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r é s u m é

Nous étudions la distribution de l’ensemble des zéros communs de m-tuplets de 
sections holomorphes de puissances de m fibrés en droites hermitiens singuliers 
pseudo-effectifs sur une variété kählérienne compacte. Comme application, nous 
obtenons des conditions suffisantes pour que le produt extérieur des courants de 
courbure de ces fibrés puisse être approché par des cycles analytiques.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

A fundamental problem in pluripotential theory is to characterize those positive closed currents on a 
projective complex manifold which can be approximated by effective cycles with real coefficients. The case 
of bidegree (1, 1) was originally introduced by Lelong [26] and intensively studied since then, see e.g. [13,
15,20,25]. Approximation results for positive currents have applications to analytic geometry (analyticity 
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of level sets of Lelong numbers [32]), complex algebraic geometry (invariance of plurigenera [33,29]) and 
number theory (algebraic values of meromorphic maps [4,27,34]).

The problem of approximation by analytic cycles is widely open for higher bidegree currents and is linked 
to the Hodge conjecture [11]. It turns out that there are counter-examples [1] to the strong Hodge conjecture 
formulated in [11]. It is thus interesting to identify large classes of currents which can be approximated by 
analytic/rational cycles. The purpose of this paper is to study the case of currents obtained as the wedge 
product of curvature currents of singular Hermitian line bundles, by assuming that the analytic sets where 
the metrics are singular (unbounded or discontinuous) are in general position. Note that the study of singular 
metrics of holomorphic line bundles is central to several questions of complex algebraic geometry [4,12–15,
28].

The main ideas are an equidistribution property of the common zeros of random holomorphic sections of 
powers of line bundles and the compactness of the space of currents approachable by cycles. The equidistri-
bution result enters the program of studying equidistribution in the setting of singular Hermitian metrics 
[5–9,16,17,30,31]. Our main tools are Bertini type results from [5,9] and Theorem 4.4, a version of an ab-
stract equidistribution theorem due to Dinh–Sibony [18], which is a Large Deviation Principle in this setting. 
Another ingredient is an estimate on the Bergman kernel function (Theorem 3.1), which is of independent 
interest.

In the remaining of the introduction we give a short discussion about the background of this work and 
then state our approximation and equidistribution results.

1.1. Background

Let (X, ω) be a compact Kähler manifold of dimension n, dist be the distance on X induced by ω, 
and KX be the canonical line bundle of X. If (L, h) is a holomorphic line bundle on X endowed with 
a singular Hermitian metric h, we denote by c1(L, h) its curvature current, cf. [12], [28, Section 2.3.1]. 
Recall that if eL is a holomorphic frame of L on some open set U ⊂ X then |eL|2h = e−2φ, where 
φ ∈ L1

loc(U) is called the local weight of the metric h with respect to eL, and c1(L, h)|U = ddcφ. 
Here d = ∂ + ∂, dc = 1

2πi (∂ − ∂). We say that h is positively curved (resp. strictly positively curved) 
if c1(L, h) ≥ 0 (resp. c1(L, h) ≥ εω for some ε > 0) in the sense of currents. This is equivalent 
to saying that the local weights φ are plurisubharmonic (psh for short) (resp. strictly plurisubhar-
monic). We say that (L, h) is pseudo-effective if the metric h is positively curved. For p ∈ N and 
L a holomorphic line bundle on X, let Lp := L⊗p. Given a holomorphic section s ∈ H0(X, Lp), 
we denote by [s = 0] the current of integration (with multiplicities) over the analytic hypersurface 
{s = 0} ⊂ X.

Recall that a holomorphic line bundle L is called big if its Kodaira–Iitaka dimension equals the dimension 
of X (see [28, Definition 2.2.5]). By the Shiffman–Ji–Bonavero–Takayama criterion [28, Lemma 2.3.6], L is 
big if and only if it admits a strictly positively curved singular Hermitian metric h. In this case we also say 
that (L, h) is big.

Recall from [9, Definition 1.1] the following concept. We say that the analytic subsets A1, . . . , Am ⊂ X

are in general position if codim(Ai1 ∩ . . . ∩Aik) ≥ k for every 1 ≤ k ≤ m and 1 ≤ i1 < . . . < ik ≤ m.
Let Lk, 1 ≤ k ≤ m ≤ n, be m holomorphic line bundles on (X, ω). For each p ∈ N∗, we define 

A p(L1, . . . , Lm) to be the space of all positive closed currents R of bidegree (m, m) on X of the form

R = 1
pm

[sp1 = 0] ∧ . . . ∧ [spm = 0] , spj ∈ H0(X,Lp
j ) , (1)

where spj are such that the hypersurfaces {sp1 = 0}, . . . , {spm = 0} are in general position. This condition 
ensures that [sp1 = 0] ∧ . . . ∧ [spm = 0] is a well-defined positive closed current of bidegree (m, m) which is 
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equal to the current of integration with multiplicities along the analytic set {sp1 = 0} ∩ . . .∩{spm = 0} (see 
e.g. [14, Corollary 2.11, Proposition 2.12] and [22, Theorem 3.5]).

When L1 = · · · = Lm = L, A p(L, . . . , L) is related with the space Am(Lp) introduced by the first and 
second authors in [7] as

Am(Lp) =
{
R = 1

N

N∑
l=1

Rl : Rl ∈ A p(L, . . . , L), N ∈ N∗

}
.

In particular, A p(L, . . . , L) ⊂ Am(Lp).
For each p ∈ N∗, we define A p

K(L1, . . . , Lm) to be the space of all positive closed currents R of bidegree 
(m, m) on X of the form

R = 1
pm

[sp1 = 0] ∧ . . . ∧ [spm = 0] , spj ∈ H0(X,Lp
j ⊗KX) , (2)

where spj are such that the hypersurfaces {sp1 = 0}, . . . , {spm = 0} are in general position.

1.2. Approximation results

Here is our first approximation result using the sequence of spaces A p(L1, . . . , Lm), p ≥ 1.

Theorem 1.1. Let (X, ω) be a compact Kähler manifold of dimension n and 1 ≤ m ≤ n be an integer. For 
1 ≤ k ≤ m let Lk be a holomorphic line bundle on X endowed with two singular Hermitian metrics gk and 
hk such that:

(i) gk and hk are locally bounded outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, gk) ≥ εω on X for some ε > 0 and c1(Lk, hk) ≥ 0 on X;
(iii) Σ1, . . . , Σm are in general position.

Then there exists a sequence of currents Rj ∈ A pj (L1, . . . , Lm), where pj ↗ ∞, such that Rj converges 
weakly on X to c1(L1, h1) ∧ . . . ∧ c1(Lm, hm) as j → ∞.

Working with sections of adjoint line bundles, i.e. using the sequence of spaces A p
K(L1, . . . , Lm), p ≥ 1, we 

obtain a more general approximation result than Theorem 1.1, in the sense that the metrics gk are assumed 
to verify a weaker positivity condition. The next theorem only deals with two line bundles. However, it 
requires a very weak assumption on the sets where the metrics may not be continuous.

