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We show that normalized currents of integration along the common zeros of random
m-tuples of sections of powers of m singular Hermitian big line bundles on a com-
pact Kahler manifold distribute asymptotically to the wedge product of the curvature
currents of the metrics. If the Hermitian metrics are Hélder with singularities we also

estimate the speed of convergence.

1 Introduction

Random polynomials or more generally holomorphic sections and the distribution of
their zeros represent a classical subject in analysis [5, 25, 28, 31], and they have been
more recently used to model quantum chaotic eigenfunctions [8, 37].

This area witnessed intense activity recently [6, 7, 9, 22, 23, 39-41], and
especially results about equidistribution of holomorphic sections in singular Her-

mitian holomorphic bundles were obtained [11-14, 20] with emphasis on the speed
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of convergence. The equidistribution is linked to the Quantum Unique Ergodicity
conjecture of Rudnick-Sarnak [38], cf. [29, 35].

The equidistribution of common zeros of several sections is particularly
interesting. Their study is difficult in the singular context and equidistribution with the
estimate of convergence speed was established in [20] for Hélder continuous metrics.

In this paper, we obtain the equidistribution of common zeros of sections of m
singular Hermitian line bundles under the hypothesis that the metrics are continuous
outside analytic sets intersecting generically. We will moreover introduce the notion of
Holder metric with singularities and establish the equidistribution with convergence
speed of common zeros.

Let (X, w) be a compact Kahler manifold of dimension n and dist be the distance
on X induced by w. If (L, h) is a singular Hermitian holomorphic line bundle on X we
denote by ¢ (L, h) its curvature current. Recall that if e; is a holomorphic frame of L on
some open set U C X, then |e; |2 = e 2%, where ¢ € L}, (U) is called the local weight of the
metric h with respect to e, and ¢;(L, h)|y = dd°¢. Here d=0 + 0, d°= ;.- (3 — 9). We say
that h is positively curved if ¢ (L, h) > 0 in the sense of currents. This is equivalent to
saying that the local weights ¢ are plurisubharmonic (psh).

Recall that a holomorphic line bundle L is called big if its Kodaira-Iitaka
dimension equals the dimension of X (see [33, Definition 2.2.5]). By the Shiffman-Ji-
Bonavero-Takayama criterion [33, Lemma 2.3.6], L is big if and only if it admits a singu-
lar metric h with ¢ (L, h) > ¢w for some ¢ > 0.

Let (Lg, hx), 1 <k<m <n, be m singular Hermitian holomorphic line bundles on
(X, ®). Let H) (X, L) be the Bergman space of L?-holomorphic sections of Lf := LYP
relative to the metric hy ,:=hy” induced by h and the volume form " on X, endowed

with the inner product
(S.8);,= L(S, SV, 0" S.S € Hy (X, L) (1)

Set |ISII} , = (S, S)kp, dhp=dim H} (X, Ly) — 1. For every p>1 we consider the multi-
projective space

Xp:=PHY (X,L{) x --- x PH} (X, L) (2)

equipped with the probability measure o, which is the product of the Fubini-Study vol-
umes on the components. If Se€ H°(X, L) we denote by [S= 0] the current of integration

(with multiplicities) over the analytic hypersurface {S =0} of X. Set

[sp=0]1:=I[sp =0l A Alspm=0l, fors,=(spi,...,Spm)€Xp,
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whenever this is well defined (cf. Section 3). We also consider the probability space

o0

(£2,00) := 1_[ (Xp, op) .
p=1
Let us recall the following definition.
Definition 1.1. We say that the analytic subsets Ay, ..., 4, m <n, of a compact complex

manifold X of dimension n are in general position if codimA4; N---N 4;, >k for every

l<k<mandl<ij<---<ixp<m. O
Here is our first main result.

Theorem 1.2. Let (X, w) be a compact Kdhler manifold of dimension n and (L, h),
1 <k<m <n, be m singular Hermitian holomorphic line bundles on X such that hy is
continuous outside a proper analytic subset X (hy) C X, ¢ (Lg, hy) > cw on X for some
e>0,and Y (hy), ..., ¥ (hy) are in general position. Then for o,.-a.e. {Sp}p>1 € §2, we have

in the weak sense of currents on X,
1
p—m[SPZO]—>C1 (L],h])/\"-/\Cl (Lm,hm) as p— Q. O

In order to prove this theorem we show in Theorem 4.2 that the currents pim[s p=
0] distribute as p— oo like the wedge product of the normalized Fubini-Study currents
of the spaces H(%)(X, L?P) defined in (10). Then in Proposition 3.1 we prove that the latter
sequence of currents converges to ¢; (L1, hy) A -+ A €1 (L, hpy).

Our second main result gives an estimate of the speed of convergence in

Theorem 1.2 in the case when the metrics are Hélder with singularities.

Definition 1.3. We say that a function ¢ : U — [—00, c0) defined on an open subset U C X
is Holder with singularities along a proper analytic subset ¥ C X if there exist constants
c,0>0and 0<v<1such that

cdist (z, w)"

$(2) = ¢ )| = min {dist (z, ¥), dist (w, X)}° ?

holds for all z,w e U \ X¥. A singular metric h on L is called Hélder with singularities
along a proper analytic subset ¥ C X if all its local weights are Hoélder functions with

singularities along X'. O

Holder singular Hermitian metrics appear frequently in complex geometry and

pluri-potential theory. Let us first observe that metrics with analytic singularities
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[33, Definition 2.3.9], which are very important for the regularization of currents and
for transcendental methods in algebraic geometry [3, 13, 16, 17, 19], are Holder met-
rics with singularities. The class of Holder metrics with singularities is invariant under
pull-back and push-forward by meromorphic maps. In particular, this class is invariant
under birational maps, for example, blow-up and blow-down. They occur also as certain
quasiplurisubharmonic upper envelopes (e.g., Hermitian metrics with minimal singular-

ities on a big line bundle, equilibrium metrics, see [2, 20, 21], especially [3, Theorem 1.4]).

Theorem 1.4. In the setting of Theorem 1.2 assume in addition that h; is Hélder with
singularities along X (h;). Then there exist a constant £ > 0 depending only on m and a
constant c=c(X, L1, hy, ..., Ly, hy) > 0 with the following property: for any sequence of

positive numbers {Ap},-; such that

X
liminf —2— > (1 +£&n)c,
p—>x logp

there are subsets E, C X, such that for p large enough,

(@) op(Ep) <cpexp(—i,/c),
(b) if's,eX,\ E, we have

m

1
‘<_m[sp:O]— ¢ (L, hk)’¢>
p k=1

cA
< =Pl
p

for any form ¢ of class ¢2.

