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ABSTRACT. Let X be a compact normal complex space of di-
mension n, and L be a holomorphic line bundle on X. Suppose
Σ = (Σ1, . . . ,Σℓ) is an ℓ-tuple of distinct irreducible proper an-
alytic subsets of X, τ = (τ1, . . . , τℓ) is an ℓ-tuple of positive
real numbers, and consider the space H0

0(X, L
p) of global holo-

morphic sections of Lp := L⊗p that vanish to order at least τjp
along Σj , 1 ≤ j ≤ ℓ. We find necessary and sufficient condi-
tions which ensure that dimH0

0(X, L
p) ∼ pn, analogous to Ji-

Shiffman’s criterion for big line bundles. We give estimates of
the partial Bergman kernel, investigate the convergence of the
Fubini-Study currents and their potentials, and the equilibrium
distribution of normalized currents of integration along zero di-
visors of random holomorphic sections in H0

0(X, L
p) as p → ∞.

Regularity results for the equilibrium envelope are also included.
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1. INTRODUCTION

Let (X, L) be a polarized projective manifold of dimension n, let Σ be a complex
hypersurface of X, and let τ be a positive real number. The study of holomorphic
sections of Lp which vanish to order at least pτ along Σ received much attention
in the past few years. The density function of this space, called partial Bergman
kernel, appears in a natural way in several contexts, and especially in Kähler ge-
ometry and pluripotential theory, linked to the notion of extremal quasiplurisub-
harmonic (qpsh) functions with poles along Σ (see, e.g., [Be1, RoS, PS, RWN1,
RWN2, CM3, ZZ]). One of the motivations is the notion of slope of the hyper-
surface Σ in the sense of Ross-Thomas [RT06] and its relation to the existence of
a constant scalar curvature Kähler metric in c1(L).

In this paper, we consider a compact normal complex space X of dimension
n, a holomorphic line bundle L over X, and the space H0

0(X, L
p) of holomorphic

sections vanishing to order at least pτj along irreducible proper analytic subsets
Σj ⊂ X, j = 1, . . . , ℓ. We study algebraic and analytic objects associated with
H0

0(X, L
p), especially the partial Bergman kernels, the Fubini-Study currents, and

their potentials.
We first give an analytic characterization for H0

0(X, L
p) to be big, which

means by definition that dimH0
0(X, L

p) ∼ pn, p → ∞. This criterion, stated
in terms of singular Hermitian metrics with positive curvature current in the spirit
of the Ji-Shiffman/Bonavero/Takayama criterion for big line bundles, involves a
desingularization of X where the Σj become divisors.

Next, we prove that under natural hypotheses the Fubini-Study currents as-
sociated with H0

0(X, L
p) and their potentials converge as p → ∞. The limit of

the sequence of Fubini-Study potentials is the pushforward ϕeq of a certain equi-
librium envelope with logarithmic poles defined on a desingularization. The se-
quence of the Fubini-Study currents converge to the corresponding equilibrium
current Teq. These are analogues of Tian’s theorem [T], which applies for smooth
Hermitian metrics with positive curvature. In the context of singular Hermitian
metrics, they were introduced in [CM1, CM2]. The convergence of the Fubini-
Study currents/potentials is based on the asymptotics of the logarithm of the par-
tial Bergman kernel (see also [CM1, CM2, CMM, DMM] for results of this type
concerning the full Bergman kernel).

Returning to the case of a polarized projective manifold (X, L), Shiffman-
Zelditch [SZ] showed how Tian’s theorem can be applied to obtain the distribu-
tion of the zeros of random holomorphic sections of H0(X, Lp). Dinh-Sibony
[DS] used meromorphic transforms to obtain an estimate on the speed of con-
vergence of zeros to the equilibrium distribution (see also [DMS] for the non-
compact setting). Random polynomials (or more generally, holomorphic sections
in high tensor powers of a holomorphic line bundle) and the distribution of their
zeros represent a classical subject in analysis (see, e.g., [BP,ET,H,Ka]). The result
of [SZ] was generalized for singular metrics whose curvature is a Kähler current in
[CM1] and for sequences of line bundles over normal complex spaces in [CMM]
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(see also [CM2, DMM]). We show here that the equilibrium distribution of ran-
dom zeros of sections from H0

0(X, L
p) is the equilibrium current Teq, and we give

an estimate on the convergence speed.

1.1. Background and notation. Let X be a compact normal complex space
of dimension n. If L is a holomorphic line bundle on X, we let Lp := L⊗p and
denote by H0(X, Lp) the space of global holomorphic sections of Lp. Since X is
compact, the spaces H0(X, Lp) are finite dimensional. Given S ∈ H0(X, Lp), we
denote by [S = 0] the current of integration (with multiplicities) over the analytic
hypersurface {S = 0} ⊂ X. If h is a singular Hermitian metric on L we denote by
c1(L,h) its curvature current.

Suppose now X is a compact complex manifold. For a closed current T of
bidegree (1,1) on X, let {T} denote its class in the Dolbeault cohomology group
H1,1(X). If L is a holomorphic line bundle over X we denote by c1(L) its first
Chern class in H1,1(X,Z). We have that {c1(L,h)} = c1(L), for any singular
Hermitian metric h on L. The line bundle L is called big if its Kodaira-Iitaka
dimension equals the dimension of X (see [MM, Definition 2.2.5]). One has
that L is big if and only if lim supp→∞ p

−n dimH0(X, Lp) > 0 (see Theorem
2.2.7 in [MM]). By the Ji-Shiffman/Bonavero/Takayama criterion [MM, Theo-
rem 2.3.30], L is big if and only if it admits a strictly positively curved singular
Hermitian metric h (see Section 2.1 for definitions).

Throughout the article, we denote by ⌊r⌋ the greatest integer ≤ r ∈ R, and
we let

dc := (1/(2πi))(∂ − ∂̄),

so ddc = (i/π) ∂ ∂̄.

1.2. Sections vanishing along subvarieties. We consider in this paper the
following general setting:

(A) X is a compact, irreducible, normal (reduced) complex space of dimension
n, Xreg denotes the set of regular points of X, and Xsing denotes the set of
singular points of X.

(B) L is a holomorphic line bundle on X.
(C) Σ = (Σ1, . . . ,Σℓ) is an ℓ-tuple of distinct irreducible proper analytic sub-

sets of X such that Σj 6⊂ Xsing, for every j ∈ {1, . . . , ℓ}.
(D) τ = (τ1, . . . , τℓ) is an ℓ-tuple of positive real numbers such that τj > τk,

for every j, k ∈ {1, . . . , ℓ} with Σj ⊂ Σk.
For p ≥ 1 let H0

0(X, L
p) be the space of sections S ∈ H0(X, Lp) that vanish

to order at least τjp along Σj , for all 1 ≤ j ≤ ℓ. More precisely, let

(1.1) tj,p =

{
τjp if τjp ∈ N,

⌊τjp⌋ + 1 if τjp 6∈ N,
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for 1 ≤ j ≤ ℓ, p ≥ 1. Then,

H0
0(X, L

p) = H0
0(X, L

p,Σ, τ)(1.2)

:= {S ∈ H0(X, Lp) : ord(S,Σj) ≥ tj,p, 1 ≤ j ≤ ℓ},

where ord(S, Z) denotes the vanishing order of S along an irreducible analytic
subset Z of X, Z 6⊂ Xsing.

Definition 1.1. We say that the triplet (L,Σ, τ) is big if

lim sup
p→∞

dimH0
0(X, L

p)

pn
> 0.

The first problem we address in this article is the following.

Problem 1.2. Characterize the big triplets (L,Σ, τ).
We first give an answer to Problem 1.2 in the case when X is a complex

manifold and Σj are irreducible hypersurfaces in X. In particular, we have the
following analog of Ji-Shiffman’s criterion for big line bundles [JS, Theorem 4.6]
(see also [Bon], [MM, Theorem 2.3.30]).

Theorem 1.3. Let X,L,Σ, τ verify assumptions (A)–(D), and suppose that X is
smooth and dimΣj = n− 1 for all j = 1, . . . , ℓ. The following are equivalent:

(i) (L,Σ, τ) is big.

(ii) There is a singular Hermitian metric h on L such that c1(L,h)−
∑ℓ
j=1 τj[Σj]

is a Kähler current on X.
(iii) There exist p0 ∈ N and c > 0 such that dimH0

0(X, L
p) ≥ cpn for all

p ≥ p0.
Here, [Σj] denotes the current of integration along Σj. Recall that a Kähler

current is a positive closed current T of bidegree (1,1) such that T ≥ εω for
some number ε > 0 and some Hermitian form ω on X. To find a solution to
Problem 1.2 in the general case, we first use Hironaka’s theorem on resolution of
singularities to prove the following result.

Proposition 1.4. Let X and Σ verify assumptions (A) and (C). Then, there exist
a compact complex manifold X̃ of dimension n and a surjective holomorphic map
π : X̃ → X, given as the composition of finitely many blowups with smooth center,
with the following properties:

(i) There is an analytic subset Y ofX so that dimY ≤n−2, Y ⊂Xsing ∪
⋃ℓ
j=1 Σj ,

Xsing ⊂ Y , Σj ⊂ Y if dimΣj ≤ n − 2, E = π−1(Y) is a divisor in X̃ that
has only normal crossings, and π : X̃ \ E → X \ Y is a biholomorphism.

(ii) There exist (connected ) smooth complex hypersurfaces Σ̃1, . . . , Σ̃ℓ in X̃, which
have only normal crossings, such that π(Σ̃j) = Σj . Moreover, if dimΣj =
n− 1 then Σ̃j is the final strict transform of Σj , and if dimΣj ≤ n− 2 then
Σ̃j is an irreducible component of E.
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(iii) If F → X is a holomorphic line bundle and S ∈ H0(X, F), then

ord(S,Σj) = ord(π⋆S, Σ̃j), for all j = 1, . . . , ℓ.

Definition 1.5. If X̃, π , Σ̃ := (Σ̃1, . . . , Σ̃ℓ) verify the conclusions of Proposi-
tion 1.4, we say that (X̃,π, Σ̃) is a divisorization of (X,Σ).

Divisorizations are not unique. Note that if X is a manifold and Σ1, . . . ,Σℓ
are smooth hypersurfaces with normal crossings, then (X, Id,Σ) is a divisorization
of (X,Σ), where Id is the identity map. We now give an answer to Problem 1.2 in
the general case.

Theorem 1.6. Let X,L,Σ, τ verify assumptions (A)–(D). The following are
equivalent:

(i) (L,Σ, τ) is big.
(ii) For every divisorization (X̃,π, Σ̃) of (X,Σ), there exists a singular Hermitian

metric h⋆ on π⋆L such that c1(π⋆L,h⋆)−
∑ℓ
j=1 τj[Σ̃j] is a Kähler current

on X̃.
(iii) There exist a divisorization (X̃,π, Σ̃) of (X,Σ) and a singular Hermitian

metric h⋆ on π⋆L such that c1(π⋆L,h⋆)−
∑ℓ
j=1 τj[Σ̃j] is a Kähler current

on X̃.
(iv) There exist p0 ∈ N and c > 0 such that dimH0

0(X, L
p) ≥ cpn for all

p ≥ p0.
An interesting consequence of Theorem 1.6 is the following. Assume that

(L,Σ, τ) is big and all Σj have dimension n−1. If one fixes proper analytic subsets
Σ′j ⊂ Σj and considers the subspace Vp ⊂ H

0
0(X, L

p) of sections that vanish to the
higher order (τj + δ)p along Σ′j , then it holds as well that dimVp ≳ pn for all p
large enough, provided that δ > 0 is sufficiently small (see Corollary 3.8 for the
precise statement).

Proposition 1.4, Theorem 1.3, and Theorem 1.6 are proved in Section 3.

1.3. Equidistribution of zeros. Let X,L,Σ, τ verify assumptions (A)–(D),
and assume in addition there exists a Kähler formω on X and that h is a singular
Hermitian metric on L. We fix a smooth Hermitian metric h0 on L and write

(1.3) α := c1(L,h0), h = h0e
−2ϕ,

whereϕ ∈ L1(X,ωn) is called the (global) weight of h relative to h0. The metric h
is called bounded, continuous, respectively Hölder continuous, ifϕ is a bounded,
continuous, respectively Hölder continuous, function on X.

LetH0
(2)(X, L

p) = H0
(2)(X, L

p, hp,ωn) be the Bergman space of L2-holomor-
phic sections in Lp relative to the metric hp := h⊗p and the volume form ωn on
X, endowed with the inner product

(S, S′)p :=
∫

X
〈S, S′〉hp

ωn

n!
,
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and set ‖S‖2
p := (S, S)p. Let

H0
0,(2)(X, L

p) = H0
0,(2)(X, L

p,Σ, τ, hp,ωn) := H0
(2)(X, L

p)∩H0
0(X, L

p)

be the Bergman subspace of L2-holomorphic sections in H0
0(X, L

p), where the
space H0

0(X, L
p) was defined in (1.2). We assume in the sequel that the metric h

is bounded, so

H0
(2)(X, L

p) = H0(X, Lp),

H0
0,(2)(X, L

p) = H0
0(X, L

p).

For every p ≥ 1 we consider the projective space

Xp := PH0
0,(2)(X, L

p), dp := dimXp = dimH0
0,(2)(X, L

p)− 1,

equipped with the Fubini-Study volume σp = ω
dp
FS , where by ωFS we denote

the Fubini-Study Kähler form on a projective space PN . We also consider the
probability space

(X∞, σ∞) :=
∞∏

p=1

(Xp , σp).

The second problem we address in this article is the following.

Problem 1.7. Assume that (L,Σ, τ) is big and the metric h is bounded. Do
zeros of sequences from (X∞, σ∞) equidistribute towards a positive closed current T of
bidegree (1,1)? That is, for σ∞-almost every {sp}p≥1 ∈ X∞, do we have

1
p
[sp = 0]→ T as p →∞,

in the weak sense of currents on X? If yes, express T in terms of h and estimate the
speed of convergence.