Theorem 1.2. Let (X, ω) be a compact Kähler manifold of dimension n ≥ 2, and for 1 ≤ k ≤ 2 let Lk be a 
holomorphic line bundle on X endowed with two singular Hermitian metrics gk and hk such that:

(i) gk and hk are continuous outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, hk) ≥ 0 on X, c1(Lk, gk) ≥ 0 on X, and for every x ∈ X \Σk there is a constant cx > 0 so that 

c1(Lk, gk) ≥ cxω in a neighborhood of x;
(iii) Σ1 and Σ2 are in general position.

Then there exists a sequence of currents Rj ∈ A
pj

K (L1, L2), where pj ↗ ∞, such that Rj converges weakly 
on X to c1(L1, h1) ∧ c1(L2, h2) as j → ∞.

The last approximation result deals with several line bundles. However, it requires a strong assumption 
on the set where the metrics may not be continuous.
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Theorem 1.3. Let (X, ω) be a compact Kähler manifold of dimension n and 1 ≤ m ≤ n be an integer. For 
1 ≤ k ≤ m let Lk be a holomorphic line bundle on X endowed with two singular Hermitian metrics gk and 
hk such that:

(i) gk and hk are continuous outside a proper analytic subset Σ ⊂ X;
(ii) c1(Lk, hk) ≥ 0 on X, c1(Lk, gk) ≥ 0 on X, and for every x ∈ X \ Σ there is a constant cx > 0 so that 

c1(Lk, gk) ≥ cxω in a neighborhood of x;
(iii) codim(Σ) ≥ m.

Then there exists a sequence of currents Rj ∈ A
pj

K (L1, . . . , Lm), where pj ↗ ∞, such that Rj converges 
weakly on X to c1(L1, h1) ∧ . . . ∧ c1(Lm, hm) as j → ∞.

1.3. Equidistribution results

In order to investigate the equidistribution problem, we need to introduce some more notation and 
terminology. Let (Lk, hk), 1 ≤ k ≤ m ≤ n, be m singular Hermitian holomorphic line bundles on (X, ω). 
Let H0

(2)(X, Lp
k) (resp. H0

(2)(X, Lp
k ⊗ KX)) be the Bergman space of L2-holomorphic sections of Lp

k (resp. 
of Lp

k ⊗KX) relative to the metric hk,p := h⊗p
k induced by hk, and the metric hKX on KX induced by the 

volume form ωn on X. These spaces are endowed with the respective inner product

(S, S′)k,p :=
∫
X

〈S, S′〉hk,p
ωn , S, S′ ∈ H0

(2)(X,Lp
k),

(S, S′)Kk,p :=
∫
X

〈S, S′〉hk,p⊗hKX ωn , S, S′ ∈ H0
(2)(X,Lp

k ⊗KX).
(3)

For every p ≥ 1 and 1 ≤ k ≤ m, let σk,p be the Fubini–Study volume form on the projective space 
PH0

(2)(X, Lp
k) (resp. PH0

(2)(X, Lp
k ⊗ KX)) which is the projectivization of the finite-dimensional complex 

vector spaces H0
(2)(X, Lp

k) (resp. H0
(2)(X, Lp

k ⊗KX)) endowed with the above inner product (S, S′)k,p (resp. 
(S, S′)Kk,p). Clearly, the measure σk,p depends not only on Lk and p, but also on hk.

For every p ≥ 1 we consider the multi-projective spaces

Xp := PH0
(2)(X,Lp

1) × . . .× PH0
(2)(X,Lp

m),

XK,p := PH0
(2)(X,Lp

1 ⊗KX) × . . .× PH0
(2)(X,Lp

m ⊗KX)
(4)

equipped with the probability measure σp which is the product of the Fubini–Study volumes on the com-
ponents. If S ∈ H0(X, Lp

k) (resp. S ∈ H0(X, Lp
k ⊗ KX)), we denote by [S = 0] the current of integration 

(with multiplicities) over the analytic hypersurface {S = 0} of X. Set

[sp = 0] := [sp1 = 0] ∧ . . . ∧ [spm = 0] , for sp = (sp1, . . . , spm) ∈ Xp or ∈ XK,p,

whenever the hypersurfaces {sp1 = 0}, . . . , {spm = 0} of X are in general position. We also consider the 
probability spaces

(Ω, σ∞) :=
∞∏
p=1

(Xp, σp),

(ΩK , σ∞) :=
∞∏

(XK,p, σp) .
(5)
p=1



222 D. Coman et al. / J. Math. Pures Appl. 115 (2018) 218–236
For the sake of clarity we may write Ω(h1, . . . , hm), σ∞(h1, . . . , hm) (resp. ΩK(h1, . . . , hm), σ∞(h1, . . . , hm)) 
in order to make precise the dependence of (Ω, σ∞) (resp. (ΩK , σ∞)) on the metrics h1, . . . , hm. Assume 
that for σ∞-a.e. {sp}p≥1 ∈ Ω (resp. ∈ ΩK), the hypersurfaces {sp1 = 0}, . . . , {spm = 0} of X are in general 
position for all p sufficiently large.

Definition 1.4. We say that (Ω, σ∞) (resp. (ΩK , σ∞)) (or simply Ω (resp. ΩK) if σ∞ is clear from the context) 
equidistributes toward a positive closed (m, m) current T defined on X if for σ∞-a.e. {sp}p≥1 ∈ Ω (resp. 
∈ ΩK), we have in the weak sense of currents on X,

1
pm

[sp = 0] → T as p → ∞ .

Our first equidistribution theorem only deals with two line bundles. However, it requires a very weak 
assumption on the sets where the metrics may not be continuous.

Theorem 1.5. Let (X, ω) be a compact Kähler manifold of dimension n ≥ 2 and (Lk, hk), 1 ≤ k ≤ 2, be two 
singular Hermitian holomorphic line bundles on X such that:

(i) hk is continuous outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, hk) ≥ 0 on X, and for every x ∈ X \ Σk there is a constant cx > 0 so that c1(Lk, hk) ≥ cxω in 

a neighborhood of x;
(iii) Σ1 and Σ2 are in general position.

Then ΩK equidistributes toward the current c1(L1, h1) ∧ c1(L2, h2).

The last equidistribution result deals with several line bundles. However, it requires a strong assumption 
on the set where the metrics may not be continuous.

Theorem 1.6. Let (X, ω) be a compact Kähler manifold of dimension n and (Lk, hk), 1 ≤ k ≤ m ≤ n, be m
singular Hermitian holomorphic line bundles on X such that:

(i) hk is continuous outside a proper analytic subset Σ ⊂ X;
(ii) c1(Lk, hk) ≥ 0 on X, and for every x ∈ X \Σ there is a constant cx > 0 so that c1(Lk, hk) ≥ cxω in a 

neighborhood of x;
(iii) codim(Σ) ≥ m.

