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EQUIDISTRIBUTION RESULTS FOR SINGULAR
METRICS ON LINE BUNDLES

BY DAN COMAN AND GEORGE MARINESCU

ABSTRACT. — Let (L, h) be a holomorphic line bundle with a positively curved singular Hermitian
metric over a complex manifold X . One can define naturally the sequence of Fubini-Study currents -y,
associated to the space of L?-holomorphic sections of L®?. Assuming that the singular set of the
metric is contained in a compact analytic subset X of X and that the logarithm of the Bergman density
function of L®?|x\x, grows like o(p) as p — oo, we prove the following:

1) the currents v} converge weakly on the whole X to ¢1(L, h)*, where ¢1(L, h) is the curvature
current of h.

2) the expectations of the common zeros of a random k-tuple of L2-holomorphic sections converge
weakly in the sense of currents to c1 (L, h)*.

Here k& is so that codim ¥ > k. Our weak asymptotic condition on the Bergman density function is
known to hold in many cases, as it is a consequence of its asymptotic expansion. We also prove it here
in a quite general setting. We then show that many important geometric situations (singular metrics
on big line bundles, Kéhler-Einstein metrics on Zariski-open sets, arithmetic quotients) fit into our
framework.

REsuME. — Considérons un fibré holomorphe en droites L muni d’une métrique singuliere h
au-dessus d’une variété complexe X. Soit 7, le courant de Fubini-Study associ¢ naturellement a
I’espace des sections holomorphes de carré intégrable de L®P. En supposant que le lieu singulier de
la métrique h est contenu dans un ensemble analytique compact ¥ C X tel que codim ¥ > k et que
le logarithme du noyau de Bergman associé¢ & L®?|x\x a l'ordre de croissance o(p), p — o0, nous
prouvons que :

1) Les courants 7} convergent faiblement sur X vers c1(L,h)*, ot ci1(L,h) est le courant de
courbure de h.

2) Les moyennes des zéros communs d’un k-vecteur aléatoire de sections holomphes L2-intégrables
convergent faiblement dans le sens des courants vers ¢; (L, h)*.

D. Coman was partially supported by the NSF Grants DMS-0900934 and DMS-1300157. G. Marinescu was
partially supported by DFG funded projects SFB/TR 12, MA 2469/2-1.

0012-9593/03/© 2015 Société Mathématique de France. Tous droits réservés
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498 D. COMAN AND G. MARINESCU

L’hypothése de croissance du noyau de Bergman est la conséquence de son développement asymp-
totique dans le cas d’une métrique lisse ~. Nous la démontrons ici sous des conditions assez géné-
rales. Nous montrons ensuite que nos résultats s’appliquent a nombre de situations géométriques (mé-
triques singulieres sur un fibré gros, métriques de Kahler-Einstein sur des ouverts de Zariski, quotients
arithmétiques...).

1. Introduction

Let X be a compact complex manifold of dimension n, L — X be a positive holomor-
phic line bundle, and h be a smooth Hermitian metric on L whose curvature ¢; (L, h) is a
positive (1,1) form on X. Let ®, : X — P%~! be the Kodaira map defined by an ortho-
normal basis of H°(X, LP) with respect to the inner product given by the metric induced
by h on LP := L®P and a fixed volume form on X, where d, = dim H°(X, L?). The pull-
back @3 (wrs) of the Fubini-Study form wrg is a smooth (1,1) form for all p sufficiently large,
since ®,, is an embedding by Kodaira’s embedding theorem. A theorem of Tian [59] (with im-
provements by Ruan [50]) asserts that % ®*(wrs) — c1(L, h) asp — oo, in the 6= topology
on X.

Tian’s theorem is a consequence of the asymptotic expansion of the Bergman density
function associated to the inner product on H°(X, L?) mentioned above. In the context of
positive line bundles this asymptotic expansion is proved in various forms in [59, 11, 62,
17, 42, 43, 44, 6]. For line bundles endowed with arbitrary smooth Hermitian metrics the
Bergman density function behavior and important consequences are studied in [5] and [7].

In the case of holomorphic Hermitian line bundles over complete Hermitian manifolds
the asymptotic expansion of the Bergman density function associated to the correspond-
ing spaces of L2-holomorphic sections was proved in [44] (see also [42, 43]). In particu-
lar, a version of Tian’s theorem was obtained for a big line bundle L over a (compact)
manifold X. Such a line bundle admits a singular Hermitian metric h, smooth outside
a proper analytic subvariety ¥ C X, and whose curvature current ¢; (L, h) is strictly
positive. It is shown in [43, Section 6.2] that there exist a smooth positively curved Hermi-
tian metric h. on L|x\x, which is a small perturbation of h, and a smooth positive (1,1)
form © defining a generalized Poincaré metric on X \ X, so that the following hold.
If H ?2)(X \ X, L?) is the space of L*-holomorphic sections of L?|x\x relative to the met-
rics he and © then H{, (X \ ¥, L) C HO(X, L?), so a Kodaira map @, : X --» P%~!
can be defined by using an orthonormal basis of H(Oz) (X \ ,LP). Let v, = @5(wrs)
and w = ¢1(L|x\g, he). Then v, — wasp — oo, locally uniformly in the 6> topology
on X \ X.

Since ~, are currents on X it is natural to try and study the weak convergence of the
sequence {v,/p}, and to ask whether a global version of Tian’s theorem holds in this setting.
We will show that this is indeed the case.

Let us work in the following more general setting:

(A) X is a complex manifold of dimension n (not necessarily compact), 3 is a compact
analytic subvariety of X, and Q is a smooth positive (1,1) form on X.
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EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 499

(B) (L,h) is a holomorphic line bundle on X with a singular (semi)positively curved
Hermitian metric A which is continuous on X \ X. We denote by h, the Hermitian
metric induced by h on LP := L®P,

(C) The volume form on X \ ¥ is fQ", where f € L}, (X \ ¥, Q") verifies f > ¢, > 0 Q™-a.e.
in a neighborhood U, of each z € (X \ ¥) U X7.!. Here %" is the set of regular
points y where dim, ¥ =n — 1.

We denote the curvature current of h by v = ¢; (L, h) and consider the space H (02) (X\%,LP)
of L2-holomorphic sections of LP|x\s relative to the metric h, on L? and the volume
form fQ™ on X \ X, endowed with the inner product

(S,8"), = /X \E<S, 'V, Q" where (S,5')n, = hy(S,5'), S,5" € HYy (X \ T, LP).

We let [|S[|7 = (S, S),. Since Hpy (X \ X, LP) is separable, let {S7};>1 be an orthonormal

basis and denote by P, the Bergman density function defined by
(M Pye) =Y ISF@)f,, IS] @R, = (S(2), SF(2))n,, = € X \ .
j=1

Note that this definition is independent of the choice of basis, and the function P, is contin-
uous on X \ X (see Section 3).
Next we define the Fubini-Study currents «, on X \ X by

I >
) Wl = 5 ddlog | D |s5I |, U € X\ S open,
j=1
where d° = 7-(8 — 9), 5% = s7e®P, and e is a local holomorphic frame for L on U.
One of our main results is the following:

THEOREM 1.1. — If X, %, (L, h), f, Q verify assumptions (A)-(C) then H?z)(X \3,LP) C
HO(X, LP) and ~y, extends to a positive closed current on X defined locally by Formula (2) and
which is independent of the choice of basis {S;7 }i>1. Assume further that

1
3) lim — log P,(z) = 0, locally uniformly on X \ .
p—oo P

Then %'yp — v weakly on X. If, in addition, dim ¥~ < n — k for some 2 < k < n, then the
currents v* and 7}’; are well defined on X, respectively on each relatively compact neighborhood
of ¥, for all p sufficiently large. Moreover, p% vF — +* weakly on X.

This theorem is proved in Section 3. The proof relies on a local continuity property of the
complex Monge-Ampeére operator which is of independent interest (see Theorem 3.4). Some
background material about singular Hermitian metrics and pluripotential theory needed in
the paper is recalled in Section 2. We note here that if codim ¥ < k the current v* cannot be
defined (see [9, 10]), so the assumption on the dimension in Theorem 1.1 is optimal.

We examine in Section 6 a series of important situations where condition (3) of Theo-
rem 1.1 holds, as it is an immediate consequence of deep results regarding the asymptotic
expansion of the Bergman density function P,(z) ~ bo(z)p"™ + bi(z)p"~ ! + ---. Espe-
cially, Theorem 1.1 yields equidistribution results for singular metrics on big line bundles

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



500 D. COMAN AND G. MARINESCU

(Sections 6.1, 6.2), on Zariski-open sets of bounded negative Ricci curvature (Section 6.3),
on toroidal compactifications of arithmetic quotients (Section 6.4), and finally on 1-convex
manifolds (Sections 6.5, 6.6).

The point of view adopted in Theorem 1.1 is that once some information is known on the
asymptotic behavior of P, on the set where the metric is continuous, then the global weak
convergence on X of the currents +y, /p and their powers follows. Hypothesis (3) is obviously
a much weaker condition than the asymptotic expansion of P, mentioned above. Indeed, in
Section 5 we give a simple proof that (3) holds in the case of line bundles over compact Kdhler
manifolds endowed with metrics that are assumed to be only continuous outside of ¥ (see
Theorems 5.3 and 5.4). In this case the asymptotic expansion of P, is not known.

We also prove in Theorem 5.1 that Tian’s theorem [59] holds for any singular metric with
strictly positive curvature. Namely, let (X, 2) be a compact Kahler manifold and (L, h) be
a holomorphic line bundle on X with a singular metric i so that ¢;(L,h) is a strictly
positive current. If v, are the Fubini-Study currents defined by (2) for the spaces of L?-holo-
morphic sections of LP relative to the metric induced by A and the volume form Q~,
then %,yp — ¢1(L, h) in the weak sense of currents on X. The proofs of Theorems 5.1 and
5.3 rely on techniques developed by Demailly [19, 22].

In a series of papers including [54, 55, 56, 53], Shiffman and Zelditch describe the asymp-
totic distribution of zeros of random holomorphic sections of a positive line bundle over a
projective manifold endowed with a smooth positively curved metric. They also study the
distribution of zeros of quantum ergodic eigenfunctions. To prove these results they develop
interesting new techniques, based in part on methods in complex dynamics from [29].

Later, using different methods, Dinh and Sibony [24] obtain sharper estimates for the
speed of convergence in the asymptotic distribution of zeros of random holomorphic sec-
tions. In [23] these results are generalized to the case of complete Hermitian manifolds. The
problem of the distribution of zeros of random sections of line bundles appears in other
contexts as well. For example, the case of canonical line bundles over towers of covers is
studied in [60].

We show here how some of the important results of Shiffman and Zelditch can be obtained
in our setting from Theorem 1.1, assuming in addition that X is compact. More precisely,
following the framework in [54], we let A\, be the normalized surface measure on the unit
sphere ¥ of H &) (X' \ X, LP), defined in the natural way by using a fixed orthonormal basis
(see Section 4). We denote by A’; the product measure on (¢*)*, and by [S = 0] the current
of integration (with multiplicities) over the analytic hypersurface {S = 0} determined by
a nontrivial section S € H°(X, LP). We prove in Section 4 the following generalization of
some results of Shiffman and Zelditch [54, 56] to our situation:

THEOREM 1.2. — In the setting of Theorem 1.1, assume that X is compact, dim ¥ < n—k
for some 1 < k < n, and that (3) holds. Then, for all p sufficiently large:
(i) [ = 0] := [o1 = 0] A --- A [or, = 0] is a well defined positive closed current of
bidegree (k.k) on X, for N-a.e. 0 = (o1,...,0%) € (J*)F.
(ii) The expectation E¥[o = 0] of the current-valued random variable o — [o = 0], given by

EFlo =0],¢) = o =0],¢) dA\k,
Ele =)= [ (r=00)
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where @ is a test form on X, is a well defined current and E;f [c=0]= fy}’,f.
(iii) We have _x Ejlo = 0] — 7" as p — oo, weakly in the sense of currents on X.

In particular, this theorem together with [54, Lemma 3.3] or [43, Section 5.3], yields an
equidistribution result for the zeros of a random sequence of sections {op},>1 € H;ozl 47,
ie., Zl) [op = 0] — 7 as p — o0, in the weak sense of currents on X (see Theorem 4.3).

The kind of results proved in the present paper can be extended to the case of
orbifolds [15]. Theorem 1.2 has applications to the approximation of 4* by currents of

integration on analytic varieties [16].

Acknowledgements. — Dan Coman is grateful to the Alexander von Humboldt Foundation
for their support and to the Mathematics Institute at the University of Cologne for their
hospitality. The authors thank the referee for carefully reading the paper and for suggestions
which led to the improvement of the exposition.

2. Preliminaries

We recall here a few of the notions that we will need. We start with the notion of singular
Hermitian metric in Section 2.1 and some necessary notions about desingularization in
Section 2.2. In Section 2.3 we introduce the generalized Poincaré metric on a manifold and
an associated metric on a line bundle with strictly positive curvature current. In Section 2.4
we recall a few facts regarding the definition of complex Monge-Ampeére operators.