The bigness of (L,Σ, τ) is a reasonable assumption, in order to ensure that
the spaces H0

0(X, L
p) have sufficiently many sections. Let Pp, γp be the Bergman

kernel function and Fubini-Study current of H0
0,(2)(X, L

p), defined in (2.1) and
(2.3). Then,

1
p
γp = c1(L,h)+

1
2p
ddc logPp = α+ ddcϕp,(1.4)

where ϕp =ϕ +
1

2p
logPp .

We call the function ϕp the global Fubini-Study potential of γp. To answer Prob-
lem 1.7, we first study the convergence of the Fubini-Study currents. We have the
following result.
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Theorem 1.8. Let X,L,Σ, τ verify assumptions (A)–(D), and assume (L,Σ, τ)
is big and there exists a Kähler formω on X. Let h be a continuous Hermitian metric
on L and α,ϕp be defined in (1.3), respectively (1.4). Then, there exists an α-psh
function ϕeq on X such that, as p →∞,

ϕp →ϕeq in L1(X,ωn),

1
p
γp = α+ dd

cϕp → Teq := α+ ddcϕeq weakly on X.

Moreover, if h is Hölder continuous then there exist a constant C > 0 and p0 ∈ N

such that ∫

X
|ϕp −ϕeq|ω

n ≤ C
logp

p
, for all p ≥ p0.

Definition 1.9. The current Teq from Theorem 1.8 is called the equilibrium
current associated with (L,h,Σ, τ).

Theorem 1.8 is proved in Section 5. The function ϕeq is constructed as fol-

lows. Let (X̃,π, Σ̃) be a divisorization of (X,Σ) as in Definition 1.5, and let
α̃ = π⋆α, ϕ̃ = ϕ ◦ π . We introduce in Section 4 the equilibrium envelope ϕ̃eq

of (α̃, Σ̃, τ, ϕ̃), as the largest α̃-psh function dominated by ϕ̃ on X̃, and with
logarithmic poles of order τj along Σ̃j , 1 ≤ j ≤ ℓ (see (4.5), (5.5)). In Theorem
4.3 we study the regularity of ϕ̃eq when ϕ̃ is continuous, respectively Hölder con-

tinuous, and show that ϕ̃eq is continuous outside a certain analytic subset of X̃,
respectively Hölder continuous, with singularities along that analytic subset (see
Definition 4.2). The function ϕeq is then constructed by pushing down ϕ̃eq to
X.

Theorem 1.8 is a generalization of the following foundational result of Tian
[T] (with improvements by [Ca, R, Z1]; see also [MM, Theorem 5.1.4]): if X is a
compact Kähler manifold and (L,h) → X is a positive line bundle (with smooth
metric h), then ϕp → ϕ and (1/p)γp → c1(L,h) as p →∞ in the C∞-topology.
If h is a singular metric whose curvature is a Kähler current, it was shown in
[CM1, Theorem 5.1] that ϕp → ϕ in L1(X,ωn) and (1/p)γp → c1(L,h)
weakly as p →∞. On the other hand, Bloom [B1, B2] (cf. also Bloom-Levenberg
[BL]) pointed out the role of the extremal plurisubharmonic (psh) functions in
equidistribution theory for polynomials and Berman [Be1, Be2] extended this
point of view to the context of Kähler manifolds. In [DMM, Theorem 1.3] it is
shown that in the case of a polarized projective manifold (X, L) and for a Hölder
continuous weight ϕ, we have ‖ϕp −ϕeq‖∞ = O(p−1 logp) as p → ∞. We also
note that the statement of Theorem 1.8 is new even in the case when X is smooth
and Σ = ∅ (see Corollary 5.7).

Using Theorem 1.8, we obtain a positive answer to the above equidistribution
problem in the case when the metric h is continuous. In this formulation it can
be seen as a large deviation principle in this context.
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Theorem 1.10. Let X,L,Σ, τ verify assumptions (A)–(D), let h be a singular
Hermitian metric on L, and assume that (L,Σ, τ) is big and there exists a Kähler form
ω on X. We have the following:

(i) If h is continuous then (1/p)[sp = 0] → Teq as p → ∞, in the weak sense
of currents on X, for σ∞-almost every {sp}p≥1 ∈ X∞.

(ii) If h is Hölder continuous then there exists a constant c > 0 with the following
property: for any sequence of positive numbers {λp}p≥1 such that

lim inf
p→∞

λp
logp

> (1+n)c,

there exist subsets Ep ⊂ Xp such that, for all p sufficiently large, the following
hold:
(a) σp(Ep) ≤ cpn exp(−λp/c).
(b) If sp ∈ Xp \ Ep we have

∣∣∣∣∣

〈
1
p
[sp = 0]− Teq,φ

〉∣∣∣∣∣ ≤
cλp
p
‖φ‖C2 ,

for any (n− 1, n− 1)-form φ of class C2 on X.
In particular, the last estimate holds for σ∞-almost every {sp}p≥1 ∈ X∞ provided that
p is large enough.

The proof of Theorem 1.10 is given in Section 6. We refer to [BCM, B1,
B2, BL, CM1, CM2, CM3, CMM, CMN2, DMM, DMS, DS, SZ] and to the sur-
veys [BCHM,Z2] for equidistribution results for holomorphic sections in various
contexts.

We close the introduction with the following remark concerning the spaces
and approach used in this paper. If g is a singular Hermitian metric on L with
c1(L, g) ≥ 0, it is well known that for p sufficiently large, sections in the Bergman
space H0

(2)(X, L
p, gp ,ωn) must vanish to high order at the points where the psh

weights of g have positive Lelong number. In particular, if the Lelong number
equals ν along an analytic hypersurfaceA, then any section inH0

(2)(X, L
p, gp ,ωn)

vanishes to order at least ⌊νp⌋ along A. Note that

H0
(2)(X, L

p, gp,ωn) = H0(X, Lp ⊗ I(gp)),

where I(gp) is the multiplier ideal sheaf associated with gp. One can try to study
the dimension growth of our spaces H0

0(X, L
p) by constructing special metrics g

with singularities in Σ such that H0
(2)(X, L

p, gp ,ωn) ⊂ H0
0(X, L

p). The existence
of such metrics is in general unclear, and as seen in Section 4, it requires additional
hypotheses even in the simplest case of hypersurfaces. The result of Theorem 1.6
is very general, as it holds for a singular space X which is not assumed to be Kähler.
The study of Bergman spaces and their Bergman kernels does require that X be
assumed to be Kähler.
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2. PRELIMINARIES

We start by recalling a few notions of pluripotential theory on analytic spaces
that will be needed throughout the paper. We then recall some basic facts about
Bergman kernels and Fubini-Study currents.

2.1. Compact complex manifolds and analytic spaces. Let X be a compact
complex manifold, and let ω be a Hermitian form on X. If T is a positive closed
current on X we denote by ν(T ,x) the Lelong number of T at x ∈ X (see, e.g.,
[D5]). A function ϕ : X → R ∪ {−∞} is called quasiplurisubharmonic (qpsh) if
it is locally the sum of a psh function and a smooth one. Let α be a smooth real
closed (1,1)-form on X. A qpsh function ϕ is called α-plurisubharmonic (α-psh)
if α + ddcϕ ≥ 0 in the sense of currents. We denote by PSH(X,α) the set of
all α-psh functions on X. The Lelong number of an α-psh function ϕ at a point
x ∈ X is defined by ν(ϕ,x) := ν(α + ddcϕ,x). Note that if ϕ = u + χ near
x, where u is psh and χ is smooth, then ν(ϕ,x) = ν(u,x).

Since in general the ∂ ∂̄-lemma does not hold on X, we will consider the ∂ ∂̄-

cohomology and particularly the space H1,1
∂ ∂̄
(X,R) (see, e.g., [Bou]). This space is

finite dimensional, and if α is a smooth real closed (1,1)-form on X we denote
its ∂ ∂̄-cohomology class by {α}∂ ∂̄ . Note that if X is a compact Kähler manifold,

then by the ∂ ∂̄-lemma H1,1
∂ ∂̄
(X,R) = H1,1(X,R), and we write {α}∂ ∂̄ = {α}.

Definition 2.1. A positive closed current T of bidegree (1,1) on X is called
a Kähler current if T ≥ εω for some number ε > 0. A class {α}∂ ∂̄ is called big if
it contains a Kähler current.

Suppose that {α}∂ ∂̄ is big. By Demailly’s regularization theorem [D4], one
can find a Kähler current T ∈ {α}∂ ∂̄ with analytic singularities, that is, of the form
T = α+ ddcϕ ≥ εω, where ε > 0 and ϕ is a qpsh function such that

ϕ = c log
( N∑

j=1

|gj|
2
)
+ χ,

locally on X, where c > 0, χ is a bounded function, and gj are holomorphic
functions, 1 ≤ j ≤ N. Moreover, there is a (global) proper modification σ : X̃ →
X, obtained as a sequence of blowups with smooth centers and with blowup locus
contained in the analytic subset {ϕ = −∞}, such that the functions χ ◦ σ are
smooth (see, e.g., [DP, Theorem 3.2]).

The non-ample locus of {α}∂ ∂̄ is defined in [Bou, Definition 3.16] as the set

NAmp({α}∂ ∂̄) =
⋂
{E+(T) : T ∈ {α}∂ ∂̄ Kähler current}

=
⋂{

E+(T) : T ∈ {α}∂ ∂̄ Kähler current

with analytic singularities
}
,
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where E+(T) = {x ∈ X : ν(T ,x) > 0}, and the second equality follows by
Demailly’s regularization theorem [D4]. Hence, NAmp({α}∂ ∂̄) is an analytic
subset of X. The ample locus of α is Amp({α}∂ ∂̄) := X \ NAmp({α}∂ ∂̄). It
is shown in [Bou, Theorem 3.17] there exists a Kähler current T ∈ {α}∂ ∂̄ with
analytic singularities such that E+(T) = NAmp({α}∂ ∂̄).

Let now X be a complex space. A chart (U, ι, V) on X is a triple consisting of
an open set U ⊂ X, a closed complex space V ⊂ G ⊂ CN in an open set G of CN

and a biholomorphic map ι : U → V (in the category of complex spaces). The map
ι : U → G ⊂ CN is called a local embedding of X. We write X = Xreg∪Xsing, where
Xreg and Xsing are the sets of regular and singular points of X. Recall that a reduced
complex space (X,O) is called normal if for every x ∈ X the local ring Ox is inte-
grally closed in its quotient field Mx (cf. [GR2, p. 124]). Every normal complex
space is locally irreducible and locally pure-dimensional (see [GR2, p. 125]), and
Xsing is a closed complex subspace of X with codimXsing ≥ 2.

A continuous (respectively, smooth) function on X is a function ϕ : X → C

such that for every x ∈ X there exists a local embedding ι : U → G ⊂ CN with
x ∈ U and a continuous (respectively, smooth) function ϕ̃ : G → C such that
ϕ|U = ϕ̃ ◦ ι. A (strictly) plurisubharmonic (psh) function on X is a function
ϕ : X → [−∞,∞) such that for every x ∈ X there exists a local embedding
ι : U → G ⊂ CN with x ∈ U and a (strictly) psh function ϕ̃ : G → [−∞,∞) such
that ϕ|U = ϕ̃ ◦ ι. If ϕ̃ can be chosen continuous (respectively, smooth), then ϕ
is called a continuous (respectively, smooth) psh function. We let PSH(X) denote
the set of all psh functions on X.

Assume now that X has pure dimension n. We consider currents on X as
defined in [D2]. If Dp,q(X) is the space of forms with compact support, en-
dowed with the inductive limit topology, then the dual Dp,q(X) of Dp,q(X) is
the space of currents of bidimension (p, q), or bidegree (n− p,n− q), on X. If
T ∈ Dn−1,n−1(X) is so that, for every x ∈ X, there is a domain U containing x
and v ∈ PSH(U) with T = ddcv on U , then T is positive and closed, and we say
that v is a local potential of T . A Hermitian form on X is a smooth (1,1)-formω
such that for every point x ∈ X there exist a local embedding ι : U ∋ x → G ⊂ CN

and a Hermitian form ω̃ on G withω = ι⋆ω̃ on U∩Xreg. Note thatωn/n! gives
locally an area measure on X. A Kähler form on X is a current T ∈ Dn−1,n−1(X)
whose local potentials extend to smooth strictly psh functions in local embeddings
of X to Euclidean spaces. We call X a Kähler space if X admits a Kähler form (see
also [G, p. 346], [O, Section 5]).

The notions of qpsh and α-psh function on X, where α is a smooth real closed
(1,1)-form on X, are defined exactly as in the case when X is smooth. We denote
by PSH(X,α) the set of all α-psh functions on X. If X is compact, a function
ρ : X → R is called Hölder continuous if there exists a finite open cover of X by
charts (U, ι, V), V ⊂ G ⊂ CN , such that ρ|U is Hölder continuous with respect to
the metric on U induced by the Euclidean distance on CN .
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If (L,h) is a singular Hermitian holomorphic line bundle over X, the curva-
ture current c1(L,h) of h is defined as in the case when X is smooth [D3]. If eU
is a local holomorphic frame of L on some open set U ⊂ X then |eU |h = e−ϕU ,
where ϕU ∈ L

1
loc(U) is called the local weight of the metric h with respect to eU ,

and c1(L,h)|U = ddcϕU . We say that h is positively curved, respectively strictly
positively curved, if c1(L,h) ≥ 0, respectively c1(L,h) ≥ εω for some ε > 0 and
some Hermitian formω on X.

2.2. Bergman kernel functions and Fubini-Study currents. Let X be as in
(A), ω be a Hermitian form on X, and (L,h) be a singular Hermitian holo-
morphic line bundle on X. Since X is compact, the space H0(X, L) is finite
dimensional. Let H0

(2)(X, L) = H
0
(2)(X, L,h,ω

n) be the Bergman space of L2-
holomorphic sections of L relative to the metric h and the volume form ωn/n!
on X, endowed with the inner product

(S, S′) :=
∫

X
〈S, S′〉h

ωn

n!
.

Set ‖S‖2 = ‖S‖2
h,ωn := (S, S).

Let V be a subspace of H0
(2)(X, L), r = dimV , and S1, . . . , Sr be an orthonor-

mal basis of V . The Bergman kernel function P = PV of V is defined by

(2.1) P(x) =
r∑

j=1

∣∣Sj(x)
∣∣2
h,

∣∣Sj(x)
∣∣2
h := 〈Sj(x), S(x)〉h, x ∈ X.

