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Abstract. We give a criterion for a compact complex space with isolated singularities to
be Moishezon in the spirit of Siu–Demailly’s solution to the Grauert–Riemenschneider
conjecture. It refines a previous work by Nadel and Tsuji, and another one by Takayama, in
a more specific situation.

1. Introduction

The object of this paper is the study of compact complex spaces which carry
a maximal number of independent meromorphic functions. Such spaces are called
Moishezon. Let us recall the solution of the Grauert–Riemenschneider [10] conjec-
ture as given by Siu [25] and Demailly [9]. Let X be a compact complex manifold
of dimension n and E a line bundle over X. Assume that either E is semi-positive
and positive at one point (Siu’s condition), or

∫
X(�1)

(√−1Θ(E)
)n

> 0 (D)

(Demailly’s condition). Then X is Moishezon. Here X(� 1) is the open set where
the curvature

√−1Θ(E) is non-degenerate and has at most one negative eigenvalue.
Our purpose is to prove the following:

Main Theorem. Let X be a compact complex space of dimension n � 2 and with
isolated singularities. Suppose that we have one the following conditions.

(i) There exists a holomorphic hermitian line bundle E on Reg (X) which is semi-
positive in a deleted neighbourhood of Sing (X) and satisfies condition (D) on
Reg (X).
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(ii) There exists a hermitian holomorphic line bundle on X, with possibly singular
hermitian metric at Sing (X), such that the curvature current

√−1Θ(E) is
dominated by the euclidian metric near Sing (X) and condition (D) is fulfilled
on Reg (X).

Then X is Moishezon.

In the case of a compact manifold the proof is based on asymptotic Morse (or

Riemann–Roch) inequalities, namely dim H0(X, Ek) � kn
∫

X(�1)

(√−1
2π

Θ(E)
)n +

o(kn) (see the notations below). Moreover, Ji and Shiffman [14] and Bonavero [5]
found the following characterization: a compact manifold X is Moishezon if and
only if it carries a strictly positive closed integral (1, 1)-current.

Nadel and Tsuji [19] extended the asymptotic Morse inequality for complete
Kähler manifolds for which the Kähler metric satisfies Ric η � −η. Elaborating
on the proof of Nadel and Tsuji, Takayama [26] proved the following version of
the theorem of Ji–Shiffman. Let X be a compact complex space and E a line
bundle over X endowed with a singular hermitian metric which is smooth outside
a proper analytic set Z ⊃ Sing (X). Assume that the curvature current of the metric
is strictly positive in a neighbourhood of Z and that condition (D) is fulfilled on
X � Z . Then X is Moishezon.

Our sufficient condition (i) shows that in the case of isolated singularities
we can significantly weaken the hypothesis of the previous result. The bundle E
may be defined only on Reg (X) and we may ask just semipositivity in a deleted
neighbourhood of Sing (X). If E is defined over all X the hypothesis about the
curvature near Sing (X) can be further weakened, as shown in (ii).

The Main Theorem is proved in Section 2. We extend the proof of Demailly and
Nadel–Tsuji to our case by using a strictly plurisubharmonic exhaustion function
from below for Reg (X). The existence of such a function expresses the strong
concavity of Reg (X) for spaces with isolated singularities. That is why we cannot
state our result for arbitrary compact complex spaces.

In Section 3 we apply the inequalities obtained in the proof of the Main Theo-
rem. As already observed in [19] the asymptotic Morse inequality produces upper
bounds for the volume of the manifold. In a similar manner, Corollary 2.1 be-
low gives estimates for the volume of Reg (X) in the metric

√−1Θ(E) (assum-
ing that E is positive). This is linked to the following question of Ph. A. Grif-
fiths [11]. Assume that a quasiprojective manifold M is the quotient of a bounded
domain D in Cn by discrete group action. Has M finite volume with respect to the
induced Bergman metric? Mok [17, Proposition 1, p. 168] gave a positive answer,
when codim(M � M) � 2, where M is a projective compactificatin of M.

We precise this result if M can be compactified by adding finitely many points,
that is, M = X � S, where X is a compact complex space and S ⊃ Sing (X)

is finite. Then the volume of M in the induced Bergman metric is less than the
growth of the canonical bundle KM of M. An other question in [11] is whether the
finiteness of the volume of the induced Bergman metric on the quotient M implies
the completeness of the Bergman metric on the covering D. Using our arguments
we can show that the answer to the latter question is negative.
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I would like to thank the referee for suggestions concerning the style of the
paper.

1.1. Notations and terminology

We denote by Reg (X) and Sing (X) the regular and singular parts of the complex
space X of dimension n. The complex spaces are assumed to be irreducible and
reduced. The space X is called Moishezon if the transcendence degree of its
meromorphic function field equals its complex dimension.

Let us remind that by the definition of Andreotti and Grauert [2] a manifold
Z is called 1-concave if there exists a smooth function ϕ : Z −→ (a, b ] where
a ∈ {−∞} ∪ R, b ∈ R, such that {ϕ > c} � Z for all c ∈ (a, b ] and ϕ is strictly
plurisubharmonic outside a compact set. A manifold Z is called pseudoconcave in
the sense of Andreotti [1], if it contains a relatively open set Y with pseudoconcave
boundary (this is true if, for example, the boundary is smooth and the Levi form
has at least one negative eigenvalue). It is easy to see that Reg (X) is 1-concave
(since X has just isolated singularities).

