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We show that normalized currents of integration along the common zeros of random

m-tuples of sections of powers of m singular Hermitian big line bundles on a com-

pact Kähler manifold distribute asymptotically to the wedge product of the curvature

currents of the metrics. If the Hermitian metrics are Hölder with singularities we also

estimate the speed of convergence.

1 Introduction

Random polynomials or more generally holomorphic sections and the distribution of

their zeros represent a classical subject in analysis [5, 25, 28, 31], and they have been

more recently used to model quantum chaotic eigenfunctions [8, 37].

This area witnessed intense activity recently [6, 7, 9, 22, 23, 39–41], and

especially results about equidistribution of holomorphic sections in singular Her-

mitian holomorphic bundles were obtained [11–14, 20] with emphasis on the speed
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D. Coman et al. (2016) “Hölder Singular Metrics on Big Line Bundles and Equidistribution,”
International Mathematics Research Notices, Vol. 2016, No. 16, pp. 5048–5075
Advance Access Publication October 15, 2015
doi:10.1093/imrn/rnv303

 at Syracuse U
niversity L

ibrary on A
ugust 25, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


of convergence. The equidistribution is linked to the Quantum Unique Ergodicity

conjecture of Rudnick-Sarnak [38], cf. [29, 35].

The equidistribution of common zeros of several sections is particularly

interesting. Their study is difficult in the singular context and equidistribution with the

estimate of convergence speed was established in [20] for Hölder continuous metrics.

In this paper, we obtain the equidistribution of common zeros of sections of m

singular Hermitian line bundles under the hypothesis that the metrics are continuous

outside analytic sets intersecting generically. We will moreover introduce the notion of

Hölder metric with singularities and establish the equidistribution with convergence

speed of common zeros.

Let (X, ω) be a compact Kähler manifold of dimension n and dist be the distance

on X induced by ω. If (L ,h) is a singular Hermitian holomorphic line bundle on X we

denote by c1(L ,h) its curvature current. Recall that if eL is a holomorphic frame of L on

some open set U ⊂ X, then |eL |2h = e−2φ , where φ ∈ L1
loc(U ) is called the local weight of the

metric h with respect to eL , and c1(L ,h)|U = ddcφ. Here d= ∂ + ∂̄, dc = 1
2πi (∂ − ∂̄). We say

that h is positively curved if c1(L ,h)≥ 0 in the sense of currents. This is equivalent to

saying that the local weights φ are plurisubharmonic (psh).

Recall that a holomorphic line bundle L is called big if its Kodaira–Iitaka

dimension equals the dimension of X (see [33, Definition 2.2.5]). By the Shiffman–Ji–

Bonavero–Takayama criterion [33, Lemma 2.3.6], L is big if and only if it admits a singu-

lar metric h with c1(L ,h)≥ εω for some ε > 0.

Let (Lk,hk), 1 ≤ k≤ m ≤ n, be m singular Hermitian holomorphic line bundles on

(X, ω). Let H0
(2)(X, L p

k ) be the Bergman space of L2-holomorphic sections of L p
k := L⊗p

k

relative to the metric hk,p := h⊗p
k induced by hk and the volume form ωn on X, endowed

with the inner product

(
S, S′)

k,p :=
∫

X
〈S, S′〉hk,pω

n, S, S′ ∈ H0
(2)

(
X, L p

k

)
. (1)

Set ‖S‖2
k,p = (S, S)k,p, dk,p = dim H0

(2)(X, L p
k )− 1. For every p≥ 1 we consider the multi-

projective space

Xp := PH0
(2)

(
X, L p

1

) × · · · × PH0
(2)

(
X, L p

m

)
(2)

equipped with the probability measure σp which is the product of the Fubini-Study vol-

umes on the components. If S ∈ H0(X, L p
k ) we denote by [S = 0] the current of integration

(with multiplicities) over the analytic hypersurface {S = 0} of X. Set

[sp = 0] := [sp1 = 0] ∧ · · · ∧ [spm = 0], for sp = (
sp1, . . . , spm

) ∈ Xp,
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whenever this is well defined (cf. Section 3). We also consider the probability space

(Ω, σ∞) :=
∞∏

p=1

(
Xp, σp

)
.

Let us recall the following definition.

Definition 1.1. We say that the analytic subsets A1, . . . , Am, m ≤ n, of a compact complex

manifold X of dimension n are in general position if codimAi1 ∩ · · · ∩ Aik ≥ k for every

1 ≤ k≤ m and 1 ≤ i1 < · · ·< ik ≤ m. �

Here is our first main result.

Theorem 1.2. Let (X, ω) be a compact Kähler manifold of dimension n and (Lk,hk),

1 ≤ k≤ m ≤ n, be m singular Hermitian holomorphic line bundles on X such that hk is

continuous outside a proper analytic subset Σ(hk)⊂ X, c1(Lk,hk)≥ εω on X for some

ε > 0, and Σ(h1), . . . , Σ(hm) are in general position. Then for σ∞-a.e. {sp}p≥1 ∈Ω, we have

in the weak sense of currents on X,

1

pm
[sp = 0] → c1 (L1,h1) ∧ · · · ∧ c1 (Lm,hm) as p→ ∞. �

In order to prove this theorem we show in Theorem 4.2 that the currents 1
pm [sp =

0] distribute as p→ ∞ like the wedge product of the normalized Fubini-Study currents

of the spaces H0
(2)(X, L p

k ) defined in (10). Then in Proposition 3.1 we prove that the latter

sequence of currents converges to c1(L1,h1) ∧ · · · ∧ c1(Lm,hm).

Our second main result gives an estimate of the speed of convergence in

Theorem 1.2 in the case when the metrics are Hölder with singularities.

Definition 1.3. We say that a function φ : U → [−∞,∞) defined on an open subset U ⊂ X

is Hölder with singularities along a proper analytic subsetΣ ⊂ X if there exist constants

c, 
 > 0 and 0< ν ≤ 1 such that

|φ (z)− φ (w) | ≤ cdist (z, w)ν

min {dist (z,Σ) ,dist (w,Σ)}
 (3)

holds for all z, w ∈ U \Σ . A singular metric h on L is called Hölder with singularities

along a proper analytic subset Σ ⊂ X if all its local weights are Hölder functions with

singularities along Σ . �

Hölder singular Hermitian metrics appear frequently in complex geometry and

pluri-potential theory. Let us first observe that metrics with analytic singularities
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[33, Definition 2.3.9], which are very important for the regularization of currents and

for transcendental methods in algebraic geometry [3, 13, 16, 17, 19], are Hölder met-

rics with singularities. The class of Hölder metrics with singularities is invariant under

pull-back and push-forward by meromorphic maps. In particular, this class is invariant

under birational maps, for example, blow-up and blow-down. They occur also as certain

quasiplurisubharmonic upper envelopes (e.g., Hermitian metrics with minimal singular-

ities on a big line bundle, equilibrium metrics, see [2, 20, 21], especially [3, Theorem 1.4]).

Theorem 1.4. In the setting of Theorem 1.2 assume in addition that hk is Hölder with

singularities along Σ(hk). Then there exist a constant ξ > 0 depending only on m and a

constant c = c(X, L1,h1, . . . , Lm,hm) > 0 with the following property: for any sequence of

positive numbers {λp}p≥1 such that

lim inf
p→∞

λp

log p
> (1 + ξn) c,

there are subsets E p ⊂ Xp such that for p large enough,

(a) σp(E p)≤ cpξn exp(−λp/c),

(b) if sp ∈ Xp \ E p we have

∣∣∣∣∣
〈

1

pm
[sp = 0] −

m∧
k=1

c1 (Lk,hk) , φ

〉∣∣∣∣∣ ≤ cλp

p
‖φ‖C 2 ,

for any form φ of class C 2.

In particular, the last estimate holds for σ∞-a.e. sequence {sp}p≥1 ∈Ω provided

that p is large enough. �

Let Pp be the Bergman kernel function of the space H0
(2)(X, L p) defined in (4)

below. The proof of Theorem 1.4 uses the estimate for Pp obtained in Theorem 2.1 in

the case when the metric h on L is Hölder with singularities.