In particular, the last estimate holds for o.-a.e. sequence {sp} 1 € £2 provided

that pis large enough. O

Let P, be the Bergman kernel function of the space H(%)(X, LP) defined in (4)
below. The proof of Theorem 1.4 uses the estimate for P, obtained in Theorem 2.1 in
the case when the metric h on L is Holder with singularities.

One can readily specialize Theorem 1.4 to study the asymptotics with speed of
common zeros of random m-tuples of sections of a (single) big line bundle endowed with
a Holder Hermitian metric with singularities along a proper analytic subset ¥ C X of
codimension > m. Let (L, h) be a singular Hermitian holomorphic line bundle on (X, w)
and Hg)(X, LP) be the corresponding spaces of L?-holomorphic sections. Consider the

multi-projective space

Xj 1= (PHg, (X, L7))"
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endowed with the product probability measure o, induced by the Fubini-Study volume
on PHY (X, LP), and let

[ee]

(2',0) = l_[ (X 0p) -
p=1
If sp=(Sp1,...,Spm) €X), we set [sp=0]:=[sp1 =0l A--- Alspm =0], provided this cur-

rent is well-defined. Applying Theorem 1.4 with (Lg, hx) = (L, h), 1 <k <m, and for the

sequence A, = (2 4 én)clog p, we obtain:

Theorem 1.5. Let (X, w) be a compact Kahler manifold of dimension n and (L, h) be
a singular Hermitian holomorphic line bundle on X such that h is Holder with singu-
larities along a proper analytic subset ¥ C X of codimension > m, and ¢ (L, h) > ¢w for
some ¢ > 0. Then there exist a constant C > 0 depending only on (X, w, L, h), and subsets

Ep C X, such that for p large enough,

(a) Gé,(Ep)SCpfz,
(b) if spe X))\ Ep we have

Kimlsp = 0] —C (L9 h)m ) ¢>
p

lo
<8P 5.
p

for any form ¢ of class €2.

In particular, the last estimate holds for ¢/ -a.e. sequence {sp} -1 € £2’ provided

that pis large enough. O

This paper is organized as follows. In Section 2, we prove a pointwise esti-
mate for the Bergman kernel function in the case of Holder metrics with singularities.
Section 3 is devoted to the study of the intersection of Fubini-Study currents and to a ver-
sion of the Bertini theorem. In Section 4, we consider the Kodaira map as a meromorphic
transform and estimate the speed of convergence of the intersection of zero-divisors of

m bundles. We use this to prove Theorem 1.2. Finally, in Section 5 we prove Theorem 1.4.

2 Asymptotic Behavior of Bergman Kernel Functions

In this section, we prove a theorem about the asymptotic behavior of the Bergman kernel
function in the case when the metric is Holder with singularities.

Let (L, h) be a holomorphic line bundle over a compact Kdhler manifold (X, ) of
dimension n, where his a singular Hermitian metric on L. Consider the space H(Oz) (X, LP)

of L2?-holomorphic sections of LP relative to the metric h? := h®P induced by h and the
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volume form " on X, endowed with the natural inner product (see (1)). Since Hg)(X, LP)
is finite dimensional, let {S}D}?;o be an orthonormal basis and denote by P, the Bergman

kernel function defined by

dp 2 2
Py0=Y" ‘s}’ (x)‘hp , ’sj’ (%) ’hp - <S§’ (x), S? (x)}hp | xeX. (4)
=0

Note that this definition is independent of the choice of basis.

Theorem 2.1. Let (X, w) be a compact Kahler manifold of dimension n and (L, h) be a
singular Hermitian holomorphic line bundle on X such that ¢; (L, h) > ew for some ¢ > 0.
Assume that h is Holder with singularities along a proper analytic subset ¥ of X and
with parameters v, ¢ as in (3). If P, is the Bergman kernel function defined by (4) for
the space H(Oz) (X, LP), then there exist a constant ¢> 1 and pp € N which depend only on
(X, w, L, h) such that for all ze X\ ¥ and all p> py

2n/v

cp

__. 5
dist (z, X)*/" ©

O

1
—<P,(2)<
e p(2) <

Recall that by Theorem 5.3 in [12] we have lim, %log P,(2) =0 locally uni-
formly on X\ X for any metric h which is only continuous outside of X. Theorem 2.1
refines [12, Theorem 5.3] in this context, and it is interesting to compare it with the
asymptotic expansion of the Bergman kernel function in the case of smooth met-
rics [4, 10, 30, 33, 34, 42, 45].

Proof. The proof follows from [12, Section5], which is based on techniques of
Demailly [15, Proposition 3.1; 20, Section 9]. Let x € X and U, C X be a coordinate neigh-
borhood of x on which there exists a holomorphic frame e, of L. Let v, be a psh weight of
hon U,. Fix ry > 0 so that the (closed) ball V := B(x, 2ry) € U, and let U := B(x, ). By [12,

(7)] there exist constants ¢; > 0, pp € N so that

_loga
p

log (air=2")

< 119 log P, (2) < +2 (%}335 Yo — Va (Z)>

holds for all p> py, 0 <r <1y and z€ U with ¥, (2) > —o0.

For ze U \ ¥ and r < min{dist(z, X), ro} we have since , is Holder that

Crv
Blam Vo= Va (@< (dist (z, X) —r)?’

9T0Z ‘Gz 1snbny uo AriqiT AisIBAIUN asndelAS e /B10°Seulnolploxo uiwi//:dny woiy papeojumoq


http://imrn.oxfordjournals.org/

5054 D. Coman et al.

—1/v

where ¢> 0 depends only on x. Taking r = dist(z, )" p < dist(z, X)/2 (for py large

enough), we obtain
—logc <log P, (2) <logc — 2nlogr + 2%t cpr'dist (z, ¥) @
= ¢ + 2nlog (dist (z, )~ p'/").

This holds for all ze U \ ¥ and p> py, with constants ry, pp, co, &1 depending only on x.

A standard compactness argument now finishes the proof. [ |

3 Intersection of Fubini-Study Currents and Bertini Type Theorem

In this section, we show that the intersection of the Fubini-Study currents associated
with line bundles as in Theorem 1.2 is well defined. Moreover, we show that the sequence
of wedge products of normalized Fubini-Study currents converges weakly to the wedge
product of the curvature currents of (Lg, hx). We then prove that almost all zero-divisors
of sections of large powers of these bundles are in general position in the sense of
Definition 1.1.

Let V be a vector space of complex dimension d+ 1. If ¥V is endowed with a
Hermitian metric, then we denote by wgs the induced Fubini-Study form on the projective
space P(V) (see [33, p. 65, 212]) normalized so that wgs is a probability measure. We also
use the same notations for P(V*).