Let Z be a pseudoconcave manifold in the sense of Andreotti. By [1] the space
of global holomorphic sections in any holomorphic vector bundle over Z is finite
dimensional. Let E −→ Z be a holomorphic line bundle on Z . The growth of E is
defined by

gw(E) = lim inf
k→∞

k−n dim H0(Z, Ek ⊗ KZ
)
,

where KZ is the canonical bundle of Z .
If (E, h) is a line bundle over Reg (X) endowed with a smooth hermitian metric

h we denote by Reg (X)(0) the open set where
√−1Θ(E) is positive definite and

by Reg (X)(1) the open set where
√−1Θ(E) is non-degenerate and has exactly

one negative eigenvalue. Note that the integral of the (n, n)-form
(√−1Θ(E)

)n

over Reg (X)(0) is positive while the integral over Reg (X)(1) is negative. For
the notions of hermitian metric on a singular space and singular hermitian metric
see Section 2.2.

We denote by K X the canonical bundle of Reg (X). The abbreviation psh means
plurisubharmonic. We denote the characteristic function of a set Ω by 1Ω.

2. Proof of the Main Theorem

We will work on the open manifold Reg (X) and prove that it posseses a lot of
meromorphic functions which extend to X by the Levi extension theorem.

In order to perform analysis on Reg (X) we introduce first a good exhaustion
function and a complete metric. Let π : X̃ −→ X be a resolution of singularities
of X. Let us denote by Di the components of the exceptional divisor. Then there
exist positive integers ni such that D := ∑

ni Di admits a smooth hermitian
metric such that the induced line bundle [D] is negative in a neighbourhood Ũ
of D (cf. [24]). Let us consider a canonical section s of [D], i.e. D = (s), and
denote by |s|2 the poinwise norm of s with respect to the above metric. By Lelong-
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Poincaré
√−1

2π
∂∂̄ log |s| = (the current of integration on D) −

√−1

2π
Θ([D]) .

Hence ϕ = log |s|2 is strictly plurisubharmonic on Ũ � D. By using a smooth
function on X̃ with compact support in Ũ which equals one near D we construct
a smooth function χ on X̃ � D � Reg (X) such that

χ = − log
( − log |s|2) on Ũ � D .

Since log |s|2 goes to −∞ on D, χ has the same property. Moreover, near D,

∂∂̄χ = ∂ϕ ∧ ∂̄ϕ

ϕ2
+ ∂∂̄ϕ

−ϕ

so that
√−1∂∂̄χ is positive definite and

√−1∂χ ∧ ∂̄χ �
√−1∂∂̄χ (2.1)

outside a compact set of Reg (X).
By patching ∂∂̄χ with an arbitrary metric on Reg (X) with the use of a partition

of unity we obtain a metric ω0 on Reg (X) such that

ω0 = ∂∂̄χ outside a compact set (2.2)

It is easily seen that ω0 is complete by relation (2.1) since the function −χ is an
exhaustion function and d(−χ) is bounded in the metric ω0. Also ω0 is obviously
Kähler near Sing (X).

2.1. Proof of part (i) of the Main Theorem

We prove now that condition (i) in Main Theorem entails that X is Moishezon. We
introduce a hermitian metric on the line bundle which approximates well the initial
metric on compact sets. So let us consider a holomorphic hermitian line bundle E
on Reg (X) endowed with a metric h such that

√−1Θ(E, h) � 0 on Reg (X)� K
where K is a compact set. By streching K we may also assume that ω0 is Kähler
outside K . We equip E with the metric hε = h exp(−εχ).

Our strategy of finding meromorphic functions is that of Siu and Demailly,
namely to show that there are a lot of holomorphic sections in the high powers Ek,
since by taking quotients of holomorphic sections we get meromorphic functions.
By following Demailly [9] we reduce the problem to estimating the size of certain
spectral spaces of the ∂̄-laplacian.

Let us consider the operator 1
k ∆

′′
k,ε where ∆′′

k,ε = ∂̄∂̄∗ + ∂̄∗∂̄ is the Laplace–
Beltrami operator acting on (n, j)-forms with values in Ek over Reg (X). The
metrics used to construct the adjoint ∂̄∗ are ω0 and hε. Let Qk,ε the quadratic form
associated to 1

k ∆
′′
k,ε, that is, Qk,ε(u, u) = 1

k (‖∂̄ u‖2+‖∂̄∗ u‖2). We denote by Eλ the

spectral projectors and by L j
k(λ) = Ran Eλ(

1
k ∆′′

k,ε) the spectral space of 1
k ∆

′′
k,ε on
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(n, j)-forms. Let N j
(
λ, 1

k ∆
′′
k,ε

) = dim L j
k(λ) the spectrum distribution functions

of the above operator.
As Lemma 2.2 below shows we have to estimate N1(λ, 1

k ∆
′′
k,ε) from above and

then N0(λ, 1
k ∆′′

k,ε) from below. We do this thanks to a remark of Witten (see [28,
p. 666] and [12, Lemma 2.1]): the L2 norm of the eigenforms of 1

k ∆
′′
k,ε on (n, j)-

forms concentrates asymptotically for k −→ ∞ on the critical set Reg (X)( j). In
the original setting of classical Morse theory the rôle of the curvature is played by
the hessian of a Morse function f and the eigenforms of the modified laplacian
∆t = (dt +d∗

t )
2 where dt = e−t f det f and t > 0, concentrate near the critical points

of f as t −→ ∞. For the complex geometry setting see [9], [19] and [6].
Let us fix an open, relatively compact neighbourhood Ω of K . We show that

the essential spectrum of 1
k ∆

′′
k,ε does not contain the open interval (0, ε/12). Then

we can compare the counting function on this interval with the counting function
of the same operator considered with Dirichlet boundary conditions on Ω and
denoted 1

k ∆
′′
k,ε�Ω. Let L j

k,Ω(µ) = Ran Eµ( 1
k ∆′′

k,ε�Ω), the spectral spaces of 1
k ∆

′′
k,ε�Ω.