One can readily specialize Theorem 1.4 to study the asymptotics with speed of

common zeros of random m-tuples of sections of a (single) big line bundle endowed with

a Hölder Hermitian metric with singularities along a proper analytic subset Σ ⊂ X of

codimension ≥ m. Let (L ,h) be a singular Hermitian holomorphic line bundle on (X, ω)

and H0
(2)(X, L p) be the corresponding spaces of L2-holomorphic sections. Consider the

multi-projective space

X
′
p := (

PH0
(2)

(
X, L p))m
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endowed with the product probability measure σ ′
p induced by the Fubini-Study volume

on PH0
(2)(X, L p), and let (

Ω ′, σ ′
∞

)
:=

∞∏
p=1

(
X

′
p, σ

′
p

)
.

If sp = (sp1, . . . , spm) ∈ X
′
p we set [sp = 0] := [sp1 = 0] ∧ · · · ∧ [spm = 0], provided this cur-

rent is well-defined. Applying Theorem 1.4 with (Lk,hk)= (L ,h), 1 ≤ k≤ m, and for the

sequence λp = (2 + ξn)c log p, we obtain:

Theorem 1.5. Let (X, ω) be a compact Kähler manifold of dimension n and (L ,h) be

a singular Hermitian holomorphic line bundle on X such that h is Hölder with singu-

larities along a proper analytic subset Σ ⊂ X of codimension ≥ m, and c1(L ,h)≥ εω for

some ε > 0. Then there exist a constant C > 0 depending only on (X, ω, L ,h), and subsets

E p ⊂ X
′
p, such that for p large enough,

(a) σ ′
p(E p)≤ C p−2,

(b) if sp ∈ X
′
p \ E p we have

∣∣∣∣
〈

1

pm
[sp = 0] − c1 (L ,h)

m , φ

〉∣∣∣∣ ≤ C
log p

p
‖φ‖C 2 ,

for any form φ of class C 2.

In particular, the last estimate holds for σ ′
∞-a.e. sequence {sp}p≥1 ∈Ω ′ provided

that p is large enough. �

This paper is organized as follows. In Section 2, we prove a pointwise esti-

mate for the Bergman kernel function in the case of Hölder metrics with singularities.

Section 3 is devoted to the study of the intersection of Fubini-Study currents and to a ver-

sion of the Bertini theorem. In Section 4, we consider the Kodaira map as a meromorphic

transform and estimate the speed of convergence of the intersection of zero-divisors of

m bundles. We use this to prove Theorem 1.2. Finally, in Section 5 we prove Theorem 1.4.

2 Asymptotic Behavior of Bergman Kernel Functions

In this section, we prove a theorem about the asymptotic behavior of the Bergman kernel

function in the case when the metric is Hölder with singularities.

Let (L ,h) be a holomorphic line bundle over a compact Kähler manifold (X, ω) of

dimension n, where h is a singular Hermitian metric on L. Consider the space H0
(2)(X, L p)

of L2-holomorphic sections of L p relative to the metric hp := h⊗p induced by h and the

5052 D. Coman et al.

 at Syracuse U
niversity L

ibrary on A
ugust 25, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


volume form ωn on X, endowed with the natural inner product (see (1)). Since H0
(2)(X, L p)

is finite dimensional, let {Sp
j }dp

j=0 be an orthonormal basis and denote by Pp the Bergman

kernel function defined by

Pp (x)=
dp∑
j=0

∣∣∣Sp
j (x)

∣∣∣2

hp
,

∣∣∣Sp
j (x)

∣∣∣2

hp
:=

〈
Sp

j (x) , Sp
j (x)

〉
hp
, x ∈ X. (4)

Note that this definition is independent of the choice of basis.

Theorem 2.1. Let (X, ω) be a compact Kähler manifold of dimension n and (L ,h) be a

singular Hermitian holomorphic line bundle on X such that c1(L ,h)≥ εω for some ε > 0.

Assume that h is Hölder with singularities along a proper analytic subset Σ of X and

with parameters ν, 
 as in (3). If Pp is the Bergman kernel function defined by (4) for

the space H0
(2)(X, L p), then there exist a constant c> 1 and p0 ∈ N which depend only on

(X, ω, L ,h) such that for all z∈ X \Σ and all p≥ p0

1

c
≤ Pp (z)≤ cp2n/ν

dist (z,Σ)2n
/ν · (5)

�

Recall that by Theorem 5.3 in [12] we have limp→∞ 1
plog Pp(z)= 0 locally uni-

formly on X \Σ for any metric h which is only continuous outside of Σ . Theorem 2.1

refines [12, Theorem 5.3] in this context, and it is interesting to compare it with the

asymptotic expansion of the Bergman kernel function in the case of smooth met-

rics [4, 10, 30, 33, 34, 42, 45].

Proof. The proof follows from [12, Section 5], which is based on techniques of

Demailly [15, Proposition 3.1; 20, Section 9]. Let x ∈ X and Uα ⊂ X be a coordinate neigh-

borhood of x on which there exists a holomorphic frame eα of L. Let ψα be a psh weight of

h on Uα. Fix r0 > 0 so that the (closed) ball V := B(x,2r0)� Uα and let U := B(x, r0). By [12,

(7)] there exist constants c1 > 0, p0 ∈ N so that

− log c1

p
≤ 1

p
log Pp (z)≤

log
(
c1r−2n

)
p

+ 2
(

max
B(z,r)

ψα − ψα (z)

)

holds for all p> p0, 0< r < r0 and z∈ U with ψα(z) >−∞.

For z∈ U \Σ and r <min{dist(z,Σ), r0} we have since ψα is Hölder that

max
B(z,r)

ψα − ψα (z)≤ crν

(dist (z,Σ)− r)

,
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where c> 0 depends only on x. Taking r = dist(z,Σ)
/ν p−1/ν < dist(z,Σ)/2 (for p0 large

enough), we obtain

− log c1 ≤ log Pp (z)≤ log c1 − 2nlog r + 2
+1cprνdist (z,Σ)−


= c0 + 2nlog
(
dist (z,Σ)−
/ν p1/ν) .

This holds for all z∈ U \Σ and p> p0, with constants r0, p0, c0, c1 depending only on x.

A standard compactness argument now finishes the proof. �

3 Intersection of Fubini-Study Currents and Bertini Type Theorem

In this section, we show that the intersection of the Fubini-Study currents associated

with line bundles as in Theorem 1.2 is well defined. Moreover, we show that the sequence

of wedge products of normalized Fubini-Study currents converges weakly to the wedge

product of the curvature currents of (Lk,hk). We then prove that almost all zero-divisors

of sections of large powers of these bundles are in general position in the sense of

Definition 1.1.

Let V be a vector space of complex dimension d+ 1. If V is endowed with a

Hermitian metric, then we denote by ωFS the induced Fubini-Study form on the projective

space P(V) (see [33, p. 65, 212]) normalized so that ωd
FS is a probability measure. We also

use the same notations for P(V∗).

We keep the hypotheses and notation of Theorem 1.2. Namely, (Lk,hk), 1 ≤ k≤
m ≤ n, are singular Hermitian holomorphic line bundles on the compact Kähler manifold

(X, ω) of dimension n, such that hk is continuous outside a proper analytic subsetΣ(hk)⊂
X, c1(Lk,hk)≥ εω for some ε > 0, andΣ(h1), . . . , Σ(hm) are in general position in the sense

of Definition 1.1.

Consider the space H0
(2)(X, L p

k ) of L2-holomorphic sections of L p
k endowed with

the inner product (1). Since c1(Lk,hk)≥ εω, it is well known that H0
(2)(X, L p

k ) is nontrivial

for p sufficiently large, see for example, Proposition 4.7. Let

dk,p := dim H0
(2)

(
X, L p

k

) − 1.

The Kodaira map associated with (L p
k ,hk,p) is defined by

Φk,p : X ��� G
(
dk,p, H0

(2)

(
X, L p

k

))
, Φk,p (x) := {

s ∈ H0
(2)

(
X, L p

k

)
: s (x)= 0

}
, (6)

where G

(
dk,p, H0

(2)

(
X, L p

k

))
denotes the Grassmannian of hyperplanes in H0

(2)(X, L p
k )

(see [33, p. 82]). Let us identify G

(
dk,p, H0

(2)

(
X, L p

k

))
with P

(
H0
(2)

(
X, L p

k

)∗)
by sending a

5054 D. Coman et al.
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hyperplane to an equivalence class of non-zero complex linear functionals on H0
(2)

(
X, L p

k

)
having the hyperplane as their common kernel. By composing Φk,p with this identifica-

tion, we obtain a meromorphic map

Φk,p : X ��� P
(
H0
(2)

(
X, L p

k

)∗)
. (7)

To get an analytic description of Φk,p, let

Sk,p
j ∈ H0

(2)

(
X, L p

k

)
, j = 0, . . . ,dk,p, (8)

be an orthonormal basis and denote by Pk,p the Bergman kernel function of the space

H0
(2)

(
X, L p

k

)
defined as in (4). This basis gives identifications H0

(2)

(
X, L p

k

) � C
dk,p+1 and

P

(
H0
(2)

(
X, L p

k

)∗)
� P

dk,p. Let U be a contractible Stein open set in X, let ek be a local holo-

morphic frame for Lk on U , and write Sk,p
j = sk,p

j e⊗p
k , where sk,p

j is a holomorphic function

on U. By composing Φk,p given in (7) with the last identification, we obtain a meromor-

phic map Φk,p : X ��� P
dk,p which has the following local expression

Φk,p (x)=
[
sk,p

0 (x) : . . . : sk,p
dk,p
(x)

]
for x ∈ U. (9)

It is called the Kodaira map defined by the basis
{

Sk,p
j

}dk,p

j=0
.

