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Equidistribution for weakly holomorphic sections of line
bundles on algebraic curves

Dan Coman (1) and George Marinescu (2)

Dedicated to Professor Ahmed Zeriahi on the occasion of his retirement

ABSTRACT. — We prove the convergence of the normalized Fubini–Study mea-
sures and the logarithms of the Bergman kernels of various Bergman spaces of holo-
morphic and weakly holomorphic sections associated to a singular Hermitian holo-
morphic line bundle on an algebraic curve. Using this, we study the asymptotic
distribution of the zeros of random sequences of sections in these spaces.

RÉSUMÉ. — Nous prouvons la convergence des mesures de Fubini–Study norma-
lisées et des logarithmes des noyaux de Bergman de certains espaces de Bergman de
sections holomorphes et faiblement holomorphes associées à un fibré holomorphe her-
mitien singulier sur une courbe algébrique. A l’aide de ce résultat, nous étudions la
distribution asymptotique des zéros de suites aléatoires de sections dans ces espaces.

1. Introduction

Let (X,ω) be a compact Kähler manifold of dimension n and (L, h) be a
positive holomorphic line bundle on X such that ω = c1(L, h). We let hp be
the metric induced by h on Lp := L⊗p and denote by H0(X,Lp) the space
of holomorphic sections of Lp. One can define a sequence of Fubini–Study
forms γp on X by setting γp = Φ?p(ωFS), where Φp : X → P(H0(X,Lp)?) is
the Kodaira map associated to (Lp, hp) and ωFS is the Fubini–Study form
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on a projective space. A theorem of Tian [31] states that 1
pγp → c1(L, h) as

p→ +∞, in the C 2 topology on X. In [6] we proved the analogue of Tian’s
theorem in the case when h is a singular metric on L and its curvature is a
Kähler current, i.e. c1(L, h) > εω for some ε > 0. The above convergence is
now in the weak sense of currents on X.

In [4] we generalized this further and studied the asymptotic behavior of
the sequence of Fubini–Study currents associated to an arbitrary sequence
of singular Hermitian holomorphic line bundles Lp on a compact normal
Kähler space X. The normality of X was essential, in order to apply Rie-
mann’s second extension theorem for holomorphic functions [19, p. 143] and
for plurisubharmonic functions [18, Satz 4] on a normal complex space. An
interesting question is to analyze the general case when X is a compact
Kähler space not necessarily normal.

In the present paper we study the one dimensional case. Note that any
compact one dimensional complex space is projective and thus algebraic
by [17, Satz 2, p. 343] (see also [27, Theorem 6.2]). We consider the following
setting:

(A) X ⊂ PN is an irreducible algebraic curve, Σ = {x1, . . . , xm} ⊂ X is
the set of singular points of X, and ω is a Hermitian form on X.

(B) L is a holomorphic line bundle on X with singular Hermitian met-
ric h whose local weights are weakly subharmonic and such that
c1(L, h) > εω on X \ Σ for some ε > 0.

Let us now introduce the normalization of X, which will be needed
throughout the paper:

(C) σ : X̃ → PN , where X̃ is a compact Riemann surface, is the nor-
malization of X and ω̃ is a Hermitian form on X̃.

Here c1(L, h) denotes the curvature measure of h (see Section 3). A nat-
ural choice of the form ω is the restriction to X of the Fubini–Study form
on PN , but ω can be any Hermitian form on X (see (2.3)). We denote by
H0
w(X,Lp), respectively by H0

c (X,Lp), the space of weakly holomorphic sec-
tions, respectively continuous weakly holomorphic sections of Lp. Then

H0(X,Lp) ⊂ H0
c (X,Lp) ⊂ H0

w(X,Lp) ⊂ H0(X \ Σ, Lp),

where the latter is the space of holomorphic sections of Lp|X\Σ. We refer to
Section 2 and Section 3 for the definitions of these notions.

We consider the corresponding Bergman subspaces of L2-holomorphic
sections with respect to the natural inner product induced by the metric hp
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and ω:

H0
c,(2)(X,Lp) =

{
S ∈ H0

c (X,Lp) : ‖S‖p < +∞
}
, (1.1)

H0
w,(2)(X,Lp) =

{
S ∈ H0

w(X,Lp) : ‖S‖p < +∞
}
, (1.2)

H0
(2)(X \ Σ, Lp) =

{
S ∈ H0(X \ Σ, Lp) : ‖S‖p < +∞

}
, (1.3)

where
‖S‖2p =

∫
X\Σ
|S|2hpω.

We show in Proposition 3.3 that the spaces H0
(2)(X \Σ, Lp) are finite dimen-

sional.

Let Pc,p, Pw,p, Pp be the Bergman kernel functions and γc,p, γw,p, γp be
the Fubini–Study measures of the spaces H0

c,(2)(X,Lp), H0
w,(2)(X,Lp),

H0
(2)(X \ Σ, Lp), respectively, induced by the above metric data. We refer

to Section 3 for their definition and properties. In particular, we have that
logPc,p, logPw,p, logPp ∈ L1(X,ω) (see (3.10), (3.14)), and γp are signed
measures with “small” negative variation (see Lemma 3.4). Our main result
is the following:

Theorem 1.1. — Let X,ω,L, h verify assumptions (A) and (B). Then,
as p→ +∞, we have:

(i) 1
p logPc,p → 0, 1

p logPw,p → 0, 1
p logPp → 0 in L1(X,ω).

(ii) 1
pγc,p → c1(L, h), 1

pγw,p → c1(L, h), 1
pγp → c1(L, h), 1

pγ
+
p → c1(L, h)

in the weak sense of measures on X, where γ+
p is the positive vari-

ation of γp.

In a series of papers starting with [29], Shiffman and Zelditch describe
the asymptotic distribution of zeros of random sequences of holomorphic
sections of powers of a positive line bundle L on a projective manifold (see
also [14, 28, 30]). We showed in [6] that some of their results can be gener-
alized to the setting of line bundles L with singular Hermitian metrics on
compact Kähler manifolds, and also on compact Kähler orbifolds [5]. Further
such equidistribution results with estimates on the speed of convergence are
obtained in [7, 8, 13].

In [4] and [2] we prove equidistribution results for zeros of random se-
quences of sections in the case when the base space X is a compact normal
Kähler space and the sequence of powers Lp is replaced by an arbitrary se-
quence of singular Hermitian holomorphic line bundles Lp satisfying certain
assumptions. The results in [2] apply to very general probability measures
on the Bergman spaces H0

(2)(X,Lp) of L2-integrable holomorphic sections,
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and one of the key ingredients of the proof is the version of Theorem 1.1 in
that setting (see [4, Theorem 1.1] and [2, Theorem 1.1]).

We conclude the paper by noting that [2, Theorem 1.1] holds in the
present setting without any changes and with the same proof. Let {Hp}p>1
be any of the sequences of Bergman spaces defined in (1.1), (1.2), or (1.3).
Given a section S ∈ Hp, we associate to S the measure [div(S)] defined
in (3.5). Geometrically, [div(S)] is the sum of Dirac masses with multiplicities
at the zeros of S in X \Σ plus a sum of Dirac masses at the singular points
xj ∈ Σ with coefficients given in terms of the order of σ?S at the points of
σ−1(xj) (see Proposition 3.3 and (3.6)).

We set np = dimHp and let Sp1 , . . . , Spnp be an orthonormal basis of Hp.
Using this basis we identify Hp to Cnp and endow it with a probability
measure µp which satisfies the moment condition (B) from [2]. Then the
conclusions of [2, Theorem 1.1] hold with Ap = p in the setting of Theo-
rem 1.1 for the probability spaces (Hp, µp). Let us state here more precisely
one particular case of this theorem.

