of @b;Hn with respect to ( j ) 0. We have

(2.31) @
�; 0
b;Hn =

n�1X
t=1

(dzt^)� U �; 0
t;Hn : 
0;q+1(Hn)! 
0;q(Hn);

where

(2.32) U
�; 0
t;Hn = �Ut;Hn + Ut;Hn 0 = �Ut;Hn +

n�1X
j=1

�j; tzj � 1p
2
i�tzt� :

The Kohn-Laplacian on Hn is given by

(2.33) �(q)
b;Hn = @b;Hn@

�; 0
b;Hn + @

�; 0
b;Hn@b;Hn : 
0;q(Hn)! 
0;q(Hn) :

From (2.29), (2.31) and (2.32), we can check that

�(q)
b;Hn

=
n�1X
j=1

U
�; 0
j;HnU j;Hn +

n�1X
j; t=1

dzj ^ (dzt^)�
��
�j; t � ip

2
�j�j; t�

�
+ i
p
2�j�j; t

@

@�

�

=
n�1X
j=1

��
� @

@zj
+

ip
2
�jzj

@

@�
+

n�1X
t=1

�t;jzt � 1p
2
i�jzj�

��
@

@zj
+

ip
2
�jzj

@

@�

��

+
n�1X
j;t=1

dzj ^ (dzt^)�
��
�j; t � ip

2
�j�j; t�

�
+ i
p
2�j�j; t

@

@�

�
:

(2.34)

2.4. The estimates of the Szegö kernel function � (q)
k . We need the following

Proposition 2.8. For each k, pick an element �k 2 F �
k


0;q(Dlog k) with �(q)
s;(k)�k = 0 and

k�kkkF �
k
�0;Dlog k

6 1. Identify �k with a form on Hn by extending it with zero and write �k =P0
jJ j=q �k;JeJ(

zp
k
; �
k
). Then there is a subsequence

n
�kj

o
of f�kg such that for each strictly

increasing multiindex J , jJ j = q, �kj ; J converges uniformly with all its derivatives on any
compact subset of Hn to a smooth function �J . Furthermore, if we put � =

P0
jJ j=q �JdzJ ,

then �(q)
b;Hn� = 0.

Proof. Fix a strictly increasing multiindex J , jJ j = q, and r > 0. From (2.26) and
Remark 2.5, we see that for all s > 0, there is a constant Cr;s, Cr;s is independent of k,
such that k�k;Jks;Dr 6 Cr;s for all k. Rellich ’s compactness theorem [35, p. 281] yields
a subsequence of f�k;Jg, which converges in all Sobolev spaces W s(Dr) for s > 0. From
the Sobolev embedding theorem [35, p. 170], we see that the sequence converges in
all C l(Dr), l > 0, l 2 Z, locally unformly. Choosing a diagonal sequence, with respect

17
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to a sequence of Dr exhausting Hn, we get a subsequence
n
�kj ;J

o
of f�k;Jg such that

�kj ;J converges uniformly with all derivatives on any compact subset of Hn to a smooth
function �J .

Let J 0 be another strictly increasing multiindex, jJ 0j = q. We can repeat the procedure
above and get a subsequce

n
�kjs ;J 0

o
of
n
�kj ;J 0

o
such that �kjs ;J 0 converges uniformly with

all derivatives on any compact subset of Hn to a smooth function �J 0. Continuing in this
way, we get the first statement of the proposition.

Now, we prove the second statement of the proposition. Let P = (p1; : : : ; pq), R =
(r1; : : : ; rq) be multiindices, jP j = jRj = q. Define

"PR =

8><>:
0; if fp1; : : : ; pqg 6= fr1; : : : ; rqg;
the sign of permutation

 
P
R

!
; if fp1; : : : ; pqg = fr1; : : : ; rqg:

For j; t = 1; : : : ; n� 1, define

�jtPR =

(
0; if dzj ^ (dzt^)�(dzP ) = 0;

"QR; if dzj ^ (dzt^)�(dzP ) = dzQ, jQj = q:

We may assume that �k;J converges uniformly with all derivatives on any compact sub-
set ofHn to a smooth function �J , for all strictly increasing J , jJ j = q. Since �(q)

s;(k)�k = 0,

from the explicit formula of �(q)
s;(k) (see Prop. 2.3), it is not difficult to see that for all

strictly increasing J , jJ j = q, we have
n�1X
j=1

U
�; 0
j;HnU j;Hn�k;J = �

X0

jP j=q;
16 j ; t6n�1

�jtPJ

��
�j; t � ip

2
�j�j; t�

�
+
p
2i�j�j; t

@

@�

�
�k;P

+ �kPk;J�k

(2.35)

on Dlog k, where �k is a sequence tending to zero with k ! 1 and Pk;J is a second
order differential operator and all the derivatives of the coefficients of Pk;J are uniformly
bounded in k on Dlog k. By letting k!1 in (2.35) we get

(2.36)
n�1X
j=1

U
�; 0
j;HnU j;Hn�J = �

X0

jP j=q;
16 j ; t6n�1

�jtPJ

��
�j; t � ip

2
�j�j; t�

�
+
p
2i�j�j; t

@

@�

�
�P

on Hn, for all strictly increasing J , jJ j = q. From this and the explicit formula of �(q)
b;Hn

(see (2.34)), we conclude that �(q)
b;Hn� = 0. The proposition follows. �

Now, we can prove the main result of this section. In analogy to (2.1) we define the
extremal functions S(q)

J;Hn on the Heisenberg group along the direction dzJ is defined by

(2.37) S
(q)
J;Hn(0) = sup

n
j�J(0)j2 ;�(q)

b;Hn� = 0; k�k 0 = 1
o
:

where � =
P0
jJ j=q �JdzJ .

Theorem 2.9. We have

lim sup
k!1

k�n� (q)
k (0) 6

X0

jJ j=q
S
(q)
J;Hn(0) :

18
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Proof. Fix a strictly increasing J , jJ j = q. We claim that

(2.38) lim sup
k!1

k�nS(q)
k;J(0) 6 S

(q)
J;Hn(0):

The definition (2.1) of the extremal function yields a sequence �kj 2 Hq
b (X;L

kj), k1 <
k2 < : : : , such that




�kj


 = 1 and

(2.39) lim
j!1

k�nj
����kj ;J(0)���2 = lim sup

k!1
k�nS(q)

k;J(0) ;

where �kj ;J is the component of �kj in the direction of eJ . On Dlog kj , put

�kj = k
�n

2
j F �

kj
(e�kjR�kj) 2 F �

kj

0;q(Dlog kj) :

It is easy to see that


�kj


kjF �kj�0;Dlog kj

6 1 and �(q)
s;(kj)

�kj = 0 on Dlog kj :

Proposition 2.8 yields a subsequence
n
�kjs

o
of
n
�kj

o
such that for each J , �kjs ;J converges

uniformly with all derivatives on any compact subset of Hn to a smooth function �J . Set
� =

P0
jP j=q �Pdz

P . Then we have �(q)
b;Hn� = 0 and, by (2.30), k�k 0 6 1. Thus,

(2.40) j�J(0)j2 6 j�J(0)j
2

k�k2 0
6 S(q)

J;Hn(0):

Note that

(2.41) lim
j!1

k�nj
����kj ;J(0)���2 = lim

s!1 j�kjs ;J(0)j
2 = j�J(0)j2 :

The estimate (2.38) follows from (2.39), (2.40) and (2.41). Finally, Lemma 2.1 and
(2.38) imply the conclusion of the theorem. �

3. THE SZEGÖ KERNEL FUNCTION ON THE HEISENBERG GROUP Hn

In this section, we will use the same notations as in section 2.3 and we work with the
assumption that condition Y (q) holds at each point of X. The main goal of this section
is to compute

P0
jJ j=q S

(q)
J;Hn(0).

3.1. The partial Fourier transform. Let u(z; �) 2 
0;q(Hn) with kuk 0 = 1 and�(q)
b;Hnu =

0. Put v(z; �) = u(z; �)e�
�
2
� and set �0 =

Pn�1
j;t=1 �j; tzjzt. We haveZ

Hn
jv(z; �)j2 e��0(z)dv(z)dv(�) = 1 :

Let us denote by L2
(0;q)(Hn;�0) the competion of 
(0;q)

c (Hn) with respect to the norm
k � k�0, where

kuk2�0
=
Z
Hn
juj2 e��0dv(z)dv(�) ; u 2 
(0;q)

c (Hn) :

Choose �(�) 2 C1
0 (R) so that �(�) = 1 when j�j < 1 and �(�) = 0 when j�j > 2 and set

�j(�) = �(�=j), j 2 N. Let

(3.1) v̂j(z; �) =
Z
R
v(z; �)�j(�)e

�i��dv(�) 2 
0;q(Hn); j = 1; 2; : : : :
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From Parseval’s formula, we haveZ
Hn
jv̂j(z; �)� v̂t(z; �)j2 e��0(z)dv(�)dv(z)

= 4�
Z
Hn
jv(z; �)j2 j�j(�)� �t(�)j2 e��0(z)dv(�)dv(z)! 0; j; t!1:

Thus, there is v̂(z; �) 2 L2
(0;q)(Hn;�0) such tht v̂j(z; �)! v̂(z; �) in L2

(0;q)(Hn;�0). We call
v̂(z; �) the Fourier transform of v(z; �) with respect to �. Formally,