2.1. Singular Hermitian metrics on line bundles

Let L — X be a holomorphic line bundle over a complex manifold X and fix an open
cover X = |JU, for which there exist local holomorphic frames e, : U, — L. The
transition functions gas = e3/eq € O (UsNUs) determine the Cech 1-cocycle {(Ua, gas)}-

Let h be a smooth Hermitian metric on L. If |eq (z)|7 = h(eq (), eq(x)) for z € Uy, we
recall that the curvature form ¢ (L, h) of h is defined by

1
er(Ly )y, = —dd°log lealn = 5 R,

where RT is the curvature of the holomorphic Hermitian connection V¥ on (L, h).

If h is a singular Hermitian metric on L then (see [20], also [43, p. 97]) h(eq, €a) = e~ 2%=,
where the functions ¢, € L{_(U,) are called the local weights of the metric k. One has
Yo = g +10g|gap| on U, N Ug, and the curvature of A,

(L, h)|u, = dd°pa,

is a well defined closed (1,1) current on X. We say that the metric h is (semi)positively
curved if ¢1(L, h) is a positive current. Equivalently, the weights ¢, can be chosen to be
plurisubharmonic (psh) functions.

Let L' — X be a holomorphic line bundle isomorphic to L. A metric h* on L induces
a metric ™" on L’ with curvature current ¢; (L, h%) = ¢; (L', h*").

Suppose now that M is a complex manifold and f : M — X is a locally biholomor-
phic map. A metric h* on L induces a metric f*h% on f*L whose curvature current is

ei(f*L, f*h*) = f* (er(L, h")).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



502 D. COMAN AND G. MARINESCU

2.2. Desingularization

We recall here Hironaka’s embedded resolution of singularities theorem (see e.g., [8], [43,
Theorem 2.1.13]). Let X be a complex manifold and > C X be a compact analytic subvariety
of X. Then there exists a finite sequence of blow up maps o;41 : X;11 — X, with smooth
centers Yj,

XmﬂXm_1—>-~-—>X+1UJ—+§X — e X S X=X
S Y1 I ¥, Y Yo=3
Em  Emoa Ej.1 E; E, Ey =2,

such that:
(i) Y; is a compact submanifold of X; withdimY; < dim X —2andY; C X,
(i) ¥j+1 = X is the strict transform of ¥; by 041,
(i) Ejy1 = E Uo7} (Y;) is the set of exceptional hypersurfaces in X 1,

j+1
(iv) X, isa smooth hypersurface and ¥,,, U E,, is a divisor with normal crossings.

LetTj =010---00j . Xj — X. Sil’lCCO’j+1 : X]'+1 \Ej+1 — X]\(EJ UY}) isa
biholomorphism, it follows that
is a biholomorphism, where
Y = Yb U 7'1(Y1) U TQ(YQ) U---u Tm—l(Ym—l)-
AsY; C ¥jand o;(X;) C X1, we have 7;(Y;) C X forevery j =1,...,m — 1. Since Y is
compact 7; : Y; — X is proper, so 7;(Y;) is an analytic subvariety of X of dimen-
sion < dim Y;. Hence Y is an analytic subvariety of X, Y C ¥ and dimY < dim X — 2.

In conclusion, setting X = Xm, E=E,,and ™ =1, : X — X, we have:

THEOREM 2.1 (Hironaka). — Let X be a complex manifold and > C X be a compact
analytic subvariety of X. Then there exist a complex manifold X, an analytic subvarietyY C X
with dimY < dim X — 2, and a proper surjective holomorphic map m : X — X with the
following properties:

(i) 7: X\ E — X \'Y is a biholomorphism, where E = == *(Y);

(i) the strict transform X' = ©=1(X\'Y) is smooth and 7=1(3) = X' U E is a divisor with
normal crossings.

2.3. Special metrics

Let X be a complex manifold of dimension n. Assume that L — X is a holomorphic
line bundle with a singular Hermitian metric A which is continuous outside a proper compact
analytic subvariety ¥ C X, and whose curvature v = ¢; (L, h) is a strictly positive closed (1,1)
current on X (i.e., it dominates a smooth positive (1,1) form on X). We write

Y =2,U2Z,,

where Zl, Z4 are analytic subvarieties of X, Z; has pure dimension n — 1, and dim Z, < n — 2.
Let 7 : X — X be a resolution of singularities of ¥ as in Theorem 2.1. Then 7 : X\ E — X\Y
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is a biholomorphism, where Y C ¥ is an analytic subvariety withdimY <n —2, E = 7= }(Y),
Zy C Y, Y = Z] is smooth, and 7 ~1(2) = Z] U E is a divisor with normal crossings.

2.3.1. The metric ©. — We recall here the construction and properties of the generalized
Poincaré metric on X \ X (cf. [43, Lemma 6.2.1]). Let Q be a smooth positive (1,1) form
on X. When X is not compact we take © so that the associated metric is complete on X.
LetXq,..., Xy be the irreducible components of 7~ *(X), so ¥, is a smooth hypersurface
in X. Let o; be a holomorphic section of the associated holomorphic line bundle &'5(%;)
vanishing to first order on ¥; and let | - |; be a smooth Hermitian metric on 0 (%;)
so that |o;|; < 1 and |o;|; = 1/e outside a relatively compact open set containing 7~1(X).
We define
- 1
(4) O = Q+ 0dd°F, where § > 0, F = — > " log(—log o)
j=1
If § is small enough, ©s defines a complete Hermitian metric on X \ 7r_1(2) and we
have ©5 > /2 in the sense of currents on X . Moreover, if X is compact then so is X and we
have that © has finite volume (see [43, Lemma 6.2.1]). Fixing such a §, we define the Poincaré
metric on X \ ¥ as the metric associated to the (1, 1) form

0 = (7~ 1)*6s.
This metric has the same properties on X \  as 5 does on X \ 771(%).

Letnowz € E?egl and local coordinates z1, . . ., z, bechosenso thatz = 0, X = {z; = 0}.
Then ©" ~ (|z1|log |21|) 2 d) near x, where X is the Lebesgue measure in coordinates (see
[43, (6.2.11)]). In particular, we have that @™ = fQ", where the function f verifies assump-
tion (C) stated in the introduction.

2.3.2. The metric h.. — It is necessary to perturb the original metric h of L in order to
obtain a metric on L|x\sx whose curvature current dominates a small multiple of ©. By
[43, Lemma 6.2.2] there exists a holomorphic line bundle L — X which has a singu-
lar Hermitian metric hZ, continuous on X \ 7~1(2), and such that L| %\ 18 isomorphic
to 7 (L*|x\y), for some k € N. Moreover, ¢; (L, hL) = ka*y + 0 is a strictly positive
current on X, where 6 is a smooth real closed (1,1) form supported in a neighborhood of E
and strictly positive along E.

Since L| oE =T (L*|x\y) the metric hl induces a singular Hermitian metric hX’
on L' = n* (L|x\y) with curvature current y' = 7%y + ', where ¢’ = 6/k. For ¢ > 0,

N
WY =n" [](~loglo;l,)®
j=1
is a singular Hermitian metric on L’ with curvature current
V. =7+ edd°F = n*y + 6’ + edd°F,

where F is given in (4). Since +/ is a strictly positive current it follows by the above choice
of |o;|, that . is a strictly positive current on X, provided that ¢ is sufficiently small (cf. [43,
Lemma 6.2.1]). We fix such an € and note that, as 7 : X \ E — X \ Y is a biholomorphism,
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504 D. COMAN AND G. MARINESCU

the metric hEL' on L' induces a singular metric h. on L|x\y which is continuous on X \ X.
When X is compact the curvature current of A, dominates a small multiple of © on X \ X.

2.4. Wedge products of singular currents

We recall here a few facts that we need regarding the definition of complex Monge-Ampére
operators. Let T be a positive closed current of bidimension (,1), ! > 0, on an open set U
in C™. The coefficients of T are complex Radon measures and their total variations are locally
dominated, up to multiplicative constants, by the trace measure of T, |T'| = TAQ!, where Q is
any fixed smooth positive (1,1) form on U. If u is a psh function on U so thatu € L{ _(U,|T)
we say that the wedge product dd“u A T is well defined. This is the positive closed current of
bidimension (I — 1,1 — 1) defined by ddu A T = dd°(uT).

If uy, ..., uq are psh functions on U we say that ddu; A - - - A dd°u, is well defined if one
can define inductively as above all intermediate currents

dd®uj, A--- ANdduj, = dd(uj, dduj, A - Adduy,), 1< 51 <---<j <q.

The wedge product is well defined for locally bounded psh functions [3, 4], for psh functions
that are locally bounded outside a compact subset of a pseudoconvex open set U, or when
the mutual intersection of their unbounded loci is small in a certain sense [57, 21, 30]. We
recall here one such situation [21, Corollary 2.11]: if uq, ..., u4 are psh functions on U so
that u; is locally bounded outside an analytic subset A; of U and codim (A4, N---NA;) > 1
foreachi,1 < j; < --- < j; < g, then dd®uy A --- A dd°uq is well defined. We also note that
the natural domain of definition of the Monge-Ampére operator u — (dd°u)™ is completely
described in [9, 10, 12].

If T is a positive closed current of bidegree (1,1) on a complex manifold X then lo-
cally T = dd“u for a psh function u [41, Theorem 2.28]. Hence defining T7 A - - - ATy, for such
currents 7; amounts to verifying locally one of the conditions mentioned above for their psh
potentials u;. We conclude this brief overview by noting that when X is compact the class of
currents for which the wedge product can be globally defined so that it has good continuity
properties is larger than the one for which it is well defined by local considerations as above
(seee.g., [32, 33, 14)]).

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We start with a rather elementary
property of the Bergman density function P, in Lemma 3.1 and show in Lemma 3.2 that
log P, is, locally on X, the difference of two psh functions. Moreover, the Fubini-Study
currents v, are well defined, and if the codimension of ¥ is bigger than k& > 2, then
also the wedge products 'y}’,f are well defined (Lemma 3.3). We continue with the crucial
Theorem 3.4 about the local continuity properties of the Monge-Ampére operator. This
result is of independent interest. With these preparations we can then prove Theorem 1.1.

For the convenience of the reader, we include a proof of the following properties of the
function P, in our setting.

LemMA 3.1. — If P, is the Bergman density function defined in (1) then the definition is
independent of the basis { S} }j>1 and the function P, is continuous on X \ X.

4¢ SERIE - TOME 48 — 2015 - N° 3



EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 505

Proof. — By the Riesz-Fischer theorem we have that S € H (2)(X \ X, LP) if and only
if there exists a sequence a = {a;} € [?so that S = S,, where S, = Z;’il a]-S;’ and
1Sallp = llallz-

Fix z € X \ ¥ and a neighborhood U, € X \ ¥ of z with a holomorphic frame e,, of L
over U, and so that f > ¢ > 0 on U,. We write S, = 5,e%?, S% = sj Pe®P and we let 1, be a
continuous psh weight of h on U,. It follows that s, = > - i1 ajs and the series converges
locally uniformly on U,. As this holds for every sequence a € I* we have that {s?(2)} € I?
forall z € U,.

We fix compacts K; so that z € int K;, Ky € Ky € K3 C U,. For z € K, consider the
sections S, = 3777 s7(2)S] € H 5y (X \ X, LP), and write S, = = 5,e%P. Then

2

M IshEP | = ls:(2)2 < €y / s 7e™%e FQ" < CullS.l; = Olle
j=1 Ks

for some constant C;. This implies that

D ISP < Cy, Yz € K.
j=1
We have
SP<C [ IPen vye g,
K>

where Cj is a constant. Therefore

oo o0
) > max|sf|? < 02/ It an < 0102/ ar,
j=1 " Kz \ j=1 Ko
so the series > 77, |s%|?
P, =372, |s§|?e7?"¥~ is continuous near z.

converges uniformly on K;. This shows that the function

To see that P, does not depend on the choice of basis, observe that
Py(z) = max{|S(z)[}, : § € Hip (X \Z, L7), [IS]l, =1},

Indeed, using the above notations we have for a € [2 with ||al]2 = 1,

Sa(@)li, = Za] 5<:r e e < DI @) | e = By(a).
j=1

Moreover, if
1/2

oo
(e 7= (Ber)
then ||al2 = 1, Su(z) = ce®?, so |Sa(z )|,%p = Py(z). O
We start the proof of Theorem 1.1 with two lemmas.
LemMmA 3.2. — If X, X, (L, h), f, Q are as in Theorem 1.1 then:

(i) HY, (X \%,L?) C HO(X, L?),
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(i) yp extends to a positive closed current of bidegree (1,1) on X defined locally by For-
mula (2) and which is independent of the choice of basis { S} }.
(iii) log P, € L (X, Q™) and dd°log P, = 2~y, — 2py as currents on X.