We let µp be the normalized area measure on the unit sphere of Hp ≡
Cnp (see [2, (4.13)]) and consider the product probability space (H, µ) =
(
∏∞
p=1H

p,
∏∞
p=1 µp). The expectation measure E[div(sp)] of the measure-

valued random variable Hp 3 sp 7→ [div(sp)] is defined by〈
E[div(sp)], χ

〉
=
∫
Hp

(∫
X

χd[div(sp)]
)

dµp(sp),

where χ is a continuous function on X. We have:

Theorem 1.2. — Let X,ω,L, h verify assumptions (A) and (B). Then
the following hold:

(i) The measure E[div(sp)] is well defined and 1
pE[div(sp)]→ c1(L, h),

as p→ +∞, in the weak sense of measures on X.
(ii) For µ-a.e. sequence {sp} ∈ H we have 1

p log |sp|hp → 0 in L1(X,ω)
and 1

p [div(sp)]→ c1(L, h), 1
p [div(sp)]+ → c1(L, h), in the weak sense

of measures on X, as p → +∞, where [div(sp)]+ is the positive
variation of [div(sp)].

The paper is organized as follows. In Section 2 we recall the notion of
weakly subharmonic function on a complex curve and the definition of its
Laplacian. In Section 3 we consider holomorphic line bundles endowed with
singular metrics on an algebraic curve. We discuss the measures associated
to divisors of holomorphic or weakly holomorphic sections and we define the
Bergman kernel functions and Fubini–Study measures of the corresponding
Bergman spaces. Theorems 1.1 and 1.2 are proved in Section 4. In Section 5
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we give examples of algebraic curves in P2 for which we describe explicitly the
Bergman spaces of sections considered in the paper. We also give a precise
lower estimate of the Bergman kernel Pw,p in the case of a smooth Hermitian
metric on L.

2. Preliminaries

In this section we review the notions of (weakly) holomorphic and
(weakly) subharmonic function on a complex curve.

Throughout the paper we denote by Dr ⊂ C the open disc of radius r > 0
centered at 0, by D := D1 the unit disc, and by λ the Lesbesgue measure on
C. We denote by ord(g, ζ) the order of a meromorphic function g at ζ ∈ C.

Let X be a complex curve, i.e. a reduced complex space of dimension
one, and let ω be a Hermitian form on X (see e.g. [4, Section 2.1] for the
definition). Let Σ be the set of singular points of X.

Working locally near a singular point xj ∈ Σ and using a local embedding
of X into CN for some N > 2, we may assume that X is a complex curve
in a polydisc Dxj ⊂ CN centered at xj , and is the union of finitely many
irreducible complex curves which intersect only at xj . Moreover each such
irreducible component Y of X at xj has a local normalization (see [20,
Theorem 5.7], [3, Section 6.1]):
f = (f1, . . . , fN ) : D→ Dxj holomorphic with f(D) = Y , f(0) = xj ,
and f : D \ {0} → Y \ {xj} is biholomorphic.

(2.1)

We denote by

α = α(xj , Y ) = min{ord(f ′`, 0) : 1 6 ` 6 N} (2.2)

the ramification index of f at 0 (see e.g. [21, p. 264]).

By shrinking the polydisc Dxj , we may assume that ω is the restriction
to X of a Hermitian form on Dxj . Hence

C−1
1 βN |X 6 ω 6 C1βN |X (2.3)

for some constant C1 > 1, where βN = i
2
∑N
`=1 dz` ∧ dz` is the standard

Kähler form on CN . By (2.3) we have C−1
1 f?βN 6 f?ω 6 C1f

?βN . Hence
we may assume that

C−1
2 |ζ|2α

i

2dζ ∧ dζ 6 f?ω 6 C2|ζ|2α
i

2dζ ∧ dζ 6 C2
i

2dζ ∧ dζ (2.4)

holds on D, with some constant C2 > 1.

– 953 –



Dan Coman and George Marinescu

If U ⊂ X is an open set, a weakly holomorphic function on U is a holomor-
phic function on U \Σ which is locally bounded on U . A weakly holomorphic
function on U that extends continuously at the points of Σ ∩ U is called a
continuous weakly holomorphic function on U . Note that such a function is
not necessarily holomorphic on U (see e.g. [22, p. 91]). Let

OX(U) ⊂ OX,c(U) ⊂ OX,w(U)

denote the set of holomorphic, continuous weakly holomorphic, respectively
weakly holomorphic functions on U . We remark that if X is locally irre-
ducible at any point then the sheaves OX,c and OX,w coincide.

A subharmonic function on U is a function which (using local embeddings
X ↪→ CN ) is locally the restriction to X of a plurisubharmonic function in
the ambient space CN , and which is not identically −∞ on any irreducible
component of U (see e.g. [4, Section 2.1]). A weakly subharmonic function
on U is a subharmonic function on U \Σ which is locally upper bounded on
U . Let SH(U) ⊂ WSH(U) be the set of subharmonic, respectively weakly
subharmonic functions on U .

Lemma 2.1. — If U ⊂ X is open then WSH(U) ⊂ L1
loc(U, ω).

Proof. — Let u ∈ WSH(U). Since u is subharmonic on U \ Σ we have
that u ∈ L1

loc(U \ Σ, ω). So we only need to show that u is integrable on
each irreducible component Y of X at a point xj ∈ Σ ∩ U . Let f : D → Y
be a local normalization of Y and set Yr = f−1(Dr) for r < 1. Then u ◦ f
is subharmonic on D \ {0} and upper bounded near 0, so it extends to a
subharmonic function on D. Hence by (2.4),∫

Yr\{xj}
|u|ω =

∫
Dr\{0}

|u ◦ f |f?ω 6 C2

∫
Dr
|u ◦ f |dλ < +∞.

This yields the conclusion. �

We refer to [10] (see also [4, Section 2.1]) for the definition of smooth
forms on complex spaces. In our context let C∞X,0(U) denote the set of smooth
functions on X with compact support in U . Let d = ∂ + ∂, dc = 1

2πi (∂ − ∂),
so ddc = i

π∂∂. If u ∈ WSH(U) then ddcu is a positive measure on U \ Σ
given in a local coordinate by 1

2π∆u. Since u ∈ L1
loc(U, ω) we have that ddcu

is a distribution on U defined by

〈ddcu, χ〉 =
∫
U\Σ

uddcχ, χ ∈ C∞X,0(U).

Lemma 2.2. — If u ∈ WSH(U) then ddcu is a positive measure on U .
Moreover, assume that xj ∈ Σ ∩ U , Dxj ⊂ CN is a polydisc as in (2.1),
and Y` are the irreducible components of X at xj with local normalizations
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f` : D → Y`, 1 6 ` 6 k. Then each function v` := u ◦ f` extends to a
subharmonic function on D and ddcu =

∑k
`=1(f`)?(ddcv`).

Proof. — Since v` is subharmonic on D\{0} and is upper bounded near 0,
it extends to a subharmonic function on D. If χ is a test function supported
in Dxj we have

〈ddcu, χ〉 =
k∑
`=1

∫
Y`\{xj}

uddcχ =
k∑
`=1

∫
D`\{0}

(u ◦ f`)ddc(χ ◦ f`)

=
k∑
`=1
〈ddcv`, χ ◦ f`〉 =

k∑
`=1
〈(f`)?(ddcv`), χ〉.