(3.2) v̂(z; �) =
Z
R
e�i��v(z; �)dv(�):

Moreover, we haveZ
Hn
jv̂(z; �)j2 e��0(z)dv(z)dv(�) = lim

j!1

Z
Hn
jv̂j(z; �)j2 e��0(z)dv(z)dv(�)

= 4� lim
j!1

Z
Hn

���u(z; �)e��
2
��j(�)

���2 e��0(z)dv(z)dv(�)

= 4�
Z
Hn
ju(z; �)j2 e� 0(z;�)dv(z)dv(�) = 4� <1:

(3.3)

From Fubini’s theorem,
R
Cn�1jv̂(z; �)j2 e��0(z)dv(z) < 1 for almost all � 2 R. More

precisely, there is a negligeable set A0 � R such that
R
Cn�1jv̂(z; �)j2 e��0(z)dv(z) <1, for

every � =2 A0.
Let s 2 L2

(0;q)(Hn;�0). Assume that
R js(z; �)j2 dv(�) < 1 and

R js(z; �)j dv(�) < 1 for
all z 2 Cn�1. Then, from Parseval’s formula, we can check thatZZ

hv̂(z; �); s(z; �)ie��0(z)dv(�)dv(z)

=
ZZ
hu(z; �)e��

2
�;
Z
ei��s(z; �)dv(�)ie��0(z)dv(�)dv(z):

(3.4)

We pause and introduce some notations. For fixed � 2 R, put

(3.5) �� = �
p
2�

n�1X
j=1

�j jzjj2 +
n�1X
j;t=1

�j; tzjzt 2 C1(Cn�1; R):

We take the Hermitian metric h � ; � i on the bundle �0;qT �Cn�1 of (0; q) forms of Cn�1 so
that fdzJ ; jJ j = q, J strictly increasingg is an orthonormal basis. We also let 
0;q(Cn�1)
denote the space of smooth sections of �0;qT �Cn�1 over Cn�1. Let 
0;q

c (Cn�1) be the
subspace of 
0;q(Cn�1) whose elements have compact support in Cn�1 and let ( j )�� be
the inner product on 
0;q

c (Cn�1) defined by

(f j g)�� =
Z
Cn�1
hf; gie���(z)dv(z) ; f; g 2 
0;q

c (Cn�1) :

Let

(3.6) �(q)
�� = @

�;��
@ + @ @

�;��
: 
0;q(Cn�1)! 
0;q(Cn�1)
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be the complex Laplacian with respect to ( j )�� , where @ �;�� is the formal adjoint of @
with respect to ( j )�� . We can check that

�(q)
�� =

n�1X
t=1

�
� @

@zt
�
p
2�tzt� +

n�1X
j=1

�j; tzj

�
@

@zt

+
n�1X
j;t=1

dzj ^ (dzt^)�
�
�j; t �

p
2�j��j; t

�
:

(3.7)

Now, we return to our situation. We identify �0;qT �Cn�1 with �0;qT �Hn. Set

(3.8) �(z; �) = v̂(z; �) exp
��

i�

2
p
2
� 1p

2
�
�n�1X
j=1

�j jzjj2
�
:

We remind that v̂(z; �) is given by (3.2).

Theorem 3.1. For almost all � 2 R, we have
R
Cn�1j�(z; �)j2 e���(z)dv(z) <1 and

(3.9) �(q)
���(z; �) = 0

in the sense of distributions. Thus �(z; �) 2 
0;q(Cn�1) for almost all � 2 R.

Proof. Let A0 � R be as in the discussion after (3.3). Thus, for all � =2 A0,Z
Cn�1
jv̂(z; �)j2 e��0(z)dv(z) =

Z
Cn�1
j�(z; �)j2 e���(z)dv(z) <1 :

We only need to prove the second statement of the theorem. Let f 2 
0;q
c (Cn�1). Put

h(�) =
R
Cn�1h�(z; �);�(q)

��f(z)ie���(z)dv(z) if � =2 A0, h(�) = 0 if � 2 A0. We can check
that

(3.10) jh(�)j2 6
Z
Cn�1
j�(z; �)j2 e���(z)dv(z)

Z
Cn�1

����(q)
��f

���2e���(z)dv(z):

For R > 0, put 'R(�) = 1[�R;R](�)h(�), where 1[�R;R](�) = 1 if �R 6 � 6 R, 1[�R;R](�) =
0 if � < �R or � > R. From (3.10), we haveZ

j'R(�)j2 dv(�) =
Z R

�R
jh(�)j2 dv(�)

6 C
ZZ
j�(z; �)j2 e���(z)dv(�)dv(z) = C

ZZ
jv̂(z; �)j2 e��0(z)dv(�)dv(z) <1 ;

(3.11)

where C > 0. Thus, 'R(�) 2 L2(R) \ L1(R). Set � jzj2 := Pn�1
j=1 �j jzjj2. We haveZ

R
h(�)'R(�)dv(�) =

Z R

�R
jh(�)j2 dv(�)

=
ZZ
h�(z; �);�(q)

��f(z)ie���(z)'R(�)dv(�)dv(z)

=
ZZ
hv̂(z; �); e�

�
i�

2
p
2
� 1p

2
�

�
�jzj2
�(q)

��f(z)'R(�)ie��0(z)dv(�)dv(z)

(3.4)
=

ZZ
hu(z; �);

Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
�(q)

��(f'R)dv(�)ie� 0(z;�)dv(�)dv(z):

(3.12)
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From Lemma 3.2 below, we know thatZ
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
�(q)

��(f(z)'R(�))dv(�)

= �(q)
b;Hn

� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
f(z)'R(�)dv(�)

�
:

(3.13)

Put

(3.14) S(z; �) =
Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
f(z)'R(�)dv(�):

From (3.13) and (3.14), (3.12) becomes

(3.15)
Z R

�R
jh(�)j2 dv(�) =

ZZ
hu(z; �);�(q)

b;HnS(z; �)ie� 0(z;�)dv(�)dv(z):
Choose �(�) 2 C1

0 (R) so that �(�) = 1 when j�j < 1 and �(�) = 0 when j�j > 2. Then,Z R

�R
jh(�)j2 dv(�) = lim

j!1

ZZ
hu(z; �); �( �

j
)�(q)

b;HnS(z; �)ie� 0(z;�)dv(�)dv(z)

= lim
j!1

� ZZ
h�(q)

b;Hnu(z; �); �(
�
j
)S(z; �)ie� 0(z;�)dv(�)dv(z)

+
ZZ
hu(z; �); [�( �

j
) ;�(q)

b;Hn ]S(z; �)ie� 0(z;�)dv(�)dv(z)
�

= lim
j!1

ZZ
hu(z; �); [�( �

j
) ;�(q)

b;Hn ]S(z; �)ie� 0(z;�)dv(�)dv(z):

(3.16)

We can check that [�( �
j
) ;�(q)

b;Hn ] is a first order partial differential operator and all the

coefficients of [�( �
j
) ;�(q)

b;Hn ] converge to 0 as j !1 uniformly in � and locally uniformly
in z. Moreover, from Parseval’s formula, (3.11) and (3.14), we can check thatX

j�j61

Z ���@�x;�S���2 e� 0dv(�)dv(z)
6 C

X
j�j61

ZZ
(1 + jzj+ j�j+ jzj j�j)2 j@�x f j2 j'R(�)j2 e���(z)dv(z)dv(�)

6 eC Z j'R(�)j2 dv(�) <1;
whit constants C > 0, eC > 0. Thus,

lim
j!1

ZZ
hu(z; �); [�( �

j
) ;�(q)

b;Hn ]S(z; �)ie� 0(z;�)dv(�)dv(z) = 0:

From this and (3.16), we conclude that
R R
�Rjh(�)j2 dv(�) = 0. Letting R ! 1, we

get h(�) = 0 almost everywhere. We have proved that for a given f(z) 2 
0;q
c (Cn�1),R

Cn�1h�(z; �);�(q)
��f(z)ie���(z)dv(z) = 0 almost everywhere.

Let us consider the Sobolev space W 2(Cn�1) of distributions in Cn�1 whose derivatives
of order 6 2 are in L2. The space of forms of type (0; q) with coefficients in this space is
accordingly denotedW 2

(0;q)(Cn�1). SinceW 2
(0;q)(Cn�1) is separable and 
0;q

c (Cn�1) is dense
in W 2

(0;q)(Cn�1), we can find fj 2 
0;q
c (Cn�1), j = 1; 2; : : : , such that ff1; f2; : : :g is a dense

subset of W 2
(0;q)(Cn�1). Moreover, we can take ff1; f2; : : :g so that for all g 2 
0;q

c (Cn�1)

with supp g � Br := fz 2 Cn�1; jzj < rg, r > 0, we can find fj1; fj2; : : : , supp fjt � Br,
t = 1; 2; : : : , such that fjt ! g for t!1 in W 2

(0;q)(Cn�1).
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Now, for each j, we can repeat the method above and find a measurable set Aj � A0,
jAjj = 0 (A0 is as in the beginning of the proof), such that (�(z; �) j �(q)

��fj(z))�� = 0 for

all � =2 Aj. Put A =
S
j Aj. Then, jAj = 0 and for all � =2 A, (�(z; �) j �(q)

��fj(z))�� = 0

for all j. Let g 2 
0;q
c (Cn�1) with supp g � Br. From the discussion above, we can find

fj1 ; fj2; : : :, supp fjt � Br, t = 1; 2; : : :, such that fjt ! g in W 2
(0;q)(Cn�1), t ! 1. Then,

for � =2 A,

(�(z; �) j �(q)
��g)�� = (�(z; �) j �(q)

��(g � fjt)))�� + (�(z; �) j �(q)
��fjt)��

= (�(z; �) j �(q)
��(g � fjt)))�� :

Now, ���(�(z; �) j �(q)
��(g � fjt)))��

��� = ����Z
Br
h�(z; �);�(q)

��(g � fjt)ie���(z)dv(z)
����

6 C
X
j�j62

Z
j@�x (g � fjt)j2 dv(z)! 0; t!1:

(3.17)

Thus, for � =2 A, (�(z; �) j �(q)
��g)�� = 0 for all g 2 
0;q

c (Cn�1). The theorem follows. �

Lemma 3.2. Let f 2 
0;q
c (Cn�1). Let '(�) 2 L2(R) with compact support. Then, we haveZ

ei��e
�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
�(q)

��f(z)'(�)dv(�)

= �(q)
b;Hn

� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
f(z)'(�)dv(�)

�
;

where � jzj2 = Pn�1
j=1 �j jzjj2.