We keep the hypotheses and notation of Theorem 1.2. Namely, (L, hg), 1 <k <
m < n, are singular Hermitian holomorphic line bundles on the compact Kédhler manifold
(X, w) of dimension n, such that hy is continuous outside a proper analytic subset X (hy) C
X, ¢ (L, hg) > ew for some ¢ > 0, and X' (h), ..., X (h,,) are in general position in the sense
of Definition 1.1.

Consider the space Hj (X, Ly) of L?-holomorphic sections of L; endowed with
the inner product (1). Since ¢; (L, hx) > ew, it is well known that H(%)(X, L?) is nontrivial

for p sufficiently large, see for example, Proposition 4.7. Let
di.p:=dim H) (X, L{) — 1.
The Kodaira map associated with (L,f, hx,p) is defined by
Dip: X-->G (dp, HY) (X, L)), Prp®:={seHY (X.LY):sx) =0}, (6)

where G(dk,p, H? (X,L,f)) denotes the Grassmannian of hyperplanes in H(OZ)(X,L}?)

(2)
(see [33, p.82]). Let us identify G (dk,p, H(Oz) (X, L,f)) with P (HO (X, L,f)*) by sending a

2)
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hyperplane to an equivalence class of non-zero complex linear functionals on H(Oz) (X, L ,f)
having the hyperplane as their common kernel. By composing @ , with this identifica-

tion, we obtain a meromorphic map
Dpp: X--»P(HY (X. LY)"). (7)
To get an analytic description of @y ,, let
k, 0 .
S;PeHp (X, Ly), j=0,...,dp, 8)

be an orthonormal basis and denote by P, the Bergman kernel function of the space
H(%) (X, LY) defined as in (4). This basis gives identifications H(%) (X,L,‘?):(Cdﬁerl and
P (H(%) (X, L,f)*) ~ P>, Let U be a contractible Stein open set in X, let ex be a local holo-
morphic frame for Ly on U, and write Sf’p = sf’p e;F, where sf’p is a holomorphic function
on U. By composing @i , given in (7) with the last identification, we obtain a meromor-

phic map & ,: X --» P%» which has the following local expression

Ppp (%) = [sg*l’ (x):...: sg;i (X)] forxeU. (9)

G,
It is called the Kodaira map defined by the basis {Sf’p} _ I;.
J:
Next, we define the Fubini-Study currents y , of H} (X, L) by

di.p
1
yk,p|U=§ddclog E |s§’p|2, (10)
J=0

P are as above. Note that yy , is a

where the open set U and the holomorphic functions S?
positive closed current of bidegree (1, 1) on X, and is independent of the choice of basis.
Actually, the Fubini-Study currents are pullbacks of the Fubini-Study forms by Kodaira
maps, which justifies their name.

Let wgps be the Fubini-Study form on P%». By (9) and (10), the currents Yk, p can be

described as pullbacks

ykvpz(p;,p(wFS)» 1<k<m. (11)

We introduce the psh function

dk.p

1 2 1

U p:=— log E ‘s?’p‘ =u+ —logPy, onU, (12)
2p 3 2p
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where u is the weight of the metric hx on U corresponding to e, so |ex|n = e~ %. Clearly,
by (10) and (12), dd°u, p, = %yk,p. Moreover, note that by (12), log Py p € LY(X, o™ and

1 1
— =c; (Li, b — dd°log P 13
ka,p a (Lg k)+2p og Py p (13)

as currents on X. By [12, Theorems 5.1 and 5.3] (see also [12, (7)]) there exist ¢> 0, pp € N,
such thatif p> py, 1 <k<m and ze X\ ¥ (h), then Py ,(2) > c. By (12) it follows that

logc
uk,p(Z)zuk(ZHE, zeU, p>=p, 1<k=m. (14)

For p>1 consider the following analytic subsets of X:
Sipi={xeX: SfP®) =0, 0=j=d,| 1=k=m.

Hence X is the base locus of H) (X, Ly), and Xy, N U = {uy , = —oo}. Note also that
2 (he) N U D {uy = —oc} and by (14) we have Xy , C ¥ (hi) for p> py.

Proposition 3.1. In the hypotheses of Theorem 1.2 we have the following:

(i) For all p sufficiently large and every JC ({1,..., m} the analytic sets Xy p,
ked, X(h), teJ:={1,...,m}\ J, are in general position.

(ii) If pis sufficiently large then the currents

/\ Yi.p A /\ ¢ (Le, he)

keJ teJ

are well defined on X, for every JC {1, ..., m}.
(iii) #yl,p/\ o AVmp— (L1, h) A--- Aci (L, hy) as p— oo, in the weak sense

of currents on X. O

Proof. Asnoted above we have by (14) that X} , C X (hy) for all p sufficiently large. Since
Y (hy), ..., X(hy) are in general position this implies (i). Then (ii) follows by [18, Corollary
2.11].

(iii) Let U C X be a contractible Stein open set as above, u p, U be the psh func-
tions defined in (12), so dd°ux = ¢i(Lx, hx) and dd°u p = Ilo)”cp on U. By [12, Theorem 5.1],
we have that %log Py p— 0in L' (X, o™, hence by (12), ug , > w in Lj,(U), as p— oo, for
each 1 <k<m. Recall that by (14), w p> ux — Qp holds on U for all p sufficiently large
and some constant C > 0. Then [26, Theorem 3.5] implies that dd°u; p, A - -+ A dd°Upm, p —
dd’u; A --- A dd°u,, weakly on U as p— oo. [ ]
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We will need the following version of Bertini's theorem. The corresponding

statement for the case of a single line bundle is proved in [12, Proposition 4.1].

Proposition 3.2. Let Ly —> X, 1 < k<m <n, be holomorphic line bundles over a compact

complex manifold X of dimension n. Assume that

() Vi is a vector subspace of H°(X, Ly) with basis Sko,..., Stq, base locus
BsVi:={Sko="++=5cq =0} CX, such that d>1 and the analytic sets
BsV, ..., BsV, are in general position in the sense of Definition 1.1.

(i) Z@):= {XG X: Z?":O b j Sk, j(%) = O}, where = [to: ...t g | € P%.

(i) v=p1 X --- X W, is the product measure on P% x ... x P4, where py is the

Fubini-Study volume on P%.

Then the analytic sets Z(%),...,Z(t,) are in general position for v-a.e.
(ti, ..., tn) €EPH x ... x P, O

Proof. If 1<l <---<lx<mlet v, 5 =m, X - x uy, be the product measure on P x

... x P% For 1 < k< m consider the sets
Ue={(t,,....4,) €P% x ... x P4 : dim Z (t,)n---NZ (4) N A <n—k— j},

where 1 <l; <---<lx<m, j=0and Ay =0, or1<j<m—kand A;j=BsV; N---NBsV;
forsomei; <---<i;in{l,..., m}\ {l,..., L.