This yields the conclusion. �

We conclude this section with the following lemma (see also [10, Theo-
rem 1.7]):

Lemma 2.3. — Let u : U → [−∞,+∞) be a function. Then u ∈ SH(U)
if and only if u ∈WSH(U) and, for every xj ∈ Σ ∩ U and every irreducible
component Y of X at xj, we have that u(xj) = lim supY 3x→xj u(x).

Proof. — One implication is obvious, so we assume that u ∈ WSH(U).
Using [15, Theorem 5.3.1] we have to show that u ◦ g is subharmonic on D,
for any non-constant holomorphic function g : D→ U . It suffices to assume
that g(0) = xj ∈ Σ∩U and to prove that u◦g is subharmonic on Dε for some
ε > 0. For ε > 0 sufficiently small we have that Y = g(Dε) is an irreducible
component ofX at xj such that Y \{xj} is smooth and g(Dε\{0}) = Y \{xj}.
The function v = u ◦ g is subharmonic on Dε \ {0} and

lim sup
ζ→0

v(ζ) = lim sup
Y 3x→xj

u(x) = u(xj) = v(0).

Hence v is subharmonic on Dε. �

We note that if X is locally irreducible at any point then the notions of
subharmonic and weakly subharmonic function are the same.

3. Bergman kernels and Fubini–Study measures

We assume in this section that X, Σ, ω, σ : X̃ → PN , ω̃, verify (A) and
(C). We introduce and study the Bergman kernels and Fubini–Study mea-
sures for the various spaces of L2-integrable holomorphic sections considered
in this paper.
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By the properties of the normalization (see e.g. [20]) we have that
σ(X̃) = X,

σ : X̃ \ σ−1(Σ)→ X \ Σ
is biholomorphic, and the number of points in the preimage σ−1(xj) of xj ∈ Σ
is equal to the number of irreducible components of X at xj . Moreover, for
each such component Y there exists a unique point y ∈ σ−1(xj) and a
coordinate neighborhood of y ≡ 0 which contains D, such that σ|D is a local
normalization of Y as in (2.1) with the polydisc Dxj ⊂ CN ↪→ PN . We
denote by α(y) = α(xj , Y ) the ramification index of σ at y defined in (2.2).
Let

Rσ =
∑

y∈σ−1(Σ)

α(y)y, [Rσ] =
∑

y∈σ−1(Σ)

α(y)δy, (3.1)

be the ramification divisor of σ and its associated measure, where δy is the
Dirac mass at y. Let O

X̃
(Rσ) denote the line bundle defined by Rσ.

We state the following version of Lemma 2.2 in the compact setting:

Lemma 3.1. — If u ∈ WSH(U), where U ⊂ X is open, then v = u ◦ σ
extends to a subharmonic function on σ−1(U) and ddcu = σ?(ddcv).

Proof. — Note that v ∈ SH(σ−1(U \ Σ)) and v is upper bounded near
each point of σ−1(Σ∩U), so it extends to a subharmonic function on σ−1(U).
If χ ∈ C∞X,0(U) we have

〈ddcu, χ〉 =
∫
U\Σ

uddcχ =
∫
σ−1(U)

v ddc(χ ◦ σ) = 〈ddcv, χ ◦ σ〉. �

Let L → X be a holomorphic line bundle and {Uα} be an open cover
of X such that L has a holomorphic frame eα on Uα. We define H0

w(X,L),
respectively H0

c (X,L), by requiring that S ∈ H0
w(X,L), respectively S ∈

H0
c (X,L), if and only if S ∈ H0(X \ Σ, L) and for any α we have sα ∈

OX,w(Uα), respectively sα ∈ OX,c(Uα), where S = sαeα on Uα \ Σ.

The notion of singular Hermitian metric h on L is defined exactly as in the
smooth case (see [11], [24, p. 97], [4, Section 2.2])). We have |eα|2h = e−2ϕα ,
where ϕα ∈ L1

loc(Uα, ω) are called the local weights of h. We assume in
the sequel that h has weakly subharmonic weights, i.e. ϕα ∈ WSH(Uα). If
gαβ = eβ/eα ∈ O∗X(Uα ∩ Uβ) are the transition functions of L then ϕα =
ϕβ + log |gαβ | holds on (Uα ∩ Uβ) \ Σ. Set

c1(L, h)|Uα = ddcϕα. (3.2)

It follows from Lemma 2.2 that c1(L, h) is a well defined positive measure
on X, called the curvature measure of h.
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Let σ?L → X̃ be the pullback of the line bundle L, endowed with the
pullback metric σ?h. Since σ?h has weight ϕα ◦ σ on σ−1(Uα), we infer by
Lemma 3.1 that σ?h has subharmonic weights and

c1(L, h) = σ?
(
c1(σ?L, σ?h)

)
.

Using the Riemann removable singularity theorem, it follows easily that
the map

σ? : H0
w(X,Lp)→ H0(X̃, σ?Lp) (3.3)

is well defined and an isomorphism. Hence by the Riemann–Roch theo-
rem [16, 16.9] or by Siegel’s lemma (see [24, Lemma 2.2.6]), applied to σ?L,
there exists a constant C > 0 such that

dimH0
w(X,Lp) 6 Cp for all p > 1.

We show next that the Bergman spaces H0
(2)(X \ Σ, Lp) defined in (1.3)

are finite dimensional, as they correspond to spaces of meromorphic section
of σ?Lp with poles in Rσ. We need the following simple lemma:

Lemma 3.2. — Let g(ζ) =
∑+∞
j=−∞ ajζ

j be a holomorphic function on
D \ {0} such that

∫
D\{0} |g(ζ)|2|ζ|2ndλ < +∞ for some n ∈ Z. Then aj = 0

for all j 6 −n− 1.

Proof. — Let ε ∈ (0, 1). Using polar coordinates we obtain∫
{ε<|ζ|<1}

|g(ζ)|2|ζ|2ndλ = 2π
+∞∑
j=−∞

|aj |2
∫ 1

ε

r2j+2n+1dr.

The conclusion follows by letting ε→ 0. �

Proposition 3.3. — The map σ? : H0
(2)(X \ Σ, Lp) → H0(X̃, σ?Lp ⊗

O
X̃

(Rσ)
)
is well defined and injective. We have dimH0

(2)(X \ Σ, Lp) 6 Cp

for all p > 1, where C > 0 is a constant.

Proof. — The holomorphic sections of σ?Lp ⊗ O
X̃

(Rσ) can be identified
to meromorphic sections of σ?Lp with poles in Rσ, so we have to show that
if S ∈ H0

(2)(X \Σ, Lp) and y ∈ σ−1(Σ) then σ?S has a pole of order at most
α(y) at the isolated singularity y.

Let xj = σ(y) and D be the unit disc in a coordinate neighborhood of
y ≡ 0 such that σ|D is the local normalization of an irreducible component Y
of X at xj . We may assume that xj has a neighborhood Uα on which L has
a local holomorphic frame eα such that Uα ∩ Σ = {xj} and D ⊂ σ−1(Uα).
Then S = sαe

⊗p
α for some sα ∈ OX(Uα \ {xj}), and |eα|h = e−ϕα , where
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ϕα ∈ WSH(Uα). We may assume that ϕα 6 M on Uα, for some constant
M . Using (2.4) we obtain

‖S‖2p >
∫
Y \{xj}

|sα|2e−2pϕαω > e−2pM
∫
D\{0}

|sα ◦ σ|2σ?ω

> C−1
2 e−2pM

∫
D\{0}

|sα(σ(ζ))|2|ζ|2α(y)dλ.

By Lemma 3.2 we infer that the function sα ◦ σ has a pole of order at most
α(y) at y.