Proof. For any g 2 
0;q
c (Cn�1), we can check that

U t;Hn

� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
g(z)'(�)dv(�)

�

=
�
@

@zt
+

1p
2
i�tzt

@

@�

�� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
g(z)'(�)dv(�)

�

=
Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
� @g

@zt
'(�)dv(�);

(3.18)

where t = 1; : : : ; n� 1,

U
�; 0
t;Hn

� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
g(z)'(�)dv(�)

�

=
�
� @

@zt
+

1p
2
i�tzt

@

@�
+

n�1X
j=1

�j; tzj � 1p
2
i�tzt�

�
� Z

ei��e
�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
g(z)'(�)dv(�)

�

=
Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
(� @g
@zt

+
n�1X
j=1

�j; tzjg �
p
2�tzt�g)'(�)dv(�);

(3.19)
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where t = 1; : : : ; n� 1, and

�
�j; t � 1p

2
i�j�j; t� +

p
2i�j�j; t

@

@�

� Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
g'(�)dv(�)

=
Z
ei��e

�
�

i�

2
p
2
� 1p

2
�

�
�jzj2+�

2
�
(�j; tg �

p
2��j�j; tg)'(�)dv(�);

(3.20)

where j; t = 1; : : : ; n� 1. From (3.18), (3.19), (3.20) and the explicit formulas for �(q)
b;Hn

and �(q)
�� (see (2.34) and (3.7)), the lemma follows. �

3.2. Estimates for the extremal function on the Heisenberg group. We will use the
same notations as before. For � 2 R, let us denote by L2

(0;q)(Cn�1;��) the competion of

(0;q)
c (Cn�1) with respect to the norm k � k�� , where

kuk2�� =
Z
Cn�1
juj2 e���(z)dv(z) ; u 2 
(0;q)

c (Cn�1) :

Let B(q)
�� : L2

(0;q)(Cn�1;��) ! Ker�(q)
�� be the Bergman projection, i.e. the orthogonal

projection onto Ker�(q)
�� with respect to ( j )�� . Let (B(q)

�� )
� be the adjoint of B(q)

�� with

respect to ( j )�� . We have B(q)
�� = (B

(q)
�� )

� = (B
(q)
�� )

2. Let

B
(q)
�� (z;w) 2 C1(Cn�1 � Cn�1; L (�0;qT �wCn�1;�0;qT �zCn�1))

(B
(q)
��u)(z) =

Z
Cn�1

B
(q)
�� (z;w)u(w)e

���(w)dv(w) ; u 2 L2
(0;q)(Cn�1;��)

be the distribution kernel of B(q)
�� with respect to ( j )�� . We take the Hermitian metric

h � ; � i on T 1;0
z Cn�1, z 2 Cn�1, so that @

@zj
, j = 1; : : : ; n� 1, is an orthonormal basis. Let

(3.21) M�� : T
1;0
z Cn�1 ! T 1;0

z Cn�1 ; z 2 Cn�1

be the linear map defined by hM��U; V i = h@@��; U ^ V i, U; V 2 T 1;0
z Cn�1. Put

Rq := f� 2 R; M�� has exactly q negative eigenvalues

and n� 1� q positive eigenvaluesg:(3.22)

The following result is essentially well-known (see Wu-Zhang [33], Berman [5] and Ma-
Marinescu [27, §8.2]).

Theorem 3.3. If � =2 Rq, then B(q)
�� (z; z) = 0, for all z 2 Cn�1. If � 2 Rq, let (Zj(�))n�1

j=1 be
an orthonormal frame of T 1;0

z Cn�1, for whichM�� is diagonal. We assume thatM��Zj(�) =
�j(�)Zj(�) for j = 1; : : : ; n � 1, with �j(�) < 0 for j = 1; : : : ; q and �j(�) > 0 for
j = q + 1; : : : ; n � 1. Let (Tj(�))

n�1
j=1 , denote the basis of T �0;1z Cn�1, which is dual to

(Zj(�))
n�1
j=1 . Then,

(3.23) B
(q)
�� (z; z) = e��(z)(2�)�n+1 j�1(�)j � � � j�n�1(�)j

qY
j=1

Tj(�) ^ (Tj(�)^)�:
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In particular,

TrB
(q)
�� (z; z) : =

X0

jJ j=q
hB(q)

�� (z; z)dzJ ; dzJi

= e��(z)(2�)�n+1 j�1(�)j � � � j�n�1(�)j1Rq(�)

= e��(z)(2�)�n+1
���detM��

���1Rq(�);

(3.24)

where 1Rq(�) is the characteristic function of Rq.

Remark 3.4. We recall that �� = �
p
2�
Pn�1
j=1 �j jzjj2 +

Pn�1
j; t=1 �j; t zjzt. Since Y (q) holds,

we conclude that Rq � [�R;R] for some R > 0.

We return to our situation. Let u(z; �) 2 
0;q(Hn), kuk 0 = 1, �(q)
b;Hnu = 0. As before,

let v̂(z; �) be the Fourier transform of u(z; �)e�
�
2
� with respect to �. From Theorem 3.1,

we know that for � defined in (3.8) we have

�(z; �) 2 Ker�(q)
�� \ L2

(0;q)(Cn�1;��) \ 
0;q(Cn�1)(3.25)

for almost all � 2 R. Thus, �(z; �) =
R
Cn�1B

(q)
�� (z;w)�(w; �)e

���(w)dv(w) for almost all
� 2 R. Put v̂(z; �) =

P0
jJ j=q v̂J(z; �)dzJ .

Lemma 3.5. Let J be a strictly increasing index, jJ j = q, and z 2 Cn�1. Then, for almost
all � 2 R, the following estimate holds:

(3.26) jv̂J(z; �)j2 6 e
p
2 �
Pn�1

j=1
�j jzj j2hB(q)

�� (z; z)dzJ ; dzJi
Z
Cn�1
jv̂(w; �)j2 e��0(w)dv(w) :

Proof. Let ' 2 C1
0 (Cn�1) such that

R
Cn�1'(z)dv(z) = 1, ' > 0, '(z) = 0 if jzj > 1. Put

fj(z) = j2n�2'(jz)e��(z), j = 1; 2; : : :. Then,Z
Cn�1

fj(z)e
���(z)dv(z) = 1 ; fj(z)! �0

in the sense of distributions with respect to ( j )�� , that is, (h(z) j fj(z))�� ! h(0),
j !1, for all h 2 C1(Cn�1). Thus, for almost all � 2 R,����e� �p

2

Pn�1
j=1

�j jz0;j j2 v̂J(z0; �)
���� = j�J(z0; �)j = lim

j!1

���(�(z; �) j fj(z � z0)dzJ)�� ���
= lim

j!1

���(B(q)
��� j fj(z � z0)dzJ)��

��� = lim
j!1

���(� j B(q)
�� (fj(z � z0)dzJ))��

��� ;(3.27)

for all z0 = (z0;1; z0;2; : : : ; z0;n�1) 2 Cn�1. Now,

(3.28)
���(�(z; �) j B(q)

�� (fj(z � z0)dzJ))��
���2 6 k�k2�� 


B(q)

�� (fj(z � z0)dzJ)



2
��

and

k�k2��



B(q)

�� (fj(z � z0)dzJ)



2
��

= kv̂k2�0




B(q)
�� (fj(z � z0)dzJ)




2
��

= kv̂k2�0
(B

(q)
�� (fj(z � z0)dzJ) j B(q)

�� (fj(z � z0)dzJ))��
�! kv̂k2�0

hB(q)
�� (z0; z0)dzJ ; dzJi; j !1:

(3.29)

From (3.27), (3.28) and (3.29), we get for all z0 2 Cn�1,����e� �p
2

Pn�1
j=1

�j jz0;j j2 v̂J(z0; �)
����2 6 kv̂k2�0

hB(q)
�� (z0; z0)dzJ ; dzJi
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for almost all � 2 R. The lemma follows. �

Put u(z; �) =
P0
jJ j=q uJ(z; �)dzJ .

