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Introduction

Let X be a compact complex manifold and L be a holomorphic line bundle on
X . We denote by Hq(X,L) the qth cohomology group of the sheaf of holomorphic
sections of L on X .

Many important results in algebraic and complex geometry are derived by
combining a vanishing property with an index theorem, or from the asymptotic
results on the tensor powers Lp when p → ∞. One of the most famous examples
is the Kodaira–Serre vanishing theorem which asserts that if L is positive, then
Hq(X,Lp) vanish for q � 1 and large p. The key remark is that the spectrum
of the Kodaira–Laplace operator �p acting on (0, q)-forms, q � 1, with values
in the tensor powers Lp, shifts to the right linearly in the tensor power p. As a
consequence the kernel of �p is trivial on forms of higher degree and the vanishing
theorem follows by the Hodge theory and the Dolbeault isomorphism. Moreover,
the Riemann–Roch–Hirzebruch theorem implies that Lp has a lot of holomorphic
sections onX for large p, which indeed embed the manifoldX in a projective space.

An important generalization which we will emphasize is the asymptotic holo-
morphic Morse inequalities of Demailly. They give asymptotic bounds on the Morse
sums of the ∂-Betti numbers dimHq(X,Lp) in terms of certain integrals of the
curvature form of L. The holomorphic Morse inequalities provide a useful tool in
complex geometry. They are again based on the asymptotic spectral behavior of
the Kodaira–Laplace operator �p for large p.

The applications of these vanishing theorems and holomorphic Morse inequal-
ities are numerous. Let us mention here only the Kodaira embedding theorem, the
classical Lefschetz hyperplane theorem for projective manifolds, the computation
of the asymptotics of the Ray-Singer analytic torsion by Bismut and Vasserot,
as well as the solution of the Grauert–Riemenschneider conjecture by Siu and
Demailly or the compactification of complete Kähler manifolds of negative Ricci
curvature by Nadel and Tsuji. Donaldson’s work on the existence of symplectic
submanifolds was inspired by the same circle of ideas.

The holomorphic Morse inequalities are global statements which can be de-
duced from local information such as the behavior of the heat or Bergman kernels.
In this refined form we can establish the asymptotic expansion of the Bergman ker-
nel associated to Lp as p→∞, which have had a tremendous impact on research in
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the last years. Especially, let’s single out its applications in Donaldson’s approach
to the existence of Kähler metrics with constant scalar curvature in relation to
the Mumford–Chow stability which was mainly motivated by a conjecture of Yau.
Other applications include the convergence of the induced Fubini–Study metrics,
the distribution of zeroes of random sections, the Berezin–Toeplitz quantization
and sampling problems.

Another important operator which we will study, also in view of the gen-
eralization to symplectic manifolds, is the Dirac operator acting on high tensor
powers of L on symplectic manifolds. For a Kähler manifold the square of the
Dirac operator is twice the Kodaira Laplacian.

In the present book we will give for the first time a self-contained and unified
treatment to the holomorphic Morse inequalities and the asymptotic expansion of
the Bergman kernel by using heat kernels, and we present also various applications.
Our point of view comes from the local index theory, especially from the analytic
localization techniques developed by Bismut–Lebeau. Basically, the holomorphic
Morse inequalities are a consequence of the small time asymptotic expansion of the
heat kernel. The Bergman kernel corresponds to the limit of the heat kernel when
the time parameter goes to infinity, and the asymptotic is more sophisticated.
A simple principle in this book is that the existence of the spectral gap of the
operators implies the existence of the asymptotic expansion of the corresponding
Bergman kernel, no matter if the manifoldX is compact or not, or singular, or with
boundary. Moreover, we will present a general and algorithmic way to compute
the coefficients of the expansion.

Let us now give a rapid account of the main results discussed in this book.

In the first chapter we introduce the basic material. After giving a self-
contained presentation of the connections on the tangent bundle, Dirac operator
and Lichnerowicz formula, we specify them for the Kodaira Laplacian, especially
we study in detail the Bochner–Kodaira–Nakano formula without and with bound-
ary term. These various formulas are fundamental and have a lot of applications.
We will use them repeatedly throughout the text. As a direct application, we es-
tablish immediately classical vanishing results and the spectral gap property for
Kodaira Laplacians and modified Dirac operators. The latter will play an essential
role in our approach to the asymptotic expansion of Bergman kernel.

The last two sections of this chapter are dedicated to Demailly’s holomorphic
Morse inequalities. They originally arose in connection with the generalization of
the Kodaira vanishing theorem for Moishezon manifolds proposed by Grauert and
Riemenschneider, who conjectured that a compact connected complex manifold
X possessing a semi-positive line bundle L, which is positive at at least one point,
is Moishezon. The conjecture was solved by Siu and Demailly. The solution of
Demailly involves the following strong Morse inequalities:

q∑

j=0

(−1)q−j dimHj(X,Lp) � pn

n!