Let N j
(
λ, 1

k ∆
′′
k,ε �Ω

) = dim L j
k,Ω(λ) be the spectrum distribution functions of

the above operators acting on (n, j)-forms. For the following lemma compare
[12, Lemma 2.1] and [6, Théorème 2.1].

Lemma 2.1. For k sufficiently large the operator 1
k ∆′′

k,ε on (n, 1) forms has discrete

spectrum in (0, ε/12) and N1(λ, 1
k ∆′′

k,ε) � N1(12 λ + C1 k−1, 1
k ∆′′

k,ε�Ω), for λ in
(0, ε/12), where C1 is a constant independent of k and ε.

Proof. The curvature relative to the metric hε satisfies
√−1Θ(E, hε) = √−1c(E, h) + √−1ε∂∂̄χ + √−1ε∂χ ∧ ∂̄χ �

√−1ε∂∂̄χ

which shows that
√−1Θ(E, hε) � ε ω0 on X � K . (2.3)

We use now the Bochner–Kodaira–Nakano inequality for smooth (n, 1)-forms
compactly supported outside K (where the metric is Kähler):

‖∂̄ u‖2 + ‖∂̄∗ u‖2 �
([√−1Θ

(
Ek, hk

ε

)
,Λ

]
u, u

)
, u ∈ Dn,1(X � K, Ek) .

Then (2.3) shows that the curvature term satisfies
([√−1Θ

(
Ek, hk

ε

)
,Λ

]
u, u

)
�

k ε ‖u‖2 and therefore

Qk,ε(u, u) � k ε ‖u‖2 , u ∈ Dn,1(X � K, Ek
)
. (2.4)

Let ρ ∈ C∞(Reg (X)) such that ρ = 0 on L and ρ = 1 on Reg (X) � Ω, where
L is a neighbourhood of K in Ω. Let u ∈ Dn,1(Reg (X), Ek), so that ρ u has
support outside K . Denote C = 6 sup |dρ |2 < ∞. By the elementary estimate:
Qk,ε(ρ u, ρ u) � 3

2 Qk,ε(u, u) + C k−1‖u‖2 , we obtain

‖u‖2 � 6 ε−1 Qk,ε(u, u) + 4
∫

Ω

∣∣(1 − ρ )u
∣∣2

, k � 4 C ε−1 (2.5)
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for any compactly supported u. Since the metric ω0 is complete, the density lemma
of Andreotti and Vesentini [3, Proposition 5, p. 93] shows that 1

k ∆
′′
k,ε is essentially

self-adjoint. Thus (2.5) is true for any u in the domain of the quadratic form Qk,ε.
From relation (2.5) we infer that the spectral spaces corresponding to the lower part
of the spectrum of 1

k ∆
′′
k,ε on (n, 1)-forms can be injected into the spectral spaces of

1
k ∆

′′
k,ε�Ω which correspond to the Dirichlet problem on Ω. Namely, for λ < ε/12,

the morphism L1
k(λ)−→ L1

k,Ω(12λ+C1k−1), u −→ E12λ+C1k−1( 1
k ∆

′′
k,ε�Ω)(1−ρ)u

is injective, where C1 = 8 C. In order to prove the injectivity we choose u ∈ L1
k(λ),

λ < ε/12 to the effect that Qk(u) � λ‖u‖2 � (ε/12)‖u‖2. Plugging this relation
in (2.5) we get

‖u‖2 � 8
∫

Ω

∣∣(1 − ρ )u
∣∣2

, u ∈ L1
k(λ) , λ < ε/12 . (2.6)

Let us denote by Qk,Ω the quadratic form of 1
k ∆′′

k,ε �Ω. Then by the elementary
estimate above and (2.6),

Qk,Ω
(
(1 − ρ)u

)
� 3

2
Qk,ε(u) + C

k
‖u‖2 �

(
12 λ + 8 C

k

)∫
Ω

∣∣(1 − ρ )u
∣∣2

which shows that E12λ+C1k−1( 1
k ∆′′

k,ε�Ω) (1 − ρ)u = 0 entails (1 − ρ)u = 0 so that
u = 0 by (2.6). ��
Lemma 2.2. For λ < ε/12 and sufficiently large k we have

dim H0(Reg (X), Ek ⊗ K X
)
� N0(λ, 1

k ∆′′
k,ε

) − N1(λ, 1
k ∆′′

k,ε

)
.

Proof. Since 1
k ∆

′′
k,ε commutes with ∂̄ it follows that the spectral projections of

1
k ∆

′′
k,ε commute with ∂̄ too, showing thus ∂̄L0

k(λ) ⊂ L1
k(λ) and therefore we have

the bounded operator ∂̄λ : L0
k(λ) −→ L1

k(λ) where ∂̄λ denotes the restriction of ∂̄

(by the definition of L0
k(λ), ∂̄λ is bounded by kλ). Since the kernel of ∂̄λ consits

of holomorphic sections we infer: dim H0(Reg (X), Ek ⊗ K X ) � dim ker ∂̄λ. But
N0(λ, 1

k ∆′′
k,ε) = dim ker ∂̄λ + dim Ran ∂̄λ. By Lemma 2.1, N1(λ, 1

k ∆
′′
k,ε) is finite

dimensional. Obviously dim Ran ∂̄λ � N1(λ, 1
k ∆

′′
k,ε). Moreover, since Reg (X) is

a 1-concave manifold dim H0(Reg (X), Ek ⊗ K X ) < ∞ so dim ker ∂̄λ < ∞. Thus
all spaces appearing in the statement are finite dimensional and we have the desired
inequality. ��

We obtain now a lower estimate for N0
(
λ, 1

k ∆
′′
k,ε

)
.