Proposition 3.6. For jJ j = q, J is strictly increasing, we have

(3.30) juJ(0; 0)j2 6 1

4�

Z
R
hB��(0; 0)dzJ ; dzJidv(�):

Proof. Let � 2 C1
0 (R),

R
R�dv(�) = 1, � > 0 and �" 2 C1

0 (R), �"(�) = 1
"
�( �

"
). Then,

�" ! �0, "! 0+ in the sense of distributions. Let �̂" :=
R
e�i���"(�)dv(�) be the Fourier

transform of �". We can check that j�̂"(�)j 6 1 for all � 2 R, �̂"(�) = �̂("�) and
lim"!0 �̂"(�) = lim"!0 �̂("�) = �̂(0) = 1. Let '(z) be as in the proof of Lemma 3.5. Put
gj(z) = j2n�2'(jz)e�0(z), j = 1; 2; : : :. Then, for J is strictly increasing, jJ j = q, we have

(3.31) uJ(0; 0) = lim
j!1

lim
"!0+

Z
Hn
hu(z; �)e��

2
�; �"(�)gj(z)dzJie��0(z)dv(z)dv(�):

From (3.4), we see that

ZZ
hu(z; �)e��

2
�; �"(�)gj(z)dzJie��0(z)dv(z)dv(�)

=
1

4�

ZZ
hv̂(z; �); �̂"(�)gj(z)dzJie��0(z)dv(�)dv(z):

(3.32)

From (3.26) and Theorem 3.3, we see that

jv̂J(z; �)j2 6 e
p
2�
Pn�1

j=1
�j jzj j2hB��(z; z)dzJ ; dzJi1Rq(�)

Z
Cn�1
jv̂(w; �)j2 e��0(w)dv(w);

for almost all � 2 R. Thus, for fixed j,
RR jhv̂; gjdzJij e��0(z)dv(�)dv(z) < 1. From this

and Lebesque dominated convergence theorem, we conclude that

lim
"!0+

ZZ
hv̂(z; �); �̂"(�)gj(z)dzJie��0(z)dv(�)dv(z)

=
ZZ
hv̂(z; �); gj(z)dzJie��0(z)dv(�)dv(z):

(3.33)

From (3.32) and (3.33), (3.31) becomes

(3.34) uJ(0; 0) = lim
j!1

1

4�

ZZ
hv̂(z; �); gj(z)dzJie��0(z)dv(�)dv(z):
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Put fj(�) = 1
4�

Rhv̂(z; �); gj(z)dzJie��0(z)dv(z). Since v̂(z; �) 2 
0;q(Cn�1) for almost all
�, we have limj!1 fj(�) = 1

4�
v̂J(0; �) almost everywhere. Now,

jfj(�)j = 1

4�

����Z hv̂(z; �); gj(z)dzJie��0(z)dv(z)
����

=
1

4�

�����
Z
jzj6 1

j

hv̂(z; �); j2n�2'(jz)dzJidv(z)
�����

6
1

4�

� Z
jzj6 1

j

jv̂(z; �)j2 e��0(z)j2n�2dv(z)
� 1

2
� Z

jzj6 1
j

j'(jz)j2 e�0(z)j2n�2dv(z)
� 1

2

6 C1

� Z
jzj61

���v̂(z
j
; �)

���2 e��0(z=j)dv(z)
� 1

2

6 C2

� Z
jzj61

e
p
2�
Pn�1

t=1
�tj ztj j2 ���TrB��(

z
j
; z
j
)
���1Rq(�)dv(z)

� 1
2

�
� Z

Cn�1
jv̂(w; �)j2 e��0(w)dv(w)

� 1
2

(here we used (3.26) and Theorem 3.3)

6 C3

� Z
Cn�1
jv̂(w; �)j2 e��0(w)dv(w)

� 1
2

1Rq(�);

(3.35)

where C1; C2; C3 are positive constants. From this and the Lebesgue dominated conver-
gence theorem, we conclude that

uJ(0; 0) = lim
j!1

Z
fj(�)dv(�) =

Z
lim
j!1

fj(�)dv(�) =
1

4�

Z
v̂J(0; �)dv(�) :

Thus,

(3.36) juJ(0; 0)j 6 1

4�

Z
jv̂J(0; �)j dv(�):

Since
RR jv̂(w; �)j2 e��0(w)dv(�)dv(w) = 4� we obtain from Lemma 3.5 that����Z jv̂J(0; �)j dv(�)����2 6 4�

Z jv̂J(0; �)j2R jv̂(w; �)j2 e��0(w)dv(w))
dv(�)

6 4�
Z
hB(q)

�� (0; 0)dzJ ; dzJidv(�):
(3.37)

Estimtes (3.36) and (3.37) yield the conclusion. �

From Proposition 3.6, we know that for all u(z; �) =
P0
jJ j=q uJ(z; �)dzJ 2 
0;q(Hn),

satisfying kuk 0 = 1, �(q)
b;Hnu = 0, we have

juJ(0; 0)j2 6 1

4�

Z
hB(q)

�� (0; 0)dzJ ; dzJidv(�):

Thus, S(q)
J;Hn(0) 6

1
4�

RhB(q)
�� (0; 0)dzJ ; dzJidv(�) for all strictly increasing J , jJ j = q. HenceP0

jJ j=q S
(q)
J;Hn(0) 6

1
4�

R
TrB

(q)
�� (0; 0)dv(�). From this and Theorem 3.3, we get

Theorem 3.7. We have
P0
jJ j=q S

(q)
J;Hn(0) 6

1
2(2�)n

R
Rq

���detM��

��� dv(�), where M�� is as in
(3.21) and Rq is as in (3.22).
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3.3. The Szegö kernel function on the Heisenberg group. In the rest of this section,
we calculate the extremal function for the Heisenberg group (see Theorem 3.10). For � 2
R, we can find zj(�) =

Pn�1
t=1 aj;t(�)zt, j = 1; : : : ; n�1, such that �� =

Pn�1
j=1 �j(�) jzj(�)j2,

where �1(�); : : : ; �n�1(�), are the eigenvalues of M�� , aj;t(�) 2 C, j; t = 1; : : : ; n � 1. If
� 2 Rq, we assume that �1(�) < 0; : : : ; �q(�) < 0; �q+1(�) > 0; : : : ; �n�1(�) > 0. The
following is essentially well-known (see [5]).

Proposition 3.8. Put

(3.38) �(z; �) =
1p
2
C0

���detM��

���1Rq(�)e
�1(�)jz1(�)j2+���+�q(�)jzq(�)j2dz1(�) ^ � � � ^ dzq(�);

where C0 = (2�)1�
n
2

� R
Rq

���detM��

��� dv(�)�� 1
2

. Then, �(q)
���(z; �) = 0 and

(3.39)
Z
Cn�1

(1 + jzj2)m0 j@mx �(z; �)j2 e���(z)dv(z) <1

and the value
R
Cn�1(1 + jzj2)m0 j@mx �(z; �)j2 e���(z)dv(z) can be bounded by some positive

continuous function of the eigenvalues of M�� , � 2 Rq, for all m 2 N2n�2
0 , m0 2 N0.

Moreover, we have

(3.40)
Z
Cn�1
j�(z; �)j2 e���(z)dv(z) = �

� Z
Rq

���detM��

��� dv(�)��1 ���detM��

���1Rq(�):

Set

(3.41) u(z; �) =
1

2�

Z
e
i��+��

2
+

�
�p
2
� i�

2
p
2

�
�jzj2

�(z; �) dv(�) 2 
0;q(Hn);

where �(z; �) is as in (3.38) and � jzj2 := Pn�1
j=1 �j jzjj2.

Proposition 3.9. We have that

(3.42) �(q)
b;Hnu = 0;

(3.43) kuk 0 = 1

and

(3.44) ju(0; 0)j2 = 1

2(2�)n

Z
Rq

���detM��

��� dv(�):
Moreover, we have

(3.45)
Z
Hn

���@mx @m0
� u(z; �)

���2 e� 0(z;�)dv(z)dv(�) <1
and

R
Hn

���@mx @m0
� u(z; �)

���2 e� 0(z;�)dv(z)dv(�) is bounded above by some positive continuous
function of the eigenvalues of M�� , � 2 Rq, � and �j, j = 1; : : : ; n � 1, for all m 2 N2n�2

0 ,
m0 2 N0.

Proof. In view of the proof of Lemma 3.2, we see that

�(q)
b;Hnu(z; �) =

1

2�

Z
e
i��+��

2
+

�
�p
2
� i�

2
p
2

�
�jzj2

(�(q)
���)(z; �)dv(�) = 0 ;
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which implies (3.42). Now,Z
ju(z; �)j2 e� 0(z;�)dv(z)dv(�)

=
1

(2�)2

Z �����
Z
e
i��+��

2
+

�
�p
2
� i�

2
p
2

�
�jzj2

�(z; �)dv(�)

�����
2

e�����0(z)dv(�)dv(z)

=
1

(2�)2

Z ����Z ei��+ �p
2
�jzj2

�(z; �)dv(�)
����2 dv(�)e��0(z)dv(z):

(3.46)

From Parseval’s formula, we have

1

(2�)2

Z ����Z e
i��+ �p

2
�jzj2

�(z; �)dv(�)
����2 dv(�) = 1

�

Z
e
p
2��jzj2 j�(z; �)j2 dv(�):(3.47)

In view of (3.47), (3.46) becomesZ
ju(z; �)j2 e� 0(z;�)dv(z)dv(�) = 1

�

ZZ
j�(z; �)j2 e���(z)dv(z)dv(�):

From (3.40), we can check that 1
�

RR j�(z; �)j2 e���(z)dv(z)dv(�) = 1 so we infer (3.43).
We obtain (3.44) from the following

ju(0; 0)j2 = 1

(2�)2

����Z �(0; �)dv(�)����2 = 1

2(2�)2
C2

0

� Z
Rq

���detM��

��� dv(�)�2

=
1

2(2�)n

Z
Rq

���detM��

��� dv(�):
Finally, from (3.39), (3.41), Parseval’s formula and the statement after (3.39), we get
(3.45) and the last statement of this proposition. �

From Proposition 3.9 and Theorem 3.7, we get the main result of this section:

Theorem 3.10. We have
P0
jJ j=q S

(q)
J;Hn(0) = 1

2(2�)n

R
Rq

���detM��

��� dv(�), where M�� is as in
(3.21) and Rq is as in (3.22).