∫

X(�q)
(−1)q

(√−1
2π RL

)n
+ o(pn) (1)
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as p −→ ∞, where RL is the curvature of L (cf. (1.5.15)), and X(� q) is the
set of points where ṘL ∈ End(T (1,0)X), defined by RL(u, v) = gTX(ṘLu, v) for
u, v ∈ T (1,0)X and a Riemannian metric gTX on TX , is non-degenerate and has
at most q negative eigenvalues. For q = n we have equality, so we obtain an
asymptotic Riemann–Roch–Hirzebruch formula.

Demailly’s discovery was triggered by Witten’s influential analytic proof of
the standard Morse inequalities. Witten analyzes the spectrum of the Schrödinger
operator ∆t = ∆+ t2|df |2 + tV , where t > 0 is a real parameter, ∆ is the Bochner
Laplacian acting on forms on X , f is a Morse function on X and V is a 0-order
operator. For t −→ ∞, the spectrum of ∆t approaches the spectrum of a sum of
harmonic oscillators attached to the critical points of f . In Demailly’s holomorphic
Morse inequalities, the role of the Morse function is played by the Hermitian metric
on the line bundle and the Hessian of the Morse function becomes the curvature of
the bundle. The original proof was based on the study of the semi-classical behavior
as p→∞ of the spectral counting functions of the Kodaira Laplacians �p on Lp.
Subsequently, Bismut gave a heat kernel proof which involves probability theory,
and then Demailly and Bouche were able to replace the probability technique by
a classical heat kernel argument.

We present here a new approach based on the asymptotic of the heat kernel
of the Kodaira Laplacian, exp(−u

p�p). The analytic core follows in Section 1.6
where, inspired by the work of Bismut–Lebeau, we present a new proof for the
asymptotic of the heat kernel. In Section 1.7 we apply these results to obtain a
heat equation proof of the holomorphic Morse inequalities following Bismut.

In Chapter 2 we study the properties of the field of meromorphic func-
tions. We establish further two fundamental results about Moishezon manifolds.
Then we give the proof of the Siu–Demailly criterion which answers the Grauert–
Riemenschneider conjecture. For q = 1, the Morse inequalities (1) give

dimH0(X,Lp) � pn

n!

∫

X(�1)

(√−1
2π RL

)n
+ o(pn) , p −→∞ . (2)

Therefore if L satisfies ∫

X(�1)

(√−1
2π RL

)n
> 0 , (3)

(in particular, if L is semi-positive and positive at at least one point), there are
a lot of sections in H0(X,Lp), which by taking quotients deliver n independent
meromorphic functions, i.e., X is Moishezon.

In Section 2.4 we present an algebraic reformulation of the holomorphic Morse
inequalities.

In Chapter 3 we prove the Morse inequalities for the Dolbeault L2-coho-
mology spaces for a non-compact manifold satisfying the fundamental estimate
(Poincaré inequality) at infinity. Using this more abstract formulation of the Morse
inequalities, we can find a lower bound for the growth of the holomorphic section
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space for uniformly positive line bundles (Theorem 3.3.5) and an extension of the
Siu–Demailly criterion for compact complex spaces with isolated singularities.

We end the chapter with a study of a class of manifolds satisfying pseudocon-
vexity conditions in the sense of Andreotti–Grauert, namely q-convex and weakly
1-complete manifolds and also covering manifolds. Pseudoconvex manifolds are
very important in complex geometry and analysis.

In Chapter 4, we study the asymptotic expansion of the Bergman kernel.
We assume now that L is positive, equivalently, there exists a Hermitian metric
hL on L, such that ω =

√−1
2π RL defines a Kähler form on X , where RL is the

curvature of the holomorphic Hermitian connection ∇L on (L, hL). In the rest of
the Introduction we denote by gTX the associated Kähler metric to ω on TX . We
also let E be a holomorphic vector bundle on X with a Hermitian metric hE .

Since L is positive, the Kodaira–Serre vanishing theorem shows that

Hq(X,Lp ⊗ E) = 0 (4)

for p large enough and q � 1. Thus the whole cohomology of Lp ⊗E concentrates
in degree zero.