The proposition follows if we prove by induction on k that

v (U =1

forevery set Uy with1 <[, <--- <lxr<m,0< j<m —kand Aj as above. Clearly, it suffices
to consider the case {l1,...,lx} ={1, ..., k}. To simplify notation we set vy :=v; .

Let k=1.If j=0, Ag=¥, so Uy ={t; € P%: dim Z(t;) <n— 1} =P%. Assume next
that 1 < j<m —1 and write Aj= UZI\L 1 D1 U B, where D; are the irreducible components
of A; of dimension n— j and dimB <n— j— 1. We have that {t eP%: D;C Z(t))} is a
proper linear subspace of P%. Indeed, otherwise D; C BsV;, so dim A;NBsVi=n-—j,
which contradicts the hypothesis that BsV,...,BsV,, are in general position. If ¢ €
P% \ Uy, then dim Z(t;) N Aj>n— j. Since Z(t;) N A; is an analytic subset of 4;, it fol-
lows that D; C Z(t;) N A; for some , hence P% \ U, = J;, {t e P% : D; € Z(t)}. Therefore,
1 (P%\ Uy) =0.
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We assume now that vi(Uy) = 1 for any set Uy as above. Let
U1 ={(t1, ... . fkr) €PP x - x PE - dimZ () NN Z (y) NAj<n—k—1—j},

where 0<j<m-—k—1, Ay=0, or Aj=BsV; N---NBsV;; with k+2<i; <---<i;<m.
Consider the set U =U’' N U”, where

U/

[t ) ePh x . xPk:dimZ () N---NZ () NA <n—k— j},

U'={t,....t00 €P" x - xP¥: dimZ () N-- - NZ () NBsVi1 N Aj<n—k—j—1}.

By the induction hypothesis we have v (U’) = v (U") =1, so vw(U)=1. To prove that
Vi1 (Ugy1) = 1 it suffices to show that

ver1 (W) =0, where W:= (U x P%1)\ Upy,.
To this end we fix t:=(t;, ..., &) € U, we let
Z@&):=Z@)N---NZ{H), W)= [ty eP% : dimZ () N AjN Z (1) =n—k— j},

and prove that pg 1 (W(t)) =0.

Sincete U C U’ we canwrite Z(t) N A; = U;‘;l D; U B, where D; are the irreducible
components of Z(t) N A; of dimension n—k— j and dimB <n—k— j— 1. If ty, € W(2),
then Z(t) N A; N Z (1) is an analytic subset of Z(¢) N A; of dimension n—k — j, so D; C
Z(t)N Aj N Z(tgy1) for some I. Thus

N
W(t)= U Fi(t), where Fj (¢) = {ti1 €P%: Dy C Z (1)} -
=1

If D; C BsViy, then dim Z(t) N A; N Bs Vi1 =n— k — j, which contradicts the fact that t e
U”. Hence the sections in V4 cannot all vanish on D;, so we may assume that Sii; 4., #0
on D;. We have Fj(t) C {tx+1.0 =0} U Hi(t) where

tir1,des—1 - ¢1 € Hi(t). Indeed, if ¢ # ¢’ have this property then

Sk1,0 T Ter1,1941,1 + -+ Ber 1, —19k+1,de —1 T @Skt1,4.,, =0 on Dy,
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for a=¢,¢’, hence Sgi1,4,, =0 on Dj, a contradiction. It follows that i1 (H(t)) =0, so
Ukr1(F1(t)) = 0. Hence g1 (W(t)) =0 and the proof is complete. [ |

.
We return now to the setting of Theorem 1.2. If {Sf’p } , po is an orthonormal basis

j=
of HY (X, LY). we define the analytic hypersurface Z(%) C X, for te=[tco:...:tq,] €
Pdr, as in Proposition 3.2 (ii). Let 1k , be the Fubini-Study volume on P%», 1 <k<m,
p>1,and let np=p1 p X -+ X m,p be the product measure on P%» x ... x P4r. Apply-

ing Proposition 3.2 we obtain:

Proposition 3.3. In the above setting, if p is sufficiently large, then for u,-a.e.
(t1, ..., ty) €P%r x ... x Pdr the analytic subsets Z(t,), ..., Z(t,) C X are in general posi-
tion, and Z(%,) N---N Z(t,) has pure dimension n—k for each 1 <k<m, 1<i;<---<

r<m. O

Proof. Let Vi p:=Hy, (X, L}), so BsVi, = T p. By Proposition 3.1, &y . ..., Zm p are in
general position for all p sufficiently large. We fix such p and denote by [Z(#)] the current
of integration along the analytic hypersurface Z(y); it has the same cohomology class as
pcy (L, hy). Proposition 3.2 shows that the analytic subsets Z(t;), ..., Z(t,) are in general
position for u,-a.e. (t, ..., ty) €P%r x ... x Pdnr. Hence if 1 <k<m, 1 <i; <--- <z <m,
the current [Z ()] A --- ALZ(%,)] is well defined by [18, Corollary 2.11] and it is supported
in Z(t)N---NZ(,). Since ¢; (L, hg) > cw, it follows that

J Z (%) A ALZ () A F= pkj a (Li, hi)) A Aer (L, i) Ao™F> pkskJ o™
X X X

So Z(t;,) N---N Z(t,) # ¥, hence it has pure dimension n— k. |

4 Convergence Speed Towards Intersection of Fubini-Study Currents

In this section, we rely on techniques introduced by Dinh-Sibony [23], based on the
notion of meromorphic transform, in order to estimate the speed of equidistribution of
the common zeros of m-tuples of sections of the considered big line bundles towards

the intersection of the Fubini-Study currents. We then prove Theorem 1.2.

4.1 Dinh-Sibony equidistribution theorem

A meromorphic transform F: X --» Y between two compact Kahler manifolds (X, w) of
dimension n and (Y, wy) of dimension m is the data of an analytic subset 'C X x Y

(called the graph of F) of pure dimension m + k such that the projections 7;: X x Y > X
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and 7, : X x Y — Y restricted to each irreducible component of I' are surjective. We set
formally F =, o (m;|;) *. For y € Y generic (that is, outside a proper analytic subset), the
dimension of the fiber F~(y) :=m (712_1 |p(y)) is equal to k. This is called the codimension

of F. We consider two of the intermediate degrees for F (see [23, Section 3.1]):

d(F) ::J

F* (o) Aot and 5 (F)= J F* (o) A b
X X

By [23, Proposition 2.2], there exists r:=r(Y, wy) such that for every positive
closed current T of bidegree (1,1) on Y with ||T||=1 there is a smooth (1, 1)-form «
which depends uniquely on the class {T} and a quasi-plurisubharmonic (qpsh) function
¢ such that —rwy <a <rwy and dd°¢ — T =«. If Y is the projective space P* equipped

with the Fubiny-Study form wgs, then we have r (P*, wps) = 1. Consider the class
Q(Y,wy):={¢ gpshonY, dd°¢ > —r (Y, wy) wy}.