Proof. — (i) Letz € X7 " and let e, be a holomorphic frame of L on a neighborhood U,,
of . Asection S € H&) (X \ X, LP) can be written on U, as S = se2? where s is a holomor-
phic function on U,, \ . We may assume that & has a psh weight 1, which is bounded above
on U, and that f > ¢ > 0 on U, for some constant c. Then

/ |s|2 Q" < C/ |s|2e™2PYe FQ" < C||S||Zz, < 00.
Ua\T Ua\S

By Skoda’s lemma [43, Lemma 2.3.22], this implies that S extends holomorphically near x.
Thus any section S € H (02) (X' \ X, LP) extends holomorphically to a section of L”
over X \ Y, where Y = ¥\ %', and hence to a holomorphic section of L? since Y is an
analytic subvariety of X of codimension > 2.
(i1) Let U, be an open set in X on which there exists a holomorphic frame e, of L and

set S¥ = s¥eSP, where by (i) s} are holomorphic on U,,. Let

oo
up := log Z|s§|2 on U,.
j=1

It follows by (5) that the series Z;’;l |s%|? converges locally uniformly on U, \ 2. If y € XN U,
we fix local coordinates (z1,...,%,) so that y = 0 and U, N X is contained in the
cone {|z,| < max(|z1],...,|zn—1])}. Applying the maximum principle on complex lines
parallel to the z, axis, we see that there exist a neighborhood V' C U, of y and a compact
set K C U, \ X so that sup, ¢y [s5]* < max.c g |s5[%. By (5),

Zsup |s%]% < Zm}z{xx|5§|2 < 400.

j=1 j=1
We conclude that the series Zj‘;l Ex |2 converges locally uniformly on U,, hence u, is a
psh function and ~, is a positive closed current on X defined locally by (2). Since the
function P, is independent on the choice of basis {S;-J }, so is the current ~,,.

(iil) If U, is as above, then by (ii) u,, is psh on U, and log P, = up — 2ptp,, 2™-a.e. on U,

Since psh functions are locally integrable (see e.g., [37, Corollary 3.2.8]), this implies that
log P, € Li (X,Q"). O

loc

LEmMma 3.3, — Ifdim ¥ < n — k for some 2 < k < n and Hypothesis (3) holds then the
currents v* and 7}’; are well defined on X, respectively on each relatively compact neighborhood
of X, for all p sufficiently large.

Proof. — The current v* is well defined by [21, Corollary 2.11], since dim ¥ < n — k.

Let Ay = {z € X : S}(2) =0, Vj > 1}. Lemma 3.2 shows that the current -y, has local
psh potentials which are continuous away from A, U 3. By [21, Corollary 2.11], it suffices to
show that given any relatively compact neighborhood U of ¥ we have dim(A4,NU) < n—k
for all p sufficiently large.
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Assuming the contrary, there exist m > n — k and a sequence p; — oo so that each
analytic set A,, N U has an irreducible component Y; of dimension m. It follows from (3)
that, given any e-neighborhood V; of ¥, Y; C A, NU C V, for all j sufficiently large,
hence Y; are compact. Let |Y;| = [, Q™ and T; = [Y;]/]Y;], where [Y;] denotes the current
of integration on Y;. Since T} have unit mass, we may assume by passing to a subsequence
that T; converges weakly to a positive closed current T' of bidimension (m,m). But T is
supported by ¥, so T' = 0 by Federer’s support theorem as dim X < n —k < m (see e.g., [35,
Theorem 1.7] and references therein). On the other hand (T, Q™) = lim;_,o (T}, Q™) = 1,
a contradiction. O

We will need the following local property of the complex Monge-Ampére operator:

THEOREM 3.4. — Let U be an open set in C", X be a proper analytic subvariety of U, and v
be a psh function on U which is continuous on U \ X. Assume that vy, p > 1, are psh functions
on U so that v, — v locally uniformly on U \ . Then:

(1) The sequence {vy} is locally uniformly upper bounded in U.
(i) Assume that dimY < n — k and the currents (dd°v,)* are well defined on U for
some k > 1. Then (dd°v,)* — (dd°v)¥ weakly in the sense of currents on U.

Proof. — (i) The sequence {v,} is clearly locally uniformly upper bounded in U \ X.
If z € ¥ we may assume that there exist coordinates (z1, ..., z,) on some neighborhood V
of z = 0 so that V' N X is contained in the cone {|z,| < max(|z1],...,|2n—1|)}. Applying
the maximum principle on complex lines parallel to the z, axis, we see that there exist a
neighborhood V1 C V of x and a compact set K C V' \ X so that supy, v, < supg vp.
Hence {v,} is uniformly upper bounded on V;.

(ii) Recall that the current (dd°v)* is well defined on U since dim¥ < n — k [21,
Corollary 2.11]. Since v, — v locally uniformly on U \ ¥ and v is continuous there we have
that (dd°v,,)* — (dd°v)* weakly in the sense of currents on U \ ¥ (see e.g., [3, 4], also [21,
Corollary 1.6]). We divide the proof into three steps.

Step 1. — We prove here assertion (i) when & = n. Then X consists of isolated points of U.
Let z € ¥ and x > 0 be a smooth function with compact support in U so that xy = 1 near =
and supp x N X = {z}. Then

/X(ddcvp)" = /vp(cldcvp)”_1 Addx — /v(ddcv)"_1 Add®x = /x(ddcv)n,

since v, — v locally uniformly in a neighborhood of supp dd“x and v is continuous there
[21, Corollary 1.6]. This shows that the sequence of positive measures (dd®v,)™ has lo-
cally bounded mass on U and that if v is any weak limit point of this sequence then
v({z}) = (dd°v)"({z}) for each = € X. It follows that (dd°v,)™ — (dd°v)™ weakly in the
sense of measures on U.

We assume in the sequel that 1 <k <mn — 1.
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Step 2. — We show that the currents (ddv,)* have locally uniformly bounded mass in U (see
e.g., [30] for the definition of mass of positive, or negative, currents). Note that we only have
to show this near points x € X. The proofis quite standard in the case k = 1 and when & > 1
it follows from Oka’s inequality for currents due to Fornaess and Sibony [30].

Consider first the case k = 1. Fix V. C U a relatively compact neighborhood of z and
compacts K; C V sothatz € int Ky, K1 C int Ky, and K3 C V \ X is any compact
set of positive Lebesgue measure. Subtracting a constant we may assume that v,,v < 0
on V. There exists a constant C (K7, K3) so that ||dd°v,||x, < C(Kl,Kg)fK2 |vp| for
every p (see e.g., [21, Remark 1.4]). Here ||dd°v,| k, denotes the mass of the current dd°v,
on the compact set K;. By [37, Theorem 3.2.12], the family of psh functions w on V so
that u < 0 and st lu| = 1is compact in L{, (V). Hence there exists a constant C(Kz2, K3)
so that [, |v,| < C(K2, K3) [y, |vy| for every p. We conclude that the currents dd°v, have
uniformly bounded mass on K.

Asume next that 2 < k < n — 1. Let z be a regular point of ¥ so that dim, ¥ = n — k. By
a change of coordinates near x we may assume that

z=(1/2,...,1/2) e A" cU, SNA" ={z2=(21,...,20) : 21 = - = 2, = 1/2},

where A is the unit disc in C. We may also assume that v,,v < 0 near A". Consider the
(k—1,n — k+ 1) Hartogs figure

H={(z2")¢e Ck=1 x Ccn—Fk+t . 12 <1, ||12"|| < 1/4}
U{(#,2") € T x €M 3/ < |l < 1, 12" < 13,

where ||2’|| = max(|z1],...,|2zk—1]). The current T = v,(dd°v,)*~! is a negative current
near A" of bidegree (k — 1,k — 1) and dd°T = (ddvp)*® > 0. By Oka’s inequality applied
to T'[30, Theorem 2.4],

llop(ddvp)* |k + [1(dd°vy) [l < Cllvp(dd®vy)*~ |la

for some absolute constant C, where K = KQM is the polydisc of radius 3/4. Note
that = € int K. Since H N'Y = @ we have v,(dd®v,)*~! — v(dd°v)*~! near H [21, Corol-
lary 1.6]. It follows that ||(ddv,)¥ ||k are uniformly bounded.

Therefore we showed that the currents (dd°v,)* have locally bounded mass on U \ Y,
where Y C X is an analytic set of codimension > k + 1. Oka’s inequality applied to the
currents (dd®v,)* implies that they have locally uniformly bounded mass near each y € Y/
(see also [30, Corollary 2.6]).

Step 3. — We now prove that (dd°v,)* — (dd°v)* weakly on U. Since the currents (dd°v,)*
have locally uniformly bounded mass on U, it suffices to prove that any weak limit point T
of (dd°v,)* is equal to (dd°v)¥. Let us write
s=yulJy,
i>1

where Y; are the irreducible components of dimension n — k and dimY < n — k — 1.
Recall that T = (dd°v)* on U \ . Hence by Federer’s support theorem ([26], see also [35,
Theorem 1.7]), T = (dd°v)* on D = U \ U;>1Yj, since Y is an analytic subvariety of D of
dimension<n —k — 1.
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By Siu’s decomposition formula ([58], see also [21, Theorem 6.19]) we write
T=R+Y ¢lYj], (ddv)* =S+ d;[Yj],
j=1 Jj=1
where [Y;] denotes the current of integration on Y}, ¢;,d; > 0, and R, S are positive closed
currents of bidegree (k, k) on U which do not charge any Y (i.e., the trace measure of R is 0
on Yj). It follows by above that R = S. To conclude the proof we have to show that ¢; = d;
for each j. This will be done using slicing.

Without loss of generality, let ; = 1 and z € Y; be a regular point of ¥. By a change
of coordinates z = (2, ") near & we may assume thatz = 0 € A" c Uand E N A" =
Y1 N A" = {Z/ = 0}, where 2’ = (21,...,2k), 2’ = (Zk+1,...,2n). Since v, — v locally
uniformly on U\ ¥ and v is continuous there, it follows that for each z”” € A™~* the functions
Vp o (2') = wp(2',2"), v (2') = v(2,2"), are locally bounded near the boundary of A,
so their Monge-Ampére measures (ddvp, . )*, (dd°v,~)* are well defined on A* (see [21,
Corolary 2.3]). Arguing as in the proof of Step 1, it follows that (ddv, .»)* — (dd°v,.)*
weakly on A* as p — oo, for each 2" € A"k,

Let x1(2') > 0 (resp. x2(2"") > 0) be a smooth function with compact support in A* (resp.
A"~%)so that x; = 1 near 0 € C* (resp. x2 = 1 near 0 € C*~*). Let § = /2377 ;| dz; A dz;
be the standard Kihler form in C*~*. One has the slicing formula (see e.g., [25, formula

(2.D)
/n x1(2")x2(2")(ddv,)* A gk = /

An—k

([ xaa@, 0 ) xae
Ak
and similarly for (dd°v)*. Note that

/Xl (ddcvp’z//)k = /U%z//(ddcvp’zu)k_l A ddcxl.

Since dd€x; is supported away from ¥, the Chern-Levine-Nirenberg estimates [21, (1.3)]
imply that this integral is locally uniformly bounded as a function of z”. Letting p — oo
we infer by above that

[T as = [ @@ g

n

By Siu’s decomposition formulas of T and (dd°v)*, and since R = S, this implies that

cl/ XQ(z/I)Bn—k — dl/ XQ(ZH)ﬂ"_k-
{z/=0} {2/=0}

As f{z’:O} x2(2")B"F > 0 we see that ¢; = dy, and the proof is complete. O

We finish now the proof of Theorem 1.1 by showing that p% vF — ~4* weakly on X. Since
this is local, we fix x € X and let U, be a relatively compact neighborhood of z such that
there exists a holomorphic frame e, of L over U,. Let 9, be a psh weight of h on U, and let

A

1 oo
vp = %log Z |s§7|2 , where S} = shelr s € Ox (Ua).
Jj=1

By Lemma 3.2 the function v, is psh on U, and we have %'yp = ddp, v = ddY,.
Moreover, Lemma 3.3 shows that the currents (dd°v,)* are well defined on U, for all p

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



510 D. COMAN AND G. MARINESCU

sufficiently large. Note that 1, is continuous on U, \ X. Since % logP, = vp — Ya,

Hypothesis (3) implies that v, — 1, locally uniformly on U, \ X. It follows by Theo-
rem 3.4 that pik V¥ = (ddvp)* — (dd°eo )" = v* weakly on U,. This concludes the proof
of Theorem 1.1.

REMARK 3.5. — In the setting of Theorem 1.1, assume that dimY < n — k and that (3)
holds. The proof of Lemma 3.3 shows that all currents 'yg AL, 41 < k are well defined positive
closed currents on X. By Lemma 3.2 log P, € Li _(X,Q") and dd°log P, = 27, — 2py is a

current of order 0 on X. It follows that (dd°log P,)?, j < k, are currents of order 0 on X which
can be defined inductively by

(dd°log P,)’*" = dd° (log P, (dd°log P,)’) , j < k,

since locally, log P, is integrable with respect to the measure coefficients of (dd°log P,)’.
Moreover, we have

k k k k—i
1 1 E\ (1)
<2pdd610gpp> =<p7p—7> =) (.)Uvi,/w’“ 7

par iV P’
A straightforward adaptation of the proof of Theorems 1.1 and 3.4 shows that
P AT A asp — oo,

weakly on X. Hence p~I(dd°log P,)? — 0 as p — oo in the weak sense of currents of order 0
onX, forall1 <j<k.