Next, we define the Fubini-Study currents γk,p of H0
(2)

(
X, L p

k

)
by

γk,p|U = 1

2
ddc log

dk,p∑
j=0

|sk,p
j |2, (10)

where the open set U and the holomorphic functions sk,p
j are as above. Note that γk,p is a

positive closed current of bidegree (1,1) on X, and is independent of the choice of basis.

Actually, the Fubini-Study currents are pullbacks of the Fubini-Study forms by Kodaira

maps, which justifies their name.

Let ωFS be the Fubini-Study form on P
dk,p. By (9) and (10), the currents γk,p can be

described as pullbacks

γk,p =Φ∗
k,p (ωFS) , 1 ≤ k≤ m. (11)

We introduce the psh function

uk,p := 1

2p
log

dk,p∑
j=0

∣∣∣sk,p
j

∣∣∣2
= uk + 1

2p
log Pk,p on U, (12)
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where uk is the weight of the metric hk on U corresponding to ek, so |ek|hk = e−uk. Clearly,

by (10) and (12), ddcuk,p = 1
pγk,p. Moreover, note that by (12), log Pk,p ∈ L1(X, ωn) and

1

p
γk,p = c1 (Lk,hk)+ 1

2p
ddc log Pk,p (13)

as currents on X. By [12, Theorems 5.1 and 5.3] (see also [12, (7)]) there exist c> 0, p0 ∈ N,

such that if p≥ p0, 1 ≤ k≤ m and z∈ X \Σ(hk), then Pk,p(z)≥ c. By (12) it follows that

uk,p (z)≥ uk (z)+ log c

2p
, z∈ U, p≥ p0, 1 ≤ k≤ m. (14)

For p≥ 1 consider the following analytic subsets of X:

Σk,p :=
{

x ∈ X : Sk,p
j (x)= 0, 0 ≤ j ≤ dk,p

}
, 1 ≤ k≤ m.

Hence Σk,p is the base locus of H0
(2)(X, L p

k ), and Σk,p ∩ U = {uk,p = −∞}. Note also that

Σ(hk) ∩ U ⊃ {uk = −∞} and by (14) we have Σk,p ⊂Σ(hk) for p≥ p0.

Proposition 3.1. In the hypotheses of Theorem 1.2 we have the following:

(i) For all p sufficiently large and every J ⊂ {1, . . . ,m} the analytic sets Σk,p,

k∈ J, Σ(h�), � ∈ J ′ := {1, . . . ,m} \ J, are in general position.

(ii) If p is sufficiently large then the currents

∧
k∈J

γk,p ∧
∧
�∈J ′

c1 (L�,h�)

are well defined on X, for every J ⊂ {1, . . . ,m}.
(iii) 1

pm γ1,p ∧ · · · ∧ γm,p → c1(L1,h1) ∧ · · · ∧ c1(Lm,hm) as p→ ∞, in the weak sense

of currents on X. �

Proof. As noted above we have by (14) thatΣk,p ⊂Σ(hk) for all p sufficiently large. Since

Σ(h1), . . . , Σ(hm) are in general position this implies (i). Then (ii) follows by [18, Corollary

2.11].

(iii) Let U ⊂ X be a contractible Stein open set as above, uk,p, uk be the psh func-

tions defined in (12), so ddcuk = c1(Lk,hk) and ddcuk,p = 1
pγk,p on U . By [12, Theorem 5.1],

we have that 1
p log Pk,p → 0 in L1(X, ωn), hence by (12), uk,p → uk in L1

loc(U ), as p→ ∞, for

each 1 ≤ k≤ m. Recall that by (14), uk,p ≥ uk − C
p holds on U for all p sufficiently large

and some constant C > 0. Then [26, Theorem 3.5] implies that ddcu1,p ∧ · · · ∧ ddcum,p →
ddcu1 ∧ · · · ∧ ddcum weakly on U as p→ ∞. �
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We will need the following version of Bertini’s theorem. The corresponding

statement for the case of a single line bundle is proved in [12, Proposition 4.1].

Proposition 3.2. Let Lk −→ X, 1 ≤ k≤ m ≤ n, be holomorphic line bundles over a compact

complex manifold X of dimension n. Assume that

(i) Vk is a vector subspace of H0(X, Lk) with basis Sk,0, . . . , Sk,dk, base locus

BsVk := {
Sk,0 = · · · = Sk,dk = 0

} ⊂ X, such that dk ≥ 1 and the analytic sets

BsV1, . . . ,BsVm are in general position in the sense of Definition 1.1.

(ii) Z(tk) :=
{

x ∈ X :
∑dk

j=0 tk, j Sk, j(x)= 0
}
, where tk = [

tk,0 : . . . : tk,dk

] ∈ P
dk.

(iii) ν =μ1 × · · · × μm is the product measure on P
d1 × · · · × P

dm , where μk is the

Fubini-Study volume on P
dk.

Then the analytic sets Z(t1), . . . , Z(tm) are in general position for ν-a.e.

(t1, . . . , tm) ∈ P
d1 × · · · × P

dm . �

Proof. If 1 ≤ l1 < · · ·< lk ≤ m let νl1...lk =μl1 × · · · × μlk be the product measure on P
dl1 ×

· · · × P
dlk . For 1 ≤ k≤ m consider the sets

Uk = {(
tl1 , . . . , tlk

) ∈ P
dl1 × · · · × P

dlk : dim Z
(
tl1

) ∩ · · · ∩ Z
(
tlk

) ∩ Aj ≤ n− k − j
}
,

where 1 ≤ l1 < · · ·< lk ≤ m, j = 0 and A0 = ∅, or 1 ≤ j ≤ m − k and Aj = BsVi1 ∩ · · · ∩ BsVij

for some i1 < · · ·< i j in {1, . . . ,m} \ {l1, . . . , lk}.
The proposition follows if we prove by induction on k that

νl1...lk (Uk)= 1

for every set Uk with 1 ≤ l1 < · · ·< lk ≤ m, 0 ≤ j ≤ m − k and Aj as above. Clearly, it suffices

to consider the case {l1, . . . , lk} = {1, . . . ,k}. To simplify notation we set νk := ν1...k.

Let k= 1. If j = 0, A0 = ∅, so U1 = {
t1 ∈ P

d1 : dim Z(t1)≤ n− 1
} = P

d1 . Assume next

that 1 ≤ j ≤ m − 1 and write Aj = ⋃N
l=1 Dl ∪ B, where Dl are the irreducible components

of Aj of dimension n− j and dim B ≤ n− j − 1. We have that
{
t1 ∈ P

d1 : Dl ⊂ Z(t1)
}

is a

proper linear subspace of P
d1 . Indeed, otherwise Dl ⊂ BsV1, so dim Aj ∩ BsV1 = n− j,

which contradicts the hypothesis that BsV1, . . . ,BsVm are in general position. If t1 ∈
P

d1 \ U1, then dim Z(t1) ∩ Aj ≥ n− j. Since Z(t1) ∩ Aj is an analytic subset of Aj, it fol-

lows that Dl ⊂ Z(t1) ∩ Aj for some l, hence P
d1 \ U1 = ⋃N

l=1

{
t1 ∈ P

d1 : Dl ⊂ Z(t1)
}
. Therefore,

μ1(P
d1 \ U1)= 0.
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We assume now that νk(Uk)= 1 for any set Uk as above. Let

Uk+1 = {
(t1, . . . , tk+1) ∈ P

d1 × · · · × P
dk+1 : dim Z (t1) ∩ · · · ∩ Z (tk+1) ∩ Aj ≤ n− k − 1 − j

}
,

where 0 ≤ j ≤ m − k − 1, A0 = ∅, or Aj = BsVi1 ∩ · · · ∩ BsVij with k + 2 ≤ i1 < · · ·< i j ≤ m.