A positive measure p on Y is called a BP measure if all qpsh functions on Y are integrable
with respect to n. When dim Y =1, it is well known that x is BP if and only if it admits
locally a bounded potential. The terminology BP comes from this fact (see [23]).

If 1 is a BP measure on Y and t € R, we let
R (Y, wy, pu) :=sup {m;’;lxgo: pe QY wy), J (pd,uzo},
Y

A(Y,wy,u,t)::sup{u(go<—t):(peO(Y,a)y), J ¢du:0}.
v

These constants are related to the Alexander-Dinh-Sibony capacity [1, 23, 27].
Let @, be a sequence of meromorphic transforms from a compact Kéhler man-
ifold (X, w) into compact Kahler manifolds (X, wp) of the same codimension k, where

X, is defined in (2). Let v, be a BP probability measure on X, and ve, =[],.; vp be the

p=1
product measure on §2 := szl Xp. For every p>0and e >0 let

Epe)i= |J {xpeXp: ([0} (8) — 2} () . 9] = d(@p) e}
lpll gz =1
where Jy, is the Dirac mass at x,. Note that D7 (8x,) and @} (vp) are positive closed cur-
rents of bidimension (k, k) on X, and the former is well defined for the generic point
x, € X, (see [23, Section 3.1]). Now we are in position to state the part which deals with
the quantified speed of convergence in the Dinh-Sibony equidistribution theorem [23,
Theorem 4.1].
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Theorem 4.1 ([23, Lemma 4.2 (d)]). In the above setting the following estimate holds:

vp (Ep (8)) = A (Xp, p, vp, 7le,p)

where 7, 1= £8(® ) L d(®p) — 3R (Xp, @p, Vp). O

4.2 Equidistribution of pullbacks of Dirac masses by Kodaira maps

Let (X,w) be a compact Kdhler manifold of dimension n and (Lg, hy), 1<k<m<n,
be singular Hermitian holomorphic line bundles on X such that h; is continuous

outside a proper analytic subset X (hy) C X, ¢;(Lg, hx) > ew on X for some ¢ >0, and

Y (hy), ..., X(hy) are in general position. Recall from Section 1 that
o0
Xp=PHQ (X, LY) x --- x PHY (X, LE). (2.00) =[] (Xp.0p).
p=1

where the probability measure o, is the product of the Fubini-Study volume on each
factor. From now on let pe N be large enough. Fix an orthonormal basis {Sf’p}?;po as in
(8) and let & ,: X --» P%» be the Kodaira map defined by this basis (see (9)). By (11) we
have that q),’;pwps = ¥k.p, Where yj , is the Fubini-Study current of the space H(%)(X, Lf) as
defined in (10).

We consider now the Kodaira maps as meromorphic transforms from X to
]P’H(%)(X, L?) which we denote still by &y ,: X --» ]P’H(%)(X, L?). Precisely, this is the mero-

morphic transform with graph
INp={(x.5) e X xPH} (X.LY): s(x =0}, 1<k=<m.

Indeed, since dim H(Oz)(X, L,f) > 2 (see e.g., Proposition 4.7), there exists, for every x € X,
a section s € H) (X, L) with s(x) =0, so the projection I , — X is surjective. Moreover,
since L{ is non-trivial, every global holomorphic section of LY must vanish at some

x € X, hence the projection Iy , — ]P’H(%)(X, LY) is surjective. Note that
Prp(x)={s€PHY (X, Lf): s(x) =0}, & ,(s)={xeX:5(x)=0}.

Let @, be the product transform of @, p, ..., ®n p (see [23, Section 3.3]). It is the mero-

morphic transform with graph

Fp={(%Sp1. ... Spm) € X X Xp: Sp1 (X) =+ =Spm (x) =0} . (15)
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By above, the projection 17, : I', — X is surjective. The second projection /T, : I, — X,
is proper, hence by Remmert's theorem I7,(/) is an analytic subvariety of X,. Propo-
sition 3.3 implies that 7,(/"p) has full measure in X,, so T is surjective and @, is a

meromorphic transform of codimension n— m, with fibers

@, (sp)={xeX:sp () =-=5pm (=0}, wheres,=(sp1.....Spm) €Xp.

Considering the product transform of any @;, ,, ..., ®; p, 1 <i; <--- <ix <m, and argu-
ing as above it follows that, for s, = (sp1, ..., Spm) € X, generic, the analytic sets {sp =
0}, ..., {spm =0} are in general position. Hence by [18, Corollary 2.11] the following cur-

rent of bidegree (m, m) is well defined on X:
@, (8s,) =[sp=01=Isp1 =01 A--- Alspm =01= P ,(8s,,) A= A Py, 1, (8s,) -
The main result of this section is the following theorem.

Theorem 4.2. Under the hypotheses of Theorem 1.2 there exist a constant & > 0 depend-
ing only on m and a constant c=c(X, Ly, hy, ..., Ly, hy) > 0 with the following property:

for any sequence of positive numbers {A,} -1 with

A
liminf —2— > (1 +£&n)c,
p>oo logp

there are subsets E, C X, such that

(a) op(Ep) <cp™exp(—ip,/c) for all p large enough;
(b) if's,eX,\ E, we have that the estimate

1 Ap
p_m<[sp=O] —YL.p /N NVm.ps o) SC; @2

holds for every (n— m, n— m) form ¢ of class ¢>.

In particular, for o.-a.e. s € £2 the estimate from (b) holds for all p sufficiently

large. |

Prior to the proof we need to establish some preparatory results. Let

dop=dip+- -+ dmp
be the dimension of X, and mx be the canonical projection of X, on to its kth factor. Let

. .
wp=Cp(mfwps + -+ mhwrs), SOop=wp”.
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Here wrs denotes, as usual, the Fubini-Study form on each factor IP’H(OZ) (X, L,f), and the

constant ¢, is chosen so that o, is a probability measure on X, thus

)7d().p _ dlp!

T dipl .. dnp! (16

(Cp
Lemma 4.3. There is a constant ¢, > 0 such that ¢, > ¢; for all p>1. O

Proof. Fix p>1 large enough. For each 1 <k<m, let ly:=d,. Using Stirling’s for-
mula ¢!~ (£/e)*~/2m ¢ it suffices to show that there is a constant ¢> 0 such that for all

lls--'vlmzll

1 1
log(ll+...+lm)—< Llogh . M)ga

[T E N AT

Since the function ¢+ tlogt, t > 0, is convex, we infer that

bt dln, L+ +lin
log .
m

1
—(loghi + -+l logln) = -

This implies the required estimate with c¢:=logm. [

Following Section 4.1, we consider two intermediate degrees for the Kodaira

maps P .

dp=d(®p) :=J o5, (a)ﬁ"p> A" ™ and §,=35(Pp) ::J Py, (a)go'p_l) A @
b'e b'e

The next result gives the asymptotic behavior of d, and §, as p— oc.