The map σ? is clearly injective, since σ : X̃ \ σ−1(Σ)→ X \ Σ is biholo-
morphic. The last assertion follows from the Riemann–Roch theorem [16,
16.9] or Siegel’s lemma (see [24, Lemma 2.2.1] and its proof). �

Let S ∈ H0
(2)(X \ Σ, L), S 6= 0. It follows from Proposition 3.3 that σ?S

is a meromorphic section of σ?L, so it induces the divisor div(σ?S) and its
associated signed measure [div(σ?S)] on X̃, where

div(σ?S) =
∑
y∈X̃

ord(σ?S, y)y, [div(σ?S)] =
∑
y∈X̃

ord(σ?S, y)δy.

Moreover, the divisor div(σ?S) +Rσ is effective. We define

ord(S, xj) =
∑

y∈σ−1(xj)

ord(σ?S, y), xj ∈ Σ. (3.4)

Writing S = sαeα, where sα ∈ OX(Uα \ Σ), we have that sα ◦ σ is
meromorphic on σ−1(Uα), hence log |sα ◦ σ| is locally the difference of two
subharmonic functions. We infer that log |sα| is locally the difference of
two weakly subharmonic functions on Uα. By Lemma 2.1, this implies that
log |sα| ∈ L1

loc(Uα, ω). Since log |sα| = log |sβ |+log |gαβ | on (Uα∩Uβ)\Σ, we
can define, using Lemma 2.2, the signed measure [div(S)] on X by setting

[div(S)]|Uα = ddc log |sα|. (3.5)

Note that [div(σ?S)]|σ−1(Uα) = ddc log |sα ◦ σ|. Since σ?S is a meromor-
phic section of σ?L, we see that S has finitely many zeros z1, . . . , zk ∈ X \Σ.
By Lemma 3.1 we obtain

[div(S)] = σ?
(
[div(σ?S)]

)
=

k∑
j=1

ord(S, zj)δzj +
m∑
j=1

ord(S, xj)δxj , (3.6)

where ord(S, xj) is defined in (3.4). Let [div(S)]± denote the positive and
negative variations of the measure [div(S)], so

[div(S)] = [div(S)]+ − [div(S)]−.
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Then

[div(S)]+ =
k∑
j=1

ord(S, zj)δzj +
m∑
j=1

ord(S, xj)+δxj ,

[div(S)]− =
m∑
j=1

ord(S, xj)−δxj ,

where ord(S, xj)+ = max{ord(S, xj), 0}, ord(S, xj)− = max{− ord(S, xj), 0}.

Since div(σ?S) +Rσ is effective, we infer that

[div(S)]− 6
m∑
j=1

 ∑
y∈σ−1(xj)

α(y)

 δxj = σ?([Rσ]). (3.7)

Note that the right hand side of (3.7) is independent of L.

Since log |S|h = log |sα| − ϕα on Uα, the function log |S|h ∈ L1(X,ω).
Hence (3.2) and (3.5) yield the following version of the Lelong–Poincaré
formula in this setting:

[div(S)] = c1(L, h) + ddc log |S|h. (3.8)

The preceding discussion carries over for sections S ∈ H0
w(X,L), S 6=

0. As log |sα| ∈ WSH(Uα), the measure [div(S)] defined in (3.5) is now
positive. Moreover, we have that σ?S ∈ H0(X̃, σ?L), so the divisor div(σ?S)
is effective and the measure [div(σ?S)] is positive. Formula (3.6) and the
Lelong–Poincaré formula (3.8) hold for [div(S)].

We give now the definitions of the Bergman kernel functions Pw,p, Pc,p, Pp
and Fubini–Study measures γw,p, γc,p, γp of the Bergman spaces considered in
this paper. We start with the spaces H0

w,(2)(X,Lp) and H0
c,(2)(X,Lp) defined

in (1.2), respectively (1.1).

Let dw,p = dimH0
w,(2)(X,Lp) and let Spj , 1 6 j 6 dw,p, be an orthonormal

basis of H0
w,(2)(X,Lp). We write Spj = spj,αe

⊗p
α , where spj,α ∈ OX,w(Uα). Then

Pw,p(x) =
dw,p∑
j=1
|Spj (x)|2hp , γw,p|Uα = ddcup,α,

where up,α = 1
2 log

dw,p∑
j=1
|spj,α|

2

 . (3.9)

Note that Pw,p(x) is defined for all x ∈ X \ Σ such that if x ∈ Uα then
ϕα(x) > −∞. Moreover, up,α ∈ WSH(Uα) and up,α = up,β + log |gαβ | on
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(Uα ∩ Uβ) \ Σ, so by Lemma 2.2 γw,p is a well defined positive measure on
X. We have that Pw,p, γw,p are independent of the choice of basis and

logPw,p|Uα = 2up,α − 2pϕα. (3.10)
By Lemma 2.1 we infer that logPw,p ∈ L1(X,ω), and

1
p
γw,p − c1(L, h) = 1

2pddc logPw,p. (3.11)

Moreover, as in [4, 5, 6], one has the following variational formula,
Pw,p(x) = max

{
|S(x)|2hp : S ∈ H0

w,(2)(X,Lp), ‖S‖p = 1
}
, (3.12)

for all x ∈ X \ Σ where Pw,p(x) is defined.

Let dc,p = dimH0
c,(2)(X,Lp). One defines the Bergman kernel function

Pc,p and Fubini–Study measure γc,p of the space H0
c,(2)(X,Lp) in the same

way as in (3.9). The formulas (3.10), (3.11), (3.12) hold in this case as well.

We next turn our attention to the Bergman kernel function Pp and
Fubini–Study measure γp of the space H0

(2)(X \ Σ, Lp) defined in (1.3).
Proceeding as above, let dp = dimH0

(2)(X \ Σ, Lp) and Spj , 1 6 j 6 dp,
be an orthonormal basis of H0

(2)(X \ Σ, Lp). We set Spj = spj,αe
⊗p
α , where

spj,α ∈ OX(Uα \ Σ), and define for x ∈ X \ Σ,

Pp(x) =
dp∑
j=1
|Spj (x)|2hp , and γp|Uα = ddcup,α,

where up,α = 1
2 log

 dp∑
j=1
|spj,α|

2

 . (3.13)

Proposition 3.3 shows that up,α◦σ is locally the difference of two subharmonic
functions on σ−1(Uα). Hence up,α is locally the difference of two weakly sub-
harmonic functions on Uα. By Lemma 2.1 and Lemma 2.2 we infer that
up,α ∈ L1

loc(Uα, ω) and γp is a well defined signed measure on X. The ana-
logue of (3.10) in this setting shows that

logPp ∈ L1(X,ω), 1
p
γp − c1(L, h) = 1

2pddc logPp. (3.14)

Moreover, the variational formula (3.12) also holds for Pp.

Lemma 3.4. — Let γ−p be the negative variation of the measure γp. Then
γ−p 6 σ?([Rσ]). In particular, γ−p is supported in Σ.

Proof. — Since up,α ◦σ is locally the difference of two subharmonic func-
tions on σ−1(Uα), γ̃p|σ−1(Uα) := ddc(up,α ◦ σ) defines a signed measure γ̃p
on X̃. By Lemma 3.1 we infer that γp = σ?(γ̃p). Note that X̃ \ σ−1(Σ) is
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a positive set for γ̃p. Working locally near a point y ≡ 0 ∈ σ−1(Σ ∩ Uα)
we have by Proposition 3.3 that up,α(σ(ζ)) = v(ζ) + n log |ζ|, where v is a
smooth subharmonic function and n > −α(y). Hence γ̃p({y}) = n > −α(y).
Therefore the measure γ̃p + [Rσ] is positive, hence so is γp + σ?([Rσ]). The
conclusion now follows. �

We conclude this section by noting that the spaces
H0
c,(2)(X,Lp) ⊂ H0

w,(2)(X,Lp) ⊂ H0
(2)(X \ Σ, Lp), (3.15)

are endowed with the same inner product, hence
Pc,p(x) 6 Pw,p(x) 6 Pp(x), (3.16)

for every x ∈ X \ Σ such that if x ∈ Uα then ϕα(x) > −∞.