REMARK 3.6. — Observe that the hypothesis f > ¢, > 0 Q"-a. e. in a neighborhood U,
of each © € E?e_gl was only needed in the proof of Lemma 3.2 (i), i.e., to show that

H?Q)(X \ X, LP) C H(X, LP). Therefore, Theorem 1.1 also holds provided that X, %, (L, h),
£, Qverify assumptions (A), (B), (C) and (D), where:

(C') The volume formon X\ is fQ™, where f € L (X \X,Q") verifies f > ¢, > 0Q"-a.e.
in a neighborhood Uy, of each x € X \ %.

(D) H&)(X\Z,Lp) C HY(X, LP) for every p > 1.

This variant of Theorem 1.1 will be useful to us for some applications in Section 6, where the
fact that the sections in H ?2) (X \ X, LP) extend holomorphically to sections of LP over X is
known to hold by other considerations (see Sections 6.3 and 6.4 ).

4. Distribution of zeros of random sections

The purpose of this section is to give the proof of Theorem 1.2. As a consequence we show
in Theorem 4.3 that zeros of random holomorphic sections are equidistributed with respect
to the curvature current.

Let X, %, (L, h), f,Q verify assumptions (A)-(C) stated in the introduction. In addition,
we assume in this section that X is compact. By Lemma 3.2, H?z) (X\%,LP) C H'(X, LP).
Let

dp = dim Hy) (X \ 2, LP), {SV}1<j<a, a fixed orthonormal basis of Hyy (X \ X, LP).
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The currents 7, can now be described as pullbacks v, = ®}(wps), where &), : X --» P!
is the Kodaira map defined by {S¥} and wps is the Fubini-Study form on P4»—1, Recall that
if §7 = s¥e3? where e, is a holomorphic frame for L on an open set U, then

() =[sh(z): - sflp(w)], z € Uy,

Following the framework in [54], we identify the unit sphere ¥ of H (02) (X\ 3, L?) to the
unit sphere S24»~1 in C¢ by
dp
a=(ay,...,aq,) €S>t — 8, = Z@Sﬁ-’ e 47,
j=1
and we let A\, be the probability measure on ¢ induced by the normalized surface measure
on §2%~1, denoted also by ), (i.e., A,(S?%~1) = 1). We let A} denote the product measure
on ()* determined by A,. Given a nontrivial section S € H°(X, LP) we denote by [S = 0]
the current of integration (with multiplicities) over the analytic hypersurface {S = 0} of X.
We give now the proof of Theorem 1.2. Let us note that some of the main ideas involved in
proving this theorem are similar to those in [54, 56], however special attention has to be given
as we have to work with currents rather than smooth forms and the subspaces of sections we
consider have nonempty base locus. To prove assertion (i) we will need the following version
of Bertini’s theorem:

ProposITION 4.1. — Let L — X be a holomorphic line bundle over a compact complex
manifold X of dimension n. Assume that:
(i) V is a vector subspace of H°(X, L) with basis Sy, . .., Sq, and with base locus Bs(V') =
{81 =---=84=0} C X s0 that dimBs(V) < n — k.
(i) Z(h):={z € X : X7_; h;S;(x) = 0}, where h = [y : -+ : hy] € P41,
(iii) v is the product measure on (P4~1)! induced by the Fubini-Study volume jq_, on P41,
Then for vg-a.e. (h',. .., h*) € (P¥=1)* we have that dim Z(hi*)N---NZ(h%) < n—1 for
everyl <kandiy <--- < in{l,...,k}.

The proof is included at the end of this section for the convenience of the reader, since
we could not find it in the literature. Assertion (ii) of Theorem 1.2 is proved by repeated
application of the following proposition:

ProrosiTioN 4.2, — Let L — X, V, S1,...,854, be as in Proposition 4.1. Assume that:

i) J:= {25:1 a;S; ijl laj|? = 1} is endowed with the probability measure X induced
via the natural identification by the normalized surface measure on S?3~1,
(i) B:= ®*(wrs), where ® : X --» P4=1 is the Kodaira map defined by {S;}.
(iti) T is a positive closed current on X of bidimension (1,1), | > 0, such that the current
[S = 0] AT is well defined for M-a.e. S € {.

Then the current 3 N T is well defined on X. Moreover, if ¢ is a smooth (I — 1,1 — 1) form
on X the function S — {[S = 0] AT, o) is in L*(J, \) and

/d<[S=01 AT, @) dA(S) = (B AT, ).
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We postpone for the time being the proof of Proposition 4.2, and we continue with the
proof of Theorem 1.2.

Proof of Theorem 1.2. — (1) Lemma 3.3 (and its proof) show that
dim Bs(H{y (X \ B, LP)) < n — k,

for all p sufficiently large. It follows from Prop. 4.1 that, for AS-a.e. 0 = (o1,...,0%) € ()",
the analytic subset {o;, = 0} N--- N {o;, = 0} has dimension < n — [ for every [ < k and
i1 < --- <1 in{l,...,k}. Therefore the current [ = 0] is well defined [21, Corollary 2.11],
and it equals the current of integration with multiplicities along {c; = 0} N --- N {0}, = 0}
[21, Proposition 2.12].

(ii) One can show that the function o € (J)¥ — ([0 = 0], ¢) is measurable by an
approximation argument similar to that in the proof of Proposition 4.2.

Leto = (01,...,01) € (J7)F be so that the analytic subset {o;, = 0} N---N{o;, = 0}

has dimension < n — [ foreveryl < kandi; < --- <4 in{1,...,k}. Corollary 2.11 in [21]
and the considerations from (i) show that [o;, = 0] A --- A [0;, = 0] Ay, is a well defined
positive closed current of bidegree (I + 1,1+ 1) on X, foreveryi; < --- < 4 in {1,...,k},
I <k.

By adding to ¢ a large multiple of Q"% we may assume that ¢ is a strongly posi-
tive (n — k,n — k) test form on X. Hence the integral in (ii) can be evaluated as an iterated
integral by Tonelli’s theorem (see e.g., [27, Theorem 2.37]). We apply Proposition 4.2 with

V =Hu(X\X,LP), T =[o2 =0 A--- Aoy, =0).

Then for \i~t-ace. (02,...,0k) € (J7)71,
/p<[0 =0],0) dAp(01) = (T Ayp, ) = ([o2 = 0] A -+ Aok = 0] Ayp, ),

since [0 = 0] = [o01 = 0] A T. Proposition 4.1 shows that Proposition 4.2 can be applied
again for \f=2-a.e. (03,...,0%) € (J)F 2 with T = [o3 = 0] A -+ A [0 = 0] Ay, 5O

/p /p([a = 0], ) dAp(01) dAp(02) = /(/p([ag =0]A--- Aok = 0] Avp, @) drp(o2)
=(lo3 =0l A+ Alox =0 A2, ).

Continuing like this we obtain that the kth iterated integral in (ii) equals (’y}’,f, ©). This
proves (ii), and then (iii) follows at once from Theorem 1.1. O

Let us now consider the probability space . = H;ozl 4" endowed with the probability
measure Ao, = H;‘;l Ap. The proof of the variance estimate from Lemma 3.3 in [54] goes
through with no change. Combined with Theorem 1.2, it implies that Theorem 1.1 of [54]
holds in our setting. Namely, we have the following:

THEOREM 4.3. — Inthe setting of Theorem 1.1, assume that X is compact and that (3) holds.
Then, in the weak sense of currents on X,

1
lim = [0, =0] =7, for As-a.e. sequence {op}p>1 € S -
p—oo D -
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Note that X is not assumed to be Kdhler in Theorem 4.3. Since X is compact, there exists
a Gauduchon form on X, i.e., a positive (n — 1,n — 1) form 2 such that dd°Q2 = 0, cf. [31].

Hence
/[Upzo]/\ﬁz/'yp/\ﬁzp/v/\ﬁ.
X X X

Then Theorem 4.3 can be proved by the same arguments as those in the proof of [54,
Theorem 1.1].

Proof of Proposition 4.2. — We fix a holomorphic frame e, of L over an open set Uy,
and write S = se,, S; = sje,, where S = Z?zl a;S; € J is chosen so that the cur-
rent [S = 0] A T is well defined, hence log |s| € Li _(U,,|T|) (see Section 2.4). Then

loc

d d
1
log |s| = log E a;s;| < 3 log E |s;]?
=1 =1

Since the latter function is locally bounded above on U, and log|s| € Li _(U,,|T]), we
conclude that

d
(6) log [ > 181* | € Lige(Ua, IT1)

j=1
so B AT is well defined.

To show that the function J 3 S +— ([S = 0] A T, ) is measurable, we may assume
by using a partition of unity that ¢ is supported in U,. Since [S = 0] A T is well defined
for A-a.e. S € J and the sequence of smooth psh functions log(|s|?> + 1/m)'/? decreases
to log |s| as m — oo, we have

([S = 0/ AT, ) = (log|s| - T, ddp) = lim (T,log(|s|” +1/m)"/*ddp).

Our claim follows as S € J — (T, log(|s|? + 1/m)'/2dd°y) are continuous functions.
For S €  we define the function N(S) on X by

s
VI + -+ TsaP

Note that N(S) € L' (X, Q"), where Qis a smooth positive (1, 1) form on X, since it is locally
the difference of psh functions. Moreover, Hypothesis (iii) in the statement of Proposition 4.2
and (6) imply that N(S) € L}(X, |T|) for A\-a.e. S € (. Therefore we have

[S=0]=B+dd°N(S), [S =0 AT = BAT + dd*(N(S)T).

Indeed, the first formula follows from the definition of the function N(S), while for the
second, working locally on U, we have

[S = 0] AT = dd(log |s| T) = dd° (1og VIsiP+ -+ |54 T) + dd*(N(S)T)
= BAT + dd*(N(S)T).
Thus, for A-a.e. S € (J,

<[S=01AT,¢>=<ﬂAT,so>+/XN<S>TAdd%o,

N(S)|y, =log
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and the proof is finished if we show that the function S — [, N(S)T A dd°p belongs

to L*(J, A) and
/Vf (/X N(S)T A ddcgo) dAA(S) =

We may assume that ¢ is real, so dd®p is a real (I, 1) form on X. There exists a constant M
so that dd®p + MQ! is a strongly positive (I,1) form, so T A (dd°p + MQ!) is a positive
measure. It follows that we can write

T Add°p = py — po, where py =T A (dd°p + MQY), g = MT AQL.

Note that p; are positive measures dominated up to multiplicative constants by |T'|. Since
N(S) € LY(X,|T|) for A-a.e. S € J we see that N(S) € L' (X, p;) for A-a.e. S € J. Note
also that N(S) < 0 on X. Hence by Tonelli’s theorem,

/(/N duj)d)\ /(/N (S )duj.

Recall that on U,, the function log(|s;|? + - -+ + |s4|?) is locally integrable with respect
to |T|. Hence, by the above considerations, it is locally integrable with respect to u,. Thus
|s1]% 4+ -+ |sal> > 0 pj-a.e. on U,. So

S1 S4q
Ug 1= e
VistP - tlsal? - VisiP 4o+ sal?
is a well defined function p;-a.e. on U, with values in the unit sphere S??~! in C%. We have
N(S)=N(a151+ -+ agSq) =log|a - uy| on Uy,

where a = (a1, ...,aq) and a - u = ajuy + - - - + aquq. Therefore
[NE @S = [ toglaua@ldr@) = Ca
J §2d—1

for pj-a.e. x € Uy, where Cg < 0 is a dimensional constant. It follows that

/z (/X N(S) duj> AA(S) = Capj(X) > —o0,

so the function § — [, N(S) dp; is in L* (¢, A), hence so is the function

S—>/XN(S)T/\ddC<p:/XN(S)du1—/XN(S)d,uQ.

Finally, since T is closed we have

/d ( /X N@S)TA ddcso) dA(S) = Ca(u1(X) = pa(X)) = Cq /X T A ddp = 0.

This concludes the proof. O
Proof of Proposition 4.1. — We divide the proof into four steps.
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Step 1. — We show that for v;_j-a.e. (h',...,h*"1) € (P4"1)k~1 the analytic set
Z(hY)N---N Z(h*~1) has dimension at most n — k + 1.

Consider the set 4/ C (X \ Bs(V)) x (P4~1)k~1 defined by

d
(z,h',... W e =D hiSj(x)=0,1<i<k-1,

j=1

where bt = [h} : -+ AY). If 2 = (z,hl,...,h*"1) € 4 then z & Bs(V), and we may assume
that for each 1, h;z = 1forsome 1 < j; < d. For each i there exists [; # j; so that S, (z) # 0.
Indeed, otherwise S;(z) = 0 for all | # j;, so

S;.(x) = > hiSi(z) + Sj,(z) =0,

I#5:
hence = € Bs(V), a contradiction. We obtain that for 2/ = (2,1, ..., (¥ 1) near 2, J is the
graph
; S; (z) Si(z") )
L= [, 1<i<k-1.
Cli Sli (:E’) l#zl:j. Sli(l") Cl ) St1s

Thus 4 is a submanifold of (X \ Bs(V)) x (P4~1)*~1 of dimension n + (k — 1)(d — 2).