Then ΩK equidistributes toward the current c1(L1, h1) ∧ . . . ∧ c1(Lm, hm).

This paper is organized as follows. In Section 2 we first present a method which allows us to deduce 
approximation results from equidistribution theorems. Using this method as well as our previous work [9], 
in the remainder of the section we give the proof of Theorem 1.1 and we show that equidistribution theorems 
(Theorems 1.5–1.6) imply approximations theorems (Theorems 1.2–1.3).

The next two sections develop the necessary tools. Section 3 studies the dimension growth of section spaces 
and Bergman kernel functions. Section 4 establishes the convergence towards intersection of Fubini–Study 
currents. Here we apply equidistribution results due to Dinh–Sibony for meromorphic transforms [18].

Having these two tools at hand and using the intersection theory of positive closed currents, our first 
equidistribution theorem (for two line bundles), Theorem 1.5, will be proved in Section 5.

Finally, Section 6 concludes the article with the proof of our second equidistribution theorem, Theo-
rem 1.6.
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2. Equidistribution implies approximation

Let (X, ω) be a compact Kähler manifold of dimension n and 0 ≤ m ≤ n be an integer. In [19] Dinh 
and Sibony have introduced the following natural metric on the space of positive closed currents of bidegree 
(m, m) on X. If R and S are such currents, define

dist(R,S) := sup
‖Φ‖C1≤1

|〈R− S,Φ〉|,

where Φ is a smooth (n − m, n − m)-form on X and we use the sum of C 1-norms of its coefficients for a 
fixed atlas on X.

Lemma 2.1. (i) On the convex set of positive closed currents of bidegree (m, m) and of mass ≤ 1 on X, the 
topology induced by the above distance coincides with the weak topology.

(ii) Assume that T , (Tj)∞j=1, (Tjp)∞j,p=1 are positive closed currents of bidegree (m, m) on X such that 
Tj → T as j → ∞ and that for each j ∈ N∗, Tjp → Tj as p → ∞. Then there is a subsequence (pj)∞j=1 ⊂
N∗ ↗ ∞ such that Tjpj

→ T as j → ∞.

Proof. Assertion (i) has been proved in [19, Proposition 2.1.4].
By passing to a subsequence if necessary, we may assume without loss of generality that the masses of 

currents T, (Tj)∞j=1, (Tjp)∞j,p=1 are all bounded from above by a common finite constant. Therefore, applying 
assertion (i), we obtain that

lim
j→∞

dist(Tj , T ) = 0 and lim
p→∞

dist(Tjp, Tj) = 0 for each j ∈ N∗.

The second limit shows that for every j ∈ N∗, there is pj > pj−1 such that dist(Tjpj
, Tj) ≤ 1/j. This, 

combined with the first limit, implies that limj→∞ dist(Tjpj
, T ) = 0, proving assertion (ii) in view of asser-

tion (i). �
The following result shows that equidistribution implies approximation:

Proposition 2.2. Let (X, ω) be a compact Kähler manifold of dimension n and 1 ≤ m ≤ n be an integer. For 
1 ≤ k ≤ m let Lk be a holomorphic line bundle on X endowed with two singular Hermitian metrics gk and 
hk such that

(i) gk and hk are locally bounded outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, gk) ≥ 0 and c1(Lk, hk) ≥ 0 on X;
(iii) Σ1, . . . , Σm are in general position;
(iv) there is a sequence εj ↘ 0 such that Ω(h1−εj

1 g
εj
1 , . . . , h1−εj

m g
εj
m) (resp. ΩK(h1−εj

1 g
εj
1 , . . . , h1−εj

m g
εj
m)) 

equidistributes towards the current c1(L1, h
1−εj
1 g

εj
1 ) ∧ . . . ∧ c1(Lm, h1−εj

m g
εj
m) for all j ∈ N∗.

Then there exists a sequence of currents Rj ∈ A pj (L1, . . . , Lm) (resp. Rj ∈ A
pj

K (L1, . . . , Lm)), where 
pj ↗ ∞, such that Rj converges weakly on X to c1(L1, h1) ∧ . . . ∧ c1(Lm, hm) as j → ∞.

Proof. We only give the proof when the space Ω is considered in (iv). The case of ΩK is identical to this 
one.

For each 1 ≤ k ≤ m and j ∈ N∗, observe that the metric h1−εj
k g

εj
k is locally bounded outside Σk by (i), 

and that

c1(Lk, h
1−εjg

εj ) = (1 − εj)c1(Lk, hk) + εj c1(Lk, gk) ≥ 0
k k
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by (ii). Consequently, using (iii) and applying [14, Corollary 2.11, Proposition 2.12] or [22, Theorem 3.5], 
we get that

Tj := c1(L1, h
1−εj
1 g

εj
1 ) ∧ . . . ∧ c1(Lm, h1−εj

m gεjm)

= (1 − εj)mc1(L1, h1) ∧ . . . ∧ c1(Lm, hm) +
∑
J

ε
m−|J|
j (1 − εj)|J|

∧
k∈J

c1(Lk, hk) ∧
∧
k∈J ′

c1(Lk, gk),

where the last sum is taken over all subsets J � {1, . . . , m} with cardinal |J | and J ′ := {1, . . . , m} \J . Since 
for such a subset J , the current 

∧
k∈J c1(Lk, hk) ∧

∧
k∈J ′ c1(Lk, gk) is a well-defined positive closed current 

and εm−|J|
j ↘ 0 as j ↗ ∞, it follows that

c1(L1, h
1−εj
1 g

εj
1 ) ∧ . . . ∧ c1(Lm, h1−εj

m gεjm) → c1(L1, h1) ∧ . . . ∧ c1(Lm, hm) =: T as j → ∞.

In other words, Tj → T as j → ∞.
On the other hand, by (iv) for each j ∈ N∗ and each p ∈ N∗ there is a current Tjp ∈ A p(L1, . . . , Lm)

such that Tjp → Tj as p → ∞. Applying Lemma 2.1 (ii) to the above family of currents T , (Tj)∞j=1 and 
(Tjp)∞j,p=1, we can find a subsequence (pj)∞j=1 ⊂ N∗ ↗ ∞ such that

Tjpj
→ c1(L1, h1) ∧ . . . ∧ c1(Lm, hm) as j → ∞.

Since Rj := Tjpj
∈ A pj (L1, . . . , Lm) and pj ↗ ∞ as j ↗ ∞, the proof is complete. �

To illustrate the usefulness of Proposition 2.2, we give in the remainder of the section the proof of 
Theorems 1.1–1.3, by taking Theorems 1.5 and 1.6 for granted. The following equidistribution result is 
needed.

Theorem 2.3. Let (X, ω) be a compact Kähler manifold of dimension n and (Lk, hk), 1 ≤ k ≤ m ≤ n, be m
singular Hermitian holomorphic line bundles on X such that:

(i) hk is locally bounded outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, hk) ≥ εω on X for some ε > 0;
(iii) Σ1, . . . , Σm are in general position.