Lemma 4.4. We have d, = p™||ci(L1, l) A -+ A 1 (Lm, hp)|l and

p=

m—1 m dk m
P Zel A L <cpr,
% = do.p =1

— =1,1#k

where C > 0 is a constant depending on (Lg, hg), 1 <k <m. O

Proof. We use a cohomological argument. For the first identity we replace a)f,”‘p by a
Dirac mass ds, where s:=(sy, ..., sp) € X, is such that {s; =0}, ..., {s,, =0} are in gen-
eral position, so the current D (8s) = [s;=0]A--- Alsp,=0] is well defined (see Proposi-

tion 3.3). By the Poincaré-Lelong formula [33, Theorem 2.3.3],

[se =01 = pey (L, hy) + ddlog |skln.,. 1<k<m.
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Since the current c;(Ly, hy) A -+ A €1 (L, hy) is well defined (see Proposition 3.1) it fol-
lows that

JXQZ Bs) N =p" Lel AN AOp A™ ™ =p™ JXCI (Li,h)A---Ac (L, ) A™ ™,
where 6 is a smooth closed (1, 1) form in the cohomology class of ¢ (Lk, hx). Thus
= L HACHEC JX (89 A" = Mo (L ) A+ A Cy (B o) .
For the second identity, a straightforward computation shows that

d dp—1 dn
* 1.p * D * P
Tiwgg” A ATEwgg” A AT wpg

m d,p—1
dop—1 cp” (dop—1)!
“p _,;dl,p!...(dk,p—1)!...dm,p!

Using (16) and replacing a)?g” (resp. a)?;"*l) by a generic point (resp. a generic complex

do,p—
p

line) in ]P’H(Oz) (X, LP), we may replace o ! by a current of the form

T::Z dkd‘op [{s1} X« -+ X Dg x + - X {Sy}].

k=1 Cp D

Here, Dy is a generic complex line in IPH(%) (X, L,f) and (s, ..., Sp) is a generic point in X,

The genericity of Dy implies that &; (D) = X, so

O, ([fs1) x -+ x D x - x sl =\ s =0,

1=1,l#k
The Poincaré-Lelong formula yields
m
[ @5 WUsiy > - x Do x gD [ =P\ @ (Lo, )
I=1,1#k

Since §, = ||®,(T)|, the second identity follows. Using Lemma 4.3, this yields the upper
bound on 4. |

Lemma 4.5. For all p sufficiently large we have @}(0p) =y1,p A A Vmp. a
Proof. Let us write X, =X, ,x---x Xy p and op=01p X -+ X Oy p, Where Xp,=

PHY, (X, L) and o is the Fubini-Study volume on Xj ,. Recall that the meromorphic
transform @, has graph I'}, defined in (15), and 1T, : I', — X, IT;: I, — X, denote the
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canonical projections. By the definition of @} (op) (see [23, Section 3.1]) we have

5 () A T3 (o) =J

Xp

Moo T} @) A= {lsp=01.9) doys (5,).

Xp

@5 ()91 =

Ip

where ¢ is a smooth (n— m,n— m) form on X. Thanks to Propositions 3.1 and 3.2, we

can apply [12, Proposition 4.2] as in the proof of [12, Theorem 1.2] to show that

(@ (0p) . ¢) :J : .L (Ispr =01 A -+ Alspm =01, ¢)dor1 p (Sp1) - . . dom, p (Spm)

Xm.p 1.p

JX L (y1p ALz = 01 A A 1S = O, 8) o p (5p2) - . Ao p (Spm)

P

="'=<Vl,p/\"'/\ym,p’¢>-

This concludes the proof of the lemma. |

Lemma 4.6. There exist absolute constants C;, « > 0, and constants C,, «’, £ > 0 depend-

ing only on m > 1, such that forall ¢, ¢;,...,4,,>1,and t >0,

1
R(P*, wps, wig) < 5 (L+log0),
A (P[, WTFS, a)f,s, t) <C¢ e_“t,
r(P" x - x P omp) <7 (€1, .. bm) = max o

R(P" x -+ x P, e, 0fip) < Cor (01, ..., €m) (1 +log d),

where

d!
A=+ +lm,  oup:=c(r] (0ps) + -+ + 7 (0ps)), € %=—-—,
O !

so wip is a probability measure on P x - .. x Pém, O

Proof. The first two inequalities are proved in Proposition A.3 and Corollary A.5
from [23]. If T is a positive closed current of bidegree (1,1) on P x ... x P with

IT||=1, then T is in the cohomology class of « = a;7{ (wps) + - - - + a7, (wrs), for some
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ar > 0. Hence

(23
O0<a<| max — ) wmp.
1<k<m C
Now

el
d—1 ktk
1=i7)= | @ oz =Y %k,
Pl x ... x[Ptm —1 C

S0 ax/c < d/lk. Thus r(P" x --- x P, cwyp) < Max)<g<m %. The last two inequalities follow

from these estimates by applying [23, Propositions A.8 and A.9]. |

We will also need the following lower estimate for the dimension d ;.

Proposition 4.7. Let (X, w) be a compact Kahler manifold of dimension n. Let (L, h) > X
be a singular Hermitian holomorphic line bundle such that ¢ (L, h) > ¢w for some ¢ >0
and h is continuous outside a proper analytic subset of X. Then there exists C >0 and

Ppo € N such that
dimH(%) (X,LP)>Cp" Vp=>pm. O

Proof. Let ¥ C X be a proper analytic set such that h is continuous on X\ X¥. We fix
Xp € X\ X and r > 0 such that B(xp, 2r) N X' =¢. Let 0 < x < 1 be a smooth cut-off function
that equals 1 on B(xp, r) and is supported in B(xp, 2r). We consider the function v : X —
[—00, 00), ¥ (x) = nx (x)log |x — xp|, where n > 0.

Consider the metric hg = hexp(—v) on L. We choose n sufficiently small such that

o (L, hy) > %a) on X.