Consider the projection
mg:d — (PO g (x, bt R = (B L. R
By Sard’s theorem, for vy _;-a.e. (h',..., h*~1) € (P4=1)k~1 the set
my H(hY . AR = {(2, YRR sz e Z(BY) N0 Z(BFTY) N (X\ Bs(V))}

is either empty or a submanifold of 4 of dimension dim ¥ — (k — 1)(d = 1) = n — k + 1.
Since 71 : (X \Bs(V)) x {(h%,...,hF~1)} — X\ Bs(V) is a biholomorphism, we conclude
that Z(h')N---NZ(h*~1) N (X \ Bs(V)) is either empty or a submanifold of X \ Bs(V) of
dimension n — k + 1. Hence Z(h') N ---N Z(h¥~1) is an analytic subset of X which is either
empty or is of pure dimension n — k + 1 and smooth away from Bs(V).

Step 2. — We show that the set G, is open, where
Gr = {(n',...,h*) € (P 1k dimZ(R) N---N Z(h*) < n —k}.

Indeed, assume for a contradiction that (h?, ..., h¥) € G}, but there exist sequences hly, — h’
in P47, as N — oo, so that the set Z(h%;) N --- N Z (k%) has an irreducible component Ay
of dimension m, for some m > n — k. Consider the currents Ty = (vol Ay )~ *[Ay], where
[An] is the current of integration on A . Since T have unit mass, we may assume by passing
to a subsequence that Ty converge weakly to a positive closed current 7' of unit mass and
bidimension (m, m). Note that the sets A cluster to the analyticset A = Z(h)N---NZ(h*),
so T is supported on A. Since dimA < n — k < m, T = 0 by the support theorem, a
contradiction.
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Step 3. — We show that the complement G§ = (P4~1)* \ Gy, has v, measure 0. Let
Gr_1={(ht,...,RF Yy e PHrF 1 dimZ(h)n---nZAY <n—k+1}.
By steps 1 and 2, the set G;_1 is open and v;_1(G§_;) = 0. We have
Gi C (Gi_y x P U (G N (Greq x P47
Note that v (G§_; x P4~1) = 0 and the set Fj, = G§ N (G—1 x P471) is v, measurable.
For (hl,...,hF~1) € Gx_; consider the slice
Fp(ht,. .. ,hF Y ={hePit: (B',... hF"1 h) € I}
={heP ! (h,...,K"" h) € Gi}.

Since GY, is closed, the above slices are closed. We are done if we show that they have pq_;
measure 0. Indeed, since F}, is measurable this will imply that v (Fy) = 0.

To this end, observe that if Z(h') N --- N Z(h*~!) = @ then Fy(h!,... hF71) = @.
Otherwise, we let Y := Z(h')N---N Z(h*~1) = Y1 U... U Yy, where Y] are the irreducible
components of Y. Since all of them have dimension n — k + 1 it follows that

N
Fr(ht, .. WY = B, Bj={heP' Y, C Z(h)}.
j=1

Note that the sets E; are closed. We will be done if we show that p14_1(E;) = 0.

Let us fix j. The basis sections S; cannot all vanish identically on Y}, since dimY; =n — k41
and dim Bs(V') < n — k. We may assume that S; # 0 on Y;. So

E;c{¢=0}UH;, Hj :={((,..-,C) €CT : [1:(a:--:C) € Ej}.

Note that H; is closed in C¢~!, and we are done if we show that it has Lebesgue measure 0.
This follows since for each ((a, ..., 4_1) € C42 the slice

H;j(C2 .- Ca-1) ={¢€C: (¢2,.--,Ca-1,¢) € H;}
contains at most one element. Indeed, if ¢ # ¢’ € H;({s,...,{q—1) then
S14+ S+ +Ca-182-1+CSa =0, S1+ (S + -+ Ca-184-1 + (' Sa =0
on Y}, hence S4 = 0 on Y}, a contradiction.
Step4. — Forl <k —1let
G ={( ...,k e @Y dim Z(hY)n---nZ(h) <n—1}.

The arguments in steps 1 and 2 show that, for every I < k — 1, the set G; is open and
v (Gf) =0.Henceif | < k—1land iy < --- < ¢ in{l,...,k} the set

Fy o ={(hY, ..., k") e N dim Z(h")n---N Z(h") > n—1}
is closed and has v measure 0. Therefore, by step 3, the set D is open and has full v, measure,
where D = G \ U Fi,..;, and the unionisoveralll <k —landé <--- <4 in{1,...,k}.
Note that (h',...,h*) € Difand only if dim Z(h**) N --- N Z(h%) < n — I foreveryl < k
and iy < --- <4 in{l,...,k}, and the proof of Proposition 4.1 is complete. O
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5. Asymptotic behavior of the Bergman density function

Using techniques of Demailly from [19, Proposition 3.1], [22, Section 9] we prove here
two theorems about the asymptotic behavior of the Bergman density function. The first one
hereafter holds for arbitrary singular metrics with strictly positive curvature, while the second
one, Theorem 5.3, shows that our Hypothesis (3) is satisfied in a quite general setting.

THEOREM 5.1. — Let (X, Q) be a compact n-dimensional Kihler manifold and (L, h) be a
holomorphic line bundle on X with a singular Hermitian metric h so that ¢, (L, h) is a strictly
positive current. If Py, ~y, are the Bergman density function, resp. the Fubini-Study currents,

defined by (1)-(2) for the spaces H&)(X, LP) of L*-holomorphic sections of LP relative to the

metric induced by h and the volume form Q", then as p — oo,
1 P | 1
710gpp_)oan(XaQ )7 77p_>cl(Lah)7 7[OPZO]_)01(L’h)
p p p

Jor Asc-a.e. sequence {o,}p>1 € S, in the weak sense of currents on X, where J__, \sc are
as in Theorem 4.3.

We will need the following existence theorem for d in the case of singular Hermitian
metrics. The smooth case goes back to Andreotti-Vesentini and Hormander, while the
singular case was first observed by Bombieri and Skoda and proved in generality by De-
mailly [18, Theorem 5.1].

THEOREM 5.2 (L2-estimates for 9). — Let (M, ©) be a complete Kiihler manifold, (L, h) be
a singular Hermitian line bundle and ¢ a quasi-psh function on M. Assume that there exist
constants a > 0, C > 0 such that

c1(L,h) > 240, dd°p > —-CO, ¢ (Ky, h5M) < CO,

where h"M is the metric induced on Ky by ©. Then there exists py = po(a, C) such that for
any p > pg and for any form g € ngl(M, LP) satisfying 8g = 0 there exists u € Lg,o (M, LP)
with Ou = g and

1
2 ] 2 @
uly e ?doy < — e ?duy.
/ | |hp M = / |g|hp M

Proof of Theorem 5.1. — Let x € X and U, C X be a coordinate neighborhood of z on
which there exists a holomorphic frame e, of L. Let ¢, be a psh weight of h on U,,. Fixrg > 0
so that the (closed) ball V := B(z,2r) € U, and let U := B(x, o).

We show that there exist constants C; > 0, pg € N so that

logC; 1 log(Cyr~2m) ( )
7 ———— < -logP,)(z) < ————= 4+ 2| max ¥, — Yo(z
™) < gy () < B max g~ Va(2)

holds for all p > pg, 0 < r < rg and z € U with ¢, (z) > —o0.
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For the upper estimate, fix z € U with 1,(z) > —ocoand r < 7. Let S € H&)(X, L?)
with ||S||, = 1 and write S = seS?. Repeating an argument of Demailly we obtain

7.271

B Y
B(z.r) B(zr)

< b exp (2p ( max o — V(o)

— 2 eXp p g(la‘x) « [e4 z ’

T z,r

SR, = Is()e e < e ZL [ popan
B(z,r)

C

r2

i

<

3

3

where C is a constant that depends only on x. Hence

—2n
Liog(2) = & max oglSGIR, < O g (v~ va(a))
Note that this estimate holds for all p and it does not require the strict positivity of the
current ¢; (L, h), nor the hypotheses that X is compact or €2 is a Kihler form.

For the lower estimate in (7), we proceed as in [22, Section 9] to show that there exist a
constant C; > 0 and py € N such that for all p > pg and all z € U with ¢, (z) > —oo there
isasection S, , € H?Q)(X, LP) with S, ,(z) # 0 and

||SZ,p||;2) < 01|Sz,p(z)|i,, .
Observe that this implies that
log Cy
——
Let us prove the existence of S, , as above. By the Ohsawa-Takegoshi extension theo-

rem [49] there exists a constant C’ > 0 (depending only on z) such that for any z € U and
any p there exists a function v, , € Ox (V) with v, ,(z) # 0 and

1 1
ZlogP,(2) = = max log|S(2)]? >
T logPy(2) = max log|S()L, >

/V |’Uz7p|2@*2pwagn < C,|’Uz7p(z)|2672p¢°‘(z) ]

We shall now solve the 0-equation with L2-estimates in order to extend v, , to a section
of LP over X. We apply Theorem 5.2 for (X,Q) and (L, h). Let & € §°°(R) be a cut-off
function such that 0 < § < 1, 6(t) = 1 for [¢| < £, 6(t) = 0 for |¢| > 1. Define the quasi-psh
function ¢, on X by

) QnG(W%(fl)log%, fory e U,,

2\Y) =

v 0, forye X\ B(z,ro).

Note that the function ¢, is psh, hence dd®p, > 0,on {y : |y — 2| < ro/2}. Since V € U, it
follows that there exists a constant ¢ > 0 so that for all z € U we have dd°p, > —cQ on X.

Therefore there exist a > 0, C > 0 such that the hypotheses of Theorem 5.2 are satisfied

for (X,Q), (L,h) and all ¢, 2 € U. Let pg be as in Theorem 5.2. Consider the form
g e L(Q),l(X’ Lp)’ 9= g(vzvpe(w%ﬂ)e@)p)'

T [e3

By Theorem 5.2, for each p > py there exists u € L3 (X, LP) such that du = g and
1
2 —. Q" < / 2 _—p. Qr
ul? e <— | |93 e < 00.
/X| s ap X| 5
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Here the second integral is finite since 1, (z) > —oo and
/X lglf, e~ ?- Q" = /V 02, [P0 PP e < C”/V [0z p|2e 2PV 0",

where C” > 0 is a constant that depends only on . Near z, e=#:®) = r2"|y — 2|~2" is not
integrable, thus u(z) = 0. Define

S, pi= vz,pﬁ(—‘y_zl)e@’p — .

[e3%

Then 95, = 0, S, (2) = v:,p(2)e§P(2) # 0, S.p € H (X, LP). Since . < 0on X,

152 ]2 < 2 ( /V eplPe o+ [ Julf, e ﬂ)

1

< 20" (1 n Cp) o2 p(2)Pe22) < G118, (2.

with a constant C; > 0 that depends only on z. This concludes the proof of (7).

Recall that log P, € L'(X,Q"), as it is locally the difference of psh functions. Observe
that, by the upper semicontinuity of 1, (7) implies that % log P, — 0asp — oo, Q™-a.e.
on X. Since v, is psh on Uy, it is integrable on U € U, [37, Corollary 3.2.8]. By dominated
convergence, (7) implies that % log P, — 0in L' (U, Q"), hence in L' (X, Q™), so

1
Yp —c1(L,h) = % dd°log P, — 0 weakly on X.

The conclusion about the equidistribution of zeros of random sequences of sections now
follows as in [54, Theorem 1.1] (see Section 4 and Theorem 4.3). O

We return to the main setting of the paper, given by assumptions (A)-(C) stated in the
introduction, and we take here f = 1.

THEOREM 5.3. — Let X, %, (L, h), Q verify (A)-(B) and assume that X is compact, Q is a
Kiihler form, and ¢, (L, h) is a strictly positive current on X. Then (3) holds for the Bergman
density function P, defined in (1) for the space H&) (X\ X, LP).

Proof. — Letx € X\X,U, C X\X,%,,V,U,beasin the proof of Theorem 5.1. Then (7)
shows that % log P, — 0 as p — oo uniformly on U, thanks to the uniform continuity of ¢,
onV. O

Combining Theorems 1.1, 5.3 and 1.2 we obtain the following equidistribution theorem
for big line bundles:

THEOREM 5.4. — Let (L,h) be a line bundle over the compact Kdihler manifold (X, )
endowed with a singular Hermitian metric h which is continuous outside a proper analytic
subset ¥ and so that v := c1(L, h) is a strictly positive current. If vy, is the current defined
by (2) for the space H&)(X \ X, LP) then %’yp — v weakly on X. If dim¥ < n — k for
some 2 < k < n, then the currents v* and 'y}’,f, for all p sufficiently large, are well defined and
ﬁ 7}’; — y* weakly on X. Moreover, the conclusions of Theorems 1.2 and 4.3 hold in this setting.
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Note that in Theorems 5.1 and 5.4 the bundle L is a big line bundle and X is Moishezon,
by a theorem of Ji and Shiffman [39] (cf. also [43, Theorem 2.3.28, 2.3.30]). Hence X is in fact
a projective manifold, since it is assumed to be Kéhler (see e.g., [43, Theorem 2.2.26]).