Note that this definition is independent of the choice of basis. Let U be an open
set in X such that L has a local holomorphic frame eU on U . Then, |eU |h = e−ϕU ,
where ϕU ∈ L1

loc(U,ω
n), and Sj = sjeU , where sj ∈ OX(U). It follows that

(2.2) logP
∣∣
U = log

( r∑

j=1

|sj|
2
)
− 2ϕU ,

which shows that logP ∈ L1(X,ωn).
The Kodaira map determined by V is the meromorphic map given by

Φ = ΦV : X⇢P(V⋆), Φ(x) = {S ∈ V : S(x) = 0}, x ∈ X \Bs(V),

where a point in P(V⋆) is identified with a hyperplane through the origin in V
and Bs(V) = {x ∈ X : S(x) = 0, ∀S ∈ V} is the base locus of V . We define the
Fubini-Study current γ = γV of V by

(2.3) γ := Φ⋆(ωFS),
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whereωFS denotes the Fubini-Study form on P(V⋆). Then, γ is a positive closed
current of bidegree (1,1) on X, and if U is as above we have

γ
∣∣
U =

1
2
ddc log

( r∑

j=1

|sj|
2
)
.

Hence, by (2.2),

γ = c1(L,h)+
1
2
ddc logP.

Let now X,L,Σ, τ verify assumptions (A)–(D) and H0
0(X, L

p) be the space
defined in (1.2). If h is a bounded metric on L, then

H0
0(X, L

p) ⊂ H0
(2)(X, L

p, hp,ωn).

The Bergman kernel function Pp ofH0
0(X, L

p) is called the partial Bergman kernel
function of the space of sections that vanish to order τp along Σ. It satisfies the
following variational principle:

Pp(x) =max
{∣∣S(x)

∣∣2
hp : S ∈ H0

0(X, L
p), ‖S‖p = 1

}
,

where ‖·‖p denotes the norm given by the inner product in H0
(2)(X, L

p, hp,ωn).

3. DIMENSION GROWTH OF THE SPACES H0
0(X, L

p)

In this section, we give the proofs of Theorem 1.3, Proposition 1.4, and Theo-
rem 1.6.

3.1. Divisorization. We start by proving the existence of the divisoriza-
tion of (X,Σ) claimed in Proposition 1.4. We will use the following theorems of
Hironaka on resolution of singularities. For the first one we refer the reader to
[BM, Theorem 13.2].

Theorem 3.1 (Hironaka). If X is a compact, reduced complex space then there
exists a compact complex manifold X̂ and a surjective holomorphic map σ : X̂ → X

such that σ : X̂ \ E → Xreg is a biholomorphism, where E = σ−1(Xsing) is a divisor
with only normal crossings. Moreover, if X is irreducible then X̂ is connected and
dim X̂ = dimX.

The second one is Hironaka’s embedded resolution of singularities theorem
(see, e.g., [BM, Theorems 10.7 and 1.6], [MM, Theorem 2.1.13]).

Theorem 3.2 (Hironaka). Let X be a complex manifold of dimension n, and
A ⊂ X be a compact analytic subset of X. Then, there exist a complex manifold X̃ and
a surjective holomorphic map σ : X̃ → X, given as the composition of finitely many
blowups with smooth center, with the following properties:
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(i) E = σ−1(Asing) is a divisor in X̃, and σ : X̃ \ E → X \Asing is a biholomor-
phism.

(ii) The strict transform A′ = σ−1(Areg) is smooth, and A′, E simultaneously
have only normal crossings.

If A = A1 ∪ · · · ∪ Am has irreducible components Aj , and A′j is the strict
transform of Aj , it follows from Theorem 3.2 that A′j are pairwise disjoint con-

nected submanifolds of X̃. Performing blowups of X̃ with centers A′j , for all j
with dimAj ≤ n− 2, one obtains the following version of Theorem 3.2 (see also
[CM1, Theorem 2.1]).

Theorem 3.3. Let X be a complex manifold of dimension n, and A ⊂ X be a
compact analytic subset of X with irreducible components A1, . . . , Am. Then, there
exist a complex manifold X̃ and a surjective holomorphic map σ : X̃ → X, given as the
composition of finitely many blowups with smooth center, with the following properties:

(i) If Y = Asing ∪
⋃
{Aj : dimAj ≤ n − 2} then E = σ−1(Y) is the final

exceptional divisor, σ : X̃ \ E → X \ Y is a biholomorphism, and E has only
normal crossings.

(ii) There are (connected ) smooth complex hypersurfaces Ã1, . . . , Ãm in X̃, which
have only normal crossings, such that σ(Ãj) = Aj . Moreover, if dimAj =
n−1 then Ãj is the final strict transform of Aj , and if dimAj ≤ n−2, then
Ãj is an irreducible component of E.

(iii) If F → X is a holomorphic line bundle and S ∈ H0(X, F), then

ord(S,Aj) = ord(σ⋆S, Ãj), for all j = 1, . . . ,m.

Proof. The existence of X̃ and σ with properties (i)–(ii) follows directly from
Theorem 3.2, as previously described. Property (iii) clearly holds for j with
dimAj = n − 1, since Ãj = σ−1(Aj \ Y) is the final strict transform of Aj and
σ : X̃ \ E → X \ Y is a biholomorphism. If j is such that dimAj ≤ n − 2
and A′′j ⊂ X̃1 is the strict transform of Aj produced in Theorem 3.2, then

Ãj = π−1(A′′j ), where π : X̃ → X̃1 is the blowup of X̃1 with center A′′j . Thus,
property (iii) follows easily from the local description of the blowup map π . ❐

Proof of Proposition 1.4. Let σ̂ : X̂ → X be a desingularization of X as in

Theorem 3.1, let Ê = σ̂−1(Xsing) be the exceptional divisor, and let Σ̂j be the

strict transform of Σj . Hence, σ̂ : X̂ \ Ê → Xreg is a biholomorphism. Since

Σj 6⊂ Xsing we have that Σ̂j ≠∅ and dim Σ̂j = dimΣj . Moreover, Σ̂j is irreducible

since Σj is. Note that Σ̂j ⊂ Σ̂k if and only if Σj ⊂ Σk.
We next apply Theorem 3.3 repeatedly, starting with X̂, Σ̂1, . . . , Σ̂ℓ, as fol-

lows. Let Σ̂j1 , . . . , Σ̂jk be the minimal elements of {Σ̂1, . . . , Σ̂ℓ} with respect to
inclusion. We apply Theorem 3.3 to X̂ and A = Σ̂j1 ∪ · · · ∪ Σ̂jk , to obtain a map
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σ1 : X̂1 → X̂ verifying properties (i)–(iii). Let Σ̂′j be the strict transform of Σ̂j by

σ1, for j ∈ {1, . . . , ℓ} \ {j1, . . . , jk}, and note that Σ̂′j ⊂ Σ̂′k if and only if Σ̂j ⊂ Σ̂k.
We now apply Theorem 3.3 to X̂1 and the analytic subset given by the union of
the minimal elements of

{
Σ̂′j : j ∈ {1, . . . , ℓ} \ {j1, . . . , jk}

}

with respect to inclusion, to obtain a map σ2 : X̂2 → X̂1 verifying properties
(i)–(iii). Repeating this procedure finitely many times, we resolve all of the sets
Σj . Finally, we apply Theorem 3.3 one more time in order to make the resulting
smooth hypersurfaces Σ̃1, . . . , Σ̃ℓ and the final exceptional divisor (including the

preimage of Ê) simultaneously have only normal crossings. Taking the composi-
tion of the maps σj , we obtain a compact complex manifold X̃ and a surjective

holomorphic map σ : X̃ → X̂, given as the composition of finitely many blowups
with smooth center, with the following properties:

(a) There exists an analytic set Ŷ ⊂ Ê ∪
⋃ℓ
j=1 Σ̂j such that dim Ŷ ≤

n − 2, E0 := σ−1(Ŷ ) is a divisor in X̃ with only normal crossings, and

σ : X̃ \ E0 → X̂ \ Ŷ is a biholomorphism.
(b) There exist smooth complex hypersurfaces Σ̃j ⊂ X̃, 1 ≤ j ≤ ℓ, which

have only normal crossings, such that σ(Σ̃j) = Σ̂j. Moreover, if dim Σ̂j =
n−1 then Σ̃j is the final strict transform of Σ̂j by σ , and if dim Σ̂j ≤ n−2,
then Σ̃j is an irreducible component of E0.

(c) If F̂ → X̂ is a holomorphic line bundle and S ∈ H0(X̂, F̂), then

ord(S, Σ̂j) = ord(σ⋆S, Σ̃j), for all j = 1, . . . , ℓ.

We define π := σ̂ ◦ σ : X̃ → X, and set Y := Xsing ∪ σ̂ (Ŷ ). Since σ̂ (Ŷ ) is an
analytic subset of X of dimension ≤ n− 2, we have dimY ≤ n− 2.

By (b), if dim Σ̂j ≤ n − 2 then Σ̃j ⊂ E0, so Σ̂j = σ(Σ̃j) ⊂ Ŷ and Σj =
σ̂ (Σ̂j) ⊂ σ̂ (Ŷ ) ⊂ Y . Since Ŷ ⊂ Ê ∪

⋃ℓ
j=1 Σ̂j , we have σ̂ (Ŷ ) ⊂ Xsing∪

⋃ℓ
j=1 Σj , so

Y ⊂ Xsing ∪
⋃ℓ
j=1 Σj . Moreover,

Ê ∪ Ŷ ⊂ σ̂−1(Xsing)∪ σ̂
−1(σ̂ (Ŷ )) = σ̂−1(Y),

σ̂−1(σ̂ (Ŷ )) ⊂ Ê ∪ σ̂−1(σ̂ (Ŷ ) \Xsing) = Ê ∪ (Ŷ \ Ê) = Ê ∪ Ŷ .

Thus, σ̂−1(Y) = Ê ∪ Ŷ . Let Ê′ be the strict transform of Ê by σ . It is easy to see
that σ−1

(
σ̂−1(Y)

)
= Ê′ ∪ E0. Thus, E := Ê′ ∪ E0 is a divisor in X̃ that has only

normal crossings and E = π−1(Y). Since σ : X̃ \E0 → X̂ \ Ŷ , σ̂ : X̂ \ Ê → Xreg are

biholomorphisms and Xsing ⊂ Y , Ŷ ⊂ σ̂−1(Y), we conclude that π : X̃\E → X\Y
is a biholomorphism, so property (i) of Proposition 1.4 is satisfied.
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Properties (ii)–(iii) of Proposition 1.4 follow easily from (b) and (c), since
π(Σ̃j) = σ̂ (Σ̂j) = Σj . Further, since Σ̂j is the strict transform of Σj 6⊂ Xsing by σ̂ ,

we have ord(S,Σj) = ord(σ̂⋆S, Σ̂j), for any S ∈ H0(X, F) and j = 1, . . . , ℓ. ❐

Proposition 1.4 has the following corollary which will be needed later, for the
proof of Theorem 1.6.

Corollary 3.4. Let X,L,Σ, τ verify assumptions (A)–(D), and let (X̃,π, Σ̃) be a
divisorization of (X,Σ). Then, H0

0(X, L
p,Σ, τ) ≅ H0

0(X̃,π
⋆Lp, Σ̃, τ) for all p ≥ 1.

Proof. Fix p ≥ 1. The map π induces a linear map

π⋆ : H0(X, Lp)→ H0(X̃,π⋆Lp), S → π⋆S.

We can define a linear map π⋆ : H0(X̃,π⋆Lp) → H0(X, Lp) as follows: if S̃ ∈
H0(X̃,π⋆Lp), set π⋆S̃ = S, where S := (π−1)⋆(S̃|X̃\E) ∈ H

0(X \ Y, Lp|X\Y )

extends to a section in H0(X, Lp) since X is normal and dimY ≤ n − 2, [GR2,
p. 143]. Since π : X̃ \ E → X \ Y is a biholomorphism, it follows that π⋆ =
(π⋆)−1. Proposition 1.4 (iii) implies π⋆(H0

0(X, L
p,Σ, τ)) ⊂ H0

0(X̃,π
⋆Lp, Σ̃, τ).

Moreover, if S̃ ∈ H0
0(X̃,π

⋆Lp, Σ̃, τ) then S̃ = π⋆π⋆S̃, and so ord(S̃, Σ̃j) =
ord(π⋆S̃,Σj), so π⋆S̃ ∈ H

0
0(X, L

p,Σ, τ). Thus,

π⋆(H0
0(X, L

p,Σ, τ)) = H0
0(X̃,π

⋆Lp, Σ̃, τ). ❐

Remark 3.5. In hypothesis (D), we make the natural assumption that τj >
τk, for every j, k ∈ {1, . . . , ℓ} with Σj ⊂ Σk. We note that Corollary 3.4 is in
fact valid for every ℓ-tuple τ of positive real numbers. Suppose that Σℓ ⊂ Σk and
τ is such that τℓ ≤ τk. Set Σ′ = (Σ1, . . . ,Σℓ−1), τ′ = (τ1, . . . , τℓ−1), and note
that if (X̃,π, Σ̃) is a divisorization of (X,Σ) then (X̃,π, Σ̃′) is a divisorization of
(X,Σ′), where Σ̃′ = (Σ̃1, . . . , Σ̃ℓ−1). Clearly, H0

0(X, L
p,Σ, τ) = H0

0(X, L
p,Σ′, τ′).

By Corollary 3.4, we have that H0
0(X̃,π

⋆Lp, Σ̃, τ) = H0
0(X̃,π

⋆Lp, Σ̃′, τ′).