Let us denote by Z(hP) the multiplier ideal sheaf associated with hP. Note that
H(%)(X, LP)=H%(X, LP ® Z(hP)). The Nadel vanishing theorem [19, 36] shows that there
exists py € N such that

H'(X,LP®Z(h}))=0, p=>po. (17)

Note that Z(hg) =7(hP) ® Z(py). Consider the exact sequence
0—LPQI (W) QI (py)— LPQI (k) —> LP QI (h?) ® Ox/I (py)— 0. (18)

Thanks to (17) applied to the long exact cohomology sequence associated with (18) we

have

H° (X, LP®I (k")) »> H° (X, LP ® T (h*) ® Ox/Z (py)) > 0, p> po. (19)
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Now, for x# xy, Z(py)x = Ox x hence Ox x/Z(py)x = 0. Moreover, Z(hP)y, = Ox , since his

continuous at xy. Hence
H° (X, LP® I (h?) ® Ox/T (py)) =L, @I (RP), ® Oxx /T (P¥)y,
=LE ® Ox.x/T (DY), - (20)

SO

H° (X, LP @I (h*)) > LE ® Ox.x/T (p¥)5x, — 0, P> po. (21)

Denote by My 4, the maximal ideal of Oy 4, (i.e., germs of holomorphic functions vanish-
ing at xp). We have Z(py)y, C Ml}g'ﬁo_nﬂ and dim Ox x, /M) = (*+™, which together with

(21) implies the conclusion. |

Proof of Theorem 4.2. We will apply Theorem 4.1 to the meromorphic transforms &,
from X to the multi-projective space (X, w,) defined above, and the BP measures v, :=0,
on X,. ForteRand e¢>0let

Ry:=R(Xp wp,0p), Apt):=A(Xp, 0p,0p,t),

E,(e):= U {Sexp:|<[S=O]_Vl,p/\"'/\ym,pa¢>|de8}~ (22)
l¢llpz <1

It follows from Siegel’s lemma [33, Lemma 2.2.6] and Proposition 4.7 that there exist
C3 > 0 depending only on (X, L, hx)1<k<m and pp € N such that
P'/C3<dp=<C3p", p>po, 1<k=m.

By the last two inequalities in Lemma 4.6 we obtain for p> py and ¢t > 0,

R, <mC,C% (1 +log (mC3p")) < Cslog p,
(23)

!’

A, (1) < Cy (MmCs ") ¢
p () <Cy (mC3p") eXp(mC

t) S C4pgne_t/C4v

2
3
where C, is a constant depending only on (X, L, hx)1<k<m. Now set

epi=Ap/D, MNp:=¢€pdp/8p— 3Rp.
Lemma 4.4 implies that d,~ p™, §, < p™ !, so

np=Csip—3Calogp, p=py,
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where Cs is a constant depending only on (X, Lg, hx)1<k<m. Note that for all p sufficiently
large,

Cs Ap
np> Ap, provided that llplgglf@ >6C4/Cs.

If E, = Ep(ep) then it follows from Theorem 4.1 and Lemma 4.5 that for all p sufficiently

large

—CsA
op(Ep) < Ap(np) <Cap™exp ( 22419) ;

where for the last estimate we used (23). Let

6C4 2C,

c=max (—
Cs(1+&n) Cs

Caller (Ly, ) A Acy (L, i) II) .

If liminf, . (Ap/log p) > (1 + &én)c, then for all p sufficiently large
CsA —A
op(Ep) < Capf™exp (£> <cpmexp (—p) .
C4 C

On the other hand, we have by the definition of E, that if s,e X, \ E, and ¢ is an (n—
m, n— m) form of class €2, then

ap A
pm

<

A
Lol <c;” llplles2.

L<[S —0]_ Ao A ¢)
pm p= Y1i.p Ym,ps D

In the last inequality we used the fact that d, < ¢ p™ by Lemma 4.4.
For the last conclusion of Theorem 4.2 we proceed as in [20, p. 9]. The assumption

on Ap/log p and (a) imply that

S op(Ep)=d Y = <00
p=1 p=1 p’

for some ¢ > 0 and n > 1. Hence the set
E:={s=(s1,S2,...) € 2: spc Ep for infinitely many p}
satisfies 0, (E) = 0. Indeed, for every N > 1, E is contained in the set
{s=(s1,82,...)€82:8,€ E,forat least one p> N},

whose o,-measure is at most

iap <dZ——>O as N — oco.
p=N p—N

The proof of the theorem is thereby completed. |
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Proof of Theorem 1.2. Theorem 1.2 follows directly from Theorem 4.2 and Proposi-
tion 3.1(iii). |
5 Equidistribution with Convergence Speed for Holder Singular Metrics

In this section, we prove Theorem 1.4. We close with more examples of Holder metrics

with singularities. Theorem 1.4 follows at once from Theorem 4.2 and the next result.

Theorem 5.1. In the setting of Theorem 1.4, there exists a constant ¢ > 0 depending only

on (X, Ly, hy,..., Ly, hy) such that for all p sufficiently large the estimate

1 N " h clogp
o Nvip— \a @) . ¢ )| < L 9l
k=1 k=1
holds for every (n— m, n— m) form ¢ of class ¢>. O

Proof. We may assume that ¢ is real. There exists a constant ¢ > 0 such that for every

real (n— m, n— m) form ¢ of class €2,
—dpllgz @™ < ddoh < C ||l gz @ (24)

Using Proposition 3.1 and (13) we can write

1y m m
(o Ao Ao @oo.o)=3a
k=1 k=1 k=1

where

Ik=<cl (L1, h)) A---Aep (Lg—r, 1) A <% —a (L, hk)) 4 Vk;l»P roen y’;‘g’p, >

ddlog P
:<Cl(Ll»hl)/\"'/\Cl(Lk—lyhk—l)/\ £ k'p/\ykﬂ’p/\'“/\m’ >

2p p

log P,
:J MCI(LIahI)/\"'/\CI(Lk—lvhk—l)/\w/\"'/\M/\ddc(p-
x 2p p p

By (24) the total variation of the measure in the last integral is dominated by the positive

measure C ||¢||¢2 u, where

wi=cy (L, h) A--- A (kalihkfl)/\w/\"'/\m/\wn_mﬂ,
p
hence 1
|log Py pl
|Ik|sd||¢||<gzj oy du.
X p
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Theorem 2.1 implies that there exist a constant ¢’ >0 and py € N such that for all ze
X\ X (hx) and all p> py one has

—c' <log Py, <c'log p+ c’|logdist (z, ¥ ()|, 1<k<m.

We obtain that

cc’|¢ll«- J
2p X

[ Ii| < (log p+ |logdist(z, ¥ (h))|) du Vp>pp. 1 <k<m.

Applying Lemma 5.2 below to the right-hand side yields that

clog
mp

Ll < S22 P41 Yp> . 1<k<m,

with some constant c=c(X, Ly, hy, ..., Ly, hy) > 0. The proof is thereby completed. M

The following crucial estimate was used in the proof of Theorem 5.1.

Lemma 5.2. In the setting of Theorem 5.1 there exists a constant C > 0 such that for

every 1 <k<m,

J |logdist (z, £ (h)) |1 (L1, hi) A--- A ey (Lg—1, lg—1) A yk+—p1‘p Ao A VLpJ’ A" < C.
X
O

Proof. Let U C X be a contractible Stein open set as in Section 3. For1 < j<mand p>1,
let u; p, uj be the psh functions defined in (12), so dd°uj =ci (L}, hj) and dd°u; , = ll)yj,p
onU.