6. Applications

Let X, X, (L, h), f, Q verify assumptions (A)-(C) stated in the introduction and assume in
addition that v = ¢;(L, h) is a strictly positive current. To emphasize the metrics that are
used, we denote throughout this section the corresponding spaces of L?-holomorphic sec-
tions by H ?2) (X \ X, LP, h, fQ™). We discuss here several important situations in which the
Bergman density function P, defined in (1) satisfies our Hypothesis (3). In Sections 6.1, 6.2
we consider singular Hermitian metrics on big line bundles, and we deduce equidistribution
results for L2 holomorphic sections with respect to the Poincaré metric and for sections of
Nadel multiplier sheaves. In Section 6.3 we turn to Zariski-open manifolds with bounded
negative Ricci curvature, and we generalize a theorem of Tian [59, Theorem C] in our frame-
work. Natural examples of Kéhler-Einstein manifolds of negative Ricci curvature are the
arithmetic quotients. We show in Section 6.4 how our results apply for toroidal compacti-
fications of such manifolds. Finally, in Sections 6.5, 6.6 we exhibit some results for 1-convex
manifolds.

6.1. Properties of h.

For some of the applications, we will have to work with the Poincaré metric © on X\ ¥ and
with a small perturbation h. of the metric h on L. Let us begin by listing certain properties
of these special metrics.

We refer to Section 2.3 for the construction of the metrics ©, h., and we shall use the
notations introduced there. In particular, @™ = fQ™ with a function f as in (C) (see Sec-
tion 2.3.1). Note that h. is in fact a metric on L|x\y, where Y’ C X is an analytic subset of
dimension < n — 2 (Section 2.3.2). We recall the following fact:

LEmMMA 6.1. — Let L be a holomorphic line bundle over a complex manifold X and'Y be
an analytic subvariety of X with codimY > 2. Then any positively curved singular metric h*
on L|x\y extends to a positively curved singular metric on L. Moreover, if c1 (L| x\v, hE) > 6Q
on X \Y, for some § > 0, then the same estimate holds for the curvature current of the extended
metric on X.

Proof. — If U, is a neighborhood of some point y € Y on which L has a holomorphic
frame e,, then h% (e, e,) = e~ 29> for some psh function ¢, on U, \ Y. Since codim Y > 2
the function ¢,, is locally upper bounded near the points of U, NY’, hence it extends to a psh
function on U,,. The second conclusion follows since the current ¢; (L, k%) does not charge Y
by Federer’s support theorem ([26], see also [35, Theorem 1.7]). O

We denote the extended metric still by k. and we let w = ¢;(L, he), so w is a positive
closed (1,1) current on X.

4¢ SERIE - TOME 48 — 2015 - N° 3



EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 521

PROPOSITION 6.2. — (i) We have w = v+ 7, (0’ + edd°F'), where F is defined in (4) and 0’
is a smooth real closed (1,1) form on X.

(i1) Let A be an irreducible component of ¥ of dimension n — 1. Then the generic Lelong
numbers v(vy, A) = v(w, A). Moreover, any section in H(Oz) (X \ Z,LP, he, fQ™) vanishes at
least to order pv(w, A) on A.

Proof. — (i) Recall from Section 2.3.2 that the metric h. on L|x\y was induced via the
biholomorphism 7 : X \ E — X \ Y by a metric hZ" on L' = 7* (L|x\y) with
curvature current v, = 7%y + 6’ 4+ edd°F. The map 7 : X — X is proper so TwYe
is a well defined positive closed (1,1) current on X which satisfies 7,7, = won X \ Y.
As dimY < n — 2, Federer’s support theorem [26] implies that 7,7, = w on X. Similarly,
we have that m,7*y = v on X \ Y, and hence on X. The formula for w in the statement now
follows.

(ii) Fix a pointz € A\ Y. Then z € X1, so we can find a neighborhood V,, C X of x

reg °

and local coordinates z1,...,z, on V, so that 7 : 7=1(V,) — V, is a biholomorphism,
=0, 2NV, =ANV,={z=0},and f >c>0o0nV,.
By (i) we have

w=7+ (1) +edd°Forn ' onV,.
We can assume that there exist functions ¢, u on V,, so that ¢ is psh, u is smooth, dd°p = -,
dd®u = (7~ 1)*@’. Then the function ¢, = ¢ + u+eF o~ !is psh on V, and dd°p. = w. It
follows by the Definition (4) of F that near z we have F o =1 = —log(g — log |21]) + O(1),
where g is a smooth function. Thus

¢e = ¢ —elog(g —log|z1]) + O(1),
which shows that the Lelong numbers v(p., ) = v(¢, z). Since z € A\ Y was arbitrary this
implies that v(y, A) = v(w, A).
Next, let S € H&)(X \ X, LP, h, fQ™) be defined on V, by S = se®P, where e, is a local
frame for L, and let v = v(w, A). As f > ¢ we have

/ |s|2e™2PP= d)\ < o0,
Vz\A

where ) is the Lebesgue measure in coordinates. By the results of [58], dd°p. = vdd®log|z1| + T,
where T is a positive closed current, so T' = dd°v for some psh function v on V.. It follows
that the function ¢. — vlog|z;| — v is pluriharmonic on V. Hence, by shrinking V,. if
necessary, we have

ve < vlog|z1| + O(1), hence / |8)%]21|72PY dX < oo.
V,\A

This implies that s vanishes at least to order pv along A. O

REMARK 6.3. — The proof of Proposition 6.2 shows in fact that the currents w and v have
the same Lelong numbers at each point of Zfegl. However, the Lelong numbers of w are bigger
than those of 7y at other points of 3. For instance, if ¥ is a finite set then X is simply the blow-
up of X at each of the points of X.. Then, in local coordinates z near a point x = 0 € X, we

have m,0' = add®log ||z||, for some a > 0.
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6.2. Singular metrics on big line bundles

Let L be a big line bundle over the compact complex manifold X. Then X is Moishezon
and L admits a singular metric h, smooth outside a proper analytic subset ¥ of X, and with
strictly positive curvature current v = ¢1 (L, h) (see e.g., [43, Lemma 2.3.6]).

6.2.1. Special metrics on Moishezon manifolds. — Let © be the Poincaré metric on X \ X
and h. be the small perturbation of the metric h on L constructed in Section 2.3. It is
shown in [42, 44] (see also [43, Chapter 6]) that the Bergman density function P, of the
space H ?2) (X \ 3, L, h,©") has a full asymptotic expansion locally uniformly on X \ X.
This clearly implies (3), so we have the following:

THEOREM 6.4. — The conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spaces
H?Q)(X \ X, LP, h,,©") and for w = c1(L, h.).

Note that in this case X is not assumed to be Kéihler.

6.2.2. Multiplier ideal sheaves. — We recall first the notion of multiplier ideal sheaf.
Let ¢ € LY(X,R). The Nadel multiplier ideal sheaf .7 () is the ideal subsheaf of germs
of holomorphic functions f € Ox . such that |f|%2e=2¢ is integrable with respect to the
Lebesgue measure in local coordinates near z.

If A’ is a smooth Hermitian metric on L then h = h’e~2% for some function ¢ € L'(X,R).
The Nadel multiplier ideal sheaf of h is defined by .#(h) = #(¢p); the definition does not
depend on the choice of h'. The space of global sections in the sheaf L ® .#(h) is given by

®) H(X,Le s (h)={seH(X,L): / s[> on = / s[5, 72 0" < oo},
X X
where 2 is a fixed smooth positive (1, 1) form on X. We have
HO(Xv L*® ‘](hp)) = H?2) (X \ X, L, h, Qn)’
where hy, is the metric induced by h on L?. If {S7} is an orthonormal basis of H O(X,LP @ I (hy))

we define the Fubini-Study currents v, on X as in (2).

THEOREM 6.5. — Let L be a big line bundle over a compact Kdihler manifold X and h be
a singular Hermitian metric on L, smooth outside a proper analytic subset %> of X, and with

strictly positive curvature current v = c¢1(L, h). The conclusions of Theorems 1.1, 1.2 and 4.3
hold for the spaces H°(X, LP ® . (h,)) and for .

Proof. — Conditions (A)-(C) are obviously verified in the present situation. Moreover, (3)
follows from Theorem 5.3. It can also be seen as a consequence of the full asymptotic
expansion of the Bergman density function proved in [38]. Therefore, Theorem 1.1 implies
the desired conclusion. O

Note that X is in fact a projective manifold, since it is Moishezon and Kéhler (see e.g.,
[43, Theorem 2.2.26]).
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6.3. Zariski-open manifolds with bounded negative Ricci curvature

Let (M, J,w) be a Kihler manifold, let g7 be the Riemannian metric associated to w
by ¢™™ (Ju, Jv) = gTM(u,v) for all u,v € T, M,z € M. Let Ric be the Ricci curvature
of gT™  The Ricci form Ric,, is defined as the (1, 1)-form associated to Ric by

Ric,, (u,v) = Ric(Ju,v), foranyu,ve T, M,z e M.

The volume form w™ induces a metric h%» on K3, whose dual metric on Ky is denoted
by A% _ Since the metric 7™ is Kihler, we have (see e.g., [43, Prob. 1.7])

Ric,, = iR¥M = —RK™
We denote by H ?2)(M , K%,) the space of L?-pluricanonical sections with respect to the
metric k%3 and the volume form w”.
We consider in this section the following setting:
(I) X is a compact complex manifold of dimension n, ¥ is an analytic subvariety of X,
M:=X\ZX.
(I1) M admits a complete Kahler metric w such that Ric,, < —Aw, for some constant A > 0.
Note that K, = Kx|a. Moreover, condition (II) implies that the volume form w™ is
integrable over X; indeed, by Yau’s Schwarz lemma [61, Theorem 3] it follows that w™ < O™,

where O is the generalized Poincaré metric on M (see e.g., [48, Proposition 1.10]) and ©" is
integrable over X (see also [43, Lemma 6.2.1]). We have the following:

THEOREM 6.6. — Let X, 3, M, w be as in (1), (I1), and assume that dim ¥ < n—k, k > 2.
Then the following hold.

(i) The currents (— Ric,)?, 'yg, 1 < j < k, are well defined on X for p sufficiently large,
where v, are the Fubini-Study currents defined by (2) for H ?2) (M,K%)).

(iii) 5v) — (—55 Ricy)? weakly on X asp — oo, for 1 < j < k.

Proof. — We only have to check condition (B). Since codim ¥ > 2, Lemma 6.1 implies
that the metric h%™ extends to a positively curved (singular) metric on Kx over X, which
we denote by h. Moreover,

— Ric, = iRF™ = 27rc1(KM,hKM) =2me1(Kx,h)|m

extends to a positive closed current on X.

Condition (3) holds, as shown by Tian [59, Theorem 4.1] (this follows also from the
more general result in [43, Theorem 6.1.1]). Therefore, Theorem 1.1 implies the desired
conclusion. O

Note that Tian [59, §5] considered the situation when X, ¥, M verify assumptions (I), (1),
X is projective and & = 1. In that case he shows that the sections of H ?2)(M , K7%,) extend
meromorphically to X, with poles of order at most p — 1 along ¥, and — Ric,, extends to a
positive closed current on X [59, Theorem C].

This situation is more difficult, as the metric A% does not extend to a positively curved
metric on Kx. Nevertheless, we shall now show how this case fits into our framework
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from Theorem 1.1. In view of Theorem 6.6 (and its proof), we may assume without loss of
generality that

(IIT) ¥ has pure dimension n — 1.

For this purpose, consider the line bundle L := Kx ® Ox (%), where Ox (X) is the line
bundle associated to the divisor X. Let o be the canonical section of Ox (%) (cf. [43, p. 71])
and denote by h, the metric induced by o on 0x (%) (cf. [43, Example 2.3.4]). Note also
that c;(0x (X), hy) = [Z] by [43, (2.3.8)]. Consider the metric naturally defined by A%

) haro i=h5Y @ h, on Ly = Ky @ Ox(Z)|m = K.
We recall the following simple fact, whose proof is left to the reader.

LEMMA 6.7. — Let X, X, M verify assumptions (1) and (I11). Assume that (E,h%) is a
singular Hermitian line bundle on X andp > 1. Then

Jo: H*(M,E|p) — H°(M,(E ® Ox(2)?)|m), J5(S) =S ®o®?,

is an isomorphism and we have |S|2 5 = |JU(S)|iE®hp pointwise on M, where hZ. is the metric
induced by h, on Ox (X)P.

LEMMA 6.8. — Let X, ¥, M, w verify assumptions (1)-(111). The metric hy - defined in (9)
extends uniquely to a positively curved metric h on L over X. The curvature current c1(L, h) is
independent of the choice of o and we have c¢1(L, h)|yr = — 5= Ricy,.