4. SZEGÖ KERNEL ASYMPTOTICS AND WEAK MORSE INEQUALITIES ON CR MANIFOLDS

In this section we first study the properties of the Hermitian form M�
p introduced in

Definition 1.3, especially its dependence of local trivializations. We then prove (1.21),
i.e. the second part of Theorem 1.4 (cf. Theorem 4.4). Finally, we prove Theorem 1.5.

We assume that condition Y (q) holds. Let s be a local trivializing section of L on an
open subset D � X. Let � 2 C1(D; R) be the weight of the Hermitian metric hL relative
to s, that is, the pointwise norm of s is js(x)j2hL = e��(x), for x 2 D. Until further notice,
we work on D. Recall that M�

p , p 2 D, is the Hermitian quadratic form on T 1;0
p X defined

by

M�
p (U; V ) =

1

2

�
U ^ V ; d(@b�� @b�)(p)

�
; U; V 2 T 1;0

p X :

Lemma 4.1. For any U; V 2 T 1;0
p X, pick U ;V 2 C1(D; T 1;0X) that satisfy U(p) = U ,

V(p) = V . Then,

(4.1) M�
p (U; V ) = �

1

2

Dh
U ;V

i
(p); @b�(p)� @b�(p)

E
+

1

2

�
UV + VU

�
�(p):
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Proof. Recall that for a 1-form � and vector fields V1, V2 we have

(4.2) hV1 ^ V2; d�i = V1(hV2; �i)� V2(hV1; �i)� h[V1; V2]; �i;
Taking V1 = U , V2 = V and � = @b�� @b� in (4.2), we getD

U ^ V; d(@b�� @b�)
E

= U
�D
V; @b�� @b�

E
)� V

�D
U ; @b�� @b�

E�
�
Dh
U ;V

i
; @b�� @b�

E
:

(4.3)

Note that hV; @b�� @b�i = hV; @b�i = V� and hU ; @b�� @b�i = hU ;�@b�i = �U�. From
this observation, (4.3) becomes hU ^V; d(@b��@b�)i = (UV+VU)��h[U ;V ]; @b��@b�i.
The lemma follows. �

The definition of M�
p depends on the choice of local trivializations. Let fD be another

local trivialization with D \ fD 6= ;. Let es be a local trivializing section of L on the open
subset fD and the pointwise norm of es is jes(x)j2hL = e�e�(x), e� 2 C1(fD;R). Since es = gs

on D \ fD, for some non-zero CR function g, we can check that

(4.4) e� = �� 2 log jgj on D \ fD :

Proposition 4.2. For p 2 D \ fD, we have

(4.5) M�
p =M e�

p + i
�
Tg

g
� T g

g

�
(p)Lp :

where T is the real vector field on X defined by (1.2).

Proof. From (4.4), we can check that @b e� = @b� � @bg
g

and @b e� = @b� � @bg
g

on D \ fD.
From above, we have

(4.6) h[U; V ]; @b�� @b�i = h[U; V ]; @b e�� @b e�i+ �
[U; V ];

@bg

g
� @bg

g

�
;

where U; V 2 C1(D \ fD; T 1;0X). From (4.4), we have

(UV + V U)� = (UV + V U)( e�+ 2 log jgj)

= (UV + V U) e�+
V Ug

g
+
UV g

g
(since V g = 0, Ug = 0)

= (UV + V U) e�� [U; V ]g

g
+

[U; V ]g

g
:

(4.7)

From (4.6), (4.7) and (4.1), we see that

M�
p (U(p); V (p)) =M

e�
p (U(p); V (p))�

�
[U; V ](p);

1

2

@bg

g
(p)� 1

2

@bg

g
(p)
�

� 1

2

[U; V ]g

g
(p) +

1

2

[U; V ]g

g
(p):

(4.8)

We write [U; V ] = Z + W + �(x)T , where Z;W 2 C1(D \ fD; T 1;0X) and �(x) 2
C1(D \ fD; C). We can check that �(p) = �2iLp(U(p); V (p)). Since Wg = 0 and
Zg = hZ; @bgi = h[U; V ]; @bgi, we have

(4.9) [U; V ]g(p) = Zg(p) + �(p)Tg(p) = h[U; V ](p); @bg(p)i � 2iLp(U(p); V (p))Tg(p):
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Similarly, we have

(4.10) [U; V ]g(p) = h[U; V ](p); @bg(p)i � 2iLp(U(p); V (p))Tg(p):
Combining (4.9), (4.10) with (4.8), we get

M�
p (U(p); V (p)) =M e�

p (U(p); V (p)) + iLp(U(p); V (p))
�
Tg

g
� Tg

g

�
(p):

The proposition follows. �

Recall that R�(p);q was defined in (1.16). From (4.5), we see that

Re�(p);q = R�(p);q + i
�
Tg
g
� Tg

g

�
(p)

=
n
s+ i

�
Tg
g
� Tg

g

�
; s 2 R�(p);q

o
:

(4.11)

Recall that det(M�
x + sLx) denotes the product of all the eigenvalues of M�

x + sLx.
From (4.5) and (4.11), we see that the function x 7! R

R�(x);q

���det(M�
x + sLx)

��� ds does

not depend on the choice of �. Thus, the function x ! R
R�(x);q

���det(M�
x + sLx)

��� ds is
well-defined. Since M�

x and Lx are continuous functions of x, we conclude that x !R
R�(x);q

���det(M�
x + sLx)

��� ds is a continuous function of x.

Remark 4.3. We take local coordinates (x; �) = (z; �) = (x1; : : : ; x2n�2; �), zj = x2j�1 +
ix2j, j = 1; : : : ; n � 1, as in (2.3) and (2.4) defined on some neighborhood of p. Then,
it is straight forward to see that Lp =

Pn�1
j=1 �jdzj 
 dzj and M�

p =
Pn�1
j;t=1 �j; tdzt 
 dzj.

Thus,

(4.12)
Z
R�(p);q

���det(M�
p + sLp)

��� ds = Z
R�(p);q

���det (�j; t + s�j; t�j)
n�1
j;t=1

��� ds
and

R�(p); q =
n
s 2 R; the matrix (�j; t + s�j; t�j)

n�1
j; t=1 has q negative eigenvalues

and n� 1� q positive eigenvalues
o
:

(4.13)

We prove now the precise bound (1.21) which is one of the main results of this work.

Theorem 4.4. We have for all p 2 X

lim sup
k!1

k�n� (q)
k (p) 6

1

2(2�)n

Z
R�(p); q

���det(M�
p + sLp)

��� ds :
Proof. For p 2 X, let (x; �) = (z; �) = (x1; : : : ; x2n�1), zj = x2j�1 + ix2j, j = 1; : : : ; n� 1,
be the coordinate as in (2.3) and (2.4) defined on some neighborhood of p. From Theo-
rem 2.9, we have that lim supk!1 k

�n
�

(q)
k (0) 6

P0
jJ j=q S

(q)
J;Hn(0). From Theorem 3.10, we

know that
P0
jJ j=q S

(q)
J;Hn(0) =

1
2(2�)n

R
Rq

���detM��

��� dv(�), where M�� is as in (3.21) and Rq is
as in (3.22). Thus,

(4.14) lim sup
k!1

k�n� (q)
k (0) 6

1

2(2�)n

Z
Rq

���detM��

��� dv(�):
From (3.21), (3.22) and the definition of �� (see (3.5)), we see that

(4.15) detM�� = det
�
�j; t �

p
2��j�j; t

�n�1

j; t=1
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and

Rq =
n
� 2 R; the matrix

�
�j; t �

p
2��j; t�j

�n�1

j; t=1
has q negative eigenvalues

and n� 1� q positive eigenvalues
o
:

(4.16)

Note that dv(�) =
p
2d�. From this and (4.15), (4.16), (4.12), (4.13), it is easy to see

that
R
Rq

���detM��

��� dv(�) = R
R�(p); q

���det(M�
p + sLp)

��� ds. From this and (4.14), the theorem
follows. �

Proof of Theorem 1.5. By (1.12)-(1.14) we have dimHq
b (X;L

k) =
R
X�

(q)
k (x)dvX(x). In

view of Theorem 2.7, supk k�n�
(q)
k (�) is integrable on X. Thus, we can apply Fatou’s

lemma and we get by using Theorem 4.4:

lim sup
k!1

k�n dimHq
b (X;L

k) 6
Z
X
lim sup
k!1

k�n� (q)
k (x)dvX(x)

6
1

2(2�)n

Z
X

� Z
R�(x);q

���det(M�
x + sLx)

��� ds�dvX(x):
The theorem follows. �

5. STRONG MORSE INEQUALITIES ON CR MANIFOLDS

In this section, we will establish the strong Morse inequalities on CR manifolds. We first
recall some well-known facts. Until further notice, we assume that Y (q) holds. We know
[25, Th. 7.6], [21, Th. 5.4.11–12], [15, Cor. 8.4.7–8] that if Y (q) holds, then �(q)

b;k has a
discrete spectrum, each eigenvalue occurs with finite multiplicity and all eigenforms are
smooth. For � 2 R, let H q

b;6�(X;L
k) denote the space spanned by the eigenforms of

�(q)
b;k whose eigenvalues are bounded by � and denote by � (q)

k;6� the Szegö kernel function
of the space H q

b;6�(X;L
k). Similarly, let H q

b;>�(X;L
k) denote the space spanned by the

eigenforms of �(q)
b;k whose eigenvalues are > �.