3.2. Proofs of Theorems 1.3 and 1.6. Theorem 1.3 will follow from The-
orem 3.6 below. Let X be a compact complex manifold of dimension n, Σj ⊂ X
be irreducible complex hypersurfaces, and let τj > 0, where 1 ≤ j ≤ ℓ. Let L be a
holomorphic line bundle over X and consider the following:

Ep := Lp ⊗
ℓO

j=1

OX(−⌊τjp⌋Σj), Vp := H0(X, Ep),

Fp := Lp ⊗
ℓO

j=1

OX(−tj,pΣj), Wp := H0(X, Fp),

where tj,p are defined in (1.1). Note that Vp is isomorphic to the space of sec-
tions in H0(X, Lp) that vanish to order ⌊τjp⌋ along Σj, 1 ≤ j ≤ ℓ, while Wp is
isomorphic to the space H0

0(X, L
p) defined in (1.2). Clearly, dimWp ≤ dimVp.
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Theorem 3.6. In the above setting, the following are equivalent:
(i) lim supp→∞p

−n dimVp > 0.
(ii) lim supp→∞p

−n dimWp > 0.

(iii) There is a singular Hermitian metric h on L such that c1(L,h)−
∑ℓ
j=1 τj[Σj]

is a Kähler current on X.
(iv) There exist p0 ∈ N and c > 0 such that dimVp ≥ cpn for all p ≥ p0.
(v) There exist p0 ∈ N and c > 0 such that dimWp ≥ cpn for all p ≥ p0.

Proof. Let ω be a Hermitian form on X.

(i) =⇒ (ii) There exist a constant c > 0 and a sequence of natural numbers pk ր ∞
such that dimVpk ≥ cp

n
k for all k ≥ 1. Let us fix k and assume that τ1pk 6∈ N.

Consider the short exact sequence

0 -→ Epk ⊗OX(−Σ1) -→ Epk -→ Epk
∣∣
Σ1
-→ 0,

which gives the exact sequence

0 -→ H0(X, Epk ⊗OX(−Σ1)) -→ H
0(X, Epk)

-→ H0
(
Σ1, Epk

∣∣
Σ1

)
-→ ·· · .

It follows that

dimH0(X, Epk) ≤ dimH0(X, Epk ⊗OX(−Σ1))+ dimH0(Σ1, Epk
∣∣
Σ1

)
.

By Siegel’s lemma applied to the analytic subset Σ1 (see Lemma 3.7 following this
proof ), there exists a constant c′ > 0 such that

dimH0
(
Σ1, Ep

∣∣
Σ1

)
≤ dimH0

(
Σ1, L

p
∣∣
Σ1

)
≤ c′pn−1, ∀p ≥ 1.

Hence, dimH0(X, Epk ⊗OX(−Σ1)) ≥ cp
n
k − c

′pn−1
k . If τ2pk 6∈ N we repeat the

above argument working with the short exact sequence

0 -→ Epk ⊗OX(−Σ1)⊗OX(−Σ2) -→ Epk ⊗OX(−Σ1)

-→ Epk ⊗OX(−Σ1)
∣∣
Σ2
-→ 0,

and so on. This yields (ii).

(ii) =⇒ (iii) We proceed in two steps.
Step 1. Assume that X is projective. We fix a smooth ample divisor A ⊂ X and
consider, as above, the exact sequence

0 -→ H0(X, Fp ⊗OX(−A)) -→ Wp = H
0(X, Fp)

-→ H0(A,Fp
∣∣
A

)
-→ ·· · .
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Since, by Siegel’s lemma [MM, Lemma 2.2.6],

dimH0(A,Fp
∣∣
A

)
≤ dimH0(A,Lp

∣∣
A

)
= O(pn−1),

by (ii) there are c > 0 and pk ր ∞ such that dimH0(X, Fpk ⊗ OX(−A)) ≥ cp
n
k .

We fix such a p = pk. Since H0(X, Fp ⊗ OX(−A)) is nontrivial, there exists an
effective divisor Dp ⊂ X such that Fp ⊗OX(−A) = OX(Dp). Hence,

Lp = OX(A)⊗OX(Dp)⊗
ℓO

j=1

OX(tj,pΣj).

Let hA be a smooth positive metric on OX(A), and let hDp (respectively, hΣj ) be
the metric induced on OX(Dp) (respectively, on OX(Σj)) by the canonical section
of OX(Dp) (respectively, of OX(Σj)), so that

c1(OX(Dp), hDp) = [Dp], c1(OX(Σj), hΣj) = [Σj].

We define the metric hp := hA ⊗ hDp ⊗
⊗ℓ
j=1h

⊗tj,p
Σj on Lp, and we let h = h

1/p
p

be the induced metric on L. Then,

c1(L,h) =
1
p

(
ω0 + [Dp]+

ℓ∑

j=1

tj,p[Σj]
)
,

where ω0 = c1(OX(A),hA) is a Kähler form on X. Since tj,p ≥ τjp we get

c1(L,h)−
ℓ∑

j=1

τj[Σj] =
1
p
(ω0 + [Dp])+

ℓ∑

j=1

(
tj,p
p
− τj

)
[Σj] ≥

1
p
ω0,

which proves (iii) in the case when X is projective.

Step 2. In the general case when X is a compact complex manifold, we have by (ii)
that lim supp→∞ p

−n dimH0(X, Lp) > 0; hence, L is a big line bundle and X is
Moishezon (see, e.g., [MM, Theorem 2.2.15]). By a theorem of Moishezon (see,
e.g., [MM, Theorem 2.2.16]), there exists a projective manifold X̃ and a surjective
holomorphic map σ : X̃ → X, given as the composition of finitely many blowups
with smooth center, such that σ : X̃\E → X\Y is a biholomorphism, where Y ⊂ X
is an analytic subset with dimY ≤ n− 2, and E = σ−1(Y) is the final exceptional
divisor. Let Σ′j be the strict transform of Σj by σ , and note that if S ∈ H0(X, Lp)

then σ⋆S ∈ H0(X̃, σ⋆Lp) and ord(S,Σj) = ord(σ⋆S,Σ′j), 1 ≤ j ≤ ℓ. It follows
that

Wp ≅ W
′
p := H0

(
X̃, σ⋆Lp ⊗

ℓO

j=1

OX̃(−tj,pΣ′j)
)
, so lim sup

p→∞

dimW ′
p

pn
> 0.
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We fix a Hermitian form ω̃ on X̃. Then, σ⋆ω+ ω̃ is a Hermitian form on
X̃, and by Step 1 there exists a singular Hermitian metric h⋆ on σ⋆L such that

(3.1) c1(σ
⋆L,h⋆)−

ℓ∑

j=1

τj[Σ′j] ≥ ε(σ⋆ω+ ω̃) ≥ εσ⋆ω,

for some constant ε > 0. The metric h = (σ−1)⋆h⋆ on L|X\Y extends to a
metric on L as follows. If U is a coordinate ball centered at x ∈ Y and eU is a
frame of L|U , then σ⋆eU is a frame of σ⋆L|σ−1(U). Let |σ⋆eU |h⋆ = e−ϕ

⋆
, where

ϕ⋆ ∈ PSH(σ−1(U)). The functionϕ = ϕ⋆ ◦σ−1 is psh on U \ Y , so it extends
to a psh function on U since dimY ≤ n− 2, and we set |eU |h = e−ϕ.

We have that σ⋆c1(σ⋆L,h⋆) = c1(L,h) on X \ Y , and hence on X by the
support theorem. Similarly, σ⋆[Σ′j] = [Σj], and σ⋆σ⋆ω = ω since ω is a

smooth form. By (3.1) it follows that c1(L,h)−
∑ℓ
j=1 τj[Σj] ≥ εω, which proves

(iii).

(iii) =⇒ (iv) Let h be a singular metric on L so that R := c1(L,h)−
∑ℓ
j=1 τj[Σj] ≥

3εω, for some constant ε > 0. We fix a smooth metric h0 on L, set α = c1(L,h0),
and write h = h0e−2ψ, where ψ ∈ PSH(X,α) since c1(L,h) = α + ddcψ ≥ 0.
Let gj be a smooth metric on OX(Σj), sΣj be the canonical section of OX(Σj),
and set

σj := |sΣj |gj , βj = c1(OX(Σj), gj), θ = α−
ℓ∑

j=1

τjβj .

By the Lelong-Poincaré formula, [Σj] = βj+ddc logσj. Hence, R = θ+ddcψ′,

where ψ′ = ψ −
∑ℓ
j=1 τj logσj. The function ψ′ ∈ L1(X,ωn) is defined every-

where on X \ (
⋃ℓ
j=1 Σj). Since R ≥ 0 it follows that ψ′ = u almost everywhere

on X, for some function u ∈ PSH(X, θ), and hence everywhere on X \ (
⋃ℓ
j=1 Σj)

since both ψ′, u are qpsh there. Thus, ψ′ extends to a θ-psh function on X.
Applying Demailly’s regularization theorem [D4] to ψ′, it follows that there

exists a qpsh function ϕ with algebraic singularities on X—that is, a function ϕ
as described after Definition 2.1, where c ∈Q, such that T := θ+ddcϕ ≥ 2εω.
Moreover, there is a proper modification σ : X̃ → X, obtained as a sequence
of blowups with smooth centers and with blowup locus contained in the analytic
subset {ϕ = −∞}, such that the functions χ◦σ are smooth. Let ω̃ be a Hermitian
form on X̃ such that ω̃ ≥ σ⋆ω.

We take sequences {rj,k}k≥1 ⊂ Q such that rj,k ց τj as k → ∞, and we
consider the qpsh functions

ψk = ϕ+
ℓ∑

j=1

rj,k logσj ,
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with algebraic singularities in Z := {ϕ = −∞} ∪
⋃ℓ
j=1 Σj . Then,

T = α+ ddc
(
ϕ +

ℓ∑

j=1

rj,k logσj
)
−

ℓ∑

j=1

rj,k(βj + dd
c logσj)

+

ℓ∑

j=1

(rj,k − τj)βj

= α+ ddcψk −
ℓ∑

j=1

rj,k[Σj]+
ℓ∑

j=1

(rj,k − τj)βj .

There exists a constant C > 0 such that βj ≤ Cω for j = 1, . . . , ℓ. We obtain that

α+ ddcψk = T +
ℓ∑

j=1

rj,k[Σj]−
ℓ∑

j=1

(rj,k − τj)βj

≥ 2εω− C
( ℓ∑

j=1

(rj,k − τj)
)
ω ≥ εω,

if k is chosen sufficiently large.
With k fixed as above, we now define the singular metric hk = h0e−2ψk on

L, which verifies c1(L,hk) = α + ddcψk ≥ εω. Let H0
(2)(X, L

p, h
p
k ,ω

n) be the

space of L2 holomorphic sections of Lp with respect to the metric h
p
k on Lp and

the volume formωn on X. Since ω̃ ≥ σ⋆ω, and since σ : X̃ \σ−1(Y) → X \Y is
biholomorphic, where Y ⊂ {ϕ = −∞} is an analytic subset with dimY ≤ n− 2,
it follows that

H0
(2)(X̃, σ

⋆Lp, σ⋆h
p
k , ω̃

n) ⊆ H0
(2)(X̃, σ

⋆Lp, σ⋆h
p
k , σ

⋆ωn) ≅ H0
(2)(X, L

p, h
p
k ,ω

n).

Note that c1(σ⋆L,σ⋆hk) ≥ εσ⋆ω. Bonavero’s singular holomorphic Morse
inequalities [Bon] (see also [MM, Theorem 2.3.18]) imply that

dimH0
(2)(X̃, σ

⋆Lp, σ⋆h
p
k , ω̃

n) ≥
pn

n!

∫

X̃\σ−1(Z)
c1(σ

⋆L,σ⋆hk)
n + o(pn)

≥
εnpn

n!

∫

X̃
σ⋆ωn + o(pn) .

Since ⌊rj,kp⌋ ≥ ⌊τjp⌋, it follows from the definition of ψk that

H0
(2)(X, L

p, h
p
k ,ω

n) ⊂ Vp,

so (iv) holds.
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(iv) =⇒ (v) This now follows by the same argument as the one in the proof of
(i) =⇒ (ii).

(v) =⇒ (i) This is obvious since dimWp ≤ dimVp. ❐

Lemma 3.7. LetA be a compact irreducible analytic subset of a complex manifold
M , and let k = dimA. If F is a holomorphic line bundle over A then there exists a
constant C > 0 depending on A,M, F , such that dimH0(A, Fp) ≤ Cpk for all
p ≥ 1.

Proof. By Theorem 3.2, there are a complex manifold M̃ and a surjective holo-
morphic map σ : M̃ → M , given as the composition of finitely many blowups with
smooth center, such that E = σ−1(Asing) is a divisor in M̃, σ : M̃ \ E → M \Asing

is a biholomorphism, and the strict transform A′ = σ−1(Areg) is a connected k-

dimensional complex submanifold of M̃. The restriction σ : A′ → A is a surjective
holomorphic map and the induced map σ⋆ : H0(A, Fp) → H0(A′, σ⋆Fp) is in-
jective. Thus, dimH0(A, Fp) ≤ dimH0(A′, σ⋆Fp), and the lemma follows from
Siegel’s [MM, Lemma 2.2.6] applied to A′ and σ⋆F . ❐

Proof of Theorem 1.6. (i) =⇒ (ii). By Corollary 3.4 we have that

H0
0(X, L

p,Σ, τ) ≅ H0
0(X̃,π

⋆Lp, Σ̃, τ), ∀p ≥ 1,

and hence (π⋆L, Σ̃, τ) is big and (ii) follows from Theorem 1.3.

(ii) =⇒ (iii) This is obvious.

(iii) =⇒ (iv) By Theorem 1.3 with X̃, π⋆L, Σ̃, τ, there exist p0 ∈ N and c > 0
such that dimH0

0(X̃,π
⋆Lp, Σ̃, τ) ≥ cpn for all p ≥ p0. Hence, (iv) follows by

using Corollary 3.4.

(iv) =⇒ (i) This is obvious by Definition 1.1. ❐

Theorem 1.6 has the following interesting corollary.

Corollary 3.8. Let X,L,Σ, τ verify assumptions (A)–(D), and suppose that
dimΣj = n − 1 for all j = 1, . . . , ℓ. Let Σ′j ⊂ Σj be distinct irreducible proper
analytic subsets such that Σ′j 6⊂ Xsing, and let

Σ′ = (Σ1, . . . ,Σℓ,Σ′1, . . . ,Σ′ℓ),
τ′ = (τ1, . . . , τℓ, τ1 + δ, . . . , τℓ + δ),

where δ > 0. If (L,Σ, τ) is big then (L,Σ′, τ′) is big for δ > 0 sufficiently small.