Proof. — By Lemma 6.1 it suffices to show that the metric ks » extends near each regular
point x € 3. We follow at first the argument of Tian from [59, Lemma 5.1] to estimate the
volume of w as in [59, (5.3)]. Let D be the unit disc in C. Then z € X has a coordinate
neighborhood U, such that

Uy 2D", 2=0, U, NE2{z=(21,...,2,): 21 =0}, U, "M =D* x D",

Consider the complete hyperbolic metric g, on D* x D"~! given by the product of the
Poincaré metrics on D* and D. By (I) and Yau’s Schwarz lemma [61, Theorem 3], the volume
of w is dominated on U, N M by a constant multiple of the volume of g,. On a smaller
polydisc D x D*~1, r < 1, the volume of g, is ~ (|21]log |21]) ~2. It follows that

n
det[g;x] < C(|z1]|log|z1])72 on Df x D', where w =i Z 9;kdz; N\ dZy,
§k=1
for some constant C' > 0.

Note that L is trivial over U, and the metric h s, has a weight ¢ on U, N M =2 D* x Dn-t
given by €2 = |21|? det[g;1]. So dd°p = — 5= Ric,, > 0and ¢ is psh on U, N M. By the above
estimate,

e?? = |z1)? det[g;x] < C(log|z1|)™2 on DX x D1,
which implies that ¢(z) — —oo0 as z — X, so ¢ is upper bounded near x. Hence ¢ extends
to a psh function on Uy, and hys,, extends uniquely to a positively curved metric h on L.
Moreover,

1
C1(L,h)|M = Cl(KM,hKM) —|—Cl(ﬁx(2)|M,hg) = —g Ric,, .

4¢ SERIE - TOME 48 — 2015 - N° 3



EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES 525

Since X is compact, any section o’ of O'x () that vanishes on ¥ is a constant multiple of o,
hence the metric h, is a constant multiple of h,. This shows that ¢; (L, h) is independent of
the choice of o. O

THEOREM 6.9. — Let X, ¥, M, w verify assumptions (I)-(II1). Let h® ™ be the metric

induced by w on Ky and H (02) (M, K%,) be the space of L?-pluricanonical sections with respect

1o the metric KX and the volume form w™. Then we have:

(i) The Fubini-Study currents v, of H ?2)(M , K%,) extend naturally as closed currents of
order 0 on X defined locally by Formula (2), and % v+ [X] > 00n X.

(i) % Vp + [Z] converge weakly on X to a positive closed current T so that Ty = — 5= Ric,,
and T = c¢1(L, h) for a singular Hermitian metrichon L = Kx ® Ox(%).

Proof. — By [48, Proposition 1.11] (see also [59, Lemma 5.1]) the sections in H’ (02) (M,K%))
extend to meromorphic sections of K% over X, with poles in ¥ of order at most p — 1. This

yields (i).

Let hypr,» be the metric defined in (9) on L|js, and h be its extension to L provided in
Lemma 6.8, so ¢;(L,h)|py = —i Ric,,. It follows from Lemma 6.7 and [48, Proposi-
tion 1.11] that J, (H{y (M, K}y)) = Hiy (M, L, h,w™) C HO(X, LP). So X, 3, (L, ) and
the volume form w™ verify assumptions (A), (B), (C), (D) (see Remark 3.6).

Lemmas 6.7 and 6.8 imply that ./, maps an orthonormal basis of H, ?2) (M, K%,) onto an
orthonormal basis of H ?2) (M, L?, h,w™) and that the Bergman kernel functions P, defined
by (1) for these spaces are equal. Condition (3) holds, as shown by [59, §4] or [43, Theo-
rem 6.1.1]. By Theorem 1.1 and Remark 3.6 we have %71’3 — ¢1(L, h) weakly on X, where

v, are the Fubini-Study currents defined by (2) for H, ?2) (M, LP, h,w™).

Observe that Lemmas 6.7 and 6.8 imply v, = 7, + p[X] on X. This completes the
proof. O

REMARK 6.10. — Note that assumptions (1) -(I11) are verified if X is a compact projective
manifold, ¥ is an effective divisor of X, and L = Kx ® Ox(X) is ample, due to a result
by R. Kobayashi [40] about the existence of Kdhler-Einstein metrics on X \ X. Conversely,
let X, ¥, M, w verify assumptions (I)-(I11) as in Theorem 6.9. By the proof of [48, Proposi-
tion 1.12] we see that the following properties hold.:

(a) There exists py such that H°(X, LP°) separates the points of M and gives local holomor-
phic coordinates on M,

(b) M is biholomorphic to a quasiprojective manifold; in fact the meromorphic Kodaira map
®,, : X --» PN defined by H°(X, LP°) induces a birational morphism to a normal
projective variety Y such that @, (M) is Zariski openinY and ®,, : M — &, (M) is
biholomorphic,

(¢) L is big and X is Moishezon.

Note that L is not necessarily ample in the case of toroidal compactifications considered in the
Section 6.4.
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6.4. Arithmetic quotients

Let D be a bounded symmetric domain in C™ and let I" be a neat arithmetic group acting
properly discontinuously on D (see [47, p. 253]). Then U := D /T is a smooth quasi-projective
variety, called an arithmetic variety. By [2], U admits a smooth toroidal compactification X.
In particular, ¥ := X \ U is a divisor with normal crossings. The Bergman metric wg
on D descends to a complete Kidhler metric w := wf]? on U. Moreover, w is Kédhler-Einstein
with Ric,, = —w (since the metric wg has this property). We denote by A%V the Hermitian
metric induced by w on K. We wish to study the spaces H ?2) (U, KY,) of L?-pluricanonical
sections with respect to the metric h%¢ and the volume form w™.

Asin Section 6.3, consider the line bundle L := K x ® Ox (%) and the metric hy,, on L|y
defined in (9). By Lemma 6.8 hy, extends uniquely to a positively curved metric h on L
and ¢;(L, h)|y = 5=. Clearly, Theorem 6.9 holds in this setting:

THEOREM 6.11. — Let X be a smooth toroidal compactification of an arithmetic quo-
tientU = DT andset ¥ = X \U, L = Kx ® Ox(X). Let w be the induced Bergman metric
on U and let 5V be the metric induced by w on Kyr. Then we have:

(i) The metric h5v defines a singular metric h on L such that c;(L, h) is a positive current
on X which extends 5.

(i1) H?Q)(U, LP h,w™) C HOYX,LP) for all p > 1, so the currents vy, given by (2)

for H ?2) (U, L?, h,w™) extend naturally to positive closed currents on X.
(i) 2 — ci(L,h) and 5o, = 0] — ci(L,h) in the weak sense of currents on X,
Jor Aso-a.e. sequence {0, }p>1 € S, where S, Moo are as in Theorem 4.3.

By Lemma 6.7, H?z)(U, K?) = H?Q)(U, LP,h,w™). Let us describe this space in more
detail. By [47, Proposition 3.3, 3.4(b)],
HO(X,LP) = {modular forms with respect to the p th power

of the canonical automorphy factor},

so HY

U, Kf) C H°(X, LP) are modular forms. The space

HY(X,LP ® Ox(£)™ ') = HY(X,K% ® Ox(Z)P 1)

of modular forms vanishing on the boundary is called the space of cusp forms.

We will need the following definition from Mumford [47, p. 242]. Let D be the unit disc
in C. Every z € X has a coordinate neighborhood V,, = D" such that for some 1 <[ < n,

(10) Vo=2D" =0, V,NE=Z{z=1(21,...,2,) : 2122...2; =0}.

DEFINITION 6.12. — A smooth Hermitian metric h on L|y is said to be good on X if for
all x € ¥ and all holomorphic frames e of L in a neighborhood V,, =2 D™ of x as in (10) we have

20
() lel2,lel72 < C XL _ log |zk|‘ , for some C >0, a > 1,
(ii) the formsn = Olog |e|2 and dn have Poincaré growth on V.
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Examples of Hermitian line bundles with good metrics are provided by the following class
of line bundles over arithmetic quotients considered by Mumford in [47, p.256]. Namely,
if D is a bounded symmetric domain, then D = K\G, where G is a semi-simple adjoint
group (i.e., isomorphic to its adjoint group) and K a maximal compact subgroup (see e.g.,
[2, p. 106]). Let Ey be a G-equivariant holomorphic line bundle over D. Let U = D/T be an
arithmetic quotient and X be a smooth toroidal compactification of U. Then I' acts on Ej
and Ey = Ey/T is a holomorphic line bundle on U. Moreover, E, carries a G-invariant Her-
mitian metric g which induces a Hermitian metric hy on Ey. By [47, Main Theorem 3.1],
Ey admits a unique extension to a holomorphic line bundle E over X such that the metric
hy on E|y = Ey is good on X.

Consider the G-invariant line bundle (Ey, ho) = (Kp, h*?) on D, where h%? is in-
duced by wj. Note that the Bergman metric wj is G-invariant and so is h*P. Then
(Eu,hy) = (Ky, h%v), where hv is induced by wZ. By [47, Main Theorem 3.1, Proposi-
tion 3.4] the extension Ky of Ky satisfies the following condition: for any z € X and any
open coordinate neighborhood V,, =2 D" of z as in (10), a holomorphic frame of K|y, is
of the form e = (2122...2;)"*dz1 A -+ A dz,. This shows that Ky & Kx ® Ox(X) =: L
and the metric hy - induced by hEv (see (9)) on L|y = Ky is good on X. Hence we obtain
by condition (i) of Definition 6.12 that

l l
—2a
(11) o 2 T |zj|*2(21og|zk|) Q" onV,\ %,
Jj=1 k=1
where o > 1 and Q is a positive (1,1) form on X, and
l
2c
(12) el2, . S (Zlog |zk|) onV, \ E.
k=1

LEMMA 6.13. — Let U = D/T be an arithmetic quotient and let X be a smooth toroidal
compactification of U. Then H&)(U7 KP) = HYX,K§ ® Ox(X)P7!), ie, the space
of L2-pluricanonical sections is the space of cusp forms.

Proof. — By [48, Proposition 1.11] we have H&)(U, K?) ¢ HY(X,K% @ Ox(Z)P~1).
If S € HY(X,K% ® Ox(Z)P~1), then S = fe®P, in a neighborhood V,, of z € ¥ as in (10),
where f € Ox(V,) vanishes on X and e is a frame of L over V,, . Estimate (12) together with

the fact that w™ is integrable over X [48, Proposition 1.10] imply that

l
[ s wn= [ e, on s [ 1P (S togla
Vo \Z Vo \S Vo \Z k=1

thus S € HY (U, L?, h,w™) 2 HY (U, K5). O

2po

w" < 00,

Theorem 6.11 shows that the zero-divisors of random cusp forms {o,} (where o, is a
p-pluricanonical section) are equidistributed with respect to the extension of the Bergman
metric on a smooth toroidal compactification of an arithmetic quotient. The equidistribu-
tion on the arithmetic quotient D /T itself was shown in [23]. In this framework the equidis-
tribution of zeros is a variant of the Quantum Unique Ergodicity conjecture of Rudnick-
Sarnak [52], cf. Rudnick [51], Holowinsky and Soundararajan [36], Marshall [46].
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The case of arithmetic quotients of dimension 1 is particularly interesting.

COROLLARY 6.14. — Let I' C SLo(Z) be a subgroup of finite index acting freely and
properly discontinuously on the hyperbolic plane H via linear fractional transformations.
Set U = H/T and let w be the induced Poincaré metric on U. Let X be a compact Riemann
surface such that U C X and X \ U = X is a finite set. Let L = Kx ® Ox(X). Then
the space Sap(I') of cusp forms of weight 2p of T' is isomorphic to H?2)(U, K7)) and asser-
tions (1)-(iii) of Theorem 6.11 hold for the Fubini-Study currents vy, defined by Sa,(I") and for
the zero-sets of random sequences of cusp forms.

We can extend the results of this section for the class of invariant line bundles considered
by Mumford [47, p. 256].

THEOREM 6.15. — Let D, U, X, (Ey, ho) be as above and assume that iR(Fo-m) > e
on D, forsomee > 0. Let (Ey, hy) be the induced line bundle on U and E be its unique extension
to X so that the metric hy on E|y is good on X. Then hy extends to a singular Hermitian
metric h on E such that c1(E, h) is a positive current on X which extends c¢1(Ey, hy ), and the

conclusions of Theorems 1.1, 1.2 and 4.3 hold for the spaces H(UQ) (U, E?, h,w™) andforci(E, h).

Proof. — Let xz € ¥ and V,, be a coordinate neighborhood of z as in (10) on which there
exists a holomorphic frame e of E. Then the local weights ¢ = —log |e|p,, verify

1 !
> log |zl > log |zl
k=1 k=1

Since the metric hy is positively curved, the function ¢ is pshon U NV, = V, \ X. Hence
@ 1s psh on V,, in view of the previous upper bound and of Lemma 6.16 hereafter. Thus
c1(E, h) > 0 and condition (B) is fulfilled.

To prove that (C) holds, we write w™ = fQ" for some fixed positive (1,1) form 2 on X.

Letz € E;’e*gl and local coordinates z1, ..., 2, be chosen so that z = 0, ¥ = {2z, = 0}.

—log

<log +

logC _ ¢ onV,\ X
e!