4. Proof of Theorems 1.1 and 1.2

We start with some auxiliary results that are needed for the proof of
Theorem 1.1.

Lemma 4.1. — If v is subharmonic on D, A = {ζ ∈ C : 1
8 6 |ζ| 6

5
8}

and |x| 6 1
8 , then

v(x) 6 2
∫
A

|v|dλ.

Proof. — Let Ax = {ζ ∈ C : 1
4 6 |ζ − x| 6

1
2}. Since Ax ⊂ A we obtain

using the subaverage inequality that

3
32v(x) 6 1

2π

∫ 1
2

1
4

∫ 2π

0
v(x+ reit)rdtdr 6 1

2π

∫
Ax

|v|dλ 6 1
2π

∫
A

|v|dλ. �

We state next a general result about the asymptotics of the logarithms
of Bergman kernels. Let Y be a complex manifold of dimension n, ω be a
Hermitian form on Y and (L, h) be a singular Hermitian holomorphic line
bundle on Y . One defines the Bergman spaces H0

(2)(Y, Lp) in analogy to (1.3)
using the metric hp induced by h on Lp and the volume form ωn

n! on Y . Let
Vp 6 H0

(2)(Y, Lp) be a subspace of dimensionmp > 0 and define the Bergman
kernel function Qp of Vp as in (3.13). Note that logQp is locally the difference
of integrable functions, so logQp ∈ L1

loc(Y, ωn).

Lemma 4.2. — In the above setting, assume that:

(i) mp 6 cpn holds for all p > 1, with some constant c > 0;
(ii) every x ∈ Y has a neighborhood Ux such that Qp > εx holds ωn-a.e.

on Ux for all p sufficiently large, with some constant εx > 0.
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Then 1
p logQp → 0 as p→ +∞, in L1

loc(Y, ωn).

Proof. — We may assume that Cx :=
∫
Ux
ωn < +∞. It suffices to show

that 1
p logQp → 0 in L1(Ux, ωn) for each x ∈ Y . Note that

∫
Y
Qp

ωn

n! = mp.
Using Jensen’s inequality and hypothesis (i) we get∫

Ux

(logQp)ωn 6 Cx log
( 1
Cx

∫
Ux

Qp ω
n
)
6 nCx log p+ C ′x (4.1)

for all p > 1, with some constant C ′x > 0. If fp := 1
p (logQp − log εx) then

by (ii), fp > 0 ωn-a.e. on Ux for all p sufficiently large. Hence
∫
Ux
fp ω

n → 0
by (4.1). This implies the conclusion. �

We now introduce the geometric setting and notation needed to describe
the local structure of X near the singular points. Let σ : X̃ → PN be the
normalization of X from (C). For each xj ∈ Σ we can find a neighborhood
Vj ⊂ X of xj with the following properties:

(P1) V j ∩ V k = ∅ for 1 6 j < k 6 m.
(P2) there exist coordinates (z1, . . . , zN ) on CN ↪→ PN and a polydisc

Dj ⊂ CN centered at 0 such that xj ≡ 0, Vj = X ∩ Dj , and
Vj ∩ {z1 = 0} = {0}.

(P3) Y1, . . . , Ykj denote the irreducible components of Vj .
(P4) for 1 6 ` 6 kj , there exists y` ∈ σ−1(xj) and a coordinate neigh-

borhood of y` ≡ 0 containing D, such that σ` := σ|D : D → Dj is a
local normalization of Y` as in (2.1).

Note that by (P1), any two irreducible components of Vj intersect only
at xj . In the proof of Theorem 1.1 we will have to work with a different
Hermitian form on X \ Σ, which is provided by the following lemma.

Lemma 4.3. — Let Ω := σ?
(
ω̃|
X̃\σ−1(Σ)

)
. Then Ω is a Hermitian form

which verifies RicΩ > −2πBΩ and Ω > aω on X \ Σ, with some constants
a,B > 0.

Proof. — As X̃ is compact, there exists a constant B > 0 such that
Ric

ω̃
> −2πBω̃ on X̃. Since σ : X̃ \ σ−1(Σ) → X \ Σ is biholomorphic, Ω

is a Hermitian form with RicΩ > −2πBΩ on X \ Σ. For xj ∈ Σ, let Y` be a
component of X at xj as in (P3), and σ` be as in (P4). We infer from (2.4)
that σ?`ω 6 Cω̃ holds on D, with some constant C > 0. Hence ω 6 CΩ on
Y` \ {xj}. This yields the conclusion. �

The function φ constructed in the next lemma will be used to obtain a
suitable modified metric on L.

Lemma 4.4. — Let X,Σ, ω, σ verify (A), (C) and Ω be as in Lemma 4.3.
If U ⊃ Σ is an open set, then there exists a continuous function φ : X → R
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supported in U such that φ 6 0 on X, φ is smooth on X\Σ, and Aω+ddcφ >
bΩ on X \ Σ for some constants A, b > 0.

Proof. — For 1 6 j 6 m, we choose a neighborhood Vj ⊂ U of xj
such that properties (P1)–(P4) are satisfied. Fix now xj ∈ Σ. Since Vj ∩
{z1 = 0} = {0}, by shrinking Dj we may assume that for each Y` we have

σ`(ζ) = (ζs` , f`,2(ζ), . . . , f`,N (ζ)), ζ ∈ D,

where s` − 1 > α(y`) (see (2.2), (3.1)) and f`,l are holomorphic in D. We
consider the plurisubharmonic function w`(z1, . . . , zN ) = log

(
1 + |z1|2/s`

)
on CN , and define

ρj =
kj∑
`=1

w`|Vj −Mj ,

where Mj is chosen so that ρj < 0 on Vj . Then ρj is continuous and subhar-
monic on Vj , and it is smooth on Vj\{0} since z1 6= 0 if (z1, . . . , zN ) ∈ Vj\{0}.
Moreover,

ddc(ρj ◦ σ`) > ddc(w` ◦ σ`) = ddc log(1 + |ζ|2) > i

4πdζ ∧ dζ (4.2)

holds on D, for each ` = 1, . . . , kj .

Let χj ∈ C∞X,0(Vj) be such that χj > 0 on X and χj = 1 on an open set
Wj containing xj . We define

φ =
m∑
j=1

χjρj .

Then φ 6 0 is continuous on X, suppφ ⊂ U , and φ is smooth on X \ Σ.
Since φ = ρj on Wj , φ is subharmonic in the neighborhood W :=

⋃m
j=1Wj

of Σ. It follows that there exists a constant M > 0 such that ddcφ > −MΩ
on X \ Σ. Since φ = ρj on Wj we infer by (4.2) that ddc(φ ◦ σ) > bω̃ holds
on σ−1(W ) for some constant b > 0, hence ddcφ > bΩ on W \ Σ. Let c > 0
be a constant such that ω > cΩ on X \W . For A > 0 we obtain

Aω + ddcφ > (Ac−M)Ω on X \W,
Aω + ddcφ > bΩ on W \ Σ.