Consider the set U = U ′ ∩ U ′′, where

U ′ = {
(t1, . . . , tk) ∈ P

d1 × · · · × P
dk : dim Z (t1) ∩ · · · ∩ Z (tk) ∩ Aj ≤ n− k − j

}
,

U ′′ = {
(t1, . . . , tk) ∈ P

d1 × · · · × P
dk : dim Z (t1) ∩ · · · ∩ Z (tk) ∩ BsVk+1 ∩ Aj ≤ n− k − j − 1

}
.

By the induction hypothesis we have νk(U ′)= νk(U ′′)= 1, so νk(U )= 1. To prove that

νk+1(Uk+1)= 1 it suffices to show that

νk+1 (W)= 0, where W := (
U × P

dk+1
) \ Uk+1.

To this end we fix t := (t1, . . . , tk) ∈ U , we let

Z (t) := Z (t1) ∩ · · · ∩ Z (tk) , W (t) := {
tk+1 ∈ P

dk+1 : dim Z (t) ∩ Aj ∩ Z (tk+1)≥ n− k − j
}
,

and prove that μk+1(W(t))= 0.

Since t ∈ U ⊂ U ′ we can write Z(t) ∩ Aj = ⋃N
l=1 Dl ∪ B, where Dl are the irreducible

components of Z(t) ∩ Aj of dimension n− k − j and dim B ≤ n− k − j − 1. If tk+1 ∈ W(t),

then Z(t) ∩ Aj ∩ Z(tk+1) is an analytic subset of Z(t) ∩ Aj of dimension n− k − j, so Dl ⊂
Z(t) ∩ Aj ∩ Z(tk+1) for some l. Thus

W (t)=
N⋃

l=1

Fl (t) , where Fl (t) := {
tk+1 ∈ P

dk+1 : Dl ⊂ Z (tk+1)
}
.

If Dl ⊂ BsVk+1, then dim Z(t) ∩ Aj ∩ BsVk+1 = n− k − j, which contradicts the fact that t ∈
U ′′. Hence the sections in Vk+1 cannot all vanish on Dl , so we may assume that Sk+1,dk+1 �≡ 0

on Dl . We have Fl(t)⊂ {tk+1,0 = 0} ∪ Hl(t) where

Hl (t) := {[
1 : tk+1,1 : . . . : tk+1,dk+1

] ∈ P
dk+1 : Dl ⊂ Z

([
1 : tk+1,1 : . . . : tk+1,dk+1

])}
.

For each (tk+1,1 : . . . : tk+1,dk+1−1) ∈ C
dk+1−1 there exists at most one ζ ∈ C with [1 : tk+1,1 : . . . :

tk+1,dk+1−1 : ζ ] ∈ Hl(t). Indeed, if ζ �= ζ ′ have this property then

Sk+1,0 + tk+1,1Sk+1,1 + · · · + tk+1,dk+1−1Sk+1,dk+1−1 + aSk+1,dk+1 ≡ 0 on Dl,
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for a= ζ, ζ ′, hence Sk+1,dk+1 ≡ 0 on Dl , a contradiction. It follows that μk+1(Hl(t))= 0, so

μk+1(Fl(t))= 0. Hence μk+1(W(t))= 0 and the proof is complete. �

We return now to the setting of Theorem 1.2. If
{

Sk,p
j

}dk,p

j=0
is an orthonormal basis

of H0
(2)

(
X, L p

k

)
, we define the analytic hypersurface Z(tk)⊂ X, for tk = [

tk,0 : . . . : tk,dk,p

] ∈
P

dk,p, as in Proposition 3.2 (ii). Let μk,p be the Fubini-Study volume on P
dk,p, 1 ≤ k≤ m,

p≥ 1, and let μp =μ1,p × · · · × μm,p be the product measure on P
d1,p × · · · × P

dm,p. Apply-

ing Proposition 3.2 we obtain:

Proposition 3.3. In the above setting, if p is sufficiently large, then for μp-a.e.

(t1, . . . , tm) ∈ P
d1,p × · · · × P

dm,p the analytic subsets Z(t1), . . . , Z(tm)⊂ X are in general posi-

tion, and Z(ti1) ∩ · · · ∩ Z(tik) has pure dimension n− k for each 1 ≤ k≤ m, 1 ≤ i1 < · · ·<
ik ≤ m. �

Proof. Let Vk,p := H0
(2)

(
X, L p

k

)
, so BsVk,p =Σk,p. By Proposition 3.1, Σ1,p, . . . , Σm,p are in

general position for all psufficiently large. We fix such pand denote by [Z(tk)] the current

of integration along the analytic hypersurface Z(tk); it has the same cohomology class as

pc1 (Lk,hk). Proposition 3.2 shows that the analytic subsets Z(t1), . . . , Z(tm) are in general

position for μp-a.e. (t1, . . . , tm) ∈ P
d1,p × · · · × P

dm,p. Hence if 1 ≤ k≤ m, 1 ≤ i1 < · · ·< ik ≤ m,

the current [Z(ti1)] ∧ · · · ∧ [Z(tik)] is well defined by [18, Corollary 2.11] and it is supported

in Z(ti1) ∩ · · · ∩ Z(tik). Since c1(Lk,hk)≥ εω, it follows that
∫

X
[Z

(
ti1

)
] ∧ · · · ∧ [Z

(
tik

)
] ∧ ωn−k = pk

∫
X

c1
(
Li1 ,hi1

) ∧ · · · ∧ c1
(
Lik,hik

) ∧ ωn−k ≥ pkεk
∫

X
ωn.

So Z(ti1) ∩ · · · ∩ Z(tik) �= ∅, hence it has pure dimension n− k. �

4 Convergence Speed Towards Intersection of Fubini-Study Currents

In this section, we rely on techniques introduced by Dinh–Sibony [23], based on the

notion of meromorphic transform, in order to estimate the speed of equidistribution of

the common zeros of m-tuples of sections of the considered big line bundles towards

the intersection of the Fubini-Study currents. We then prove Theorem 1.2.

4.1 Dinh–Sibony equidistribution theorem

A meromorphic transform F : X ��� Y between two compact Kähler manifolds (X, ω) of

dimension n and (Y, ωY) of dimension m is the data of an analytic subset Γ ⊂ X × Y

(called the graph of F ) of pure dimension m + k such that the projections π1 : X × Y → X
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and π2 : X × Y → Y restricted to each irreducible component of Γ are surjective. We set

formally F = π2 ◦ (π1|Γ )−1. For y∈ Y generic (that is, outside a proper analytic subset), the

dimension of the fiber F −1(y) := π1
(
π−1

2 |Γ (y)
)

is equal to k. This is called the codimension

of F . We consider two of the intermediate degrees for F (see [23, Section 3.1]):

d(F ) :=
∫

X
F ∗ (

ωm
Y

) ∧ ωk and δ (F ) :=
∫

X
F ∗ (

ωm−1
Y

) ∧ ωk+1.

By [23, Proposition 2.2], there exists r := r(Y, ωY) such that for every positive

closed current T of bidegree (1,1) on Y with ‖T‖ = 1 there is a smooth (1,1)-form α

which depends uniquely on the class {T} and a quasi-plurisubharmonic (qpsh) function

ϕ such that −rωY ≤ α ≤ rωY and ddcϕ − T = α. If Y is the projective space P
� equipped

with the Fubiny-Study form ωFS, then we have r
(
P
�, ωFS

) = 1. Consider the class

Q (Y, ωY) := {
ϕ qpsh on Y, ddcϕ ≥ −r (Y, ωY) ωY

}
.

A positive measure μ on Y is called a BP measure if all qpsh functions on Y are integrable

with respect to μ. When dim Y = 1, it is well known that μ is BP if and only if it admits

locally a bounded potential. The terminology BP comes from this fact (see [23]).

If μ is a BP measure on Y and t ∈ R, we let

R(Y, ωY, μ) := sup
{

max
Y

ϕ : ϕ ∈ Q (Y, ωY) ,

∫
Y
ϕ dμ= 0

}
,

Δ (Y, ωY, μ, t) := sup
{
μ (ϕ <−t) : ϕ ∈ Q (Y, ωY) ,

∫
Y
ϕ dμ= 0

}
.