Let Qb be the Hermitian form on 
0;q(X;Lk) defined for u; v 2 
0;q(X;Lk) by

Qb(u; v) = (@b;ku j @b;kv)k + (@
�
b;ku j @�b;kv)k + (u j v)k = (�(q)

b;ku j v)k + (u j v)k :
Let 
0;q(X;Lk) be the completion of 
0;q(X;Lk) under Qb in L2

(0;q)(X;L
k). For � > 0, we

have the orthogonal spectral decomposition with respect to Qb:

(5.1) 
0;q(X;Lk) = H q
b;6�(X;L

k)�H q
b;>�(X;L

k);

where H q
b;>�(X;L

k) is the completion of H q
b;>�(X;L

k) under Qb in L2
(0;q)(X;L

k).
Let u 2 H q

b;>�(X;L
k) \ 
0;q(X;Lk). There are fj 2 H q

b;>�(X;L
k), j = 1; 2; : : :, such

that Qb(fj�u)! 0, as j !1. From this, we can check that (�(q)
b;kfj j fj)k ! (�(q)

b;ku j u)k,
as j !1, and

(5.2) kuk2 = lim
j!1
kfjk2 = lim

j!1
(fj j fj)k 6 lim

j!1
1

�

�
�(q)
b;kfj

��� fj�
k
=

1

�

�
�(q)
b;ku

��� u�
k
:

We return to our situation. We will use the same notations as in section 3. For a given
point p 2 X, let s be a local trivializing section of L on an open neighborhood of p and
jsj2 = e��. Let (x; �) = (z; �) = (x1; : : : ; x2n�2; �), zj = x2j�1 + ix2j, j = 1; : : : ; n � 1,
be the local coordinates as in (2.3) and (2.4) defined on an open set D of p. Note that
(x(p); �(p)) = 0. We identify D with some open set of Hn.
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Chin-Yu Hsiao & George Marinescu Szegö kernel and Morse inequalities on CR manifolds

Let u(z; �) =
P0
jJ j=q uJ(z; �)dzJ 2 
0;q(Hn) be as in (3.41) and Proposition 3.9. From

(3.45) and the statement after (3.45), we know that the valueZ ���@mx @m0
� u

���2 e� 0dv(z)dv(�)
is finite and can be bounded by some positive continuous function of the eigenvalues of
M�� , � 2 Rq, � and �j, j = 1; : : : ; n� 1, for all m0 2 N0, m 2 N2n�2

0 . Since X is compact,
we deduce that for every m 2 N2n�2

0 , m0 2 N0, we can find Mm;m0 > 0 independent of the
point p, such that

(5.3)
Z
Hn

���@mx @m0
� u

���2 e� 0dv(�)dv(z) < Mm;m0 :

Set �k(z; �) = �k(
p
kz; k�)

P0
jJ j=q uJ(

p
kz; k�)eJ(z; �) 2 
0;q(D). Here � is a smooth

function, 0 6 � 6 1, supported on D1 which equals one on D 1
2

and

�k(z; �) = �
�

z

log k
;

�p
k log k

�
:

We remind that (ej)j=1;:::; n�1 denotes the basis of T �0;1X, which is dual to (U j)j=1;:::; n�1,
where (Uj)j=1;:::; n�1 are as in (2.3). We notice that for k large, Supp�k � D log kp

k

. From

Proposition 2.3 and (2.34), we have

(5.4) (�(q)
s;(k))(F

�
k�k) = �

(q)
b;Hn

�
�k(z; �)u(z; �)

�
+ "kPk(F

�
k�k);

where "k is a sequence tending to zero with k!1 and Pk is a second order differential
operator and all the derivatives of the coefficients of Pk are uniform bounded in k. Note
that �(q)

b;Hnu = 0 and sup(z;�)2Dlog k
jkF �

k�0 �  0j ! 0 as k ! 1 (�0 is as in (2.6)). From
this, (5.4) and (5.3), we deduce that there is a sequence �k > 0, independent of the point
p and tending to zero such that

(5.5)



�(q)

s;(k)(F
�
k�k)





kF �

k
�0
6 �k:

Similarly, we have for all m 2 N

(5.6)



(�(q)

s;(k))
m(F �

k�k)




kF �

k
�0
! 0 as k!1 :

Now define �k 2 
0;q(X;Lk) by

(5.7) �k(z; �) = skk
n
2 ekR�k(z; �) ;

where R(z; �) is as in (2.5). We can check that

(5.8) k�n j�k(0; 0)j2 = j�k(0; 0)j2 = ju(0; 0)j2 = 1

2(2�)n

Z
R�(p); q

���det(M�
p + sLp)

��� ds
for all k, and

k�kk2 =
Z
knek(R+R) j�kj2 e�k�m(z; �)dv(z)dv(�)

=
Z
kne�k�0 j�kj2m(z; �)dv(z)dv(�)

=
Z
e�kF

�
k
�0 j�k(z; �)j2 ju(z; �)j2m

�
zp
k
; �
k

�
dv(z)dv(�)

!
Z
juj2 e� 0(z;�)dv(z)dv(�) = 1; as k!1;

(5.9)
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where m(z; �)dv(z)dv(�) is the volume form. Note that m(0; 0) = 1. Moreover, we have

( 1
k
�(q)
b;k�k j �k)k
=
Z
knh1

k
�(q)
s �k; �kie�k�0m(z; �)dv(z)dv(�) (by (2.13))

=
Z
h1
k
F �
k (�

(q)
s �k); F

�
k�kiF �k e�kF

�
k
�0(F �

km)dv(z)dv(�)

=
Z
h(�(q)

s;(k))F
�
k�k; F

�
k�kiF �k e�kF

�
k
�0(F �

km)dv(z)dv(�) (by (2.22)):

(5.10)

From (5.5) and the fact that kF �
k�kkkF �

k
�0
6 1, we deduce that there is a sequence �k > 0,

independent of the point p and tending to zero such that

(5.11)
�
1
k
�(q)
b;k�k

��� �k�
k
6 �k:

Similarly, from (5.6), we can repeat the procedure above with minor changes and get

(5.12)



� 1

k
�(q)
b;k

�m
�k



! 0 as k!1;

for all m 2 N. Now, we can prove

Proposition 5.1. Let �k > 0 be any sequence with limk!1
�k
�k

= 0, where �k is as in (5.11).

Then, lim infk!1 k�n�
(q)
k;6k�k(0) >

1
2(2�)n

R
R�(p); q

���det(M�
p + sLp)

��� ds.
Proof. Let �k be as in (5.7). By (5.1), we have �k = �1

k +�
2
k, where �1

k 2H q
b;�k�k(X;L

k),
�2
k 2H q

b;>k�k(X;L
k). From (5.2), we have


�2
k




2 6 1

k�k

�
�(q)
b;k�

2
k

��� �2
k

�
k
6

1

k�k

�
�(q)
b;k�k

��� �k�
k
6
�k
�k
! 0;

as k!1. Thus, limk!1 k�2
kk = 0. Since k�kk ! 1 as k!1, we get

(5.13) lim
k!1




�1
k




 = 1:

Now, we claim that

(5.14) lim
k!1

k�n
����2
k(0)

���2 = 0:

On D, we write �2
k = skk

n
2 ekR�2

k, �
2
k 2 
0;q(D). From (2.26) and the proof of Lemma 2.6,

we see that

(5.15)
���F �
k�

2
k(0)

���2 6 Cn�1;r

� 


F �
k�

2
k




2
kF �

k
�0;Dr

+



(�(q)

s;(k))F
�
k�

2
k




2
kF �

k
�0;n�1;Dr

�
;

for some r > 0. Now, we have

(5.16)



F �

k�
2
k




2
kF �

k
�0;Dr

6



�2

k




2 ! 0; as k!1:
Moreover, from (2.26) and using induction, we get

(5.17)



(�(q)

s;(k)F
�
k�

2
k




2
kF �

k
�0;n�1;Dr

6 C 0
nX

m=1




(�(q)
s;(k))

mF �
k�

2
k




2
kF �

k
�0;Dr0

;

for some r0 > 0, where C 0 > 0 is independent of k. We can check that for all m 2 N,

(5.18)