The conclusion follows by choosing A = (M + b)/c. �

Proof of Theorem 1.1. —

(i). — We show first that
1
p

logPc,p → 0, 1
p

logPw,p → 0, 1
p

logPp → 0, in L1
loc(X \ Σ, ω). (4.3)
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By Proposition 3.3, (3.15) and (3.16), this will follow from Lemma 4.2
once we show that hypothesis (ii) of Lemma 4.2 holds for Qp = Pc,p. Let x ∈
X \Σ and Uα be a coordinate neighborhood of x ≡ 0 such that Uα ⊂ X \Σ
and L has a holomorphic frame eα on Uα. Set |eα|h = e−ϕα , so ϕα ∈ SH(Uα)
by (B).

For each xj ∈ Σ we choose a neighborhood Vj ⊂ X \ Uα of xj such that
properties (P1)–(P4) are satisfied. We define the function ρj on Vj by setting

ρj =
(
α(y`) + 1

)
log |σ−1

` | on Y` \ {xj}, ` = 1, . . . , k, and ρj(xj) = −∞,
(4.4)

where α(y`) is the ramification index of σ at y`. By Lemma 2.3 it follows
that ρj ∈ SH(Vj). Moreover ρj < 0 and ρj is smooth on Vj \ {xj}. Let
χj ∈ C∞X,0(Vj) be such that χj > 0 on X and χj = 1 on an open set Wj

containing xj . We define η =
∑m
j=1 χjρj . Then η is smooth onX\Σ, η 6 0 on

X, and η = 0 in a neighborhood of Uα. Since η = ρj onWj , η is subharmonic
in a neighborhood of Σ. We infer that

ddcη > −MΩ on X \ Σ, (4.5)

for some constant M > 0, where Ω is as in Lemma 4.3.

Fix r0 > 0 such that the disc V := D2r0 b Uα and we set U := Dr0 . We
will show that there exist a constant C > 0 and p0 ∈ N with the following
property: if p > p0, z ∈ U and ϕα(z) > −∞, then there exists a section
Sz,p ∈ H0

c,(2)(X,Lp) such that Sz,p(z) 6= 0 and

‖Sz,p‖2p 6 C|Sz,p(z)|2hp . (4.6)

In view of (3.12) this implies that

Pc,p(z) >
|Sz,p(z)|2hp
‖Sz,p‖2p

> C−1,

which shows that hypothesis (ii) of Lemma 4.2 folds for Pc,p.

For the proof of (4.6) we use techniques of Demailly [12, Section 9] (see
also [6, Section 5]). By the Ohsawa–Takegoshi extension theorem [26] there
exists a constant C ′ > 0 (depending only on x) such that for any z ∈ U
with ϕα(z) > −∞ and any p there exists a function vz,p ∈ OX(V ) with
vz,p(z) 6= 0 and ∫

V

|vz,p|2e−2pϕαΩ 6 C ′|vz,p(z)|2e−2pϕα(z).

We will extend vz,p to a section Sz,p ∈ H0
c,(2)(X,Lp) by solving a ∂-equation

with L2-estimates. Let χ : [0,+∞) → [0, 1] be a smooth function such that
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χ = 1 on [0, 1
2 ] and χ = 0 on [ 3

4 ,+∞), and set

θz(t) =
{
χ
( |t−z|

r0

)
log |t−z|r0

, for t ∈ Uα,
0, for t ∈ X \ Uα.

Let φ be the function constructed in Lemma 4.4 for the open set X\Uα ⊃
Σ, so φ 6 0 on X, φ = 0 in a neighborhood of Uα, and ddcφ > bΩ−Aω on
X \ Σ for some constants A, b > 0. We consider the metric

h̃p = hpe
−2δpφ−2η−2θz on Lp|X\Σ, where δ = ε

A
.

Since θz is subharmonic in a neighborhood of z, it follows that there exists
a constant M ′ > 0 such that ddcθz > −M ′Ω on X \ Σ, for all z ∈ U . Using
Lemma 4.4, (4.5) and hypothesis (B), we obtain for all p sufficiently large
that

c1(Lp, h̃p) = pc1(L, h) + δpddcφ+ ddcη + ddcθz

> p

(
c1(L, h) + εb

A
Ω− εω

)
− (M +M ′)Ω

>

(
pεb

A
−M −M ′

)
Ω > 2pε′Ω

on X \ Σ, where ε′ = εb
4A . Note that the Riemann surface X \ Σ is Stein

(see e.g. [16, Corollary 26.8]), hence it carries a complete Kähler metric. By
Lemma 4.3 we have RicΩ > −2πBΩ on X \ Σ. Let

g ∈ L2
0,1(X \ Σ, Lp, loc), g = ∂

(
vz,pχ

( |t−z|
r0

)
e⊗pα

)
.

By [9, Theorem 5.1] (see also [4, Theorem 2.5]) it follows that there exists
p0 ∈ N such that if p > p0 there exists u ∈ L2

0,0(X \ Σ, Lp, loc) verifying
∂u = g and∫

X\Σ
|u|2hpe

−2δpφ−2η−2θzΩ 6 1
pε′

∫
X\Σ
|g|2hpe

−2δpφ−2η−2θzΩ.

Since φ = η = 0 on Uα we have that∫
X\Σ
|g|2hpe

−2δpφ−2η−2θzΩ

=
∫
{ r0

2 <|t−z|<r0}
|vz,p|2|∂χ( |t−z|r0

)|2e−2pϕα−2θzΩ

6 C ′′
∫
V

|vz,p|2e−2pϕαΩ 6 C ′C ′′|vz,p(z)|2e−2pϕα(z) < +∞,
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where C ′′ > 0 is a constant depending only on x. Using φ 6 0, η 6 0, θz 6 0,
we get∫

X\Σ
|u|2hpΩ 6

∫
X\Σ
|u|2hpe

−2η−2θzΩ 6 C ′C ′′

pε′
|vz,p(z)|2e−2pϕα(z).

Note that u(z) = 0, as e−2θz(t) = r2
0|t − z|−2 is not integrable near z.

Fix now xj ∈ Σ. We have θz = 0 on Vj and η = ρj on Wj . Let Y` be a
component of Vj as in (P3) and σ` : D → Y` be the normalization of Y` as
in (P4). We may assume that L has a holomorphic frame eL on Vj and that
the corresponding local weight of h is upper bounded on Vj . Set u = ve⊗pL .
We infer that there exists a constant c > 0 such that∫

Y`\{xj}
|u|2hpe

−2η−2θzΩ > cp
∫

(Y`∩Wj)\{xj}
|v|2e−2ρjΩ

> acp
∫

(Y`∩Wj)\{xj}
|v|2e−2ρjω,

where the second inequality follows from Lemma 4.3. Using (4.4) and (2.4)
we get ∫

(Y`∩Wj)\{xj}
|v|2e−2ρjω > C−1

2

∫
Dr\{0}

|v(σ`(ζ))|2|ζ|−2dλ,

for some r ∈ (0, 1). Therefore
∫
Dr\{0} |v(σ`(ζ))|2|ζ|−2dλ < +∞. Note that

∂u = g = 0 on Vj \ {xj}, hence v ◦ σ` is holomorphic on D \ {0}. We infer
from Lemma 3.2 that v ◦ σ` extends holomorphically at 0 and v ◦ σ`(0) = 0.
This shows that u is a continuous weakly holomorphic section of Lp on Vj ,
for j = 1, . . . ,m.

Set Sz,p := vz,pχ
( |t−z|

r0

)
e⊗pα − u. Then ∂Sz,p = 0, Sz,p = −u on each Vj ,

so Sz,p ∈ H0
c (X,Lp). Moreover, Sz,p(z) = vz,p(z)e⊗pα (z) 6= 0, as u(z) = 0.