These constants are related to the Alexander–Dinh–Sibony capacity [1, 23, 27].

Let Φp be a sequence of meromorphic transforms from a compact Kähler man-

ifold (X, ω) into compact Kähler manifolds (Xp, ωp) of the same codimension k, where

Xp is defined in (2). Let νp be a BP probability measure on Xp and ν∞ = ∏
p≥1 νp be the

product measure on Ω := ∏
p≥1 Xp. For every p> 0 and ε > 0 let

E p (ε) :=
⋃

‖φ‖C2 ≤1

{
xp ∈ Xp :

∣∣〈Φ∗
p

(
δxp

) −Φ∗
p

(
νp

)
, φ

〉∣∣ ≥ d
(
Φp

)
ε
}
,

where δxp is the Dirac mass at xp. Note that Φ∗
p(δxp) and Φ∗

p(νp) are positive closed cur-

rents of bidimension (k,k) on X, and the former is well defined for the generic point

xp ∈ Xp (see [23, Section 3.1]). Now we are in position to state the part which deals with

the quantified speed of convergence in the Dinh–Sibony equidistribution theorem [23,

Theorem 4.1].
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Theorem 4.1 ([23, Lemma 4.2 (d)]). In the above setting the following estimate holds:

νp
(
E p (ε)

) ≤Δ (
Xp, ωp, νp, ηε,p

)
,

where ηε,p := εδ(Φp)
−1d(Φp)− 3R

(
Xp, ωp, νp

)
. �

4.2 Equidistribution of pullbacks of Dirac masses by Kodaira maps

Let (X, ω) be a compact Kähler manifold of dimension n and (Lk,hk), 1 ≤ k≤ m ≤ n,

be singular Hermitian holomorphic line bundles on X such that hk is continuous

outside a proper analytic subset Σ(hk)⊂ X, c1(Lk,hk)≥ εω on X for some ε > 0, and

Σ(h1), . . . , Σ(hm) are in general position. Recall from Section 1 that

Xp := PH0
(2)

(
X, L p

1

) × · · · × PH0
(2)

(
X, L p

m

)
, (Ω, σ∞) :=

∞∏
p=1

(
Xp, σp

)
,

where the probability measure σp is the product of the Fubini-Study volume on each

factor. From now on let p∈ N be large enough. Fix an orthonormal basis {Sk,p
j }dk,p

j=0 as in

(8) and let Φk,p : X ��� P
dk,p be the Kodaira map defined by this basis (see (9)). By (11) we

have that Φ∗
k,pωFS = γk,p, where γk,p is the Fubini-Study current of the space H0

(2)(X, L p
k ) as

defined in (10).

We consider now the Kodaira maps as meromorphic transforms from X to

PH0
(2)(X, L p

k ) which we denote still by Φk,p : X ��� PH0
(2)(X, L p

k ). Precisely, this is the mero-

morphic transform with graph

Γk,p = {
(x, s) ∈ X × PH0

(2)

(
X, L p

k

)
: s (x)= 0

}
, 1 ≤ k≤ m.

Indeed, since dim H0
(2)(X, L p

k )≥ 2 (see e.g., Proposition 4.7), there exists, for every x ∈ X,

a section s ∈ H0
(2)(X, L p

k ) with s(x)= 0, so the projection Γk,p −→ X is surjective. Moreover,

since L p
k is non-trivial, every global holomorphic section of L p

k must vanish at some

x ∈ X, hence the projection Γk,p −→ PH0
(2)(X, L p

k ) is surjective. Note that

Φk,p (x)=
{
s ∈ PH0

(2)

(
X, L p

k

)
: s (x)= 0

}
, Φ−1

k,p (s)= {x ∈ X : s (x)= 0} .

Let Φp be the product transform of Φ1,p, . . . , Φm,p (see [23, Section 3.3]). It is the mero-

morphic transform with graph

Γp = {(
x, sp1, . . . , spm

) ∈ X × Xp : sp1 (x)= · · · = spm (x)= 0
}
. (15)
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By above, the projection Π1 : Γp −→ X is surjective. The second projection Π2 : Γp −→ Xp

is proper, hence by Remmert’s theorem Π2(Γp) is an analytic subvariety of Xp. Propo-

sition 3.3 implies that Π2(Γp) has full measure in Xp, so Π2 is surjective and Φp is a

meromorphic transform of codimension n− m, with fibers

Φ−1
p

(
sp

) = {
x ∈ X : sp1 (x)= · · · = spm (x)= 0

}
, where sp = (

sp1, . . . , spm
) ∈ Xp.

Considering the product transform of any Φi1,p, . . . , Φik,p, 1 ≤ i1 < · · ·< ik ≤ m, and argu-

ing as above it follows that, for sp = (sp1, . . . , spm) ∈ Xp generic, the analytic sets {sp1 =
0}, . . . , {spm = 0} are in general position. Hence by [18, Corollary 2.11] the following cur-

rent of bidegree (m,m) is well defined on X:

Φ∗
p

(
δsp

) = [sp = 0] = [sp1 = 0] ∧ · · · ∧ [spm = 0] =Φ∗
1,p

(
δsp1

) ∧ · · · ∧Φ∗
m,p

(
δspm

)
.

The main result of this section is the following theorem.

Theorem 4.2. Under the hypotheses of Theorem 1.2 there exist a constant ξ > 0 depend-

ing only on m and a constant c = c(X, L1,h1, . . . , Lm,hm) > 0 with the following property:

for any sequence of positive numbers {λp}p≥1 with

lim inf
p→∞

λp

log p
> (1 + ξn) c,

there are subsets E p ⊂ Xp such that

(a) σp(E p)≤ cpξn exp(−λp/c) for all p large enough;

(b) if sp ∈ Xp \ E p we have that the estimate∣∣∣∣ 1

pm
〈[sp = 0] − γ1,p ∧ · · · ∧ γm,p, φ〉

∣∣∣∣ ≤ c
λp

p
‖φ‖C 2

holds for every (n− m,n− m) form φ of class C 2.

In particular, for σ∞-a.e. s ∈Ω the estimate from (b) holds for all p sufficiently

large. �

Prior to the proof we need to establish some preparatory results. Let

d0,p = d1,p + · · · + dm,p

be the dimension of Xp and πk be the canonical projection of Xp on to its kth factor. Let

ωp := cp
(
π∗

1ωFS + · · · + π∗
mωFS

)
, so σp =ω

d0,p
p .
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Here ωFS denotes, as usual, the Fubini-Study form on each factor PH0
(2)(X, L p

k ), and the

constant cp is chosen so that σp is a probability measure on Xp, thus

(
cp

)−d0,p = d0,p!

d1,p! . . .dm,p!
· (16)

Lemma 4.3. There is a constant c0 > 0 such that cp ≥ c0 for all p≥ 1. �

Proof. Fix p≥ 1 large enough. For each 1 ≤ k≤ m, let lk := dk,p. Using Stirling’s for-

mula �! ≈ (�/e)�
√

2π� it suffices to show that there is a constant c> 0 such that for all

l1, . . . , lm ≥ 1,

log (l1 + . . .+ lm)−
(

l1 log l1
l1 + · · · + lm

+ · · · + lm log lm
l1 + · · · + lm

)
≤ c.

Since the function t �→ t log t, t> 0, is convex, we infer that

1

m
(l1 log l1 + · · · + lm log lm)≥ l1 + · · · + lm

m
log

l1 + · · · + lm
m

·

This implies the required estimate with c := log m. �

Following Section 4.1, we consider two intermediate degrees for the Kodaira

maps Φp:

dp = d
(
Φp

)
:=

∫
X
Φ∗

p

(
ω

d0,p
p

)
∧ ωn−m and δp = δ

(
Φp

)
:=

∫
X
Φ∗

p

(
ω

d0,p−1
p

)
∧ ωn−m+1.

The next result gives the asymptotic behavior of dp and δp as p→ ∞.