Then Ω(h1, . . . , hm) equidistributes toward the current c1(L1, h1) ∧ . . . ∧ c1(Lm, hm).

Proof. When (i) is replaced by the stronger condition that hk is continuous outside Σk, the theorem was 
proved in our previous work [9, Theorem 1.2]. A careful verification shows that our proof still works assuming 
the weaker condition (i). Indeed, let Pk,p be the Bergman kernel function of (Lp

k, hk,p) (see [9, eq. (4)]). Then 
the fact that 1

p logPk,p → 0 in L1(X, ωn) as p → ∞, as well as the estimate [9, eq. (14)] hold under the 
more general assumption (i) (see also [5, Theorem 5.1]). Moreover, [9, Proposition 4.7] holds with the same 
proof for metrics that are locally bounded outside an analytic subset of X. �
Proof of Theorem 1.1. Fix a sequence εj ↘ 0 as j ↗ ∞. By (ii) we get that

c1(Lk, h
1−εj
k g

εj
k ) = (1 − εj)c1(Lk, hk) + εj c1(Lk, gk) ≥ εjε ω, 1 ≤ k ≤ m.

Therefore, applying Theorem 2.3 to the singular Hermitian holomorphic big line bundles (Lk, h
1−εj
k g

εj
k ), 

1 ≤ k ≤ m, we infer that Ω(h1−εj
1 g

εj
1 , . . . , h1−εj

m g
εj
m) equidistributes toward the current c1(L1, h

1−εj
1 g

εj
1 ) ∧

. . .∧ c1(Lm, h1−εj
m g

εj
m) for all j ∈ N∗. Putting this together with (i) and (iii), we are in the position to apply 

Proposition 2.2, and hence the proof is complete. �
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Proofs of Theorem 1.2 and Theorem 1.3. Theorem 1.2 (resp. Theorem 1.3) follows from Theorem 1.5 (resp. 
Theorem 1.6). We will only give here the proof that Theorem 1.5 implies Theorem 1.2. The other implication 
can be proved similarly. Fix a sequence εj ↘ 0 as j ↗ ∞. By (ii) we get that

c1(Lk, h
1−εj
k g

εj
k ) = (1 − εj)c1(Lk, hk) + εj c1(Lk, gk) ≥ εj c1(Lk, gk), 1 ≤ k ≤ m.

Therefore, applying Theorem 1.5 to the singular Hermitian holomorphic line bundles (Lk, h
1−εj
k g

εj
k ), 

1 ≤ k ≤ 2, we infer that ΩK(h1−εj
1 g

εj
1 , h1−εj

2 g
εj
2 ) equidistributes toward the current c1(L1, h

1−εj
1 g

εj
1 ) ∧

c1(L2, h
1−εj
2 g

εj
2 ) for all j ∈ N∗. Putting this together with (i) and (iii), we are in the position to apply 

Proposition 2.2, and hence the proof of Theorem 1.2 is complete. �
3. Dimension growth of section spaces and Bergman kernel functions

In this section we prove a theorem about the dimension growth of section spaces and the asymptotic 
behavior of the Bergman kernel function of adjoint line bundles.

Let (L, h) be a singular Hermitian holomorphic line bundle over a compact Kähler manifold (X, ω) of 
dimension n. Consider the space H0

(2)(X, Lp ⊗KX) of L2-holomorphic sections of Lp relative to the metric 
hp := h⊗p induced by h, hKX on KX and the volume form ωn on X, endowed with the natural inner product 
(see (3)). Since H0

(2)(X, Lp ⊗KX) is finite dimensional, let

dp := dimH0
(2)(X,Lp ⊗KX) − 1, (6)

and when dp ≥ 0 let {Sp
j }

dp

j=0 be an orthonormal basis. We denote by Pp the Bergman kernel function 
defined by

Pp(x) =
dp∑
j=0

|Sp
j (x)|2hp⊗hKX

, |Sp
j (x)|2hp⊗hKX

:= 〈Sp
j (x), Sp

j (x)〉hp⊗hKX , x ∈ X. (7)

Note that this definition is independent of the choice of basis.

Theorem 3.1. Let (X, ω) be a compact Kähler manifold of dimension n, (L, h) be a singular Hermitian 
holomorphic line bundle on X, and Σ ⊂ X be a proper analytic subset such that:

(i) h is continuous outside Σ;
(ii) c1(L, h) ≥ 0 on X, and for every x ∈ X \ Σ there is a constant cx > 0 so that c1(L, h) ≥ cxω in a 

neighborhood of x.

For every p ≥ 1, let dp be given by (6) and Pp be the Bergman kernel function defined by (7) for the space 
H0

(2)(X, Lp ⊗KX). Then

1) limp→∞
1
p logPp(x) = 0 locally uniformly on X \ Σ.

2) There is a constant c > 1 such that c−1 ≤ dp/p
n ≤ c for all p ≥ 1.

In order to prove our theorems we need the following variant of the existence theorem for ∂ in the case of 
singular Hermitian metrics. The smooth case goes back to Andreotti–Vesentini and Hörmander, while the 
singular case was first observed by Bombieri and Skoda and proved in the present general form by Demailly 
[10, Theorem 5.1].



226 D. Coman et al. / J. Math. Pures Appl. 115 (2018) 218–236
Theorem 3.2 (L2-estimates for ∂). Let (M, ω) be a Kähler manifold of dimension n which admits a complete 
Kähler metric. Let (L, h) be a singular Hermitian holomorphic line bundle and let λ : M → [0, ∞) be a 
continuous function such that c1(L, h) ≥ λω. Then for any form g ∈ L2

n,1(M, L, loc) satisfying

∂g = 0,
∫
M

λ−1|g|2ω,hω
n < ∞ ,

there exists u ∈ L2
n,0(M, L, loc) with ∂u = g and

∫
M

|u|2ω,hω
n ≤

∫
M

λ−1|g|2ω,hω
n .

Proof. See [6, Corollary 4.2]. �
Proof of Theorem 3.1. Following the arguments of [13,5,6] we will first establish the following upper and 
lower estimates (8)–(9) for 1

p logPp.
To state the upper estimate (8), let x ∈ X and let Uα ⊂ X be a coordinate neighborhood of x on which 

there exists a holomorphic frame eα of L and e′α of KX . Let ψα be a psh weight of h and ρα be a smooth 
weight of hKX on Uα. Fix r0 > 0 so that the ball V := B(x, 2r0) ⊂⊂ Uα and let U := B(x, r0). Then (8)
says that there exist constants C > 0, p0 ∈ N, so that

logPp(z)
p

≤ log(Cr−2n)
p

+ 2
(

max
B(z,r)

ψα − ψα(z)
)

(8)

holds for all p > p0, 0 < r < r0, and z ∈ U with ψα(z) > −∞.
The lower estimate (9) says that for every x ∈ X \Σ, there exist a constant C = Cx, p0 ∈ N large enough 

and an open neighborhood U of x such that

− logC
p

≤ 1
p

logPp(z) (9)

holds for all p > p0 and z ∈ U .