Proof. Without loss of generality we may assume X is a complex manifold, by
first desingularizing X if necessary using Theorem 3.1 and applying Corollary 3.4
to the map σ from Theorem 3.1 and the strict transforms of Σj ,Σ′j by σ . Let ω
be a Hermitian form on X.
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Let (X̃,π, Σ̃′) be a divisorization of (X,Σ′), so π : X̃ \E → X \Y is a biholo-
morphism, where E = π−1(Y) is the final exceptional divisor, Σ̃′j are irreducible

components of E, and Σ̃j is the strict transform of Σj by π . Let ω̃ be a Her-
mitian form on X̃ such that ω̃ ≥ π⋆ω. By Theorem 1.6, there exists a singular
Hermitian metric h⋆ on π⋆L such that

T := c1(π
⋆L,h⋆)−

ℓ∑

j=1

τj[Σ̃j] ≥ εω̃ ≥ επ⋆ω,

for some constant ε > 0. As argued in the proof of Theorem 3.6 (Step 2 of the
implication (ii) =⇒ (iii)), the metric h = (π−1)⋆h⋆ on L|X\Y extends to a metric
on L. Moreover, π⋆c1(π⋆L,h⋆) = c1(L,h), π⋆[Σ̃j] = [Σj], and π⋆π⋆ω =ω.
We conclude that

S := π⋆T = c1(L,h)−
ℓ∑

j=1

τj[Σj] ≥ εω.

It is well known there exists a smooth Hermitian metric g on the line bundle
OX̃(E) and a constant δ0 > 0 such that ω̃0 := π⋆ω−δ0Θ is a Hermitian form on
X̃, where Θ = c1(OX̃(E), g) (see, e.g., [CMM, Lemma 2.2]). If sE is the canonical
section of OX̃(E), then by the Lelong-Poincaré formula, [E] = Θ+ddc log |sE|g .

Let δ = εδ0. Then, π⋆S − δΘ ≥ επ⋆ω − εδ0Θ = εω̃0. We introduce the
singular Hermitian metric h̃ = |sE|−2δ

g π⋆h on π⋆L, so

c1(π
⋆L, h̃) = c1(π

⋆L,π⋆h)+ δddc log |sE|g.

Since Σ′j ⊂ Σj, we have π⋆[Σj] = [Σ̃j]+ [Σ̃′j]+ Rj, where Rj are positive closed
currents of bidegree (1,1) supported in E. It follows that

π⋆S − δΘ = c1(π
⋆L,π⋆h)−

ℓ∑

j=1

τjπ
⋆[Σj]− δ([E]− ddc log |sE|g)

= c1(π
⋆L, h̃)−

ℓ∑

j=1

τj[Σ̃j]−
ℓ∑

j=1

(τj + δ)[Σ̃′j]− R,

where R is a positive closed current of bidegree (1,1) supported in E. Thus,

c1(π
⋆L, h̃)−

ℓ∑

j=1

τj[Σ̃j]−
ℓ∑

j=1

(τj + δ)[Σ̃′j] = π⋆S − δΘ+ R ≥ εω̃0,

and hence (L,Σ′, τ′) is big by Theorem 1.6. ❐



514 DAN COMAN, GEORGE MARINESCU & VIÊT-ANH NGUYÊN

4. ENVELOPES OF QPSH FUNCTIONS WITH POLES ALONG A DIVISOR

In this section, we define the relevant spaces of qpsh functions with poles along a
divisor and prove the regularity theorem for their upper envelopes.

Let (X,ω) be a compact Hermitian manifold of dimension n, Σj ⊂ X be
irreducible complex hypersurfaces, and let τj > 0, where 1 ≤ j ≤ ℓ. We write
Σ = (Σ1, . . . ,Σℓ), τ = (τ1, . . . , τℓ), and we denote by dist the distance on X
induced by ω.

Let α be a smooth closed real (1,1)-form on X. We fix a smooth Hermitian
metric gj on OX(Σj), let sΣj be the canonical section of OX(Σj), 1 ≤ j ≤ ℓ, and
set

(4.1) βj = c1(OX(Σj), gj), θ = α−
ℓ∑

j=1

τjβj , σj := |sΣj |gj .

We let

L(X,α,Σ, τ) =(4.2)

= {ψ ∈ PSH(X,α) : ν(ψ,x) ≥ τj , ∀x ∈ Σj , 1 ≤ j ≤ ℓ}

be the class of α-psh functions with logarithmic poles of order τj along Σj . Given
a function ϕ : X → R ∪ {−∞} we consider the following subclasses of qpsh
functions and their upper envelopes:

A(X,α,Σ, τ,ϕ) = {ψ ∈ L(X,α,Σ, τ) : ψ ≤ϕ on X},(4.3)

A′(X,α,Σ, τ,ϕ) =(4.4)

=
{
ψ′ ∈ PSH(X, θ) : ψ′ ≤ ϕ−

ℓ∑

j=1

τj logσj on X \
ℓ⋃

j=1

Σj
}
,

ϕeq = ϕeq,Σ,τ = sup{ψ : ψ ∈A(X,α,Σ, τ,ϕ)},(4.5)

ϕreq = ϕreq,Σ,τ = sup{ψ′ : ψ′ ∈ A′(X,α,Σ, τ,ϕ)}.(4.6)

The functionϕeq defined in (4.5) is the largest α-psh function dominated by
ϕ and with logarithmic poles of order τj along Σj . We call ϕeq the equilibrium
envelope of (α,Σ, τ,ϕ), andϕreq the reduced equilibrium envelope of (α,Σ, τ,ϕ).
This is motivated by the terminology of equilibrium metric used in the case when
ϕ is the weight of a singular metric h = h0e−2ϕ on a Hermitian holomorphic
line bundle (F,h0) over X (see below).

Extremal psh functions on domains in Stein manifolds with poles along sub-
varieties (also known as pluricomplex Green functions) are studied in [LS], [RaS].
In particular, pluricomplex Green functions with finitely many poles were studied
by many authors. In the context of metrics on line bundles over compact com-
plex manifolds, the above envelope method is introduced in Section 4.1 of [Be1]
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for defining equilibrium metrics with poles along a divisor. More generally, equi-
librium metrics with prescribed singularities on a line bundle are introduced and
studied in [RWN2] (see also [Da, Theorem 3]).

Our first result is concerned with some basic properties of the envelope de-
fined in (4.5) under natural, very general assumptions.

Proposition 4.1. Let X,Σ, τ,α, θ be as above, and let ϕ : X → R ∪ {−∞} be
an upper semicontinuous function. Then, the following hold:

(i) The mapping PSH(X, θ) ∋ ψ′֏ψ := ψ′+
∑ℓ
j=1 τj logσj∈L(X,α,Σ, τ)

is well defined and bijective, with inverse

L(X,α,Σ, τ) ∋ ψ ֏ ψ′ := ψ−
ℓ∑

j=1

τj logσj ∈ PSH(X, θ).

(ii) There exists a constant C > 0 depending only on X,Σ, τ,α, θ such that
supX ψ

′ ≤ supXϕ + C, for every ψ′ ∈ A′(X,α,Σ, τ,ϕ).
(iii) A(X,α,Σ, τ,ϕ) ≠ ∅ if and only if A′(X,α,Σ, τ,ϕ) ≠ ∅. Moreover, in

this case we have that ϕreq ∈ A
′(X,α,Σ, τ,ϕ), ϕeq ∈ A(X,α,Σ, τ,ϕ),

and

(4.7) ϕeq = ϕreq +

ℓ∑

j=1

τj logσj on X.

(iv) If ϕ is bounded and there exists a bounded θ-psh function, then ϕreq is
bounded on X.

(v) If PSH(X, θ) ≠ ∅ and ϕ1,ϕ2 : X → R are bounded and upper semicon-
tinuous, then

ϕ1,req − sup
X

|ϕ1 −ϕ2| ≤ ϕ2,req ≤ ϕ1,req + sup
X

|ϕ1 −ϕ2|

holds on X. Moreover, if ϕ1 ≤ ϕ2 then ϕ1,req ≤ ϕ2,req.

Proof. (i) If ψ′ ∈ PSH(X, θ) then ψ = ψ′ +
∑ℓ
j=1 τj logσj is qpsh and

α+ ddcψ = θ + ddcψ′ +
ℓ∑

j=1

τj[Σj] ≥ 0,

so ψ ∈ PSH(X,α). If x ∈ Σj then ν(ψ,x) ≥ τjν(logσj , x) ≥ τj , and hence
ψ ∈ L(X,α,Σ, τ).

Conversely, if ψ ∈ L(X,α,Σ, τ), let T = α+ ddcψ. As ν(T ,x) ≥ τj for all

x ∈ Σj , we have by Siu’s decomposition theorem that T ′ = T −
∑ℓ
j=1 τj[Σj] is a
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positive closed current. Also, T ′ = θ + ddcψ′, where ψ′ = ψ −
∑ℓ
j=1 τj logσj .

The function ψ′ ∈ L1(X,ωn) is defined everywhere on X \
⋃ℓ
j=1 Σj . Since

T ′ ≥ 0 it follows that ψ′ = u almost everywhere on X, for some function

u ∈ PSH(X, θ), and hence everywhere on X \
⋃ℓ
j=1 Σj since both ψ′, u are qpsh

there. Thus, ψ′ extends to a θ-psh function on X.

(ii) There exist points xk ∈ X, coordinate neighborhoods Uk centered at xk,
and numbers rk > 0, 1 ≤ k ≤ N, such that the balls B̄(xk,2rk) ⊂ Uk and
X =

⋃N
k=1B(xk, rk). Set r = min1≤k≤N rk. Let ρk be a smooth function defined

in a neighborhood of B̄(xk,2rk) such that ddcρk = θ. If ψ′ ∈ PSH(X, θ) and
x ∈ B(xk, rk), we have by the subaverage inequality for psh functions that

ρk(x)+ψ
′(x) ≤

n!
πnr 2n

∫

B(x,r)
(ρk +ψ

′)dλ,

where λ is the Lebesgue measure in coordinates. Hence, there exists a constant
C′ > 0 such that for every function ψ′ ∈ PSH(X, θ), one has

ψ′(x) ≤
n!

πnr 2n

∫

B(x,r)
ψ′ dλ+ C′, ∀x ∈ B(xk, r ), k = 1, . . . , N.

If ψ′ ∈ A′(X,α,Σ, τ,ϕ) and x ∈ B(xk, r ), we have

ψ′(x) ≤
n!

πnr 2n

∫

B(x,r)

(
ϕ −

ℓ∑

j=1

τj logσj
)
dλ+ C′

≤ sup
B(x,r)

ϕ +
n!

πnr 2n

∫

B(x,r)

∣∣∣
ℓ∑

j=1

τj logσj
∣∣∣dλ+ C′ ≤ sup

B(x,r)

ϕ + C,

for some constant C > 0 depending only on X,Σ, τ,α, θ. Hence, supX ψ
′ ≤

supXϕ + C.

(iii) It follows immediately from (i) that the mapping

A′(X,α,Σ, τ,ϕ) ∋ ψ′ 7 -→ ψ := ψ′ +
ℓ∑

j=1

τj logσj ∈A(X,α,Σ, τ,ϕ)

is well defined and bijective. By (ii), the family A′(X,α,Σ, τ,ϕ) of θ-psh func-
tions is uniformly upper bounded, and hence the upper semicontinuous regular-

izationϕ⋆req ofϕreq is θ-psh. Sinceϕreq ≤ϕ−
∑ℓ
j=1 τj logσj on X \

⋃ℓ
j=1 Σj and

the latter is upper semicontinuous there, we see that ϕ⋆req ∈A
′(X,α,Σ, τ,ϕ), so

ϕreq = ϕ⋆req. Moreover, if ψ ∈ A(X,α,Σ, τ,ϕ) then ψ ≤ ϕreq +
∑ℓ
j=1 τj logσj .
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It follows that the family A(X,α,Σ, τ,ϕ) is uniformly upper bounded, the up-
per semicontinuous regularization ϕ⋆eq of ϕeq is α-psh, and it verifies ϕ⋆eq ≤

ϕreq +
∑ℓ
j=1 τj logσj and ϕ⋆eq ≤ ϕ on X, since the functions on the righthand

side are upper semicontinuous. Hence, ϕ⋆eq ∈ A(X,α,Σ, τ,ϕ), so ϕeq = ϕ⋆eq

and (4.7) is clearly satisfied.

(iv) Since m := infX(ϕ −
∑ℓ
j=1 τj logσj) > −∞, there exists a bounded θ-psh

function ψ′ such that ψ′ ≤m on X. Thus, ψ′ ≤ ϕreq ≤ supXϕ+ C on X.

(v) As PSH(X, θ) ≠∅ andϕj is bounded, it follows thatA′(X,α,Σ, τ,ϕj)≠∅,
j = 1,2. Then, (v) follows easily from the definition (4.6) of ϕreq. ❐

The following notion is needed for studying certain regularity properties of
the equilibrium envelopes.

Definition 4.2. A function φ : X → [−∞,∞) is Hölder with singularities
along a proper analytic subset A ⊂ X if there exist constants c, ̺ > 0 and 0 < ν ≤
1 such that

|φ(z) −φ(w)| ≤
c dist(z,w)ν

min{dist(z,A),dist(w,A)}̺
, for all z,w ∈ X \A.

We assume now that the class {θ}∂ ∂̄ is big, and we let

Z0 := NAmp({θ}∂ ∂̄).

By [Bou, Theorem 3.17] there exists a Kähler current T0 ∈ {θ}∂ ∂̄ with analytic
singularities such that E+(T0) = Z0. We let

(4.8) T0 = θ + dd
cψ0 ≥ ε0ω,

where ε0 > 0 and ψ0 is a qpsh function with analytic singularities. Thus, Z0 =

{ψ0 = −∞}. By subtracting a constant we may assume that ψ0 ≤ −1 on X.
Using the methods developed in [D6] and [BD] (see also [DMN]), we prove

next the following regularity result for the functions ϕreq = ϕreq,Σ,τ defined in
(4.6), and ϕeq = ϕeq,Σ,τ defined in (4.5).

If v = 1 then ϕ is said to be Lipschitz with singularities along A.