The Bergman kernel Pp(x, x′) associated to Lp⊗E for p large enough, is the
smooth kernel of the orthogonal projection Pp from C∞(X,Lp ⊗E), the space of
smooth sections of tensor powers Lp ⊗E, on the space of holomorphic sections of
Lp⊗E, or, equivalently, on the kernel of the Kodaira Laplacian �p on Lp⊗E. More
precisely, let {Spi }

dp

i=1 be any orthonormal basis of H0(X,Lp ⊗E) with respect to
the global inner product induced by gTX , hL and hE (cf. (1.3.14)). Then for p
large enough,

Pp(x, x′) =
dp∑

i=1

Spi (x) ⊗ (Spi (x
′))∗ ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗x′ . (5)

Especially,

Pp(x, x) =
dp∑

i=1

|Spi (x)|2, if E = C. (6)

The Bergman kernel has been studied by Tian, Yau, Bouche, Ruan, Catlin, Zel-
ditch, Lu, Wang, and many others, in various generalities, establishing the asym-
ptotic expansion for high powers of L. Moreover, it was discovered that the co-
efficients in the asymptotic expansion encode geometric information about the
underlying complex projective manifolds.

Our approach to the study of the asymptotic expansion continues the method
applied in Chapter 1. We treat both the Dirac operator and the Kodaira Laplacian
in the same time by means of the modified Dirac operator. The key point of our
method is that the spectrum Spec(�p) of �p (or of the half of the square of the
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Dirac operator) has a spectral gap, cf. Section 1.5. This means that there exists
C > 0 such that for p � 1,

Spec(�p) ⊂ {0}∪ ]2π p− C,+∞[. (7)

We can divide our approach in three steps. The first step is to establish the
spectral gap property (7). The second is the localization: the spectral gap property
(7) and the finite propagation speed of solutions of hyperbolic equations allow us
first to localize the asymptotic of Pp(x0, x

′) in the neighborhood of x0. We pull-
back and extend the operator to Tx0X

∼= R2n, and verify that it inherits also
the spectral gap property. The third step is to work on R2n. Here we combine
the spectral gap property, the rescaling of the coordinates and functional analysis
techniques, to conclude the proof of our final result. Moreover, by using a formal
power series trick, we get a general and algorithmic way to compute the coefficients
in the expansion. Certainly, for the last two steps it makes no difference whether
the manifold X is compact or not. Thus in various new situations, we only need
to verify the spectral gap property (cf. Chapters 5, 6, 8).

We obtain finally the following asymptotic expansion (cf. Theorem 4.1.2):

Pp(x, x) ∼
∞∑

r=0

br(x)pn−r , (8)

where br(x) ∈ End(E)x are smooth coefficients, which are polynomials in RTX ,
RE and their derivatives with order � 2r − 2. Moreover

b0 = IdE , b1 =
1
4π

[
2RE(wj , wj) +

1
2
rX IdE

]
, (9)

where rX is the scalar curvature of (TX, gTX) and {wj}nj=1 is an orthonormal
basis of T (1,0)X . In the case of trivial bundle E the term b1 was calculated by
Lu and used by Donaldson in his work on the existence of Kähler metrics with
constant scalar curvature.

We also find the full off-diagonal expansion of the Bergman kernel Pp(x, x′)
with the help of the heat kernel.

In Chapter 5, we study in detail the metric aspect of the Kodaira map as an
application of the asymptotic expansion of the Bergman kernel. First, we present
an analytic proof of the Kodaira embedding theorem following an original idea of
Bouche, and we study the convergence of the induced Fubini–Study metric. Then
the Kodaira map Φp : X −→ P(H0(X,Lp)∗), defined by Φp(x) = {s ∈ H0(X,Lp) :
s(x) = 0} for x ∈ X , is an embedding for p large enough and for any l ∈ N, there
exists Cl > 0 such that

∣∣∣
1
p

Φ∗
p(ωFS)− ω

∣∣∣
C l(X)

� Cl
p2

, (10)

where ωFS is the Fubini–Study form on P(H0(X,Lp)∗).
By using the Kodaira embedding, we also discuss briefly the relation of the

Bergman kernel and the existence of Kähler metrics with constant scalar curva-
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ture. Then, as an easy consequence of our approach, we describe the asymptotic
expansion of the Bergman kernel on complex orbifolds, and the metric aspect of
the Kodaira map.

Finally, we give an introduction to the Ray-Singer analytic torsion and study
its asymptotic behavior. The analytic torsions have a lot of applications, especially
in Arakelov geometry. This seems to be quite independent of our subject, but in
fact, Donaldson has used the analytic torsion in his study of the existence of Kähler
metrics with constant scalar curvature.

In Chapter 6 we establish the existence of the expansion on compact sets of a
non-compact manifold, as long as the spectral gap exists. One interesting situation
is the case of Zariski open sets in compact complex spaces endowed with the
generalized Poincaré metric. The expansion of the Bergman kernel implies a new
proof of the Shiffman–Ji–Bonavero–Takayama criterion for a Moishezon manifold.
Then we obtain again Morse inequalities which are suitable for the study of the
compactification of complete Kähler manifolds with pinched negative curvature.