For the upper estimate (8), let S ∈ H0
(2)(X, Lp ⊗KX) with ‖S‖ = 1 and write S = se⊗p

α ⊗ e′α. Repeating 
an argument of Demailly we obtain, for 0 < r < r0,

|S(z)|2hp⊗hKX
= |s(z)|2e−2pψα(z)−2ρα(z) ≤ e−2pψα(z)−2ρα(z) C1

r2n

∫
B(z,r)

|s|2 ωn

≤ C1

r2n exp
(

2p
(

max
B(z,r)

(ψα + ρα
p

) − ψα(z) − ρα(z)
p

)) ∫
B(z,r)

|s|2e−2pψα−2ρα ωn

≤ C2

r2n exp
(

2p
(

max
B(z,r)

ψα − ψα(z)
))

,

where C1, C2 are constants that depend only on x, and we use here the fact that ρα is smooth. Hence

1 logPp(z) = 1 max log |S(z)|2hp⊗hKX
≤ log(C2r

−2n) + 2
(

max ψα − ψα(z)
)
.

p p ‖S‖=1 p B(z,r)
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Note that this estimate holds for all p and it does not require the strict positivity of the current c1(L, h), 
nor the hypotheses that X is compact or ω is a Kähler form. Covering X by a finite number of such open 
set U , the last estimate implies (8).

For the lower estimate (9), let x ∈ X \ Σ and Uα � X \ Σ be a coordinate neighborhood of x on which 
there exists a holomorphic frame eα of L and e′α of KX . Let ψα be a psh weight of h and ρα be a smooth 
weight of hKX on Uα. Fix r0 > 0 so that the ball V := B(x, 2r0) ⊂⊂ Uα and let U := B(x, r0). Next, we 
proceed as in [15, Section 9] and [6, Theorem 4.2] to show that there exist a constant C = Cx > 0 and 
p0 ∈ N large enough such that for all p > p0 and all z ∈ U (note that ψα > −∞ on U) there is a section 
Sz,p ∈ H0

(2)(X, Lp ⊗KX) with Sz,p(z) �= 0 and

‖Sz,p‖2 ≤ C|Sz,p(z)|2hp⊗hKX
.

Observe that this implies that

1
p

logPp(z) = 1
p

max
‖S‖=1

log |S(z)|2hp⊗hKX
≥ − logC

p
.

Note that, by the continuity of ψα, putting (8) and (9) together implies that 1
p logPp → 0 as p → ∞

locally uniformly on V \ Σ. This proves Part 1).
Now we turn to the proof of Part 2). Let x ∈ X \ Σ and Uα � X \ Σ be a coordinate neighborhood of x

on which there exists a holomorphic frame eα of L and e′α of KX . Let ψα be a psh weight of h and ρα be a 
smooth weight of hKX on Uα. Fix r0 > 0 so that the ball V := B(x, 2r0) ⊂⊂ Uα and let U := B(x, r0). Let 
θ ∈ C∞(R) be a cut-off function such that 0 ≤ θ ≤ 1, θ(t) = 1 for |t| ≤ 1

2 , θ(t) = 0 for |t| ≥ 1. For z ∈ U , 
define the quasi-psh function ϕz on X by

ϕz(y) =

⎧⎨
⎩2θ

( |y−z|
r0

)
log

( |y−z|
r0

)
, for y ∈ Uα ,

0, for y ∈ X \B(z, r0) .
(10)

Note the function ϕz is psh, hence ddcϕz ≥ 0, on {y : |y − z| ≤ r0/2}. Since V � Uα, it follows that there 
exists a constant c′ > 0 such that for all z ∈ U we have ddcϕz ≥ −c′ω on X and ddcϕz = 0 outside V . By 
assumption (ii), there is a constant c > 0 such that c1(L, h) ≥ cω on a neighborhood of V . Therefore, there 
exist 0 < a, b < 1 and p0 ∈ N such that for all p ≥ p0 and all z ∈ U

c1(Lp, hpe
−bpϕz ) ≥ 0 on X,

c1(Lp, hpe
−bpϕz ) ≥ apω on a neighborhood of V .

Let λ : X → [0, ∞) be a continuous function such that λ = ap on V and

c1(Lp, hpe
−bpϕz ) ≥ λω on X.

By identifying V to an open ball in Cn, we may write y = (y1, . . . , yn) for y ∈ V . Fix β = (β1, . . . , βn) ∈ Nn

with 
∑n

j=1 βj ≤ [bp] − n. Let vz,p,β ∈ O(V ) be given by

vz,p,β(y) := (y1 − z1)β1 · · · (yn − zn)βn for y ∈ V. (11)

Consider the form

gz,p,β ∈ L2
n,1(X,Lp), gz,p,β := ∂

(
vz,p,βθ

( |y−z|)e⊗p
α ⊗ e′α

)
.
r0
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As gz,p,β = 0 outside V , we get that

∫
X

1
λ
|gz,p,β |2hp⊗hKX

e−bpϕzωn =
∫
V

1
λ
|gz,p,β |2hp⊗hKX

e−bpϕzωn = 1
ap

∫
V

|gz,p,β |2hp⊗hKX
e−bpϕzωn .

Note that the integral at the right is finite since ψα is bounded on V , gz,p,β = 0 on B(z, r0/2), and ϕz is 
bounded on V \B(z, r0/2), so

∫
V

|gz,p,β |2hp⊗hKX
e−bpϕzωn =

∫
V \B(z,r0/2)

|vz,p,β |2|∂θ( |y−z|
r0

)|2e−2pψαe−bpϕzωn

≤ C ′′
p

∫
V

|vz,p,β |2e−2pψαωn < ∞,

where C ′′
p > 0 is a constant that depends only on x and p.

The hypotheses of Theorem 3.2 are satisfied for the complete Kähler manifold (X, ω), the semipositive 
line bundle (Lp, hpe

−bpϕz ) and the form gz,p,β, for all p ≥ p0 and z ∈ U . So by Theorem 3.2, there exists 
uz,p,β ∈ L2

n,0(X, Lp) such that ∂uz,p,β = gz,p,β and

∫
X

|uz,p,β |2hp⊗hKX
e−bpϕzωn ≤

∫
X

1
λ
|gz,p,β |2hp⊗hKX

e−bpϕzωn ≤
C ′′

p

ap

∫
V

|vz,p,β |2e−2pψαωn. (12)

Define

Sz,p,β := vz,p,βθ
( |y−z|

r0

)
e⊗p
α ⊗ e′α − uz,p,β .