Theorem 4.3. Let (X,ω) be a compact Hermitian manifold of dimension n,
Σj ⊂ X be irreducible complex hypersurfaces, and let τj > 0, where 1 ≤ j ≤ ℓ. Let α
be a smooth closed real (1,1)-form on X, and θ be as in (4.1). Assume that the class
{θ}∂ ∂̄ is big, and let Z0 := NAmp({θ}∂ ∂̄). Then, the following hold:

(i) If ϕ : X → R is Hölder continuous then ϕreq is Hölder with singularities
along Z0, and ϕeq is Hölder with singularities along Σ1 ∪ · · · ∪ Σℓ ∪ Z0.

(ii) If ϕ : X → R is continuous then ϕreq is continuous on X \ Z0, and ϕeq is
continuous on X \ (Σ1 ∪ · · · ∪ Σℓ ∪ Z0).

We will need the following lemma which follows from Lemma 2.8 in [DMN].
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Lemma 4.4. Let r , ν ∈ (0,1) and u be a subharmonic function in a neigh-
borhood of the ball B̄(0,3r) ⊂ Rm. Suppose there exists a constant A > 0 such that
|u(x)| ≤ A for all x ∈ B(0,3r), and

∆u(B(x, s)) ≤ Asm−2+ν ,

for all x ∈ B(0,2r) and 0 < s < r . Then, there exists a constant C(m,ν) > 0 such
that

|u(x)−u(y)| ≤
C(m,ν)A

rν
|x − y|ν , ∀x,y ∈ B(0, r ).

Proof of Theorem 4.3. (i) Assumeϕ is a Cν function on X, and let ψ := φreq.
We show that ψ is Hölder with singularities along Z0 and with Hölder exponent
ν. Following [BD], we will regularizeψ using the method introduced by Demailly
in [D6].

Consider the exponential map associated with the Chern connection on the
tangent bundle TX of X. The formal holomorphic part of its Taylor expansion is
denoted by

exph : TX → X with TxX ∋ ζ ֏ exphx(ζ).

Let χ : R → [0,∞) be the smooth function with support in (−∞,1] defined by

χ(t) =





const
(1− t)2

exp
1
t − 1

for t < 1,

0 for t ≥ 1,

where the constant const is adjusted so that
∫

|ζ|≤1
χ(|ζ|2)dLeb(ζ) = 1 with

respect to the Lebesgue measure Leb(ζ) on Cn ≃ TxX. We fix a constant δ0 > 0
small enough, and define

Ψ(x, t) :=
∫

ζ∈TxX
ψ(exphx(tζ))χ(|ζ|

2)dLeb(ζ),(4.9)

for (x, t) ∈ X × [0, δ0].

By [D6], there exists a constant b such that the function t ֏ Ψ(x, t) + bt2 is
increasing for t in [0, δ0]. Observe also that Ψ(x,0) = ψ(x).

Consider for c > 0 and δ ∈ (0, δ0] the Kiselman-Legendre transform

(4.10) ψc,δ(x) := inf
t∈(0,δ]

(
Ψ(x, t)+ b(t2 − δ2)+ b(t − δ)− c log

t

δ

)
.

It was shown in [BD, Lemma 1.12] and [KoN, Lemma 4.1] (see also [DiNT,
Lemma 3.1]) that ψc,δ is qpsh and

(4.11) θ + ddcψc,δ ≥ −(ac + 2bδ)ω,
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where a > 0 is a constant (see also [Ki1, Ki2]).
For t := δ we obtain from (4.10) that ψc,δ(x) ≤ Ψ(x, δ). From (4.9) we

deduce that Ψ(x, δ) is an average of values of ψ in a ball B(x,Aδ) in X for some
constant A depending only on X and ω. By Proposition 4.1 we have that

ψ ≤min
{
ϕ−

ℓ∑

j=1

τj logσj , sup
X

ϕ + C
}
≤ ϕ+ f on X,

where f := min{−
∑ℓ
j=1 τj logσj , supXϕ− infXϕ+C}. In the sequel, we denote

O(δν) := C′δν with constants C′ > 0 independent of x and δ. Since ϕ ∈ Cν

and f is a Lipschitz function on X, it follows that

Ψ(x, δ) ≤ sup
B(x,Aδ)

(ϕ+ f ) ≤ϕ(x)+ f (x)+O(δν)

≤ ϕ(x)−
ℓ∑

j=1

τj logσj(x)+O(δν),

for all x ∈ X and 0 < δ ≤ δ0. Hence, ψc,δ ≤ ϕ−
∑ℓ
j=1 τj logσj+O(δν). Letψ0

be the θ-psh function with analytic singularities in Z0 defined in (4.8). Since ϕ is

bounded there exists a constant C1 > 0 such that ψ0 ≤ C1 +ϕ −
∑ℓ
j=1 τj logσj .

Thus, ψ0 − C1 ≤ ψ, and ψ is locally bounded on X \ Z0. Consider the convex
combination

ξ :=
ac + 2bδ
ε0

ψ0 +

(
1−

ac + 2bδ
ε0

)
ψc,δ,

where we take c = δν . We deduce from the above upper bounds for ψc,δ and ψ0

that

ξ ≤ϕ −
ℓ∑

j=1

τj logσj +O(δν).

By (4.8) and (4.11) we have that

θ + ddcξ ≥ (ac + 2bδ)ω−

(
1−

ac + 2bδ
ε0

)
(ac + 2bδ)ω ≥ 0,

and hence

ψ(x)+O(δν) ≥ ξ(x) ≥
ac + 2bδ
ε0

ψ0(x)+ψc,δ(x)−
ac + 2bδ
ε0

Ψ(x, δ),

for all x ∈ X. Since c = δν and by Proposition 4.1 (ii), Ψ(x, δ) ≤ supX ψ ≤

supXϕ + C, it follows that

ac + 2bδ
ε0

ψ0 +ψc,δ ≤ ψ+O(δ
ν).
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If x ∈ X \ Z0 then Ψ(x,0) = ψ(x) > −∞, and so the increasing function
t ֏ Ψ(x, t) + bt2 is bounded and the infimum in the definition of ψc,δ(x) is
reached for some t = tx,δ ∈ (0, δ]. Hence,

(4.12) Ψ(x, tx,δ)+ bt2
x,δ ≤ ψ(x)+ c log

tx,δ
δ
−
ac + 2bδ
ε0

ψ0(x)+O(δ
ν).

Using the fact that t ֏ Ψ(x, t)+ bt2 is increasing, this implies that

c log
tx,δ
δ
−
ac + 2bδ
ε0

ψ0(x)+O(δ
ν) ≥ 0.

Since c = δν and ψ0 ≤ −1, we infer from the above inequality there exists a
constant C2 > 0 such that eC2ψ0(x)δ ≤ tx,δ ≤ δ, for all x ∈ X \Z0. By (4.12) and
using again that t ֏ Ψ(x, t)+ bt2 is increasing, we see that

Ψ(x, eC2ψ0(x)δ)−ψ(x) ≤ |ψ0(x)|O(δ
ν), ∀x ∈ X \ Z0.

Since ψ0 has analytic singularities, it follows by the Lojasiewicz inequality, The-
orem 5.2.4 in [KP], that there exists a constant M > 0 such that eψ0(x) ≳

dist(x,Z0)M . Letting t = eC2ψ0(x)δ we conclude by the above estimates that
there exist constants ε1, N > 0 such that

Ψ(x, t)−ψ(x) ≤ O(tν)

dist(x,Z0)N
(4.13)

∀x ∈ X \ Z0, 0 < t < ε1 dist(x,Z0)
N .

There exists r0 > 0 such that every x ∈ X has a coordinate neighborhood Ux
centered at x with B̄(x,3r0) ⊂ Ux and so that the metric on X coincides at x
with the standard metric given by the coordinates. According to [D6, (4.5)] (see
also [BD, (1.16)], [DMN, Theorem 2.7]), it follows from a Lelong-Jensen type
inequality that

Ψ(x, t)−ψ(x) ≳ 1
t2n−2

∫

B(x,t/4)
∆ψ−O(t2),

where the constants involved are independent of x ∈ X and t ∈ (0, δ0). Com-
bining this and (4.13), we infer that

∫

B(x,t)
∆ψ ≤ O(t2n−2+ν)

dist(x,Z0)N
∀x ∈ X \ Z0, 0 < t <min{r0, ε1 dist(x,Z0)

N}.

Lemma 4.4 implies there exist constants C3, ε2 > 0 such that if x ∈ X \ Z0

and dist(y,x) ≤ ε2 dist(x,Z0)N , then

|ψ(y)−ψ(x)| ≤
C3

dist(x,Z0)2N
dist(y,x)ν .
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Since ψ0 − C1 ≤ ψ, it follows that |ψ| ≤ C4| log dist(·, Z0)| + C1 holds on
X, for some constant C4 > 0. Assume now that x,y ∈ X \ Z0 and dist(y,x) ≥
ε2 dist(x,Z0)N . Then,

|ψ(y)−ψ(x)| ≤ (C4| log dist(x,Z0)| + C4| log dist(y,Z0)| + 2C1)

×
dist(y,x)

ε2 dist(x,Z0)N
.

The previous two estimates combined show that ψ = ϕreq is Hölder with singu-
larities along Z0 and with Hölder exponent ν. Hence, by (4.7), ϕeq is Hölder
with singularities along Σ1 ∪ · · · ∪ Σℓ ∪ Z0 and with Hölder exponent ν, since
logσj is Lipschitz with singularities along Σj .
(ii) Let {ϕk} be a sequence of real-valued smooth functions converging uniformly
to ϕ on X. By (i) and Proposition 4.1 (v), ϕk,req are continuous and converge
uniformly to ϕreq on X \ Z0, and hence ϕreq is continuous on X \ Z0. ❐

5. CONVERGENCE OF THE GLOBAL FUBINI-STUDY POTENTIALS

In this section, we prove the convergence of the Fubini-Study potentials and cur-
rents of the space H0

0(X, L
p) defined in (1.2), towards ϕeq and the equilibrium

current Teq of (L,h,Σ, τ), respectively (Theorem 1.8), provided X,L,Σ, τ verify
assumptions (A)–(D), and assuming in addition there exists a Kähler form ω on
X, and that h is a continuous Hermitian metric on L.

Let h0,ϕ be as in (1.3). Let Pp, γp be the Bergman kernel function and
Fubini-Study current of the space H0

0,(2)(X, L
p), and let ϕp be the global Fubini-

Study potential of γp (see (1.4)). We fix a divisorization (X̃,π, Σ̃) of (X,Σ) as in
Definition 1.5. Thus, there exists an analytic subset Y of X such that dimY ≤
n−2, Xsing ⊂ Y , E = π−1(Y) is the final exceptional divisor, and π : X̃\E → X\Y

is a biholomorphism. We let ω̃ be a Kähler form on X̃ such that ω̃ ≥ π⋆ω (see,
e.g., [CMM, Lemma 2.2]), and denote by dist the distance on X̃ induced by ω̃.
Set

L̃ := π⋆L, h̃0 := π⋆h0, α̃ := π⋆α = c1(L̃, h̃0),(5.1)

ϕ̃ := ϕ ◦π, h̃ := π⋆h = h̃0e
−2ϕ̃.

We write h̃p = h̃⊗p and h̃
p
0 = h̃

⊗p
0 . Corollary 3.4 implies that the map

(5.2)
S ∈ H0

0,(2)(X, L
p)→ π⋆S ∈ H0

0,(2)(X̃, L̃
p) := H0

0,(2)(X̃, L̃
p, Σ̃, τ, h̃p , π⋆ωn)

is an isometry. It follows that

(5.3) P̃p = Pp ◦π, γ̃p = π
⋆γp
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are the Bergman kernel function, respectively Fubini-Study current, of the space
H0

0,(2)(X̃, L̃
p). Note that

(5.4)
1
p
γ̃p = α̃+ dd

cϕ̃p, where ϕ̃p = ϕ̃ +
1

2p
log P̃p .

We call the function ϕ̃p the global Fubini-Study potential of γ̃p.
Let ϕ̃eq be the equilibrium envelope of (α̃, Σ̃, τ, ϕ̃) defined in (4.5),

(5.5) ϕ̃eq = ϕ̃eq,Σ̃,τ = sup{ψ : ψ ∈ L(X̃, α̃, Σ̃, τ), ψ ≤ ϕ̃ on X̃},

whereL(X̃, α̃, Σ̃, τ) is defined in (4.2). Let sΣ̃j be the canonical section ofOX̃(Σ̃j),
and fix a smooth Hermitian metric gj on OX̃(Σ̃j) such that

σj := |sΣ̃j |gj < 1 on X̃, 1 ≤ j ≤ ℓ.

Set

(5.6) βj = c1(OX̃(Σ̃j), gj), θ̃ = α̃−
ℓ∑

j=1

τjβj .

Note that [Σ̃j] = βj + ddc logσj , by the Lelong-Poincaré formula.
In the above setting, we have the following theorem which shows that on X̃,

the global Fubini-Study potentials ϕ̃p converge to the equilibrium envelope ϕ̃eq

of ϕ̃.

Theorem 5.1. Let X,L,Σ, τ verify assumptions (A)–(D), and assume (L,Σ, τ)
is big and there exists a Kähler formω on X. Let h be a continuous Hermitian metric
on L, letϕ, ϕ̃, ϕ̃p , ϕ̃eq, θ̃ be defined in (1.3), (5.1), (5.4), (5.5) (respectively (5.6)),
and set Z := Σ̃1 ∪ · · · ∪ Σ̃ℓ ∪NAmp({θ̃}). Then, the following hold:

(i) ϕ̃p → ϕ̃eq in L1(X̃, ω̃n) and locally uniformly on X̃ \ Z as p →∞.
(ii) Ifϕ is Hölder continuous on X, then there exist a constant C > 0 and p0 ∈ N

such that, for all x ∈ X̃ \ Z and p ≥ p0, we have

|ϕ̃p(x)− ϕ̃eq(x)| ≤
C

p
(logp + | log dist(x,Z)|).