By shrinking U if necessary, we may construct a negative psh function vy on U
such that v <logdist(z, ¥ (hx)) < 0 and vk is smooth outside X (hy). Indeed, let fi,..., fi
be holomorphic functions defined on a neighborhood of U such that

ShoNU={zeU: fi@=---= fu(2)=0}.

We see easily that the function vi(2):=log(|fi(@*+ - +|fw(@I?) —, ze U, with a
suitable constant ¢ > 0, does the job. Indeed, we may assume that the function h(z) =
|A@)|?+---+|fu(@]|? is Lipschitz on U, so there exist constants ¢, ¢, >0 such that
in local coordinates z on U, we have |h(z)| <c;|z— w| for all ze U, w € ¥ (hy), hence
|h(2)| < cdist(z, X (hy)), so log |h(z)| <logdist(z, X (hx)) + log c,.

By [12, Theorem 5.1] we have that % log P ,— 0in LY(X, »"), hence by (12), Ujp—

uj in L}, (U), as p— oo, for each k+ 1 < j < m. Recall that by (14), u; , > u; — % holds on
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U for all p sufficiently large and some constant ¢’ > 0. Using the assumption that X (h;)

are in general position, [26, Theorem 3.5, Corollary 3.6] implies that

vedd'uy A - A ddUg—y A AUy p A - A A U, p

— vrdduy A - A ddug_y A ddCugy A - A dd Uy,

weakly on U as p— oo, and that the right-hand side has locally bounded mass on U.
Since X is compact, we may cover X by a finite number of open sets U as above. Writing
®™™*! as a finite sum of smooth positive forms such that each form is supported in at

least one open set U, the lemma follows from the last limit. [ |

Let us close the paper with more examples of Holder metrics with singularities:
(1) Consider a projective manifold X and a smooth divisor ¥ C X. By [32, 44], if
L =Kx ® Ox(X)is ample, there exists a complete Kdhler-Einstein metricw on M := X\ X
with Ric, = —w. This metric has Poincaré type singularities, described as follows. We

denote by D the unit disc in C. Each x € ¥ has a coordinate neighborhood Uy such that
Uy ZD" x=0, UNXZ{z=(21,....20):z21=0}, UgNMZD* x D"
Then v = % Z;‘L,kzl gjxdz; A dzy is quasi-isometric to the Poincaré-type metric

. dZ dZ . n
wp =2 DAL LN g A d.

2172 (log |z |?)” 245
Let o be the canonical section of Ox(X) (cf. [33, p. 71]) and denote by h, the metric
induced by o on Ox(X) (cf. [33, Example 2.3.4]). Note also that ¢;(0x(X), h,) =[X1] by
[33, (2.3.8)]. Consider the metric

huo =R ®h, onlL|y=Ky® Ox(2)|u=Kuy. (25)

Note that L is trivial over U, and the metric hy, has a weight ¢ on Uy N M =D* x D"}
given by €% =|z|? detlgpl. So dd°p = —;-Ric, >0 and ¢ is psh on U,N M. We see as
in [12, Lemma 6.8] that ¢ extends to a psh function on Uy, and hy;, extends uniquely
to a positively curved metric h* on L. By construction, h’ is a Holder metric with
singularities.

(2) Let us specialize the previous example to the case of Riemann surfaces. Let

X be a compact Riemann surface of genus g and let X ={py, ..., pg} C X. It follows from
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the Uniformization Theorem that the following conditions are equivalent:

(i) U =X\ X admits a complete Kdahler-Einstein metric o with Ric, = —w,
(i) 2g—2+d>0,
(iii) L=Kx® Ox(X) is ample,

(iv) the universal cover of U is the upper-half plane H.

If one of these equivalent conditions is satisfied, the Kahler-Einstein metric o
is induced by the Poincaré metric on H. In local coordinate z centered at pe X we have
w = tgdz A dz, where g satisfies c|z|~2(log |z[%)~% < g(2) < ¢!|z|2(log |z/*)~2, for some ¢ >
0, in a punctured neighborhood of p. Note that w extends to a closed strictly positive
(1, 1)-current, that is, a positive measure of finite mass, on X. By [12, Lemma 6.8] there
exists a singular metric h” on L such that ¢ (L, h*) = ;- on X. The weight of h* near a
point pe€ X has the form ¢(2) = % log(|z/?g(2)), which is Holder with singularities.

(3) Let X be a complex manifold, (L, hé) a holomorphic line bundle on X with
smooth Hermitian metric such that ¢;(L, h{;) is a Kahler metric. Let ¥ be a compact
divisor with normal crossings. Let X, ..., Xy be the irreducible components of X, so
X; is a smooth hypersurface in X. Let o; be holomorphic sections of the associated
holomorphic line bundle 0x(X;) vanishing to first order on X; and let | - |; be a smooth
Hermitian metric on 0x(X}) so that |o;]|; <1 and |o;|; = 1/e outside a relatively compact

open set containing X. Set
N
1
@5 =2 +8dd°F, whered >0, F= -3 Zlog (—loglajly) -

For § sufficiently small ®©s defines the generalized Poincaré metric [33, Lemma 6.2.1], [12,
Section 2.3]. For ¢ > 0,

N
s = 1_[ log |GJ|

is a singular Hermitian metric on L which is Holder with singularities. The curvature
c1 (L, ht) is a strictly positive current on X, provided that ¢ is sufficiently small (cf. [33,
Lemma 6.2.1]). When X is compact the curvature current of h. dominates a small multiple
of ®; on X\ X.

(4) Let X be a Fano manifold. Fix a Hermitian metric hy on K;' such that w:=
a (K)}l, ho) is a Kédhler metric. We denote by PSH (X, w) the set of w-plurisubharmonic
functions on X. Let ¥ be a smooth divisor in the linear system defined by Ky, so there
exists a section s € H(X, K;") with X = Div(s).
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Fix a smooth metric h on the bundle 0x(X) and let g € (0, 1]. A conic Kdhler-
Einstein metric @ on X with cone angle B along X, cf. [24, 43], is a current &=
w, =w + dd°¢ € ¢;(X), where ¢ =y + |s|i’3 € PSH(X,w) and ¥ € ¢*°(X) N PSH(X, w). In a
neighborhood of a point of ¥ where X is given by z; = 0 the metric @ is equivalent to the
cone metric % (|21 1#P=2dzy A dzy + Y1, dzj A dzj).

The metric ® defines a singular metric h; on Kj' which is Hélder with singulari-
ties. Its curvature current is Ric; := ¢; (Kx', hy) = (1 — €(1 — B)& + (1 — B)[X], where [Z]

is the current of integration on X.
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