Then ∂Sz,p,β = 0 and Sz,p,β ∈ H0
(2)(X, Lp ⊗KX). Moreover, by (10) we get that

Sz,p,β(y) = vz,p,β(y)e⊗p
α ⊗ e′α − uz,p,β(y) for y ∈ B(z, r0/2). (13)

Therefore, we deduce from this and (11) that ∂uz,p,β = ∂Sz,p,β = 0. Thus uz,p,β is a (n, 0)-holomorphic 
form near z.

Let J be the sheaf of holomorphic functions on X vanishing at z and let m ⊂ OX,z the maximal 
ideal of the ring of germs of holomorphic functions at z. For k, p ∈ N we have a canonical residue map 
Lp ⊗KX → Lp ⊗KX ⊗ (OX/J k+1) which induces in cohomology a map which associates to each global 
L2-holomorphic section of Lp ⊗KX its k-jet at z:

Jk
p : H0

(2)(X,Lp ⊗KX) → H0(X,Lp ⊗KX ⊗ (OX/J k+1)
)

= (Lz)⊗p ⊗ (KX)z ⊗ (OX,z/mk+1).

The right hand side is called the space of k-jets of L2-holomorphic sections of Lp ⊗KX at z.
Near z, e−bpϕz(y) = r2bp

0 |y − z|−2bp. It is well-known (see [28, p. 103]) that for γ = (γ1, . . . , γn) ∈ Nn and 
z = (z1, . . . , zn) ∈ Cn, the integral

∫
|y1−z1|<1,...,|yn−zn|<1

|y1 − z1|2γ1 · · · |yn − zn|2γn |y − z|−2bp · indy1 ∧ dȳ1 ∧ · · · ∧ dyn ∧ dȳn

is finite if and only if 
∑n

j=1 γj ≥ [bp] − n + 1. Putting this together with (13), (11) and (12) and the fact 
that uz,p,β is an (n, 0)-holomorphic form near z, we see that the ([bp] −n)-jet of Sz,p,β coincides with vz,p,β.
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Summarizing what has been done so far, we have shown that the map J [bp]−n
p is surjective. Hence, there 

is a constant c > 1 such that for all p sufficiently large

dp = dimH0
(2)(X,Lp ⊗KX) − 1 ≥ dim(OX/J [bp]−n+1) − 1 =

(
[bp]

[bp] − n

)
− 1 ≥ c−1pn.

On the other hand, arguing as in the proof of Siegel’s lemma [28, Lemma 2.2.6], there is a constant c > 1
such that dp ≤ cpn for all p ≥ 1. This completes the proof. �
4. Convergence towards intersection of Fubini–Study currents

In this section we show that the intersection of the Fubini–Study currents associated with line bundles 
as in Theorem 1.5 is well-defined. Moreover, we show that the sequence of wedge products of normalized 
Fubini–Study currents converges weakly to the wedge product of the curvature currents of (Lk, hk). We 
then prove that almost all zero-divisors of sections of large powers of these bundles are in general posi-
tion.

Let V be a complex vector space of dimension d + 1. If V is endowed with a Hermitian metric, then we 
denote by ωFS the induced Fubini–Study form on the projective space P(V ) (see [28, pp. 65, 212]) normalized 
so that ωd

FS is a probability measure. We also use the same notations for P(V ∗).
We return to the setting of Theorem 1.5. In fact, for the results of this section it suffices to assume that 

the metrics involved are only locally bounded. Namely, (Lk, hk), 1 ≤ k ≤ m ≤ n, are singular Hermitian 
holomorphic line bundles on the compact Kähler manifold (X, ω) of dimension n, such that

(i) hk is locally bounded outside a proper analytic subset Σk ⊂ X;
(ii) c1(Lk, hk) ≥ 0 on X, and for every x ∈ X \ Σk there is a constant cx > 0 so that c1(Lk, hk) ≥ cxω in 

a neighborhood of x;
(iii) Σ1, . . . , Σm are in general position.

Consider the space H0
(2)(X, Lp

k ⊗ KX) of L2-holomorphic sections of Lp
k ⊗ KX endowed with the inner 

product (3). Let

dk,p := dimH0
(2)(X,Lp

k ⊗KX) − 1.

By Part 2) of Theorem 3.1, there is a constant c > 1 such that

c−1pn ≤ dk,p ≤ cpn. (14)

The Kodaira map associated with (Lp
k ⊗KX , hk,p ⊗ hKX ) is defined by

Φk,p : X ��� G(dk,p, H0
(2)(X,Lp

k ⊗KX)) , Φk,p(x) :=
{
s ∈ H0

(2)(X,Lp
k ⊗KX) : s(x) = 0

}
, (15)

where G(dk,p, H0
(2)(X, Lp

k ⊗KX)) denotes the Grassmannian of hyperplanes in H0
(2)(X, Lp

k ⊗KX) (see [28, 
p. 82]). Let us identify G(dk,p, H0

(2)(X, Lp
k ⊗KX)) with P(H0

(2)(X, Lp
k ⊗KX)∗) by sending a hyperplane to 

an equivalence class of non-zero complex linear functionals on H0
(2)(X, Lp

k ⊗KX) having the hyperplane as 
their common kernel. By composing Φk,p with this identification, we obtain a meromorphic map

Φk,p : X ��� P(H0
(2)(X,Lp ⊗KX)∗). (16)
k
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To get an analytic description of Φk,p, let

Sk,p
j ∈ H0

(2)(X,Lp
k ⊗KX), j = 0, . . . , dk,p , (17)

be an orthonormal basis and denote by Pk,p the Bergman kernel function of the space H0
(2)(X, Lp

k ⊗KX)
defined as in (7). This basis gives identifications H0

(2)(X, Lp
k ⊗KX) � Cdk,p+1 and P(H0

(2)(X, Lp
k ⊗KX)∗) �

Pdk,p . Let U be a contractible Stein open set in X, let ek, e′ be local holomorphic frames on U for Lk, 
respectively KX , and write Sk,p

j = sk,pj e⊗p
k ⊗ e′, where sk,pj is a holomorphic function on U . By composing 

Φk,p given in (16) with the last identification, we obtain a meromorphic map Φk,p : X ��� Pdk,p which has 
the following local expression

Φk,p(x) = [sk,p0 (x) : . . . : sk,pdk,p
(x)] for x ∈ U. (18)

It is called the Kodaira map defined by the basis {Sk,p
j }dk,p

j=0 .
Next, we define the Fubini–Study currents γk,p of H0

(2)(X, Lp
k ⊗KX) by

γk,p|U = 1
2 ddc log

dk,p∑
j=0

|sk,pj |2, (19)

where the open set U and the holomorphic functions sk,pj are as above. Note that γk,p is a positive closed 
current of bidegree (1, 1) on X, and is independent of the choice of basis.