Lemma 2.3. N0
(
λ, 1

k ∆
′′
k,ε

)
� N0

(
λ, 1

k ∆
′′
k,ε�Ω

)
.

Proof. This is an immediate consequence of the following form of the varia-
tional principle (called Glazman lemma, see [23]). Let P be a self-adjoint pos-
itive operator on a Hilbert space H . Then the spectrum distribution function
N(λ, P) := dim Ran Eλ(P) satisfies:

N(λ, P) = sup
{

dim L | L closed ⊂ Dom(Q), Q( f, f ) � λ‖ f ‖2, ∀ f ∈ L
}
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where Q is the quadratic form of P. The lemma follows by the variational prin-
ciple and the simple remark that Dom(Qk,ε) ⊃ Dom(Qk,Ω). Indeed, let us de-
note by λ0 � λ1 � . . . the spectrum of 1

k ∆
′′
k,ε �Ω acting on (n, 0)-forms. Let

{ei}i be an orthonormal basis which consists of eigenforms corresponding to
the eigenvalues {λi}i ; if we let ẽi = 0 on Reg (X) � Ω and ẽi = ei on Ω,
ẽi ∈ Dom(Qk,ε) and Qk,ε(̃ei, ẽ j) = δi, jλi . Let Φ0

λ be the subspace spanned by
{ei : λi � λ} in L2

n,0(Ω, Ek) and Φλ the closed subspace spanned by {̃ei : λi � λ}
in L2

n,0(Reg (X), Ek). Then dim Φλ = dim Φ0
λ = N

(
λ, 1

k ∆
′′
k,ε�Ω

)
. If f is a linear

combination of {̃ei : λi � λ}, Qk,ε( f, f ) � λ‖ f ‖2 and, as Dom(Qk,ε) is complete
in the graph norm, we obtain Φλ ⊂ Dom(Qk,ε) and Qk,ε( f, f ) � λ‖ f ‖2, f ∈ Φλ.
The variational principle implies now the lemma. ��
Remark. By using the Perturbation lemma of Takayama [26] we can actually show
the spectrum of 1

k ∆′′
k,ε acting on (n, 0)-forms is discrete near zero for large k. Then

we can apply the min–max principle in the usual form in order to obtain Lemma 2.3.

The benefit of Lemmas 2.1–2.3 is that the asymptotic behaviour of the spectrum
distribution function for the Dirichlet problem on Ω has been determined explicitely
by Demailly [9]. Assume that ∂Ω has measure zero. Then there exists a function
ν

j
ε (λ, x) depending on the eigenvalues of the curvature of (E, hε), bounded on

compact sets of Reg (X) and right continuous in µ, such that for any µ ∈ R

lim sup
k−→∞

k−n N j
(
λ, 1

k ∆′′
k,ε�Ω

)
� 1

n!
∫

Ω

ν j
ε (λ, x) dV(x) . (2.7)

Moreover there exists an at most countable set Dε ⊂ R such that for µ outside Dε

the limit of the left-hand side expression exists and we have equality in (2.7). We
do not need the explicit form of ν

j
ε (λ, x).

For λ < ε/12 and λ outside Dε we apply Demailly’s theorem and Lemma 2.3:

lim
k−→∞

k−n N0(λ, 1
k ∆′′

k,ε

)
�

∫
Ω

ν0
ε

(
λ, x

)
dV(x) .

For j = 1 we remark that given δ > 0 we have

lim sup
k−→∞

k−n N1(12λ + C1k−1, 1
k ∆

′′
k,ε�Ω

)
� lim sup

k−→∞
k−n N1(12λ + δ, 1

k ∆
′′
k,ε�Ω

)

=
∫

Ω

ν1
(E,hε)

(12λ + δ, x) dV(x)

and that after letting k go to infinity we can also let δ go to zero. Using these
remarks we see that for all but a countable set of λ we have

lim inf
k−→∞

k−n dim H0(Reg (X), Ek⊗K X
)
�

∫
Ω

[
ν0
(E,hε)

(λ, x)−ν1
(E,hε)

(12λ, x)
]
dV(x).

In the latter estimate we may let λ −→ 0 (by avoiding the exeptional countable set)
and this yields, by the formulas in [9, p. 224] for the right-hand side

lim inf
k−→∞ k−n dim H0(Reg (X), Ek ⊗ K X

)
� 1

n!(2π)n

∫
Ω(�1,hε)

(√−1Θ(E, hε)
)n

.
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Since on Ω the metric hε converges uniformly to h together with all its deriva-
tives, we may let ε −→ 0. Thus we get rid of ε in the right-hand side. More-
over the fact that E is semipositive outside a compact set shows that we may
let Ω exhaust Reg (X). Indeed, for Ω � K we have

∫
Ω(1,h)

(√−1Θ(E, h)
)n =∫

Reg (X )(1,h)

(√−1Θ(E, h)
)n

and obviously

∫
Ω(0,h)

(√−1Θ(E,h)
)n −→

∫
Reg (X )(0,h)

(√−1Θ(E, h)
)n

for Ω −→ Reg (X), by the monotone convergence theorem. Therefore,

lim inf
k−→∞ k−n dim H0(Reg (X), Ek ⊗ K X ) � 1

n!(2π)n

∫
Reg (X )(�1,h)

(√−1Θ(E, h)
)n

(2.8)

and the last integral is positive by hypothesis.
Moreover the method of proving the finiteness in [1] gives us an upper bound

for dim H0(Reg (X), Ek ⊗ K X ). Let Z be a pseudoconcave manifold in the sense
of Andreotti and E a line bundle over Z . Denote by k the generic rank of the
canonical meromorphic mapping

ΦEk⊗KZ
: Z − − → P

(
H0(Z, Ek ⊗ KZ )∗

)
.