In particular, we have the convergence of the Fubini-Study currents defined in
(5.3):

1
p
γ̃p = α̃+ dd

cϕ̃p → T̃eq := α̃+ ddcϕ̃eq, as p →∞, weakly on X̃.
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The proof is done by estimating the partial Bergman kernel P̃p from (5.3) (see
[Be1], [Be2], [CM1], [RWN2] for similar approaches). Let

Ωϕ̃(δ) = sup{|ϕ̃(x)− ϕ̃(y)| : x,y ∈ X̃, dist(x,y) < δ}

be the modulus of continuity of ϕ̃. We first deal with the upper estimate for
log P̃p.

Proposition 5.2. In the setting of Theorem 5.1, there exists a constant C > 0
such that

1
2p

log P̃p(x) ≤
C

p
(1− logδ)+ δ+Ωϕ̃(δ),

for all p ≥ 1, δ ∈ (0,1), and x ∈ X̃ with dist(x, E) ≥ δ.

Proof. By compactness, there exist constants r0 > 0, C1 > 1 with the following
properties: every x ∈ X̃ has a contractible Stein coordinate neighborhood Ux
centered at x such that the following hold:

(i) The ball B̄(x, r0) ⊂ Ux and the Lebesgue measure in coordinates
satisfies dλ ≤ C1ω̃n/n!.
(ii) C−1

1 |z −y| ≤ dist(z,y) ≤ C1|z −y| holds for z,y ∈ B̄(x, r0).
(iii) L̃ has a local holomorphic frame ex on Ux such that if |ex|h̃0

= e−ψx

then ψx is a Lipschitz function with Lipschitz constant C1 on Ux .

Moreover, there exists K > 0 such that

π⋆ωn(x) ≥ C−1
1 dist(x, E)Kω̃n(x), ∀x ∈ X̃.

Indeed, using local embeddings of X into CN we have thatω ≳ i
∑N
j=1 dzj ∧dz̄j ,

so the above claim follows from the Lojasiewicz inequality.
We let δ ∈ (0,1) and fix x ∈ X̃ \ E with dist(x, E) ≥ δ. Let r < r0,

r < (2C1)−1 dist(x, E). If S ∈ H0
0,(2)(X̃, L̃

p), ‖S‖p = 1, we write S = se⊗px ,
where s ∈ OX̃(Ux). Using the subaverage inequality, we obtain the following:

∣∣S(x)
∣∣2
h̃p = |s(x)|

2e−2p(ψx(x)+ϕ̃(x))

≤
n!C1

πnr 2n
e2p(maxB(x,r )(ψx+ϕ̃)−ψx(x)−ϕ̃(x))

∫

B(x,r)

∣∣S
∣∣2
h̃p
ω̃n

n!
.

If y ∈ B(x, r), then dist(y, E) ≥ dist(x, E) − C1r ≥
1
2 dist(x, E) ≥ δ/2, and

hence

ω̃n(y) ≤ C1 dist(y, E)−Kπ⋆ωn(y) ≤ 2KC1δ
−Kπ⋆ωn(y).

Therefore,

∣∣S(x)
∣∣2
h̃p ≤

C2

r 2nδK
e2p(maxB(x,r )(ψx+ϕ̃)−ψx(x)−ϕ̃(x))

∫

B(x,r)

∣∣S
∣∣2
h̃p
π⋆ωn

n!
,
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where C2 = n!π−n2KC2
1 . Since S ∈ H0

0,(2)(X̃, L̃
p) is arbitrary with ‖S‖p = 1, we

infer that

1
2p

log P̃p(x) ≤
logC2

2p
−
n

p
log r −

K

2p
logδ

+ max
B(x,r)

ψx −ψx(x)+ max
B(x,r)

ϕ̃ − ϕ̃(x)

≤
logC2

2p
−
n

p
log r −

K

2p
logδ+ C1r +Ωϕ̃(C1r).

Let M > C1 be a constant such that (2M)−1 dist(x, E) < r0 for all x ∈ X̃. Taking
r = δ/(2M) in the last estimate, we see that the conclusion holds with a constant
C = C(n,C2, K,M). ❐

Remark 5.3. The conclusion of Proposition 5.2 holds in fact for the full

Bergman kernel of the space H0
(2)(X̃, L̃

p, h̃p, π⋆ωn).

Proposition 5.4. In the setting of Theorem 5.1, there exists a constant C > 0
such that for all p ≥ 1 and δ ∈ (0,1) the following estimate holds on X̃:

ϕ̃p ≤ ϕ̃eq + C

(
δ+

1
p
−

logδ

p

)
+ 2Ωϕ̃(Cδ).

Proof. If p ≥ 1 and 0 < δ < 1, we have by Proposition 5.2 that

Fp(δ) := sup

{
1

2p
log P̃p(x) : x ∈ X̃, dist(x, E) ≥ δ

}
(5.7)

≤
C

p
(1− logδ)+ δ+Ωϕ̃(δ).

Let Eδ := {x ∈ X̃ : dist(x, E) < δ}, and fix x0 ∈ E. There exist a coordi-
nate neighborhood Ux0 centered at x0 and a constant C1 = C1,x0 > 1 with the
following properties:

(i) The polydisc ∆̄n(0,2)⊂Ux0 and C−1
1 |z−y|≤dist(z,y)≤C1|z−y|

for z,y ∈ ∆̄n(0,2), where |z| :=max1≤j≤n |zj|.
(ii) α̃ = ddcρ on Ux0 , where ρ is a smooth function with Lipschitz
constant C1 on ∆̄n(0,2) (with respect to the norm |z| from (i)).

(iii) E ∩∆n(0,2) = (
⋃k
j=1{zj = 0})∩∆n(0,2), for some 1 ≤ k ≤ n.

Note that (iii) can be achieved since E is a divisor with only normal crossings.
Hence,

Eδ/C1 ∩∆n(0,1) ⊂ {z ∈ ∆n(0,1) : min
1≤j≤k

|zj| < δ}.

Let z ∈ Eδ/C1 ∩∆n(0,1) and without loss of generality assume that

|z1| < δ, . . . , |zl| < δ, |zl+1| ≥ δ, . . . , |zk| ≥ δ.
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The function v := ρ + ϕ̃p = ρ + ϕ̃ + (1/(2p)) log P̃p is psh on Ux0 . By the
maximum principle applied on

Vl := {ζ = (ζ1, . . . , ζl, zl+1, . . . , zn) : |ζj| ≤ δ, 1 ≤ j ≤ l},

it follows that

v(z) ≤max
∂dVl

v ≤ max
∂dVl

ρ +max
∂dVl

ϕ̃ + Fp

(
δ

C1

)
,

as |ζ1| = · · · = |ζl| = δ for ζ in the distinguished boundary ∂dVl, and hence
dist(ζ, E) ≥ δ/C1. Since

max
∂dVl

ρ ≤ ρ(z)+ 2C1δ, max
∂dVl

ϕ̃ ≤ ϕ̃(z)+Ωϕ̃(2C1δ),

we conclude that

ϕ̃p(z) ≤ ϕ̃(z)+ 2C1δ+Ωϕ̃(2C1δ)+ Fp(δ/C1), ∀z ∈ Eδ/C1 ∩∆n(0,1).

Using a finite cover of E with neighborhoods ∆n(0,1) ⊂ Ux0 , x0 ∈ E, we
infer by above that there exists a constant C′ > 1 such that for all p ≥ 1 and
0 < δ < 1, we have

ϕ̃p(x) ≤ ϕ̃(x)+ C
′δ+Ωϕ̃(C′δ)+ Fp

(
δ

C′

)
for all x ∈ Eδ/C′ .(5.8)

Note that

ϕ̃p(x) = ϕ̃(x)+
1

2p
log P̃p ≤ ϕ̃(x)+ Fp

(
δ

C′

)
for x ∈ X̃ \ Eδ/C′ ,

so the estimate (5.8) holds for all x ∈ X̃, p ≥ 1, and 0 < δ < 1. Since P̃p is
the Bergman kernel function of the space H0

0(X̃, L̃
p, Σ̃, τ), it follows that ϕ̃p has

Lelong number ≥ tj,p/p ≥ τj along Σ̃j , 1 ≤ j ≤ ℓ. Therefore, by (5.5) and (5.7),

ϕ̃p ≤ ϕ̃eq + C
′δ+Ωϕ̃(C′δ)+ Fp

(
δ

C′

)

≤ ϕ̃eq + (C
′ + 1)δ+ 2Ωϕ̃(C′δ)+

C

p

(
1− log

δ

C′

)
,

which concludes the proof. ❐

We next deal with the lower bound for log P̃p and ϕ̃p. The following form
of the L2-estimates of Hörmander/Andreotti-Vesentini for ∂̄ is due to Demailly
[D1, Théorème 5.1] (see also [CM1, Theorem 5.2], [CMM, Theorem 2.5]).
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Theorem 5.5. Let M be a complete Kähler manifold of dimension n, Ω be a
(not necessarily complete) Kähler form on M , χ be a qpsh function on M , and (F,h)
be a singular Hermitian holomorphic line bundle on M . Assume there exist constants
A,B > 0 such that

RicΩ ≥ −2πBΩ, ddcχ ≥ −AΩ, c1(F,h) ≥ (1+ B +A/2)Ω.

If g ∈ L2
0,1(M, F, loc) satisfies ∂̄g = 0 and

∫

M
|g|2he

−χΩn < +∞, then there exists

u ∈ L2
0,0(M, F, loc) with ∂̄u = g and

∫

M
|u|2he

−χΩn ≤
∫

M
|g|2he

−χΩn.

Since (L,Σ, τ) is big and X̃ is Kähler, it follows from Theorem 1.6 that the

class {θ̃} = {θ̃}∂ ∂̄ is big, where θ̃ is defined in (5.6). By [D4] and Theorem 3.17

in [Bou], there exists a θ̃-psh function η with analytic singularities on X̃ such that

{η = −∞} =NAmp({θ̃}), η ≤ −1, and θ̃ + ddcη ≥ ε0ω̃ ≥ ε0π
⋆ω

hold on X̃, for some constant ε0 > 0.

Proposition 5.6. In the setting of Theorem 5.1, there exist a constant C > 0 and
p0 ∈ N such that for all p ≥ p0, the following estimate holds on X̃ \ Z:

ϕ̃p ≥ ϕ̃eq +
C

p
η+

1
p

ℓ∑

j=1

logσj.

Proof. We consider the Bergman space H0
(2)(X̃, L̃

p,Hp, ω̃n) of L2-integrable

sections of L̃p with respect to the volume form ω̃n on X̃ and the metric Hp :=

h̃
p
0 e
−2ψp on L̃p, where

ψp = (p − p0)ϕ̃eq + p0η+
ℓ∑

j=1

(p0τj + 1) logσj ,

and p0 ∈ N will be specified later. Since σj < 1, η < 0, and ϕ̃eq ≤ ϕ̃, we have
for p ≥ p0 that ψp ≤ (p − p0)ϕ̃. Moreover,

c1(L̃
p,Hp)

= pα̃+ (p − p0)dd
cϕ̃eq + p0dd

cη+
ℓ∑

j=1

(p0τj + 1)([Σ̃j]− βj)

= (p − p0)(α̃+ dd
cϕ̃eq)+ p0(θ̃ + dd

cη)+
ℓ∑

j=1

(p0τj + 1)[Σ̃j]−
ℓ∑

j=1

βj

≥ (p0ε0 − C1)ω̃,
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where C1 > 0 is a constant such that
∑ℓ
j=1 βj ≤ C1ω̃. If p0 is chosen large

enough (i.e., p0ε0 − C1 ≥ 1 + B + A/2, where A,B are as in Theorem 5.5) and
p ≥ p0, we use Theorem 5.5 for L̃p, with suitable weights χ as in the proof of
[CM1, Theorem 5.1], to show there exists a constant C2 > 0 such that for all
p ≥ p0 and x ∈ X̃ \ Z, there exists Sx ∈ H

0
(2)(X̃, L̃

p,Hp, ω̃n) with Sx(x) ≠ 0
and ∥∥Sx

∥∥2
Hp ,ω̃n

≤ C2

∣∣Sx(x)
∣∣2
Hp
.

Note that Hp = h̃pe2Fp , where Fp = pϕ̃ −ψp ≥ p0ϕ̃. Let a := minX̃ ϕ̃. Then,
Fp ≥ ap0, and since ω̃ ≥ π⋆ω, we obtain

∥∥Sx
∥∥2
Hp ,ω̃n

=

∫

X̃

∣∣Sx
∣∣2
h̃pe

2Fpω̃n ≥ e2ap0
∥∥Sx

∥∥2
h̃p ,π⋆ωn .

By (4.7), we have that ϕ̃eq = ϕ̃req +
∑ℓ
j=1 τj logσj on X̃, where ϕ̃req = ϕ̃req,Σ̃,τ is

the reduced equilibrium envelope of (α̃, Σ̃, τ, ϕ̃) defined in (4.6). Hence,

ψp = (p − p0)ϕ̃req + p0η+
ℓ∑

j=1

(pτj + 1) logσj

is a qpsh function with Lelong numbers ≥ pτj + 1 along Σ̃j. Since

∥∥Sx
∥∥2
Hp ,ω̃n

< +∞,

this shows that ord(Sx, Σ̃j) ≥ ⌊τjp⌋ + 1 ≥ tj,p, so Sx ∈ H
0
0(X̃, L̃

p, Σ̃, τ). More-
over, since

e2ap0
∥∥Sx

∥∥2
h̃p ,π⋆ωn ≤ C2

∣∣Sx(x)
∣∣2
h̃pe

2Fp(x),

we infer that
P̃p(x) ≥ C

−1
2 e

2ap0−2Fp(x).

Note that on X̃ we have, for some constant C3 > 0,

Fp = pϕ̃−ψp = p(ϕ̃ − ϕ̃eq)+ p0ϕ̃req − p0η−
ℓ∑

j=1

logσj

≤ p(ϕ̃− ϕ̃eq)+ C3 − p0η−
ℓ∑

j=1

logσj .