Using Lemma 4.3 we obtain

‖Sz,p‖2p 6
1
a

∫
X\Σ
|Sz,p|2hpΩ 6 2

a

(∫
V

|vz,p|2e−2pϕαΩ +
∫
X\Σ
|u|2hpΩ

)

6
2C ′

a

(
1 + C ′′

pε′

)
|vz,p(z)|2e−2pϕα(z) 6 C|Sz,p(z)|2hp ,

with a constant C > 0 depending only on x. This concludes the proof of (4.6),
and hence of (4.3).

We consider next the L1-convergence near the singular points. Let Vj , 1 6
j 6 m, verify properties (P1)–(P4), and fix xj ∈ Σ. Let Y` be a component of
Vj as in (P3) and σ` be as in (P4). We may assume that L has a holomorphic
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frame eL on Vj and that the corresponding local weight ϕ of h is upper
bounded on Vj . The proof of assertion (i) is complete if we show that

1
p

logPc,p → 0, 1
p

logPw,p → 0, 1
p

logPp → 0, in L1(Y`, ω). (4.7)

Let Qp denote either one of the Bergman kernels Pc,p, Pw,p, Pp, and let
Sp1 , . . . , S

p
np be an orthonormal basis of the corresponding Bergman space.

We write

Spj = spje
⊗p
L , where spj ∈ OX(Vj \ {xj}), up := 1

2 log

 np∑
j=1
|spj |

2

 .

Formula (3.10) implies that
1
p
up ◦ σ` − ϕ ◦ σ` = 1

2p log(Qp ◦ σ`) on D \ {0}.

By Proposition 3.3 and (3.15), we have that the functions ζα(y`)spj (ζ) extend
holomorphically at 0 ∈ D. Hence the function

vp(ζ) := up ◦ σ`(ζ) + α(y`) log |ζ|

extends to a subharmonic function on D. Moreover, ϕ ◦ σ` also extends to a
subharmonic on D.

We infer from (4.3) that 1
p log(Qp ◦ σ`) → 0, hence 1

pvp → ϕ ◦ σ`, in
L1

loc(D \ {0}, λ). Combined with Lemma 4.1 this implies that the sequence
of subharmonic functions { 1

pvp} is locally uniformly upper bounded in D.
Therefore [23, Theorem 3.2.12] yields that 1

pvp → ϕ ◦ σ`, hence 1
p log(Qp ◦

σ`)→ 0, in L1
loc(D, λ). Using (2.4) we get∫

Y`\xj
|logQp|ω 6 C2

∫
D
|log(Qp ◦ σ`)|dλ.

Hence (4.7) follows, and the proof of assertion (i) is finished.

(ii). — In the case of γc,p and γw,p, (ii) follows immediately from (i)
by using (3.11). From (3.14) we see that 1

p

∫
X
χdγp →

∫
X
χdc1(L, h) for

every smooth function χ on X. By Lemma 3.4 the measure γp + σ?([Rσ])
is positive, so we infer that 1

pγp → c1(L, h) in the weak sense of measures.
Therefore 1

pγ
+
p → c1(L, h), as 1

pγ
−
p → 0 in the weak sense of measures, by

Lemma 3.4. �

Proof of Theorem 1.2. — Let Qp, ηp be the Bergman kernel function and
Fubini–Study measure of the space Hp. By Theorem 1.1 we have 1

p logQp →
0 in L1(X,ω) and 1

pηp → c1(L, h) in the weak sense of measures on X.
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Note that c1(Lp, hp) = pc1(L, h) and formulas (3.11), (3.14), which re-
late ηp, Qp, c1(L, h), are valid. Moreover, we have the Lelong–Poincaré for-
mula (3.8) relating [div(sp)], |sp|hp , c1(L, h). Hence the proof of [2, Theo-
rem 1.1] goes through with no change in our setting, and we can take Ap = p
(see also [2, Theorem 4.1] and its proof).

In our present situation µp is the normalized area measure on the unit
sphere of Hp. By Proposition 3.3 we have np = dimHp 6 Cp for some
constant C > 0. Therefore Theorem 1.2 follows from [2, Theorem 4.12].

We have to consider further the case Hp = H0
(2)(X \ Σ, Lp), when the

measures ηp = γp and [div(sp)] are not necessarily positive. Arguing as in
the proof of [2, Theorem 1.1], we have that 1

p log |sp|hp → 0 in L1(X,ω) for
µ-a.e. sequence {sp} ∈ H. By (3.8), this implies that 1

p [div(sp)] → c1(L, h)
in the sense of distributions. Since by (3.7), [div(sp)]− 6 σ?([Rσ]), it follows
that 1

p [div(sp)] → c1(L, h), 1
p [div(sp)]+ → c1(L, h), in the weak sense of

measures on X. This completes the proof of assertion (ii).

For (i), we have as in the proof of [2, Theorem 1.1] that E[div(sp)] is a
well defined distribution on X and〈

1
p
E[div(sp)], χ

〉
→
∫
X

χdc1(L, h)

for every smooth function χ. By (3.7) the measure ν := [div(sp)] + σ?([Rσ])
is positive, hence the total variation |[div(sp)]| 6 ν + σ?([Rσ]). Using (3.8)
we get∣∣∣∣∫
X

χd[div(sp)]
∣∣∣∣ 6 ∫

X

|χ|d(ν+σ?([Rσ]) 6 ‖χ‖∞
(
pc1(L, h)+2σ?([Rσ])

)
(X).

We infer that E[div(sp)] is a well defined measure onX and its total variation
verifies ∣∣E[div(sp)]

∣∣(X) 6
(
pc1(L, h) + 2σ?([Rσ])

)
(X).

This yields assertion (i). �

5. Examples

In this section we exemplify our results in the case of certain plane al-
gebraic curves. We also give a precise lower estimate of the Bergman kernel
Pw,p in the case of a smooth Hermitian metric on L.

Example 5.1. — We consider a class of algebraic curves X in P2 which
have one singular point and are normalized by P1. They are defined by graphs
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of polynomials and we will describe explicitly the spaces of holomorphic sec-
tions considered in the paper. We denote by Cn[ζ] the space of polynomials
of degree at most n in C.

Let [z0 : z1 : z2] denote the homogeneous coordinates on P2, and consider
the standard embedding (z1, z2) ∈ C2 ↪→ [1 : z1 : z2] ∈ P2. Let

Q(z0, z1) =
d∑
j=0

ajz
j
0z
d−j
1 , where a0 6= 0,

be a homogeneous polynomial of degree d > 2. Set P (z1) = Q(1, z1), so
P ∈ C[z1] is a polynomial of degree d. Let X = XQ be the algebraic curve
of degree d in P2 defined by

X =
{

[z0 : z1 : z2] ∈ P2 : zd−1
0 z2 −Q(z0, z1) = 0

}
.

Furthermore, let
ω = ωFS|X , L = OP2(1)|X ,

where ωFS is the Fubini–Study form and OP2(1) is the hyperplane bundle on
P2. Recall that π?ωFS = ddc log ‖Z‖, where Z = (z0, z1, z2) ∈ C3\{0} and π :
C3 \ {0} → P2 is the canonical projection. Moreover, if Uj = {zj 6= 0} ⊂ P2

then the transition functions of OP2(1) are given by gjk([z0 : z1 : z2]) = zk/zj
on Uj ∩ Uk, 0 6 j, k 6 2 (see e.g. [2, Example 4.4]).