(�(q)

s;(k))
mF �

k�
2
k





2
kF �

k
�0;Dr0

6




( 1k�(q)

b;k)
m�2

k





2 6 



( 1k�(q)
b;k)

m�k





2 ! 0 as k!1:
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Here we used (5.12). Combining (5.18), (5.17), (5.16) with (5.15), we get

lim
k!1

���F �
k�

2
k(0)

���2 = lim
k!1

����2
k(0)

���2 = lim
k!1

k�n
����2
k(0)

���2 = 0:

Hence (5.14) follows. From this and (5.8), we conclude

(5.19) lim
k!1

k�n
����1
k(0)

���2 = 1

2(2�)n

Z
R�(p); q

���det(M�
p + sLp)

��� ds:
Now,

k�n� (q)
k;6k�k(0) > k

�n j�1
k(0)j2
k�1

kk2
! 1

2(2�)n

Z
R�(p); q

���det(M�
p + sLp)

��� ds; as k!1:

The proposition follows. �

Proposition 5.2. Let �k > 0 be any sequence with �k ! 0, as k!1. Then,

lim sup
k!1

k�n� (q)
k;6k�k(0) 6

1

2(2�)n

Z
R�(p); q

���det(M�
p + sLp)

��� ds:
Proof. The proof is a simple modification of the proof of Theorem 4.4 and in what follows
these modifications will be presented. Let �k 2H q

b;6k�k(X;L
k) with k�kk = 1. On D, we

write �k = skk
n
2 ekR�k, �k 2 
0;q(D). From (2.26) and using induction, we get

(5.20) kF �
k�kk2kF �

k
�0;s+1;Dr

6 Cr;s
�
kF �

k�kk2kF �
k
�0;D2r

+
s+1X
m=1




(�(q)
s;(k))

mF �
k�k




2
kF �

k
�0;D2r

�
:

We can check that



(�(q)

s;(k))
mF �

k�k



2
kF �

k
�0;D2r

6



( 1

k
�(q)
b;k)

m�k



 6 �mk ! 0. Thus, the conclu-

sion of Proposition 2.8 is still valid and the rest of the argument goes through word by
word. �

Proof of Theorems 1.6, 1.7 and 1.8. We can repeat the proof of Theorem 2.7 and con-
clude that for any sequence (�k) with �k ! 0, as k ! 1, there is a constant C0 inde-
pendent of k, such that k�n� (q)

k;6k�k(x0) 6 C0 for all x0 2 X. From this, Proposition 5.1
and Proposition 5.2 and the fact that the sequence (�k) in (5.11) is independent of the
point p, we get Theorem 1.6. By integrating Theorem 1.6 we obtain Theorem 1.7. By
applying the algebraic Morse inequalities [27, Lemma 3.2.12] to the @b;k-complex (1.7)
we deduce in view of Theorem 1.7 the strong Morse inequalities of Theorem 1.8. �

6. EXAMPLES

In this section, some examples are collected. The aim is to illustrate the main results
in some simple situations. First, we state our main results in the embedded case.

6.1. The main results in the embedded cases. Let M be a relatively compact open
subset with C1 boundary X of a complex manifold M 0 of dimension n with a smooth
Hermitian metric h � ; � i. Furthermore, let (L; hL) be a Hermitian holomorphic line bundle
over M 0 and let � be a local weight of the metric hL, i. e. for a local trivializing section s
of L on an open subset D �M 0, js(x)j2hL = e��. If we restrict L on the boundary X, then
L is a CR line bundle over the CR manifold X. For p 2 X, let M�

p be as in Definition 1.3.

Proposition 6.1. For U; V 2 T 1;0
p X, we have M�

p (U; V ) =
D
@@�(p); U ^ V

E
.
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Proof. Let r 2 C1(X; R) be a defining function of X. For U; V 2 T 1;0
p X, pick U ;V 2

C1(M 0; T 1;0M 0) that satisfy U(p) = U , V(p) = V and U(r) = V(r) = 0 in a neighborhood
of p in M 0. From (4.2), we have

2
D
U ^ V; @@�

E
=
D
U ^ V; d(@�� @�)

E
= U

�D
V; @�� @�

E�
� V

�D
U ; @�� @�

E�
�
Dh
U ;V

i
; @�� @�

E
:

(6.1)

Note that hV; @�� @�i = hV; @�i = V� and hU ; @�� @�i = hU ;�@�i = �U�. From this
observation, (6.1) becomes

(6.2) 2
D
U ^ V; @@�

E
=
�
UV + VU

�
��

Dh
U ;V

i
; @�� @�

E
:

Since U(r) = V(r) = 0 in a neighborhood of p in M 0, we have�
UV + VU

�
�(p) =

�
UjXVjX + VjXUjX

�
�jX(p)

and Dh
U ;V

i
; @�� @�

E
(p) =

Dh
UjX ;VjX

i
; @b�jX � @b�jX

E
(p);

where UjX is the restriction to X of U and similarly for V and �. From this observation
and (6.2), we conclude that

(6.3) 2
D
U ^ V; @@�

E
(p) =

�
UjXVjX + VjXUjX

�
�jX(p)�

Dh
UjX ;VjX

i
; @b�jX � @b�jX

E
(p):

From (6.3) and Lemma 4.1, the proposition follows. �

We denote by RL
X the restriction of RL to T 1;0X. As before, let Lp be the Levi form of

X at p 2 X. We define the set R�(p); q as in (1.16). Set

(6.4) Iq(X;L) :=
Z
X

Z
R�(x);q

���det�RL
X + sLx

���� ds dvX(x) :
Now, we can reformulate Theorem 1.5 and Theorem 1.8:

Theorem 6.2. If condition Y (q) holds, then

(6.5) dimHq
b (X;L

k) 6
kn

2(2�)n
Iq(X;L) + o(kn);

If condition Y (j) holds, for all j = 0; 1; : : : ; q, then

(6.6)
qX
j=0

(�1)q�jdimHj
b (X;L

k) 6
kn

2(2�)n

qX
j=0

(�1)q�jIj(X;L) + o(kn):

If condition Y (j) holds, for all j = q; q + 1; : : : ; n� 1, then
n�1X
j=q

(�1)q�jdimHj
b (X;L

k) 6
kn

2(2�)n

n�1X
j=q

(�1)q�jIj(X;L) + o(kn):

Proof of Theorem 1.13. Since L is positive, RL
X+sLx is positive if jsj small, so

���R�(p);0

��� > 0

for all p 2 X. By the hypothesis of Theorem 1.13 we have �n��1 = �n� < 0 < �n�+1 =
�n�+2 at each point of X. This implies, that if RL

X+sLx cannot have exactly one negative
eigenvalue at any point of X (note that s takes both negative and positive values). Thus,
R�(p);1 = ; for all p 2 X. Hence, the strong Morse inequalities (6.6) for q = 1 imply the
conclusion. �
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Proof of Theorem 1.15. Note that X and L satisfy the conditions of Theorem 1.12. Hence
there exists c > 0 such that dimH0

b (X;L
k) > ckn, for k sufficiently large.

On the other hand, every CR function on X extends locally to a holomorphic function
in a small open set of M . For b < c, set M c

b = fb < � < cg. Thus, there exist b <
a < c such that the restriction morphism H0(M c

b ; E) ! H0(X;E) is an isomorphism
for any holomorphic line bundle E ! M . Moreover, we know by the Andreotti-Grauert
isomorphism theorem [1] that the restrictionH0(M;E)! H0(M c

b ; E) is an isomorphism.
Thus there exist C; c > 0 and k0 2 N such that

(6.7) ckn 6 dimH0(M;Lk) 6 Ckn ; for k > k0 ;

which we write
dimH0(M;Lk) � kn ; k!1 :

Now, M is a (n�2)-concave manifold in the sense of [1], in particular Andreotti-pseudo-
concave (see [27, Def. 3.4.3]). By (6.7) and (1.28) we obtain that %k = n for large k and
the desired conclusions follow. �

Theorem 1.15 is a consequence of Theorem 1.12 and of the fact that CR section ex-
tend to a (n � 2)-convex-concave strip around the given CR manifold. By extending the
sections as far as possible we obtain the following results.

Corollary 6.3. Let M be a projective manifold, n = dimCM , and let X be a compact hyper-
surface, such that there exist an open set U � M and � 2 C1(U;R) with X = ��1(0) � U
and d�jX 6= 0. Let L!M be a holomorphic line bundle over M . We assume that the curva-
ture form RL of L and the Levi form @@�jX satisfy the assumptions of Theorem 1.12. Then
there exist a branched covering � : fM ! M , a divisor H � fM and an integer d = d(L)
such that for eL := ��L holds:

dimH0(fM nH; eLk) = dimH0(fM; eLk 
 [kdH]) � kn ; k!1 :

Proof. Let us first observe that under the given hypotheses, there exist b < 0 < c such
that M 0 = fb < � < cg is a (n � 2)-convex-concave strip which fulfills the assumptions
of Theorem 1.15. By (6.7), dimH0(M 0; Lk) � kn, k ! 1. Since M 0 is Andreotti-
pseudoconcave, a theorem of Dingoyan [18, 19] shows that there exist a branched
covering � : fM ! M with a section S on M , a divisor H � fM and an integer
d such that holomorphic sections of ��Lk over S(M 0) extends to a holomorphic sec-
tion of ��Lk over fM n H or of eLk 
 [kdH] over fM . Thus, the restriction morphisms
H0(fM n H; eLk) ! H0(S(M 0); eLk) and H0(fM; eLk 
 [kdH]) ! H0(S(M 0); eLk) are iso-
morphisms. On the other hand, dimH0(S(M 0); eLk) � kn, k ! 1 and the assertion
follows. �

Remark 6.4. There are several criteria for a line bundle on a compact manifold to be big
(Siu, Ji-Shiffman, Bonavero see e. g. [27, Ch. 2]). Corollary 6.3 asserts roughly that if a
line bundle L is positive along a well-chosen hypersurface then by passing to a branched
covering there exist a divisor H and an integer d such that L
 [dH] is big.