It follows there exists a constant C4 > 0 such that for all p ≥ p0,

(5.9)
1

2p
log P̃p ≥ ϕ̃eq − ϕ̃ −

C4

p
+
p0

p
η+

1
p

ℓ∑

j=1

logσj
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holds on X̃ \ Z. By using (5.4) and since η ≤ −1, (5.9) implies that

ϕ̃p ≥ ϕ̃eq +
C4 + p0

p
η+

1
p

ℓ∑

j=1

logσj

holds on X̃ \ Z for all p ≥ p0. ❐

Proof of Theorem 5.1. Since η, logσj are qpsh functions on X̃ with analytic

singularities along NAmp({θ̃}) (respectively, Σ̃j), there exist constants Nj,Mj >
0, 0 ≤ j ≤ ℓ, such that

η(x) ≥ −N0| log dist(x,NAmp({θ̃}))| −M0,

logσj(x) ≥ −Nj| log dist(x, Σ̃j)| −Mj ,

for all x ∈ X̃. Together with Proposition 5.6, these imply that there exist a con-
stant C1 > 0 and p0 ∈ N such that if p ≥ p0 then

(5.10) ϕ̃p ≥ ϕ̃eq −
C1

p
(| log dist(x,Z)| + 1)

holds on X̃.
Since ϕ is continuous, we have that ϕ̃ is continuous. Let ε > 0 and fix

δ = δ(ε) such that Cδ+ 2Ωϕ̃(Cδ) < ε/2, where C is the constant from Proposi-
tion 5.4. There exists pε such that (C/p)(1 − logδ) < ε/2 for p ≥ pε. Hence,
by Proposition 5.4,

(5.11) ϕ̃p ≤ ϕ̃eq + C

(
δ+

1
p
−

logδ

p

)
+ 2Ωϕ̃(Cδ) ≤ ϕ̃eq + ε

holds on X̃ for p ≥ pε. Note that log dist(·, Z) ∈ L1(X̃, ω̃n) (see, e.g., Lemma 5.2
in [CMN1] and its proof ). Assertion (i) of Theorem 5.1 now follows from (5.10)
and (5.11).

Assume next that the function ϕ is Hölder continuous on X. Then, ϕ̃ is
Hölder continuous on X̃, so Ωϕ̃(δ) ≤ C2δν for some constant C2 > 0, where ν
is the Hölder exponent of ϕ̃. Taking δ = p−1/ν in Proposition 5.4, we see there
exists a constant C3 > 0 such that

(5.12) ϕ̃p ≤ ϕ̃eq + C

(
p−1/ν + p−1 +

logp

νp

)
+ 2C2

Cν

p
≤ ϕ̃eq + C3

logp

p

holds on X̃ for p ≥ 2.
Assertion (ii) follows immediately from (5.10) and (5.12). ❐
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Using Theorem 5.1 we can prove the convergence of the Fubini-Study cur-
rents and their global potentials on X.

Proof of Theorem 1.8. Let (X̃,π, Σ̃) be a divisorization of (X,Σ) as in Defini-
tion 1.5. Then, π : X̃ \ E → X \ Y is a biholomorphism, where Y ⊃ Xsing is an
analytic subset of X with dimY ≤ n − 2 and E = π−1(Y). By Theorem 5.1,
ϕ̃p = ϕp ◦ π → ϕ̃eq in L1(X̃, ω̃n), where ω̃ is a Kähler form on X̃ such that

ω̃ ≥ π⋆ω. Recall that the functions ϕ̃p, ϕ̃eq are α̃-psh on X̃, where α̃ = π⋆α.
We define ϕeq := ϕ̃eq ◦π−1 on X \ Y ⊂ Xreg. Then,

∫

X\Y
|ϕp −ϕeq|ω

n =

∫

X̃\E
|ϕ̃p − ϕ̃eq|π

⋆ωn(5.13)

≤

∫

X̃
|ϕ̃p − ϕ̃eq|ω̃

n → 0 as p →∞.

Since π⋆(α+ddcϕeq) = α̃+ddcϕ̃eq ≥ 0, it follows that ϕeq is α-psh on X \Y .
It remains to show that ϕeq extends to an α-psh function on X. Let x0 ∈ Y

and Ux0 be a neighborhood of x0 in X on which L has a local holomorphic frame
ex0 , and let |ex0 |h0 = e

−ρ , where ρ is a smooth function on Ux0 . Then, ddcρ =
α. Since ρ ◦ π + ϕ̃eq is psh on π−1(Ux0) \ E, we infer that v := ρ +ϕeq is psh
on Ux0 \ Y . Hence, v extends to a psh function on Ux0 since X is normal and
dimY ≤ n−2 [GR1, Satz 4]. Therefore, ϕeq extends to an α-psh function on X.

The second assertion of Theorem 1.8 follows at once from (5.13) and Theo-
rem 5.1 (ii), since the function log dist(·, Z) ∈ L1(X̃, ω̃n). ❐

We record here an immediate consequence of Theorems 1.8 and 1.10 for the
case when Σ = ∅.

Corollary 5.7. Let (X,ω) be an irreducible compact normal Kähler space of di-
mension n, and let L be a big line bundle on X endowed with a continuous Hermitian
metric h. We denote by Pp the Bergman kernel function of H0(X, Lp) relative to hp

and ωn/n!, and by γp the corresponding Fubini-Study current (1.4). Let h0 be a
smooth metric on L, and denote by ϕp the global Fubini-Study potential relative to
h0 (1.4). Then, the following assertions hold:

(a) There is an α-psh functionϕeq on X such that as p →∞ we haveϕp →ϕeq

in L1(X,ωn), (1/p)γp → Teq := α+ddcϕeq, and (1/p)[sp = 0]→ Teq,
in the weak sense of currents on X, for σ∞-almost every {sp}p≥1 ∈ X∞.

(b) If, in addition, h is Hölder continuous, then there exist a constant C > 0 and
p0 ∈ N such that ‖ϕp −ϕeq‖L1(X,ωn) ≤ C (logp)/p for all p ≥ p0, and
the large deviation principle of Theorem 1.10 (ii) holds.

Note that if X is smooth, then ϕeq = sup{ψ ∈ PSH(X,α) : ψ ≤ϕ on X} is
the usual upper envelope.
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6. PROOF OF THE EQUIDISTRIBUTION THEOREM 1.10

Let h,h0,ϕ be as in (1.3). Let Pp , γp be the Bergman kernel function and Fubini-
Study current of the space H0

0,(2)(X, L
p), and let ϕp be the global Fubini-Study

potential of γp (see (1.4)). We start by proving that zero divisors of random
sections distribute like the Fubini-Study currents.

Theorem 6.1. Let X,L,Σ, τ verify assumptions (A)–(D), let h be a bounded
singular Hermitian metric on L, and assume (L,Σ, τ) is big and there exists a Kähler
form ω on X. Then, there exists a constant c > 0 with the following property. For
any sequence of positive numbers {λp}p≥1 such that

lim inf
p→∞

λp
logp

> (1+n)c,

there exist subsets Ep ⊂ Xp such that the following hold:
(a) σp(Ep) ≤ cpn exp(−λp/c) holds for all p sufficiently large.
(b) If sp ∈ Xp \ Ep we have

∣∣∣∣∣
1
p
〈[sp = 0]− γp,φ〉

∣∣∣∣∣ ≤
cλp
p
‖φ‖C2 ,

for any (n− 1, n− 1)-form φ of class C2 on X.
In particular, the last estimate holds for σ∞-almost every {sp}p≥1 ∈ X∞ provided that
p is large enough.

Proof. We apply the Dinh-Sibony equidistribution theorem for meromorphic
transforms [DS, Theorem 4.1], as in the proof of [CMN1, Theorem 4.2]. Our
present situation is easier as we only deal with currents of bidegree (1,1). We fix
a divisorization (X̃,π, Σ̃) of (X,Σ) as in Definition 1.5, and let ω̃ be a Kähler
form on X̃. Let L̃, h̃ be as in (5.1), and P̃p , γ̃p be the Bergman kernel func-
tion and Fubini-Study current of the space H0

0,(2)(X̃, L̃
p) (see (5.3)). By (5.2),

H0
0,(2)(X̃, L̃

p),H0
0,(2)(X, L

p) are isometric. We proceed in two steps.

Step 1. We prove here that Theorem 6.1 holds for the spaces H0
0,(2)(X̃, L̃

p). Set

X̃p := PH0
0,(2)(X̃, L̃

p), σp =ω
dp
FS , (X̃∞, σ∞) :=

∞∏

p=1

(X̃p , σp),

where dp = dim X̃p = dimXp .

We proceed as in [CMN1, Section 4] and consider the Kodaira maps as meromor-
phic transforms of codimension n− 1, Φp : X̃⇢PH0

0,(2)(X̃, L̃
p), with graph

Γp = {(x, s̃) ∈ X̃ × PH0
0,(2)(X̃, L̃

p) : s̃(x) = 0}.
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If δs̃p is the Dirac mass at s̃p ∈ PH
0
0,(2)(X̃, L̃

p), then Φ⋆p(δs̃p) is well defined for
generic s̃p and Φ⋆p(δs̃p) = [s̃p = 0]. Moreover, by [CMN1, Lemma 4.5] (see also
[SZ]) we have

〈Φ⋆p(σp),φ〉 =
∫

X̃p

〈[s̃p = 0],φ〉dσp(s̃p) = 〈γ̃p ,φ〉,

where φ is a smooth (n− 1, n− 1)-form on X̃. The intermediate degrees of Φp
are

d(Φp) :=
∫

X̃
Φ⋆p(σp)∧ ω̃n−1 = p

∫

X̃
c1(L̃, h̃)∧ ω̃

n−1,

δ(Φp) :=
∫

X̃
Φ⋆p(ω

dp−1
FS )∧ ω̃n =

∫

X̃
ω̃n.

For ε > 0 let

Ẽp(ε) :=
⋃

‖φ‖C2≤1

{
s̃ ∈ X̃p :

∣∣〈[s̃ = 0]− γ̃p,φ〉
∣∣ ≥ d(Φp)ε

}
.

By [DS, Lemma 4.2 (d)], we infer, using the estimates of [CMN1, Lemma 4.6]
for a projective space, that there exist constants C1, a1,M1 > 0 such that

σp(Ẽp(ε)) ≤ C1dpe
−a1εp+M1 logdp , ∀ ε > 0, p ≥ 1.

By Siegel’s lemma dp = O(pn), so σp(Ẽp(ε)) ≤ C2pne−a1εp+C2 logp for some
constant C2 > 0.

We let εp := λp/p and Ẽp := Ẽp(εp). If lim infp→∞(λp/ logp) > 2C2/a1, it
follows that σp(Ẽp) ≤ C2pne−a1λp/2 for all p sufficiently large. Set

c =max
(

2C2

a1(1+n)
,

2
a1
, C2,

∫

X̃
c1(L̃, h̃)∧ ω̃

n−1
)
.

If lim infp→∞(λp/ logp) > (1 + n)c then σp(Ẽp) ≤ cpne−λp/c for all p large
enough. Moreover,

∣∣∣∣∣
1
p
〈[s̃p = 0]− γ̃p ,φ〉

∣∣∣∣∣ ≤
d(Φp)
p

λp
p
‖φ‖C2 ≤

cλp
p
‖φ‖C2

holds for any s̃p ∈ X̃p \ Ẽp and any (n− 1, n− 1)-form φ of class C2 on X̃.
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Step 2. We complete now the proof of the theorem when X is singular. Let
c > 0 be the constant constructed in Step 1, let {λp}p≥1 be a sequence of positive
numbers such that lim infp→∞(λp/ logp) > (1 + n)c, and let Ẽp ∈ X̃p be the
corresponding sets constructed in Step 1. We now recall by (5.2) that the map
S ∈ H0

0,(2)(X, L
p) → π⋆S ∈ H0

0,(2)(X̃, L̃
p) is an isometry, and let Ep = Fp(Ẽp),

where Fp : X̃p → Xp is the isomorphism induced by this isometry. Then, we have
σp(Ep) ≤ cpne−λp/c for all p sufficiently large. Note that π⋆γ̃p = γp and, if
s ∈ Xp, then π⋆[s̃ = 0] = [s = 0], where s = Fp(s̃). Hence, if sp ∈ Xp \ Ep and
φ is any (n− 1, n− 1)-form of class C2 on X, we have

∣∣∣∣∣
1
p
〈[sp = 0]− γp ,φ〉

∣∣∣∣∣ =
∣∣∣∣∣

1
p
〈[s̃p = 0]− γ̃p , π⋆φ〉

∣∣∣∣∣

≤
cλp
p
‖π⋆φ‖C2 ≤

cc1λp
p

‖φ‖C2 ,

for some constant c1 > 0. The last assertion of Theorem 6.1 follows as in [CMN1,
Theorem 4.2]. ❐

Proof of Theorem 1.10. If h is continuous, then by Theorem 1.8,

1
p
γp → Teq weakly on X, as p → ∞.

Moreover, by Theorem 6.1, (1/p)([sp = 0] − γp) → 0 weakly on X, for σ∞-
almost every {sp}p≥1 ∈ X∞. This proves assertion (i).

Assume now h is Hölder continuous. There exists a constant C′ > 0 such
that

−C′‖φ‖C2ωn ≤ ddcφ ≤ C′‖φ‖C2ωn,

for every real valued (n − 1, n − 1)-form φ of class C2 on X. Hence, the to-
tal variation of ddcφ satisfies |ddcφ| ≤ C′‖φ‖C2ωn (see, e.g., [BCM]). Using
Theorem 1.8, we infer that

∣∣∣∣∣

〈
1
p
γp − Teq,φ

〉∣∣∣∣∣ =
∣∣∣∣
∫

X
(ϕp −ϕeq)dd

cφ

∣∣∣∣ ≤ C′‖φ‖C2

∫

X
|ϕp −ϕeq|ω

n

≤ CC′‖φ‖C2
logp

p
,

for all p ≥ p0 and φ as above. Assertion (ii) follows by combining this and
Theorem 6.1. ❐
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[RoS] J. ROSS AND M. SINGER, Asymptotics of partial density functions for divisors,
J. Geom. Anal. 27 (2017), no. 3, 1803–1854. https://dx.doi.org/10.1007/

s12220-016-9741-8 . MR3667411.
[RT06] J. ROSS AND R. THOMAS, An obstruction to the existence of constant scalar curvature Kähler

metrics, J. Differential Geom. 72 (2006), no. 3, 429–466. http://dx.doi.org/10.4310/
jdg/1143593746. MR2219940.
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