In Chapter 7, using the full off-diagonal expansion of the Bergman kernel, we
study the properties of Toeplitz operators and the Berezin–Toeplitz quantization.
For f ∈ C∞(X,End(E)), we define the Toeplitz operator {Tf,p} as the family of
linear operators

Tf,p : L2(X,Lp ⊗ E) −→ L2(X,Lp ⊗ E) , Tf,p = Pp f Pp . (11)

One of our main goals is to show that the set of Toeplitz operators is closed
under the composition of operators, so they form an algebra. More precisely, let
f, g ∈ C ∞(X,End(E)), then there exist Cr(f, g) ∈ C∞(X,End(E)) with

Tf,p Tg,p =
∞∑

r=0

p−rTCr(f,g),p +O(p−∞), (12)

where Cr are differential operators. In particular C0(f, g) = fg.
If f, g ∈ C ∞(X), then

[Tf,p , Tg,p] =
√
−1
p

T{f,g},p +O(p−2), (13)

here {f, g} is the Poisson bracket of f, g on (X, 2πω).
In Chapter 8, we find the asymptotic expansion of the Bergman kernel as-

sociated to the modified Dirac operator and the renormalized Bochner Laplacian,
as well as their applications.

We hope the material of this book can also be used by graduate students. To
help the readers, we add five appendices. In Appendix A, we recall the Sobolev
embedding theorems and basic elliptic estimates. In Appendix B, we present useful
material from Hermitian geometry. We also introduce the basics of Chern–Weil and
Chern–Simons theories. In Appendix C, we collect some facts about self-adjoint
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operators. In Appendix D, we explain in detail the relation of the heat kernel
and the finite propagation speed of solutions of hyperbolic equations. Finally, in
Appendix E, we explain the basic facts about the harmonic oscillator.

The book should also serve as an analytic introduction to the applications to
algebraic geometry of the holomorphic Morse inequalities as developed by Demailly
and his school, as well as to Donaldson’s approach to the existence of Kähler
metrics of constant scalar curvature.

To keep the book within reasonable size, we list several classical results with-
out proofs, and we indicate the corresponding references in the bibliographic notes
of each chapter. The literature concerning the various themes we treat is quite vast
and contains many important contributions. We could not include them all in the
Bibliography, and restrained to the references which directly influenced our work.

Prerequisites for this book are a course on differentiable manifolds and vector
bundles. This book is not necessarily meant to be read sequentially. The reader is
encouraged to go directly to the chapter of interest. Basically, Chapters 1 and 4
introduce the main technical ideas, and other chapters are various generalizations
and applications. Here is a roadmap for our book.

Chap. 2
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�

�
�

� Chap. 5

Chap. 1

�������������
��

������������

���
��

��
��

��
��

��
��

��
� Chap. 3 ������ Chap. 6

Chap. 4

�������������

�������������������
��

������������ Chap. 7

���
�
�

Section 5.5 Chap. 8

Notation

We denote by C,N,Q,R,Z the complex, natural, rational, real, integer numbers,
and C∗ = C \ {0}, N∗ = N \ {0}, R∗ = R \ {0}, R+ = [0,∞[, R∗

+ =]0,∞[,
Q+ = Q ∩ R+. For u ∈ R, we denote by �u� the integer part of u.

For α = (α1, . . . , αm) ∈ Nm, B = (B1, . . . , Bm) ∈ Cm, we write by

|α| =
m∑

j=1

αj , α! =
∏

j

(αj !), Bα =
∏

j

B
αj

j .

SL(n,C) is the space of C-valued n× n matrices with determinant 1. O(n) is the
orthogonal group of degree n over R. U(n) is the unitary group of degree n over C.

We denote by dim or dimC the complex dimension of a complex (vector)
space. We denote also by dimR the real dimension of a space.
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For a complex vector bundle E on a manifold X , rk(E) denotes its rank,
and IdE the identity morphism. Also, det(E) := Λrk(E)(E) is its determinant line
bundle, E∗ its dual bundle and End(E) := E ⊗E∗. The space of smooth sections
of E over X is denoted by C∞(X,E).

If Q is an operator, we denote by Ker(Q) its kernel, Im(Q) its image set.
If U is a subset of V , we write U ⊂ V . If U is a relatively compact subset of

V , we write U � V . The characteristic function 1U of U is defined as 1 on U and
0 on the complement of U .

In the whole book, if there is no other specific notification, when in a formula
a subscript index appears two times, then we sum up with this index.
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