Lemma 2.4 (Siegel–Serre). dim H0(Z, Ek ⊗ KZ ) � C kk for some C > 0. In
particular gw(E) < ∞.

Proof. The proof follows the Siegel–Serre idea to apply the Schwarz lemma in
order to show that a section vanishes identically if it vanishes to order k at some
points of a fine net. In our case we follow Andreotti [1] to choose the points of the
net as the centers of polydiscs which cover a relatively compact open set Y with
pseudoconcave boundary such that their Shilov boundaries lie in Y . For details see
[16, Proposition 5.7]. ��

Let �(E) is the supremum over k of k . By the Siegel–Serre lemma,

dim H0(Reg (X), Ek ⊗ K X ) � C k�(E) , k > 0 . (2.9)

From (2.8), (2.9) and condition (D) (the positivity of the integral in (2.8)) we obtain
�(E) = n, that is, the line bundle Ek ⊗ K X gives local coordinates on an open
dense set of Reg (X) for sufficiently large k. This clearly implies X Moishezon and
thereby concludes the proof of the first half of Main Theorem. ��

From the proof we infer the following.

Corollary 2.1. Let E is a line bundle over Reg (X), where X is a compact complex
space with only isolated singularities.

(i) If E is semipositive outside a compact set,∫
Reg (X )(0)

(√−1
2π

Θ(E)
)n
� gw(E) −

∫
Reg (X )(1)

(√−1
2π

Θ(E)
)n

< ∞.
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(ii) If E is positive on Reg (X)

∫
Reg (X )(0)

(√−1
2π

Θ(E)
)n
� gw(E) < ∞.

(iii) If ψ : Reg (X) −→ R is a smooth function which is psh outside a compact
set, ∫

Reg (X )(0)

(√−1∂∂̄ψ
)n � −

∫
Reg (X )(1)

(√−1∂∂̄ψ
)n

< ∞

where Reg (X)(0) is the open set where ψ is strictly psh.

Proof. Relation (2.8) shows the left-hand side inequality in (i), since the integral
in (2.8) is the sum of two corresponding integrals taken over the sets Reg (X)(0)

and Reg (X)(1). The latter is finite since Reg (X)(1) is relatively compact by the
hypothesis on the semipositivity of E. By the Serre-Siegel lemma we get also the
finiteness in (i).

From (i) we infer immediately (ii).
To prove (iii) we apply (i) to the trivial bundle E endowed with the metric

exp(−ψ) and we use the obvious fact that gw(E) = 0. ��

2.2. Proof of part (ii) of the Main Theorem

We show now the second hypothesis of Main Theorem implies X is Moishezon. We
will consider a variation of the complete metric used hitherto. First we recall the
notion of hermitian metric on a singular space. Let us consider a covering {Uα} of
X and embeddings ια : Uα ↪→ C

Nα . A metric on X is a metric ω on Reg (X) which
on every open set Uα as above is the pullback of a hermitian metric on the ambient
space CNα , ω = ι∗α ωα. It is constructed as usual by a partition of unity argument.
Since the singularities are isolated we can assume that the metric is distinguished,
that is, in the neighbourhood of the singular points ωα is the euclidian metric. In
particular ω is Kähler near Sing (X). We consider then the metric ω0 = Aω + ∂∂̄χ

where A > 0 is chosen sufficiently large (to ensure that ω0 is a metric away from
the open set where ∂∂̄χ is positive definite). ω0 is complete by the same argument
as in the previous proof (see relation (2.1)). Note that by Corollary 2.1 the metric ω0

has finite volume. This follows from the fact that, near Sing (X), χ is strictly psh
and ω is given by the euclidian potential.

Assume now that E|Uα is the inverse image by ια of the trivial line bundle
Cα on CNα . Moreover we consider hermitian metrics hα = e−ϕα on Cα such that
ι∗αhα = ι∗βhβ on Uα ∩ Uβ ∩ Reg (X). The system h = {

ι∗αhα

}
is called a hermitian

metric on X. It clearly induces a hermitian metric on Reg (X). We shall allow our
metrics to be singular at the singular points, that is, ϕα ∈ L1

loc(C
Nα ) and ϕα is

smooth outside ια(Sing (X)). The curvature current
√−1Θ(E) is given in Uα by

ι∗α(
√−1∂∂̄ϕα) which on Reg (X) agrees with the curvature of the induced metric.

We shall suppose in the sequel that the curvature current is dominated by the
euclidian metric i.e.

√−1∂∂̄ϕα is bounded above and below by constant times
ωE = √−1

∑
dz j ∧ dz̄ j .
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Let us consider now a neighbourhoodU of the singular set. We assume that U is
small enough so that there are well defined on U a potential ρ for ω and a potential
ϕ for the curvature

√−1Θ(E) (they are restrictions from ambient spaces). By
suitably cutting-off we may define a function ψ ∈ C∞(Reg (X)) such that

ψ = χ − ϕ + A ρ (2.10)

near Sing (X). Remark that, since
√−1Θ(E) is bounded above by a continuous

(1, 1) form near Sing (X), the potential −ϕ is bounded above near the singular
set. This holds true for ρ too (it is smooth) so that ψ tends to −∞ at the singular
set Sing (X). Let us consider a smooth function γ : R −→ R such that

γ(t) =
{

0 if t � 0 ,

t if t � −1 .