Actually, the Fubini–Study currents are pullbacks of the Fubini–Study forms by Kodaira maps, which 
justifies their name. If ωFS is the Fubini–Study form on Pdk,p then by (18) and (19),

γk,p = Φ∗
k,p(ωFS), 1 ≤ k ≤ m. (20)

Using (7) we introduce the psh function

uk,p := 1
2p log

dk,p∑
j=0

|sk,pj |2 = uk + ρ

p
+ 1

2p logPk,p on U , (21)

where uk (resp. ρ) is the weight of the metric hk (resp. hKX ) on U corresponding to ek (resp. e′), i.e. 
|ek|hk

= e−uk , |e′|hKX = e−ρ. Clearly, by (19) and (21), ddcuk,p = 1
p γk,p. Note that ρ/p → 0 uniformly as 

p → ∞ because the metric hKX is smooth. Moreover, note that by (21), logPk,p ∈ L1(X, ωn) and

1
p
γk,p = c1(Lk, hk) + 1

p
c1(KX , hKX ) + 1

2p ddc logPk,p (22)

as currents on X. For p ≥ 1 consider the following analytic subsets of X:

Σk,p :=
{
x ∈ X : Sk,p

j (x) = 0, 0 ≤ j ≤ dk,p

}
, 1 ≤ k ≤ m.

Hence Σk,p is the base locus of H0
(2)(X, Lp

k ⊗KX), and Σk,p ∩ U = {uk,p = −∞}. Note also that Σk ∩ U ⊃
{uk = −∞}.

Proposition 4.1. In the above hypotheses we have the following:

(i) For all p sufficiently large and every J ⊂ {1, . . . , m} the analytic sets Σk,p, k ∈ J , Σ�, � ∈ J ′ :=
{1, . . . , m} \ J , are in general position.
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(ii) If p is sufficiently large then the currents

∧
k∈J

γk,p ∧
∧
�∈J ′

c1(L�, h�)

are well defined on X, for every J ⊂ {1, . . . , m}.

Proof. (i) We show that for p large enough, codim(ΣJ,J ′,p) ≥ m, where

ΣJ,J ′,p :=
⋂
k∈J

Σk,p ∩
⋂
�∈J ′

Σ�.

The remaining assertions of (i) are proved in a similar way. Assume for a contradiction that there exists 
a sequence pr → ∞ such that ΣJ,J ′,pr

has an irreducible component Yr of dimension n −m + s for some 
s ≥ 1. Note that the estimate (9) from the proof of Part 1) of Theorem 3.1 holds in the case that the 
metric h is locally bounded away from Σ. It implies that for every compact K ⊂ X \ Σk there exist 
ck,K > 0 and pk,K ∈ N such that Pk,p ≥ ck,K holds on K for p ≥ pk,K , where 1 ≤ k ≤ m. Using 
(21) we infer that, given any ε-neighborhood Vk,ε of Σk, Σk,pr

⊂ Vk,ε for all r sufficiently large. Hence 
Yr →

⋂
k∈J Σk ∩

⋂
�∈J ′ Σ� = Σ1 ∩ · · · ∩ Σm as r → ∞. Let Rr = [Yr]/|Yr|, where [Yr] denotes the current 

of integration on Yr and |Yr| =
∫
Yr

ωn−m+s. Since Rr have unit mass, we may assume by passing to a 
subsequence that Rr converges weakly to a positive closed current R of bidimension (n −m + s, n −m + s)
and unit mass. But R is supported in Σ1 ∩ · · · ∩Σm which has dimension ≤ n −m, so R = 0 by the support 
theorem ([21], see also [23, Theorem 1.7]), a contradiction.

(ii) Using (i) and [14, Corollary 2.11], assertion (ii) follows. �
The following version of Bertini’s theorem is proved in [9, Proposition 3.2].

Proposition 4.2. Let Lk −→ X, 1 ≤ k ≤ m ≤ n, be holomorphic line bundles over a compact complex 
manifold X of dimension n. Assume that:

(i) Vk is a vector subspace of H0(X, Lk) with basis Sk,0, . . . , Sk,dk
, base locus BsVk := {Sk,0 = . . . =

Sk,dk
= 0} ⊂ X, such that dk ≥ 1 and the analytic sets BsV1, . . . , BsVm are in general position.

(ii) Z(tk) := {x ∈ X :
∑dk

j=0 tk,jSk,j(x) = 0}, where tk = [tk,0 : . . . : tk,dk
] ∈ Pdk .

(iii) ν = μ1 × . . .× μm is the product measure on Pd1 × . . .× Pdm , where μk is the Fubini–Study volume on 
Pdk .

Then the analytic sets Z(t1), . . . , Z(tm) are in general position for ν-a.e. (t1, . . . , tm) ∈ Pd1 × . . .× Pdm .

We keep the hypotheses (i), (ii), (iii) at the beginning of the section. If {Sk,p
j }dk,p

j=0 is an orthonormal basis 
of H0

(2)(X, Lp
k ⊗ KX), we define the analytic hypersurface Z(tk) ⊂ X, for tk = [tk,0 : . . . : tk,dk,p

] ∈ Pdk,p , 
as in Proposition 4.2 (ii). Let μk,p be the Fubini–Study volume on Pdk,p , 1 ≤ k ≤ m, p ≥ 1, and let 
μp = μ1,p × . . .× μm,p be the product measure on Pd1,p × . . .× Pdm,p . Applying Proposition 4.2 we obtain:

Proposition 4.3. If p is sufficiently large then for μp-a.e. (t1, . . . , tm) ∈ Pd1,p × . . .×Pdm,p the analytic subsets 
Z(t1), . . . , Z(tm) ⊂ X are in general position, and Z(ti1) ∩ . . . ∩ Z(tik) has pure dimension n − k for each 
1 ≤ k ≤ m, 1 ≤ i1 < . . . < ik ≤ m.

Proof. Let Vk,p := H0
(2)(X, Lp

k⊗KX), so BsVk,p = Σk,p. By Proposition 4.1 (i), Σ1,p, . . . , Σm,p are in general 
position for all p sufficiently large. We fix such p and denote by [Z(tk)] the current of integration along the 
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analytic hypersurface Z(tk); it has the same cohomology class as pc1(Lk, hk) +c1(KX , hKX ). Proposition 4.2
shows that the analytic subsets Z(t1), . . . , Z(tm) are in general position for μp-a.e. (t1, . . . , tm) ∈ Pd1,p ×
. . .× Pdm,p . Hence if 1 ≤ k ≤ m, 1 ≤ i1 < . . . < ik ≤ m, the current [Z(ti1)] ∧ . . . ∧ [Z(tik)] is well defined 
by [14, Corollary 2.11] and it is supported in Z(ti1) ∩ . . . ∩ Z(tik). By the Lelong–Poincaré formula [28, 
Theorem 2.3.3] and hypothesis (ii) it follows that

1
pk

∫
X

[Z(ti1)] ∧ . . . ∧ [Z(tik)] ∧ ωn−k =
∫
X

c1(Li1 , hi1) ∧ . . . ∧ c1(Lik , hik) ∧ ωn−k + O(p−1) > 0.