< log C
200 T o

2

Estimate (11) implies that f > |z;]~2 [log |21 ||~ >* near z, where a > 1. Hence f > ¢, > 0
Q"-a.e. in a neighborhood U, of each z € (X \ ¥) u X7 1L

reg

Condition (3) holds due to [43, Theorem 6.1.1], which applies since iR(Z-") > ewg onU.
By Theorem 1.1 we infer the conclusion. O

LEMMA 6.16. — Let V. C C™ be an open set and X2 be a proper analytic subvariety of V.
Suppose that u is a psh function on V' \ X which verifies

u(z) < Oy, log | log dist(z, X)|

Jor z € V' \  near each point zy € %11, with a constant C,, > 0. Then u is locally upper

reg
bounded near each point of ¥ hence it extends to a psh function on'V.

Proof. — Tt suffices to show that u is locally upper bounded near each point zy € Eﬁe_gl.
We may assume that zo = 0, ¥ = {27 = 0} C V = D" and that u(z1, 2’) < Clog|log|z1]]
forz € V with0 < |21] < e !, where C > 0 is a constant. The function u(-,2’) is

subharmonic on D\ {0}, so r — f(r; 2’) := max|,, |=, u(21,2’) is a convex function of log r
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for r > 0[37, Corollary 3.2.22]. If 0 < t < r < s < e~ ! we have by the growth assumption
on u and the convexity property of f(r) that

f(r;2") = Clog|logt| _ f(r;2") = f(t;2') _ f(s;2) = f(r;2")
logr —logt ~ logr—logt ~— logs—logr

Letting ¢ N\, 0 it follows that f(r;2’) < f(s;2’), hence the functions f(-; 2’) are increasing.
This implies that u is upper bounded in a neighborhood of zy = 0. O

6.5. 1-convex manifolds

A complex manifold X is called 1-convex if there exists a smooth exhaustion func-
tion ¢ : X — R which is strictly psh outside a compact set of X. This is equivalent to the
following condition (see e.g., [1]): There exist a Stein space Y, a proper holomorphic sur-
jective map p : X — Y satisfying p, & x = Oy, and a finite set A C Y such that the induced
map X \ p~}(A4) — Y \ A is biholomorphic. The Stein space Y is called the Remmert
reduction of X and ¥ := p~1(A) the exceptional set of X.

Consider a strictly psh smooth exhaustion function ¢y of Y, such that ¢y > 0 and
{oy =0} = A (seee.g., [13, p. 563]). Then ¢ = py o pis a smooth psh exhaustion function
of X, such that ¢ > 0, {9 = 0} = X and ¢ is strictly psh on X \ X.

We consider in the sequel a holomorphic line bundle (L, k) on X with singular metric h,
which is smooth outside the exceptional set ¥ and has strictly positive curvature current
in a neighborhood U of X. By using a modification 7: X — X of X we construct as in
Section 2.3 the Poincaré metric © on X \ ¥ and also the metric k. on L| x\x. We may suppose
that © is complete on X \ ¥ (the metric Qon X may be taken to be complete, by setting
Q=0 exp(n o p o), where € is an arbitrary metric on X and n: R — Ris a fast increasing
function at infinity).

Let us consider a convex increasing function x : R — R and endow L with the Hermitian
metric h.e~X(¥)_ Consider the L? inner product on the space Q0™* (X \ , L?) of sections with
compact support, induced by the metrics h.e=X(#) on L and © on X \ X. Set

L3 (X \3,LP) == L} (X \Z,LP, hee X¥) o),

Hiyy (X \ 3, LP) := L§ (X \ ¥, L) Nker 9.
We denote by 5; and 0, ,, the adjoint of & with respect to this L? inner product and the
corresponding Kodaira Laplace operator.

Let us denote by Y = [i(©),00] the Hermitian torsion of the Poincaré metric ©.
Set LP = LP? ® K% . There exists a natural isometry
U =n~: A%(T*X)® LP — A™(T*X) ® LP,
Us=5=(w' A Aw"As)® (Wi A+ Awy),

where {w;}"_, is a local orthonormal frame of 73 X and {w’}"_, is the dual frame. The
Bochner-Kodaira-Nakano formula [43, Cor. 1.4.17] shows that for any s € Q5" (X \ I, L?)
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we have
. g (191 + 135 517) > (R 55 (g, )" A i ., 5)
— LUTE + T3 + 1T 5?).
SetT =3(TT" + T T + T T ). Define the continuous function
(14) 7: X\ >R, 7(2)=sup{(Ta,a)/{e,a):a e A"'T:X\{0}}.
Then foranyz € X \ ¥,p € Nand @ € L? @ A™!'T* X we have

(Ta,a) < 7(z){e, @).

Hence (13) gives for all s € Q' (X \ Z, LP)

3/ e R ,
a5) S (19l + [9ys)?) = (B 55 (wy, w0)w" Ay s,5) —/ 7(@)lsP.
X\Z

LEMMA 6.17. — There exist an increasing convex function x : R — R and constants a,b > 0,
such that:

(16a) cl(L,hae_X("’)) > a0,
(16b) c1 (L, hee X)) 4 iREX — 70 > —b0O,
on X\ X.

Proof. — We have
1 i _ _
c1(L, hee ™)) = ¢y (L, he) + 5 4d°x(p) = er(L he) + - (X ()99 + X" (9)0p A D).

Since ¢ is psh, for any increasing convex function x this is > ¢; (L, k), hence positive on U.
Thus (16a) holds on U by the construction of h.. Moreover, [43, Lemma 6.2.1] shows that
iR¥X and the torsion operators of ©, hence 7, are bounded with respect to © on U. Thus
(16b) also holds on U, thanks to (16a).

Consider ¢ > 0 such that ¥ C X, € U, where X, := {¢ < c}. Note that ¢ is strictly psh
outside X .. Thus we can choose y increasing fast enough such that (16a)-(16b) are satisfied
on X \ X.. O

LEMMA 6.18. — Let x : R — R be as in Lemma 6.17. Then:

(1) There exist constants ay,by > 0 such that for any p € N we have
(17) [Bs|>+ 18y s|*> > (pay — a1 —b1)|s|*, s € Dom(@)NDom(d,)NLE (X \E, LP).

(i) The spectrum of O, on L%’O(X \ X, LP) satisfies
(18) Spec(0,,y) C {0} U (pas — a1 — by, +00).

(iii) The Bergman density function P, of H ?2) (X\ 2, LP) has a full asymptotic expansion on
any compact set of X \ .
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Proof. — (i) Since Q"' (X \ ¥, L?) is dense in Dom(8) N Dom(d,) N LE (X \ T, LP)
(Andreotti-Vesentini density lemma, see [43, Lemma 3.3.1]), it suffices to prove (17)
fors e Qg’l (X \ X, LP). But in this case, (17) follows immediately from (15) and (16a)-(16b).

(i1) Once we have (17), the assertion about the spectrum of O, ,, on Lg,o (X\X, L?) follows
as in the proof of [43, Theorem 6.1.1].

(iii) Since the Kodaira Laplacian O, , on L§ ,(X \ X, L) has a spectral gap, by the
argument in [43, §4.1.2], we can localize the problem, and we obtain the result as in the proof
of [43, Theorem 4.1.1] (cf. also [43, Theorem 6.1.1], where a similar situation is treated). [

THEOREM 6.19. — Let X be a 1-convex manifold and (L, h) be a holomorphic line bundle
on X with singular metric h. Assume that h is smooth outside the exceptional set ¥ and that
it has strictly positive curvature current in a neighborhood of X.. Let © be a complete Poincaré
metric on X, he be constructed in Section 2.3, and let x be as in Lemma 6.17. The conclusions of

Theorem 1.1 hold for the spaces H?Q)(X \ Z, LP, h.e™X(®) @) and for w = ¢y (L, hoe X(#)).

Proof. — Conditions (A)-(C) are satisfied by construction and condition (3) follows from
Lemma 6.18. O

6.6. Strongly pseudoconvex domains

We give now a variant ‘with boundary’ of the previous result. Let M be a complex
manifold and let X € M be a strongly pseudoconvex domain with smooth boundary. We
consider a defining function o € & (M,R) of X,ie, X = {z € M : o(z) < 0} and
do # 0on 0.X. Since X is strongly pseudoconvex, the Levi form of g is positive definite on the
complex tangent space to 9X. It is well-known that one can modify the defining function p
such that in a neighborhood of 0X, p is strictly psh and dgo # 0 (see [34, Ch.9, Sec. A,
Proposition4]). Thus, for ¢ > 0 small enough, X, = {& € M : p(z) < c} is strongly
pseudoconvex.

Let 5. : (—o00,c) — R be a convex increasing function such that n.(t) — oo, ast — c.
Then 7.0 is an exhaustion function for X, which is strictly psh outside a compact set of X.
Therefore X, is a 1-convex manifold.

Let X be the exceptional set of X, (it is the same exceptional set as for X)and let p : X, — R
be a smooth psh exhaustion function of X, such that ¢ > 0, { = 0} = X and ¢ is strictly
pshon X .\ X.

Let (L, h) be a holomorphic line bundle on M with singular metric A which is smooth
outside the exceptional set 32 and which has strictly positive curvature current in a neighbor-
hood U of X. By using a modification M of M we construct as in Section 2.3 the Poincaré
metric © on M \ ¥ and also the metric h. on L|jn\ 5.

Let A > 0. On the space Qg’*(Y\ ¥, LP) of sections with compact support in X \ ¥ we
introduce the L? inner product with respect to the metrics © and h.e~4%¥ and set

L3 (X\3,L7) = L (X \ X, LP, he™ ¢, 0"),
Hiyy (X \ 3, LP) := L (X \ %, L) Nker d.
We consider the L? 9-Neumann problem on X \ ¥ and show that the -Neumann Laplacian

on L (X \ ¥, L?) has a spectral gap. Here we work with 9-Neumann boundary conditions
at the end X of X \ ¥ and with a complete metric at the end corresponding to ¥. This kind
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of analysis was already used in [45] in connection to the compactification of hyperconcave
manifolds.

We denote by 8~ = 8 " the Hilbert space adjoint of the maximal extension of 9
on Lgvl(X \ X, LP). Denoting by x the Hodge star operator, integration by parts as in [28,
Proposition 1.3.1-2] yields

L®,

BOYX\ B, LP) = {s € Q0 (X \ &, LP) : *Bp A xs = 0 on dX}
=Dom(@") N QX \ &, LP).

The space B®}(X \ %, LP) is dense in Dom(8) N Dom(8 ") with respect to the graph
norm s — (||s]|2 + [|s|2 + (|18 s[|2)1/2 (cf. [45, Lemma 2.2]).

Let us consider a defining function g of X such that |[dg| = 1 on X . We denote by .Z, the
Levi form of g (cf. [43, Def. 1.4.20]). The Bochner-Kodaira-Nakano formula with boundary
term [43, Cor. 1.4.22] shows that for any s € B»!(X \ ¥, LP) we have

3/~ - -
= (||as||2+ 18 s||2) > (RL K (w;, Ty /\i@js,s)

1 "o = —
+ ), Zols:s)dvox — S I3 +1731% + 117 31%).

Since X is strongly pseudoconvex the boundary integral is non-negative. Therefore we obtain
for all s € B%1(X \ &, LP) the estimate

3/ = —x — ,
> (1812 +13351) > (R¥55 (g Ay s.5) = [ r@lsP,

X\Z

where 7 is defined on X, \ ¥ as in (14). Making use of the compactness of X we obtain:

LEMMA 6.20. — There exist constants Ag,a,b > 0 such that for any A > Ag the (1,1)
current ¢y (L, h.e=4%) is strictly positive on a neighborhood of X and

(19a) c1(L,h.e” %) > a0,
(19b) ¢1(L, hee™4%) +iRKX — 70 > —b0O,
on X\ %.

Let us now fix A > 0 as in Lemma 6.20. Using (15), (19a) and (19b), we deduce imme-
diately the estimate (17) for any s€ B%1(X\X,LP) and, by density, for any
s € Dom(d) NDom(d ") N L3, (X \ ¥, L?). This shows that [, acting on L o(X \ %, L?)
has a spectral gap as in (18). Therefore, the Bergman density function P, of H, ?2) (X\X,LP)
has a full asymptotic expansion on any compact set of X \ X.

The preceding discussion leads to the following:

THEOREM 6.21. — Let X be a strongly pseudoconvex domain with smooth boundary
in a complex manifold M. Let (L,h) be a holomorphic line bundle on M with singular
metric h which is smooth outside the exceptional set ¥ and which has strictly positive cur-
vature current in a neighborhood U of ¥. The conclusions of Theorem 1.1 hold for the
spaces Hyy (X \ 3, LP, hee=A4?,0™) and for w = c1(L, h.e=4¥), where A is sufficiently large.
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REMARK 6.22. — In the same vein, we can obtain a variant of Theorem 6.21 for Nadel
multiplier ideal sheaves. Assume that X € M is a strongly pseudoconvex domain as above.

Let (L,

h) be a holomorphic line bundle on M with singular metric h which is smooth out-

side the exceptional set X.. Assume for simplicity that the curvature current of h is strictly
positive in a whole neighborhood of X. The conclusions of Theorem 1.1 hold for the spaces
HO(X,LP ® .7 (h,)) (defined as in (8)) and for v = c1(L, h).
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