and the functions γν : R −→ R given by γν(t) = γ(t − ν) for all positive
integers ν. Let us denote the hermitian metric on E by h and let us consider the
metric hν = h exp

( − γν(ψ)
)

with curvature
√−1Θ(E, hν) = √−1c(E, h) +

γ ′
ν(ψ)∂∂̄ψ + γ ′′

ν (ψ)∂ψ ∧ ∂̄ψ. On the set {ψ � −ν − 1} we have γν(ψ) = ψ − ν so
that γ ′

ν(ψ) = 1 and γ ′′
ν (ψ) = 0 and therefore

√−1Θ(E, hν) = √−1c(E, h)+∂∂̄ψ.
Since ψ goes to −∞ when we approach the singular set we may choose ν0 such
that for ν � ν0 we have {ψ � −ν − 1} ⊂ U where U is the neighbourhood of
Sing (X) where ψ has the form (2.10). Bearing in mind the meaning of ϕ and ρ

together with the definition of ω0 it is straightforward that
√−1Θ(E, hν) = ω0

on {ψ � −ν−1}. This relation is analogous to (2.3). Therefore we may apply now
the same argument as in the proof of the first part in order to obtain as in (2.8), for
k −→ ∞,

dim H0(Reg (X), Ek ⊗ K X
)
� kn

n!(2π)n

∫
Ων(�1,hν)

(√−1Θ(E, hν)
)n + o(kn).

We have denoted Ων the compact set {ψ ≥ −ν − 2}. We decompose this set in
Ω′

ν = {ψ � −ν} and Ω′′
ν = {−ν − 2 � ψ � −ν} since on Ω′

ν we have γν(ψ) = 0
and

√−1Θ(E, hν) = √−1c(E, h). We infer that
∫

Ω′
ν(�1,hν)

(√−1Θ(E, hν)
)n =

∫
Reg (X )(�1,h)

1Ω′
ν
α1 · · ·αn dV0 (2.11)

where α1, . . . , αn are the eigenvalues of
√−1Θ(E, h) with respect to ω0 and

dV0 is the volume form of the same metric. Our hypothesis on the domination of√−1Θ(E, h) by the euclidian metric implies that
√−1Θ(E, h) is dominated by ω

and by ω0. Hence the productα1 · · ·αn is bounded on Reg (X). Since Reg (X)(� 1)

has finite volume with respect to ω0 the functions |1Ω′
ν
α1 · · ·αn | are bounded by

an integrable function. On the other hand 1Ω′
ν

−→ 1 when ν −→ ∞ so that the
integrals in (2.11) tend to

∫
Reg (X )(�1,h)

(√−1Θ(E, h)
)n

which is assumed to be
positive.
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Thus it suffices to show that the integral on the set Ω′′
ν i.e.

∫
Ω′′

ν(�1,hν)

(√−1Θ(E, hν)
)n

tends to zero as ν −→ ∞. For this purpose we use the obvious bound

∫
Ω′′

ν (�1,hν)

(√−1Θ(E, hν)
)n � sup | δ1 · · · δn| · vol (Ω′′

ν)

where δ1, . . . , δn are the eigenvalues of
√−1Θ(E, hν) with respect to ω0 and the

volume is taken in the same metric. We use now the minimum-maximum prin-
ciple to see that δ1 is bounded bellow and δ2, . . . , δn are bounded above on the
set of integration Ω′′

ν(� 1, hν). For this we need the domination of
√−1Θ(E, h)

by ω and the boundedness of γ ′
ν and γ ′′

ν . Since vol (Ω′′
ν) −→ 0 as ν −→ ∞ our

contention follows. Hence dim H0(Reg (X), Ek ⊗ K X ) � kn so that Reg (X) has
n independent meromorphic functions which can be extended to X by the Levi
extension theorem. ��

The proof of the Main Theorem is based on the existence of the exhaustion
function from below χ and of the complete metric ω0 with the properties (2.1)
and (2.2). These objects are specific to the case of isolated singularities. If X is
a compact complex space with dim Sing (X) � 1, Reg (X) does not generally pos-
sess a strictly psh exhaustion function from below. That is why for general complex
spaces we need stronger hypothesis in order to obtain the crucial L2 estimate (2.4)
for (n, 1)-forms. For example if X is a compact complex Kähler space, Reg (X)

admits complete Kähler metric (Ohsawa [21]). Therefore, if Reg (X) admits a semi-
positive line bundle which is positive at a point p, standard L2 estimates for ∂̄ show
that Ek ⊗ KReg (X ) gives local coordinates at p. Assuming that codimSing (X) � 2
it follows first that Reg (X) has a maximal number of meromorphic functions (since
Reg (X) is pseudoconcave in the sense of Andreotti) and then that X is Moishezon
(by the Levi extension theorem).

In the non-Kähler case we need a sort of uniform positivity condition on E
near Sing (X) in order to absorb the torsion of a complete metric on Reg (X). In
this respect the hypothesis in Takayama’s theorem seem appropriate. If we want
the line bundle E to be defined only on Reg (X) we can introduce the following
alternative condition.

Let ω be a hermitian metric on Reg (X) induced from a resolution of singu-
larities X of X. Assume that

√−1Θ(E) � ω outside a compact set of Reg (X)

and that E satisfies condition (D). Suppose moreover that codimSing (X) � 2.
Then X is Moishezon. Indeed, the condition

√−1Θ(E) � ω shows that we can
argue as in [26] and use a generalized Poincaré metric to deduce the L2 estimate
as in (2.4).