Lemma 4.4. We have dp = pm‖c1(L1,h1) ∧ · · · ∧ c1(Lm,hm)‖ and

δp = pm−1

cp

m∑
k=1

dk,p

d0,p

∥∥∥∥∥∥
m∧

l=1,l �=k

c1 (Ll ,hl)

∥∥∥∥∥∥ ≤ C pm−1,

where C > 0 is a constant depending on (Lk,hk), 1 ≤ k≤ m. �

Proof. We use a cohomological argument. For the first identity we replace ω
d0,p
p by a

Dirac mass δs, where s := (s1, . . . , sm) ∈ Xp is such that {s1 = 0}, . . . , {sm = 0} are in gen-

eral position, so the current Φ∗
p(δs)= [s1 = 0] ∧ · · · ∧ [sm = 0] is well defined (see Proposi-

tion 3.3). By the Poincaré-Lelong formula [33, Theorem 2.3.3],

[sk = 0] = pc1 (Lk,hk)+ ddc log |sk|hk,p, 1 ≤ k≤ m.
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Since the current c1(L1,h1) ∧ · · · ∧ c1(Lm,hm) is well defined (see Proposition 3.1) it fol-

lows that

∫
X
Φ∗

p (δs) ∧ ωn−m = pm
∫

X
θ1 ∧ · · · ∧ θm ∧ ωn−m = pm

∫
X

c1 (L1,h1) ∧ · · · ∧ c1 (Lm,hm) ∧ ωn−m,

where θk is a smooth closed (1,1) form in the cohomology class of c1(Lk,hk). Thus

dp =
∫

X
Φ∗

p

(
ω

d0,p
p

)
∧ ωn−m =

∫
X
Φ∗

p (δs) ∧ ωn−m = pm‖c1 (L1,h1) ∧ · · · ∧ c1 (Lm,hm) ‖.

For the second identity, a straightforward computation shows that

ω
d0,p−1
p =

m∑
k=1

c
d0,p−1
p

(
d0,p − 1

)
!

d1,p! . . .
(
dk,p − 1

)
! . . .dm,p!

π∗
1ω

d1,p

FS ∧ · · · ∧ π∗
kω

dk,p−1
FS ∧ · · · ∧ π∗

mω
dm,p

FS .

Using (16) and replacing ω
dk,p

FS (resp. ω
dk,p−1
FS ) by a generic point (resp. a generic complex

line) in PH0
(2)(X, L p

k ), we may replace ω
d0,p−1
p by a current of the form

T :=
m∑

k=1

dk,p

cpd0,p
[{s1} × · · · × Dk × · · · × {sm}].

Here, Dk is a generic complex line in PH0
(2)(X, L p

k ) and (s1, . . . , sm) is a generic point in Xp.

The genericity of Dk implies that Φ∗
k,p(Dk)= X, so

Φ∗
p ([{s1} × · · · × Dk × · · · × {sm}])=

m∧
l=1,l �=k

[sl = 0].

The Poincaré–Lelong formula yields

∥∥Φ∗
p ([{s1} × · · · × Dk × · · · × {sm}])∥∥ = pm−1

∥∥∥∥∥∥
m∧

l=1,l �=k

c1 (Ll,hl)

∥∥∥∥∥∥ .
Since δp = ‖Φ∗

p(T)‖, the second identity follows. Using Lemma 4.3, this yields the upper

bound on δp. �

Lemma 4.5. For all p sufficiently large we have Φ∗
p(σp)= γ1,p ∧ · · · ∧ γm,p. �

Proof. Let us write Xp = X1,p × · · · × Xm,p and σp = σ1,p × · · · × σm,p, where Xk,p =
PH0

(2)(X, L p
k ) and σk,p is the Fubini–Study volume on Xk,p. Recall that the meromorphic

transform Φp has graph Γp defined in (15), and Π1 : Γp −→ X, Π2 : Γp −→ Xp, denote the
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canonical projections. By the definition of Φ∗
p(σp) (see [23, Section 3.1]) we have

〈Φ∗
p

(
σp

)
, φ〉 =

∫
Γp

Π∗
1 (φ) ∧Π∗

2

(
σp

) =
∫

Xp

Π2∗Π∗
1 (φ) ∧ σp =

∫
Xp

〈
[sp = 0], φ

〉
dσp

(
sp

)
,

where φ is a smooth (n− m,n− m) form on X. Thanks to Propositions 3.1 and 3.2, we

can apply [12, Proposition 4.2] as in the proof of [12, Theorem 1.2] to show that

〈Φ∗
p

(
σp

)
, φ〉 =

∫
Xm,p

. . .

∫
X1,p

〈
[sp1 = 0] ∧ · · · ∧ [spm = 0], φ

〉
dσ1,p

(
sp1

)
. . .dσm,p

(
spm

)

=
∫

Xm,p

. . .

∫
X2,p

〈
γ1,p ∧ [sp2 = 0] ∧ · · · ∧ [spm = 0], φ

〉
dσ2,p

(
sp2

)
. . .dσm,p

(
spm

)

= · · · = 〈γ1,p ∧ · · · ∧ γm,p, φ〉.

This concludes the proof of the lemma. �

Lemma 4.6. There exist absolute constants C1, α > 0, and constants C2, α
′, ξ > 0 depend-

ing only on m ≥ 1, such that for all �, �1, . . . , �m ≥ 1, and t ≥ 0,

R
(
P
�, ωFS, ω

�
FS

) ≤ 1

2
(1 + log �) ,

Δ
(
P
�, ωFS, ω

�
FS, t

) ≤ C1� e−αt,

r
(
P
�1 × · · · × P

�m , ωMP
) ≤ r (�1, . . . , �m) := max

1≤k≤m

d

�k
,

R
(
P
�1 × · · · × P

�m , ωMP, ω
d
MP

) ≤ C2r (�1, . . . , �m) (1 + log d) ,

Δ
(
P
�1 × · · · × P

�m , ωMP, ω
d
MP, t

) ≤ C2dξe−α′t/r(�1,...,�m),

where

d= �1 + · · · + �m, ωMP := c
(
π∗

1 (ωFS)+ · · · + π∗
m (ωFS)

)
, c−d = d!

�1! . . . �m!
,

so ωd
MP is a probability measure on P

�1 × · · · × P
�m . �

Proof. The first two inequalities are proved in Proposition A.3 and Corollary A.5

from [23]. If T is a positive closed current of bidegree (1,1) on P
�1 × · · · × P

�m with

‖T‖ = 1, then T is in the cohomology class of α= a1π
∗
1 (ωFS)+ · · · + amπ

∗
m(ωFS), for some
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ak ≥ 0. Hence

0 ≤ α ≤
(

max
1≤k≤m

ak

c

)
ωMP.

Now

1 = ‖T‖ =
∫

P�1 ×···×P�m

α ∧ ωd−1
MP =

m∑
k=1

ak�k

cd
,

so ak/c ≤ d/�k. Thus r(P�1 × · · · × P
�m , ωMP)≤ max1≤k≤m

d
�k

. The last two inequalities follow

from these estimates by applying [23, Propositions A.8 and A.9]. �

We will also need the following lower estimate for the dimension dk,p.

Proposition 4.7. Let (X, ω) be a compact Kähler manifold of dimension n. Let (L ,h)→ X

be a singular Hermitian holomorphic line bundle such that c1(L ,h)≥ εω for some ε > 0

and h is continuous outside a proper analytic subset of X. Then there exists C > 0 and

p0 ∈ N such that

dim H0
(2)

(
X, L p) ≥ C pn ∀ p≥ p0. �

Proof. Let Σ ⊂ X be a proper analytic set such that h is continuous on X \Σ . We fix

x0 ∈ X \Σ and r > 0 such that B(x0,2r) ∩Σ = ∅. Let 0 ≤ χ ≤ 1 be a smooth cut-off function

that equals 1 on B̄(x0, r) and is supported in B(x0,2r). We consider the function ψ : X →
[−∞,∞), ψ(x)= ηχ(x) log |x − x0|, where η > 0.

Consider the metric h0 = hexp(−ψ) on L. We choose η sufficiently small such that

c1 (L ,h0)≥ ε

2
ω on X.