Note that in C2 ∼= U0 we have X∩U0 = {(z1, z2) : z2 = P (z1)}, so X∩U0
is biholomorphic to C via the obvious map ζ ∈ C→ (ζ, P (ζ)) ∈ X ∩U0. We
also note that X has one point on the line at infinity, as X ∩ {z0 = 0} =
{[0 : 0 : 1]}. If d > 3 then X is singular and locally irreducible at x1 :=
[0 : 0 : 1], so Σ = {x1}. It follows that the normalization of X is P1. In fact
we have the explicit formula for this:

σ : P1 → P2, σ([t0 : t1]) = [td0 : td−1
0 t1 : Q(t0, t1)].

Here [t0 : t1] denote the homogeneous coordinates on P1, and we consider
the standard embedding ζ ∈ C ↪→ [1 : ζ] ∈ P1. Note that σ([0 : 1]) = x1 and
for r > 0 sufficiently small, the function

f(t) = σ[t : 1] =
[

td

Q(t, 1) : td−1

Q(t, 1) : 1
]
, t ∈ Dr,

is the local normalization ofX at xj as in (2.1). We infer that the ramification
divisor of σ (see (3.1)) is

Rσ = (d− 2)y, where y = [0 : 1].

Since X is locally irreducible at x1 we have that OX,c(U) = OX,w(U),
and, by Lemma 2.3, that SH(U) = WSH(U), for any open set U ⊂ X. Let
S ∈ H0

w(X,Lp) be represented by the holomorphic functions s0 on X ∩ U0
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and s2 on X ∩ U2. Then there exists an entire function s such that s0([1 :
ζ : P (ζ)]) = s(ζ) for ζ ∈ C, and we have

s0([1 : ζ : P (ζ)]) = P p(ζ)s2([1 : ζ : P (ζ)])

for all ζ with |ζ| sufficiently large. We infer that s/P p is bounded near
∞, hence s is a polynomial of degree 6 dp. We conclude that the space
H0
w(X,Lp) is isomorphic to Cdp[ζ], hence dimH0

w(X,Lp) = dp+ 1. We can
compare this to the subspace of restrictions to X of global holomorphic
sections on P2,

Vp :=
{
S|X : S ∈ H0(P2, Lp)

}
.

If H0
X(P2, Lp) = {S ∈ H0(P2, Lp) : S = 0 on X} then Vp ∼= H0(P2, Lp)/

H0
X(P2, Lp). Recall that sections in H0(P2, Lp) are given by homogeneous

polynomials of degree p in z0, z1, z2 so dimH0(P2, Lp) = (p+1)(p+2)
2 . There-

fore

dimVp = (p+ 1)(p+ 2)
2 − (p− d+ 1)(p− d+ 2)

2 = dp− d(d− 3)
2

< dimH0
w(X,Lp),

since d > 3. It is worth observing that σ? : H0
w(X,Lp) → H0(P1, σ?Lp) is

an isomorphism and σ?L ∼= OP1(d).

We next describe the set of singular Hermitian metrics h on L that have
subharmonic weights. Arguing as above, we infer that the weight of such h on
X∩U0 is given by a subharmonic function ϕ on C such that ϕ(ζ)− log |P (ζ)|
is bounded at infinity. Hence

ϕ(ζ) 6 d log+ |ζ|+ Cϕ, ∀ ζ ∈ C, (5.1)

with some constant Cϕ. This shows that the set of singular Hermitian metrics
on L is in one-to-one correspondence to the class dL(C), where L(C) is the
Lelong class of subharmonic functions of logarithmic growth on C.

We conclude this section by describing the Bergman spaceH0
(2)(X\Σ, Lp)

defined in (1.3), where h is the metric given by a function ϕ ∈ dL(C). In
view of the above, this space consists of the entire functions s on C which
verify ∫

C
|s|2e−2pϕσ?(ω) < +∞.

We have

σ?(ω) = 1
2ddc log

(
1 + |ζ|2 + |P (ζ)|2

)
= 1 + |P ′(ζ)|2 + |ζP ′(ζ)− P (ζ)|2

π
(
1 + |ζ|2 + |P (ζ)|2

)2 i

2dζ ∧ dζ.
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Since ζP ′ − P has degree d we infer that
c1

1 + |ζ|2d
i

2dζ ∧ dζ 6 σ?(ω) 6 c2
1 + |ζ|2d

i

2dζ ∧ dζ

holds for ζ ∈ C, with some constants c1, c2 > 0. Using (5.1) we obtain that∫
C\D
|s(ζ)|2|ζ|−2d(p+1)dλ < +∞,

which implies that s is a polynomial of degree 6 dp + d − 2. In conclusion,
H0

(2)(X \ Σ, Lp) is isomorphic to the space of polynomials s ∈ Cdp+d−2[ζ]
that verify ∫

C

|s|2e−2pϕ

1 + |ζ|2d dλ < +∞,

where ϕ ∈ dL(C) is the weight of h. We refer to the survey [1] for results
about equidistribution of zeros of random polynomials.

Example 5.2. — Let X be an irreducible algebraic curve and (L, h)→ X
be a Hermitian holomorphic line bundle as in (A) and (B). We assume further
that the Hermitian metric h is smooth. Since h is smooth, H0

w,(2)(X,Lp) =
H0
w(X,Lp) and Pw,p(x) is defined for all x ∈ X \ Σ. Let σ : X̃ → X be the

normalization of X, (σ∗L, σ∗h)→ X̃ the pull-back of (L, h). The curvature
c1(σ∗L, σ∗h) is semi-positive on X̃, is positive on X̃ \ σ−1(Σ), and vanishes
up to finite order at any point of σ−1(Σ). These are precisely the hypotheses
of the results from [25] under which the Bergman kernel asymptotics hold
for a semi-positive line bundle on a Riemann surface. There exists C > 0
such that σ∗ω 6 Cω̃ hence for any S ∈ H0

w(X,Lp) we have

‖S‖2p =
∫
X\Σ
|S|2hpω 6 C

∫
X̃\σ−1(Σ)

|σ∗S|2σ∗hp ω̃ = C

∫
X̃

|σ∗S|2σ∗hp ω̃.

We consider the Bergman kernel function P̃ p of the space H0(X̃, σ∗Lp) with
respect to the Hermitian metric σ∗hp and volume form ω̃. By the isomor-
phism (3.3) and the variational principle for the Bergman kernel functions
we have

Pw,p(x) > 1
C
P̃ p(σ−1(x)), for any x ∈ X \ Σ. (5.2)

By [25, Lemma 25] there exists C̃ > 0 such that for p large enough we have

P̃ p(x̃) > C̃p2/r, for any x̃ ∈ X̃, (5.3)
where r is the maximal normalized vanishing order of the curvature
c1(σ∗L, σ∗h) on X̃, namely, r = max{rx̃ : x̃ ∈ X̃}, rx̃ = ord c1(σ∗L, σ∗h)x̃+2.
Hence, (5.2) and (5.3) show that there exists C ′ > 0 such that for p large
enough we have

Pw,p(x) > C ′p2/r, for any x ∈ X \ Σ. (5.4)
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Thus for h smooth the convergence 1
p logPw,p → 0, as p → ∞ in L1(X,ω)

follows directly from Lemma 4.2 and its proof.

Note that (5.4) is a global lower bound for Pw,p(x). By [25] we have
P̃ p(x̃) ∼ p2/rx̃ for any x̃ ∈ X̃ and on any open set Ũ b X̃ \ σ−1(Σ) we have
P̃ p ∼ p uniformly. Thus for any open set U b X \Σ there exists C1 > 0 such
that Pw,p(x) > C1p on U .
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