It would be interesting to know whether criteria as the Main Theorem carry
over to general complex spaces.
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3. The volume of the Bergman metric on Zariski open sets

In [11, Question 8.7] Griffiths raised the following question. Assume that D is
a bounded open set in Cn having a discrete group of automorphisms Γ such that
D/Γ is quasiprojective. Then (i) is D a domain of holomorphy and (ii) has D/Γ

finite volume with respect to the induced Bergman metric? In connection to (i),
Mok and Wong [18, Main Theorem] showed that if D/Γ is a Zariski open set in
a compact manifold, D is obtained by removing an analytic set from a domain of
holomorphy.Moreover, by [18, Theorem, p. 1482], if D is a domain of holomorphy,
the hypothesis that D/Γ is a Zariski open set implies that D/Γ is quasiprojective.

In connection to (ii), Mok [17, Proposition 1, p. 168] proved the following using
techniques of extending positive currents. Let M be a complex manifold admitting
a projective-algebraic compactification M such that codim(M � M) � 2. Then
any Kähler metric on M has finite volume.

On the other hand, Nadel and Tsuji [19] used the Riemann–Roch inequalities
to show that that the volume of a complete Kähler metric with Ric η � −η on
a pseudoconcave manifold is finite.

In this section we use the same idea to give an upper bound of the volume of
D/Γ in the Bergman metric.

Theorem 3.1. Let D be a bounded open set in a Stein manifold of dimension� 2.
Suppose Γ ⊂ Aut D is a properly discontinous group without fixed points. Assume
D/Γ is a Zariski open set which can be compactified to a complex space by adding
finitely many points. Then vol(D/Γ) � gw(KD/Γ).

The hypothesis means there exists a compact complex space X with D/Γ ⊂
Reg X and D/Γ = X � S, where S is a finite set.

Proof. By hypothesis D possesses a Bergman metric ω which is invariant under
analytic automorphisms. It descends to a Kähler metric on any quotient of the
domain by a properly discontinuous discrete group Γ ⊂ Aut(D). We denote M =
D/Γ and ω∗ the induced Bergman metric on M = D/Γ. If we denote by B(z, z)
the Bergman kernel of D we know that B−1 can be considered as a hermitian Γ-
invariant metric on the canonical bundle KD. Since ω = ∂∂̄ log B(z, z) there exists
a hermitian metric h∗ on KM such that Θ(KM ) = ω∗. In other words the canonical
bundle KM is positive and its curvature is given by the induced Bergman metric.
This is the observation of Kodaira [15] which permits him to use his embedding
theorem if M is merely compact. Our assumption is that M = X � S, where X is
a compact complex space and where S is a finite set containing the singularities
of X. We are therefore in the hypothesis of Corollary 2.1 (ii) for E = KM and√−1Θ(E, h∗) = ω∗. ��

We can still prove the estimate even if the singular set of a compactification of
D/Γ is not of dimension 0. But we need to strengthen the hypothesis on D.

Proposition 3.1. Let D be a bounded domain of holomorphy in Cn with com-
plete Bergman metric. Let Γ ⊂ Aut D which acts freely and properly discon-
tinuously such that D/Γ is Zariski open set in a compact complex space X and
codimX D/Γ � 2. Then vol(D/Γ) � gw(KD/Γ).
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The strong hypothesis here is that the Bergman metric is complete. Thus we can
dispense ourselves of the existence of a good exhaustion function as in the proof
of Main Theorem. The class of bounded holomorphy domains in Cn which admit
a complete Bergman metric has been intensively studied. If either the domain has
C1 boundary (Ohsawa [20]), or the domain is hyperconvex (Blocki–Pflug [4] and
Herbort [13]) then the Bergman metric is complete. For another sufficient condition
see Diederich–Ohsawa [8].

Proof. In distinction to the previous case, we have the additional information that
the induced Bergman metric ω∗ is a complete Kähler metric on M := D/Γ. Then the
Riemann–Roch inequality we need is essentialy due to Nadel and Tsuji (loc. cit.).
The only difference is that in their case we are given a complete Kähler metric η

on M such that the curvature of the induced metric on KM , i.e. the Ricci curvature,
satisfies Ric η � −η. In the present case there exists a hermitian metric on KM

whose curvature equals a complete Kähler metric. Then the proof of Nadel and
Tsuji goes through to show that

lim inf
k−→∞ k−n dim H0(M, Kk

M

)
� 1

n!(2π)n

∫
M

(√−1Θ(KM )
)n = 1

(2π)n
Volω∗(M) .

(3.1)

For the sake of completeness, let us say that we can use the proof of Main
Theorem in order to get (3.1) (our proof of Main Theorem is actually a generaliza-
tion of the Riemann–Roch inequality of Nadel and Tsuji). Namely, we work with
the metrics ω∗ on M and h∗ on KM (no approximation (h∗)ε is needed) and we
replace (2.3) with the equality

√−1Θ(E, h∗) = ω∗. The proof goes through with
the obvious simplifications. In fact we see that the laplacians ∆′′

k have no spectrum
at all in an interval (0, a), for some a > 0.

To conclude we remark that the hypothesis about codimension shows that M is
pseudoconcave in the sense of Andreotti and so the left-hand side of (3.1) is finite.

��
Let us remark that if D is a bounded symmetric domain and Γ is a torsion-free

arithmetic group, the compactification theorem of Satake–Baily–Borel shows the
existence of a projective compactification X of D/Γ with codimX D/Γ � 2. In this
case the finiteness of vol(D/Γ) was known by Raghunatan [22].

Finally let us answer negatively to the following complement of Griffiths’ [11,
Question 8.7]. Namely, does the finite volume assumption for a quasiprojective
quotient D/Γ force the Bergman metric to be complete?