Let us denote by I(hp) the multiplier ideal sheaf associated with hp. Note that

H0
(2)(X, L p)= H0(X, L p ⊗ I(hp)). The Nadel vanishing theorem [19, 36] shows that there

exists p0 ∈ N such that

H1 (
X, L p ⊗ I (

hp
0

)) = 0, p≥ p0. (17)

Note that I(hp
0 )= I(hp)⊗ I(pψ). Consider the exact sequence

0 → L p ⊗ I (
hp) ⊗ I (pψ)→ L p ⊗ I (

hp) → L p ⊗ I (
hp) ⊗ OX/I (pψ)→ 0. (18)

Thanks to (17) applied to the long exact cohomology sequence associated with (18) we

have

H0 (
X, L p ⊗ I (

hp)) → H0 (
X, L p ⊗ I (

hp) ⊗ OX/I (pψ)
) → 0, p≥ p0. (19)
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Now, for x �= x0, I(pψ)x =OX,x hence OX,x/I(pψ)x = 0. Moreover, I(hp)x0 =OX,x0 since h is

continuous at x0. Hence

H0 (
X, L p ⊗ I (

hp) ⊗ OX/I (pψ)
) = L p

x0
⊗ I (

hp)
x0

⊗ OX,x0/I (pψ)x0

= L p
x0

⊗ OX,x0/I (pψ)x0
, (20)

so

H0 (
X, L p ⊗ I (

hp)) → L p
x0

⊗ OX,x0/I (pψ)x0
→ 0, p≥ p0. (21)

Denote by MX,x0 the maximal ideal of OX,x0 (i.e., germs of holomorphic functions vanish-

ing at x0). We have I(pψ)x0 ⊂M[pη]−n+1
X,x0

and dimOX,x0/Mk+1
X,x0

= (k+n
k

)
, which together with

(21) implies the conclusion. �

Proof of Theorem 4.2. We will apply Theorem 4.1 to the meromorphic transforms Φp

from X to the multi-projective space (Xp, ωp) defined above, and the BP measures νp := σp

on Xp. For t ∈ R and ε > 0 let

Rp := R
(
Xp, ωp, σp

)
, Δp (t) :=Δ

(
Xp, ωp, σp, t

)
,

E p (ε) :=
⋃

‖φ‖C2 ≤1

{s ∈ Xp : |〈[s = 0] − γ1,p ∧ · · · ∧ γm,p, φ〉| ≥ dpε}. (22)

It follows from Siegel’s lemma [33, Lemma 2.2.6] and Proposition 4.7 that there exist

C3 > 0 depending only on (X, Lk,hk)1≤k≤m and p0 ∈ N such that

pn/C3 ≤ dk,p ≤ C3 pn, p≥ p0, 1 ≤ k≤ m.

By the last two inequalities in Lemma 4.6 we obtain for p≥ p0 and t ≥ 0,

Rp ≤ mC2C 2
3

(
1 + log

(
mC3 pn)) ≤ C4 log p,

Δp (t)≤ C2
(
mC3 pn)ξ

exp
( −α′t

mC 2
3

)
≤ C4 pξne−t/C4 ,

(23)

where C4 is a constant depending only on (X, Lk,hk)1≤k≤m. Now set

εp := λp/p, ηp := εpdp/δp − 3Rp.

Lemma 4.4 implies that dp ≈ pm, δp � pm−1, so

ηp ≥ C5λp − 3C4 log p, p≥ p0,
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where C5 is a constant depending only on (X, Lk,hk)1≤k≤m. Note that for all p sufficiently

large,

ηp>
C5

2
λp, provided that lim inf

p→∞
λp

log p
> 6C4/C5.

If E p = E p(εp) then it follows from Theorem 4.1 and Lemma 4.5 that for all p sufficiently

large

σp
(
E p

) ≤Δp
(
ηp

) ≤ C4 pξn exp
(−C5λp

2C4

)
,

where for the last estimate we used (23). Let

c = max
(

6C4

C5 (1 + ξn)
,

2C4

C5
,C4, ‖c1 (L1,h1) ∧ · · · ∧ c1 (Lm,hm) ‖

)
.

If lim infp→∞(λp/ log p) > (1 + ξn)c, then for all p sufficiently large

σp
(
E p

) ≤ C4 pξn exp
(−C5λp

2C4

)
≤ cpξn exp

(−λp

c

)
.

On the other hand, we have by the definition of E p that if sp ∈ Xp \ E p and φ is an (n−
m,n− m) form of class C 2, then∣∣∣∣ 1

pm

〈
[sp = 0] − γ1,p ∧ · · · ∧ γm,p, φ

〉∣∣∣∣ ≤ dp

pm

λp

p
‖φ‖C 2 ≤ c

λp

p
‖φ‖C 2 .

In the last inequality we used the fact that dp ≤ c pm by Lemma 4.4.

For the last conclusion of Theorem 4.2 we proceed as in [20, p. 9]. The assumption

on λp/ log p and (a) imply that

∞∑
p=1

σp
(
E p

) ≤ c′
∞∑

p=1

1

pη
<∞

for some c′ > 0 and η > 1. Hence the set

E := {s = (s1, s2, . . .) ∈Ω : sp ∈ E p for infinitely many p}

satisfies σ∞(E)= 0. Indeed, for every N ≥ 1, E is contained in the set

{s = (s1, s2, . . .) ∈Ω : sp ∈ E p for at least one p≥ N},

whose σ∞-measure is at most

∞∑
p=N

σp
(
E p

) ≤ c′
∞∑

p=N

1

pη
→ 0 as N → ∞.

The proof of the theorem is thereby completed. �
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Proof of Theorem 1.2. Theorem 1.2 follows directly from Theorem 4.2 and Proposi-

tion 3.1(iii). �

5 Equidistribution with Convergence Speed for Hölder Singular Metrics

In this section, we prove Theorem 1.4. We close with more examples of Hölder metrics

with singularities. Theorem 1.4 follows at once from Theorem 4.2 and the next result.

Theorem 5.1. In the setting of Theorem 1.4, there exists a constant c> 0 depending only

on (X, L1,h1, . . . , Lm,hm) such that for all p sufficiently large the estimate∣∣∣∣∣
〈

1

pm

m∧
k=1

γk,p −
m∧

k=1

c1 (Lk,hk) , φ

〉∣∣∣∣∣ ≤ c log p

p
‖φ‖C 2

holds for every (n− m,n− m) form φ of class C 2. �

Proof. We may assume that φ is real. There exists a constant c′ > 0 such that for every

real (n− m,n− m) form φ of class C 2,

− c′‖φ‖C 2 ωn−m+1 ≤ ddcφ ≤ c′‖φ‖C 2 ωn−m+1. (24)

Using Proposition 3.1 and (13) we can write〈
1

pm

m∧
k=1

γk,p −
m∧

k=1

c1 (Lk,hk) , φ

〉
=

m∑
k=1

Ik,

where

Ik =
〈
c1 (L1,h1) ∧ · · · ∧ c1 (Lk−1,hk−1) ∧

(
γk,p

p
− c1 (Lk,hk)

)
∧ γk+1,p

p
∧ · · · ∧ γm,p

p
, φ

〉

=
〈
c1 (L1,h1) ∧ · · · ∧ c1 (Lk−1,hk−1) ∧ ddc log Pk,p

2p
∧ γk+1,p

p
∧ · · · ∧ γm,p

p
, φ

〉

=
∫

X

log Pk,p

2p
c1 (L1,h1) ∧ · · · ∧ c1 (Lk−1,hk−1) ∧ γk+1,p

p
∧ · · · ∧ γm,p

p
∧ ddcφ.

By (24) the total variation of the measure in the last integral is dominated by the positive

measure c′‖φ‖C 2 μ, where

μ := c1 (L1,h1) ∧ · · · ∧ c1 (Lk−1,hk−1) ∧ γk+1,p

p
∧ · · · ∧ γm,p

p
∧ ωn−m+1,

hence

|Ik| ≤ c′‖φ‖C 2

∫
X

| log Pk,p|
2p

dμ.
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Theorem 2.1 implies that there exist a constant c′′ > 0 and p0 ∈ N such that for all z∈
X \Σ(hk) and all p≥ p0 one has

−c′′ ≤ log Pk,p ≤ c′′ log p+ c′′| log dist (z,Σ (hk)) |, 1 ≤ k≤ m.

We obtain that

|Ik| ≤ c′c′′‖φ‖C 2

2p

∫
X
(log p+ | log dist (z,Σ (hk)) |) dμ ∀p≥ p0,1 ≤ k≤ m.

Applying Lemma 5.2 below to the right-hand side yields that

|Ik| ≤ c log p

mp
‖φ‖C 2 ∀p≥ p0,1 ≤ k≤ m,

with some constant c = c(X, L1,h1, . . . , Lm,hm) > 0. The proof is thereby completed. �

The following crucial estimate was used in the proof of Theorem 5.1.

Lemma 5.2. In the setting of Theorem 5.1 there exists a constant C > 0 such that for

every 1 ≤ k≤ m,
∫

X
| log dist (z,Σ (hk)) | c1 (L1,h1) ∧ · · · ∧ c1 (Lk−1,hk−1) ∧ γk+1,p

p
∧ · · · ∧ γm,p

p
∧ ωn−m+1 < C .