If one knows that X has a neighbourhood M 0, which is a (n� 2)-convex-concave strip
such that any meromorphic function on M 0 is rational, then [18, 19] shows that there is
no need to pass to a covering.
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Chin-Yu Hsiao & George Marinescu Szegö kernel and Morse inequalities on CR manifolds

Corollary 6.5. Assume the same hypotheses as in Corollary 6.3 for M , X and L. Assume
moreover, that there exists a (n� 2)-convex-concave strip M 0 = fb < � < cg such that any
meromorphic function on M 0 is rational. Then there exists a divisor H �M and an integer
d such that

dimH0(M nH;Lk) = dimH0(M;Lk 
 [kdH]) � kn ; k!1 :

6.2. Holomorphic line bundles over a complex torus. Let

Tn := Cn=(
p
2�Zn + i

p
2�Zn)

be the flat torus and let L� be the holomorphic line bundle over Tn with curvature the
(1; 1)-form �� =

Pn
j=1 �jdzj ^ dzj, where �j, j = 1; : : : ; n, are given non-zero integers.

More precisely, L� := (Cn � C)=� , where (z; �) � (ez; e�) if

ez � z = (�1; : : : ; �n) 2
p
2�Zn + i

p
2�Zn ; e� = exp

�Pn
j=1 �j(zj�j +

1
2
j�jj2 )

�
� :

We can check that � is an equivalence relation and L� is a holomorphic line bundle over
Tn. For [(z; �)] 2 L� we define the Hermitian metric by���[(z; �)]���2 := j�j2 exp(�Pn

j=1 �j jzjj2)
and it is easy to see that this definition is independent of the choice of a representative
(z; �) of [(z; �)]. We denote by ��(z) the weight of this Hermitian fiber metric. Note that
@@�� = ��. From now on, we assume that �j < 0, for j = 1; : : : ; n� and �j > 0, for
j = n� + 1; : : : ; n.

Let L�� be the dual bundle of L� and let k � kL�
�

be the norm of L�� induced by the
Hermitian fiber metric on L�. Consider the compact CR manifold of dimension 2n + 1
X = fv 2 L��; kvkL�

�
= 1g; this is the boundary of Grauert tube of L��.

Let � : L�� ! Tn be the natural projection from L�� onto Tn. Let L� be another
holomorphic line bundle over Tn determined by the constant curvature form �� =Pn
j=1 �jdzj ^ dzj, where �j, j = 1; : : : ; n, are given non-zero integers. The pullback

line bundle ��L� is a holomorphic line bundle over L��. The Hermitian fiber metric ��
on L� induces a Hermitian fiber metric on ��L� that we shall denote by  . If we restict
��L� on X, then ��L� is a CR line bundle over the CR manifold X.

The part of X that lies over a fundamental domain of Tn can be represented in local
holomorphic coordinates (z; �), where � is the fiber coordinates, as the set of all (z; �)
such that r(z; �) := j�j2 exp(Pn

j=1 �j jzjj2) � 1 = 0 and the fiber metric  may be written
as  (z; �) =

Pn
j=1 �j jzjj2. We can identify Lp with 1

kdr(p)k
Pn
j=1 �jdzj ^ dzj. It is easy to

see that @@ (p)jT 1;0X =
Pn
j=1 �jdzj ^ dzj. We get for all p 2 X, s 2 R,

@@ (p)jT 1;0X + sLp =
nX
j=1

�
�j +

s

kdr(p)k�j
�
dzj ^ dzj :

Thus, if �j = �j, j = 1; : : : ; n, and q 6= n�; n� n�, then R�(p); q = ;, for all p 2 X. From
this and Theorem 6.2, we obtain

Theorem 6.6. If �j = �j, j = 1; : : : ; n, and q 6= n�; n� n�, then

dimHq
b (X; (�

�L�)k) = o(kn+1) ; as k!1 :
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If �j = j�jj, j = 1; : : : ; n, we can check that
���R�(p);0

��� > 0, for all p 2 X, where
���R�(p);0

���
denotes the Lebesgue measure of R�(p);0. Moreover, if q > 0 and q 6= n�; n � n�, then
R�(p); q = ;, for all p 2 X. From this observation, (6.5) for q = 0 and (6.6) for q = 1, we
obtain

Theorem 6.7. If �j = j�jj, j = 1; : : : ; n, and Y (0), Y (1) hold, then

dimH0
b (X; (�

�L�)k) � kn+1 ; as k!1 :

6.3. Compact Heisenberg groups: non-embedded cases. Next we consider compact
analogues of the Heisenberg group Hn. Let �1; : : : ; �n�1 be given non-zero integers. Let
CHn = (Cn�1 � R)=� , where (z; �) � (ez; e�) if

ez � z = � 2 p2�Zn�1 + i
p
2�Zn�1 ; e� � � + i

Pn�1
j=1 �j(zj�j � zj�j) 2 �Z :

We can check that � is an equivalence relation and CHn is a compact manifold of di-
mension 2n � 1. The equivalence class of (z; �) 2 Cn�1 � R is denoted by [(z; �)]. For a
given point p = [(z; �)], we define T 1;0

p CHn to be the space spanned byn
@
@zj
� i�jzj @@� ; j = 1; : : : ; n� 1

o
:

It is easy to see that the definition above is independent of the choice of a representa-
tive (z; �) for [(z; �)]. Moreover, we can check that T 1;0CHn is a CR structure. Thus,
(CHn; T

1;0CHn) is a compact CR manifold of dimension 2n � 1. We take a Hermitian
metric h � ; � i on the complexified tangent bundle CTCHn such that�

@
@zj
� i�jzj @@� ; @

@zj
+ i�jzj

@
@�
; @
@�
; j = 1; : : : ; n� 1

�
is an orthonormal basis. The dual basis of the complexified cotangent bundle is�

dzj ; dzj ; !0 := d� +
Pn�1
j=1 (i�jzjdzj � i�jzjdzj); j = 1; : : : ; n� 1

�
:

The Levi form Lp of CHn at p 2 CHn is given by Lp =
Pn�1
j=1 �jdzj ^ dzj. From now

on, we assume that �1 < 0; : : : ; �n� < 0; �n�+1 > 0; : : : ; �n�1 > 0. Thus, the Levi form
has constant signature (n�; n� 1� n�).

Now, we construct a CR line bundle over CHn. Let L = (Cn�1 � R � C)=� where
(z; �; �) � (ez; e�; e�) if

(z; �) � (ez; e�) ; e� = � exp(
Pn�1
j=1 �j(zj�j +

1
2
j�jj2)) ; for � = ez � z :

where �1; : : : ; �n�1, are given non-zero integers. We can check that � is an equivalence
relation and L is a CR line bundle over CHn. For (z; �; �) 2 Cn�1 � R � C we denote
[(z; �; �)] its equivalence class. It is easy to see that the pointwise norm���[(z; �; �)]���2 := j�j2 exp ��Pn�1

j=1 �j jzjj2
�

is well-defined. In local coordinates (z; �; �), the weight function of this metric is � =Pn�1
j=1 �j jzjj2. Note that

@b =
Pn�1
j=1 dzj ^ ( @

@zj
+ i�jzj

@
@�
) ; @b =

Pn�1
j=1 dzj ^ ( @

@zj
� i�jzj @@� ):

Thus d(@b�� @b�) = 2
Pn�1
j=1 �jdzj ^ dzj and M�

p =
Pn�1
j=1 �jdzj ^ dzj. Hence

M�
p + sLp = Pn

j=1(�j + s�j)dzj ^ dzj ; for all p 2 CHn, s 2 R:
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Thus, if �j = �j, for all j, and q 6= n�; n� 1� n�, then R�(p); q = ;, for all p 2 X. From
this and Theorem 1.5, we obtain

Theorem 6.8. If �j = �j, j = 1; : : : ; n� 1, and q 6= n�; n� 1� n�, then

dimHq
b (CHn; L

k) = o(kn) ; as k!1 :

If �j = j�jj for all j, we can check that
���R�(p);0

��� > 0, for all p 2 X, where
���R�(p);0

���
denotes the Lebesgue measure of R�(p);0. Moreover, if q > 0 and q 6= n�; n� 1�n�, then
R�(p); q = ;, for all p 2 X. From this observation, the weak Morse inequalities (Theorem
1.5) for q = 0 and the strong Morse inequalities (Theorem 1.8), we obtain

Theorem 6.9. If �j = j�jj, j = 1; : : : ; n� 1, and Y (0), Y (1) hold, then

dimH0
b (CHn; L

k) � kn ; as k!1 :
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Centre Math., École Polytech., Paris, 1975, Exp. no. 9, pp. 13.
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