Proposition 3.2. There exists a quasiprojective manifold covered by a bounded
domain in Cn (n � 2) such that the induced Bergman metric is not complete but it
has finite volume.

Proof. Let us consider D a bounded domain in Cn (n � 2) having a group
Γ of automorphism with X = D/Γ a compact manifold. Then, by Kodaira’s
embedding theorem X is projective. By a theorem of Siegel D has to be a domain
of holomorphy. Consider now a point p ∈ X and the quasiprojective manifold
M = X � {p}. Let us denote by π : D −→ X the covering map. Consider
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the domain Dp = π−1(M) = D � π−1(p). Since Dp is obtained by removing
a discrete set (the orbit of one point) from D, Dp is not a domain of holomorphy.
The domain Dp covers the manifold M. We consider the Bergman metric ω∗ on
M induced by the Bergman metric ω on Dp. If ω∗ were complete then ω would
have to be complete. But then, by a theorem of Bremermann [7] this would force
Dp to be a domain of holomorphy. On the other hand, ω∗ has finite volume by
Theorem 3.1. ��

4. Generalizations

We shall consider the following setup. Let X be a compact complex manifold and
let Z be a complete pluripolar set. This means that there exists a neighbourhood
V of Z and a psh function ϕ : V −→ [−∞,∞) on V such that Z = ϕ−1(−∞).
We shall assume that ϕ is smooth outside Z . Then we say that Z is a complete
pluripolar set defined by a smooth function outside Z .

Theorem 4.1. Let X be a compact manifold and Z ⊂ X be a complete pluripolar
set defined by a smooth function outside Z. Assume that E is a holomorphic line
bundle on M := X � Z which is positive outside a compact set in M. Then

lim inf
k−→∞

k−n dim H0(M, Ek ⊗ KM
)
� 1

n!(2π)n

∫
M(�1)

(√−1Θ(E)
)n

. (4.1)

Proof. We show what are the modifications in the proof of the Main Theorem. Let
us extend the function ϕ to a smooth function on M with values in (−∞, 0). We
consider then χ ∈ C∞(M) defined by χ = − log(−ϕ) so that relation (2.1) is still
true:

√−1∂χ ∧ ∂̄χ �
√−1∂∂̄χ. We take a hermitian metric ω on M such that

ω = √−1Θ(E) outside a compact set of M. Define the metric

ω0 = Aω + ∂∂̄χ

for a sufficiently large constant A > 0. Then ω0 is complete and if we endow E
with the metric hε = h exp(−εχ) then

√−1Θ(E, hε) = √−1c(E, h) + √−1ε∂∂̄χ + √−1ε∂χ ∧ ∂̄χ � εω0

outside a compact set and for ε small enough. Thus we have an analogous inequality
to (2.3). Whith these modifications the proof of the Main Theorem applies word
by word. ��

We are interested in the case when the group H0(M, Ek ⊗ KM ) is finite di-
mensional so we can formulate also a variant of the Corollary 2.1. We need the
notion of very strongly q-convex function. Let ϕ : X −→ R be a smooth function
on a complex manifold of dimension n. We say that ϕ is very strongly q-convex if
ϕ is psh and ∂∂̄ϕ has at least n − q + 1 positive eigenvalues.

Corollary 4.1. Let X be a compact manifold of dimension n � 2 and let Z be
a complete pluripolar set defined by a smooth very (n − 1)-convex function. Let
M := X � Z.
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(i) If E is a line bundle on M positive outside a compact set,
∫

M(0)

(√−1Θ(E)
)n � gw(E) < ∞ .

(ii) If ψ : M −→ R is a smooth function which is strictly psh outside a compact
set, ∫

M(0)

(√−1∂∂̄ψ
)n � −

∫
M(1)

(√−1∂∂̄ψ
)n

< ∞ .

Proof. Since ϕ is (n − 1)-convex we see that M is (n − 1)-concave (and so
Andreotti-pseudoconcave). The proof of Corollary 2.1 applies without change. ��

The following result was proved in [27] in a more general setting.

Corollary 4.2. Let X be a compact manifold of dimension n � 2 and let Z be
a complete pluripolar set defined by a smooth strictly psh function. Assume that
E is a line bundle on X � Z which is semipositive outside a compact set and
satisfies (D). Then X is Moishezon.

Proof. Since ϕ is strictly psh we need just the semipositivity of E near Z . Namely
we can construct a metric ω0 such that ω0 = −∂∂̄ϕ near Z . This metric is complete
and the proof of Theorem 4.1 applies to get dim H0(M, Ek ⊗ KM ) = O(kn). The
hypothesis on ϕ implies that M = X � Z is 1-concave in the sense of Andreotti–
Grauert. By Lemma 2.4 there exist n independent meromorphic functions on M.
They extend across the pluripolar set Z (to independent meromorphic functions)
since Z has a strongly pseudoconvex neighbourhood. ��
Remark. In [19] the following class of manifolds was introduced. We call the
complex manifold M very strongly q-concave if there exists a smooth function
ϕ : M −→ R such that {ϕ > c} � M for any c ∈ R and which is strongly
q-convex outside a compact set of M.

It is easy to see that Corollary 4.1 holds for very strongly q-concave manifolds.
Similarly, we can show that a very strongly 1-concave manifold M with a semipos-
itive line bundle outside a compact set which satisfies (D) has a maximal number
of meromorphic functions (whithout the assumption that M can be compactified;
note that the compactification is always possible if dim M � 3). In [27] very
strongly 1-concave manifolds were called hyper 1-concave (at the suggestion of
M. Colţoiu).
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concaves. Bull. Soc. Math. Fr. 91, 1–38 (1963)
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