�

Proof. Let U ⊂ X be a contractible Stein open set as in Section 3. For 1 ≤ j ≤ m and p≥ 1,

let uj,p, uj be the psh functions defined in (12), so ddcuj = c1(L j,hj) and ddcuj,p = 1
pγ j,p

on U.

By shrinking U if necessary, we may construct a negative psh function vk on U

such that vk ≤ log dist(z,Σ(hk)) < 0 and vk is smooth outside Σ(hk). Indeed, let f1, . . . , fN

be holomorphic functions defined on a neighborhood of Ū such that

Σ (hk) ∩ U = {z∈ U : f1 (z)= · · · = fN (z)= 0} .

We see easily that the function vk(z) := log
(| f1(z)|2 + · · · + | fN(z)|2

) − c′, z∈ U , with a

suitable constant c′ > 0, does the job. Indeed, we may assume that the function h(z)=
| f1(z)|2 + · · · + | fN(z)|2 is Lipschitz on U , so there exist constants c1, c2 > 0 such that

in local coordinates z on U , we have |h(z)| ≤ c1|z − w| for all z∈ U , w ∈Σ(hk), hence

|h(z)| ≤ c2dist(z,Σ(hk)), so log |h(z)| ≤ log dist(z,Σ(hk))+ log c2.

By [12, Theorem 5.1] we have that 1
p log Pj,p → 0 in L1(X, ωn), hence by (12), uj,p →

uj in L1
loc(U ), as p→ ∞, for each k + 1 ≤ j ≤ m. Recall that by (14), uj,p ≥ uj − c′′

p holds on
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U for all p sufficiently large and some constant c′′ > 0. Using the assumption that Σ(hj)

are in general position, [26, Theorem 3.5, Corollary 3.6] implies that

vkddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddcuk+1,p ∧ · · · ∧ ddcum,p

→ vkddcu1 ∧ · · · ∧ ddcuk−1 ∧ ddcuk+1 ∧ · · · ∧ ddcum

weakly on U as p→ ∞, and that the right-hand side has locally bounded mass on U .

Since X is compact, we may cover X by a finite number of open sets U as above. Writing

ωn−m+1 as a finite sum of smooth positive forms such that each form is supported in at

least one open set U , the lemma follows from the last limit. �

Let us close the paper with more examples of Hölder metrics with singularities:

(1) Consider a projective manifold X and a smooth divisor Σ ⊂ X. By [32, 44], if

L = KX ⊗ OX(Σ) is ample, there exists a complete Kähler–Einstein metric ω on M := X \Σ
with Ricω = −ω. This metric has Poincaré type singularities, described as follows. We

denote by D the unit disc in C. Each x ∈Σ has a coordinate neighborhood Ux such that

Ux
∼= D

n, x = 0, Ux ∩Σ ∼= {z= (z1, . . . , zn) : z1 = 0} , Ux ∩ M ∼= D
� × D

n−1.

Then ω= i
2

∑n
j,k=1 gjkdzj ∧ dz̄k is quasi-isometric to the Poincaré-type metric

ωP = i

2

dz1 ∧ dz̄1

|z1|2
(
log |z1|2

)2 + i

2

n∑
j=2

dzj ∧ dz̄j.

Let σ be the canonical section of OX(Σ) (cf. [33, p. 71]) and denote by hσ the metric

induced by σ on OX(Σ) (cf. [33, Example 2.3.4]). Note also that c1(OX(Σ),hσ )= [Σ ] by

[33, (2.3.8)]. Consider the metric

hM,σ := hKM ⊗ hσ on L |M= KM ⊗ OX (Σ) |M
∼= KM. (25)

Note that L is trivial over Ux and the metric hM,σ has a weight ϕ on Ux ∩ M ∼= D
� × D

n−1

given by e2ϕ = |z1|2 det[gjk]. So ddcϕ = − 1
2πRicω > 0 and ϕ is psh on Ux ∩ M. We see as

in [12, Lemma 6.8] that ϕ extends to a psh function on Ux, and hM,σ extends uniquely

to a positively curved metric hL on L. By construction, hL is a Hölder metric with

singularities.

(2) Let us specialize the previous example to the case of Riemann surfaces. Let

X be a compact Riemann surface of genus g and let Σ = {p1, . . . , pd} ⊂ X. It follows from

5071Hölder Singular Metrics on Big Line Bundles and Equidistribution

 at Syracuse U
niversity L

ibrary on A
ugust 25, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


the Uniformization Theorem that the following conditions are equivalent:

(i) U = X \Σ admits a complete Kähler–Einstein metric ω with Ricω = −ω,

(ii) 2g − 2 + d> 0,

(iii) L = KX ⊗ OX(Σ) is ample,

(iv) the universal cover of U is the upper-half plane H.

If one of these equivalent conditions is satisfied, the Kähler–Einstein metric ω

is induced by the Poincaré metric on H. In local coordinate z centered at p∈Σ we have

ω= i
2 gdz ∧ dz̄, where g satisfies c|z|−2(log |z|2)−2 ≤ g(z)≤ c−1|z|−2(log |z|2)−2, for some c>

0, in a punctured neighborhood of p. Note that ω extends to a closed strictly positive

(1,1)-current, that is, a positive measure of finite mass, on X. By [12, Lemma 6.8] there

exists a singular metric hL on L such that c1(L ,hL)= 1
2π ω on X. The weight of hL near a

point p∈Σ has the form ϕ(z)= 1
2 log(|z|2g(z)), which is Hölder with singularities.

(3) Let X be a complex manifold, (L ,hL
0 ) a holomorphic line bundle on X with

smooth Hermitian metric such that c1(L ,hL
0 ) is a Kähler metric. Let Σ be a compact

divisor with normal crossings. Let Σ1, . . . , ΣN be the irreducible components of Σ , so

Σ j is a smooth hypersurface in X. Let σ j be holomorphic sections of the associated

holomorphic line bundle OX(Σ j) vanishing to first order on Σ j and let | · | j be a smooth

Hermitian metric on OX(Σ j) so that |σ j| j < 1 and |σ j| j = 1/e outside a relatively compact

open set containing Σ . Set

Θδ =Ω + δddcF, where δ > 0, F = −1

2

N∑
j=1

log
(− log |σ j| j

)
.

For δ sufficiently small Θδ defines the generalized Poincaré metric [33, Lemma 6.2.1], [12,

Section 2.3]. For ε > 0,

hL
ε = hL

0

N∏
j=1

(− log |σ j| j
)ε

is a singular Hermitian metric on L which is Hölder with singularities. The curvature

c1
(
L ,hL

ε

)
is a strictly positive current on X, provided that ε is sufficiently small (cf. [33,

Lemma 6.2.1]). When X is compact the curvature current of hε dominates a small multiple

of Θδ on X \Σ .

(4) Let X be a Fano manifold. Fix a Hermitian metric h0 on K−1
X such that ω :=

c1(K
−1
X ,h0) is a Kähler metric. We denote by P SH(X, ω) the set of ω-plurisubharmonic

functions on X. Let Σ be a smooth divisor in the linear system defined by K−�
X , so there

exists a section s ∈ H0(X, K−�
X ) with Σ = Div(s).
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Fix a smooth metric h on the bundle OX(Σ) and let β ∈ (0,1]. A conic Kähler–

Einstein metric ω̂ on X with cone angle β along Σ , cf. [24, 43], is a current ω̂=
ωϕ =ω + ddcϕ ∈ c1(X), where ϕ =ψ + |s|2βh ∈ P SH(X, ω) and ψ ∈ C ∞(X) ∩ P SH(X, ω). In a

neighborhood of a point of Σ where Σ is given by z1 = 0 the metric ω̂ is equivalent to the

cone metric i
2

(
|z1|2β−2dz1 ∧ dz̄1 + ∑n

j=2 dzj ∧ dz̄j

)
.

The metric ω̂ defines a singular metric hω̂ on K−1
X which is Hölder with singulari-

ties. Its curvature current is Ricω̂ := c1
(
K−1

X ,hω̂
) = (1 − �(1 − β))ω̂ + (1 − β)[Σ ], where [Σ ]

is the current of integration on Σ .
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Boston, 1999.

[11] Coman, D. and G. Marinescu. “Convergence of Fubini-Study currents for orbifold line bun-

dles.” International Journal of Mathematics 24, no. 7 (2013): 1350051, 27 pp.

[12] Coman, D. and G. Marinescu. “Equidistribution results for singular metrics on line bundles.”
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