So Z(ti1) ∩ . . . ∩ Z(tik) �= ∅, hence it has pure dimension n − k. �
The main result of this section is the following theorem, which is a Large Deviation Principle in our 

setting.

Theorem 4.4. We keep the hypotheses (i), (ii), (iii) at the beginning of the section and use the nota-
tion introduced in (4)–(5). Then there exist a constant ξ > 0 depending only on m and a constant 
c = c(X, L1, h1, . . . , Lm, hm) > 0 with the following property: For any sequence of positive numbers {λp}p≥1
with

lim inf
p→∞

λp

log p > (1 + ξn)c,

there are subsets Ep ⊂ XK,p such that

(a) σp(Ep) ≤ cpξn exp(−λp/c) for all p large enough;
(b) if sp ∈ XK,p \ Ep we have that the estimate

∣∣∣∣ 1
pm

〈
[sp = 0] − γ1,p ∧ . . . ∧ γm,p , φ

〉∣∣∣∣ ≤ c
λp

p
‖φ‖C 2

holds for every (n −m, n −m)-form φ of class C 2.

In particular, for σ∞-a.e. s ∈ ΩK the estimate from (b) holds for all p sufficiently large.

Proof. We repeat the proof of [9, Theorem 4.2] by making the necessary changes. In fact, we apply Dinh–
Sibony’s equidistribution results for meromorphic transforms [18] and Propositions 4.1 and 4.3. Here the 
main point is that the dimension estimate (14) plays the role of [9, Proposition 4.7]. �
5. Equidistribution for sections of two adjoint line bundles

The main purpose of this section is to prove Theorem 1.5. Let γk,p, k = 1, 2, be the Fubini–Study currents 
of the spaces H0

(2)(X, Lp
k ⊗KX) as defined in (19).

Theorem 5.1. In the setting of Theorem 1.5 we have

1
p2 γ1,p ∧ γ2,p → c1(L1, h1) ∧ c1(L2, h2) as p → ∞ ,

in the weak sense of currents on X.
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Taking for granted the above result, we arrive at the

Proof of Theorem 1.5. This follows directly from Theorem 4.4 and Theorem 5.1. �
The remainder of the section is devoted to the proof of Theorem 5.1. Let us start with the following 

lemma.

Lemma 5.2. Let U be an open set in Cn, A, B be proper analytic subvarieties of U with codimA ∩ B ≥ 2, 
and u, v, up, vp, p ≥ 1, be psh functions on U such that:

(i) u is continuous on U \A and up → u as p → ∞ locally uniformly on U \A.
(ii) v is continuous on U \B and vp → v as p → ∞ locally uniformly on U \B.
(iii) The currents ddcup ∧ ddcvp = ddc(updd

cvp) = ddc(vpddcup) are well defined.

Then ddcup ∧ ddcvp → ddcu ∧ ddcv in the weak sense of currents on U \ (A ∩ B). Moreover, if n = 2 then 
ddcup ∧ ddcvp → ddcu ∧ ddcv as measures on U .

Proof. We recall that the current ddcρ ∧ T := ddc(ρT ) is well defined, where ρ is a psh function and T a 
positive closed current on U , if ρ is locally integrable on U with respect to the trace measure of T . The 
current ddcu ∧ ddcv is well defined on U since codimA ∩B ≥ 2 and u, v are locally bounded on U \A, resp. 
on U \ B [14, Corollary 2.11] (see also [22]). Since up → u locally uniformly on U \ A and u is continuous 
there, we have by [5, Theorem 3.4] that up → u in L1

loc(U) hence ddcup → ddcu weakly on U . Similarly, 
ddcvp → ddcv weakly on U . Using again the uniform convergence of up on U \ A and the continuity of u
there, it follows that updd

cvp → u ddcv, hence ddcup ∧ ddcvp → ddcu ∧ ddcv, weakly on U \A (see e.g. [2,3], 
[14, Corollary 1.6]). Similarly one has that vpddcup → v ddcu, hence ddcup ∧ ddcvp → ddcu ∧ ddcv, weakly 
on U \B. Thus ddcup ∧ ddcvp → ddcu ∧ ddcv weakly on U \ (A ∩B).

We prove now that updd
cvp → u ddcv weakly on U \B as well. Indeed, note that by [24, Theorem 4.1.8]

we have up → u, vp → v in Lp
loc(U) for any 1 ≤ p < ∞, and in the Sobolev space W 1,p

loc (U) for any 1 ≤ p < 2. 
If χ is a test form supported in U \B then

∫
updd

cvp ∧ χ =
∫

vpdd
c(upχ)

=
∫

vpdd
cup ∧ χ +

∫
vp(dup ∧ dcχ− dcup ∧ dχ + updd

cχ) .

Now our claim follows since vpddcup → v ddcu weakly on U \ B and since vpdup → v du, vpdcup → v dcu, 
vpup → vu in L1

loc(U). Therefore we have in fact that updd
cvp → u ddcv weakly on U \ (A ∩B).

We consider finally the case n = 2, so A ∩ B consists of isolated points. Let x ∈ A ∩ B and χ ≥ 0 be 
a smooth function with compact support in U so that χ = 1 near x and suppχ ∩ (A ∩ B) = {x}. Since 
updd

cvp → u ddcv weakly on U \ (A ∩B) ⊃ supp ddcχ we obtain
∫

χddcup ∧ ddcvp =
∫

updd
cvp ∧ ddcχ →

∫
u ddcv ∧ ddcχ =

∫
χddcu ∧ ddcv .

Hence the sequence of positive measures ddcup ∧ ddcvp has locally bounded mass and any weak limit point 
μ satisfies μ({x}) = ddcu ∧ddcv({x}) for x ∈ A ∩B. It follows that ddcup∧ddcvp → ddcu ∧ddcv as measures 
on U . �
Proof of Theorem 5.1. Recall that the currents γ1,p ∧ γ2,p and c1(L1, h1) ∧ c1(L2, h2) are well defined by 
Proposition 4.1. Formula (22) implies that
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1
p2

∫
X

γ1,p ∧ γ2,p ∧ ωn−2 =
∫
X

c1(L1, h1) ∧ c1(L2, h2) ∧ ωn−2 + O(1
p
) .

Hence it suffices to show that if T is a limit point of the sequence 
{

1
p2 γ1,p ∧ γ2,p

}
then T = c1(L1, h1) ∧

c1(L2, h2). For simplicity, we may assume that 1
p2 γ1,p ∧ γ2,p → T as p → ∞. Since T and c1(L1, h1) ∧

c1(L2, h2) have the same mass, it is enough to prove that T ≥ c1(L1, h1) ∧ c1(L2, h2).
We fix x ∈ X and let U be a neighborhood of x such that there exist holomorphic frames e1 of L1, e2 of 

L2, and e′ of KX , over U . Using the notation from Section 3, we let u1, u2, ρ be the weights of h1, h2, hKX on 
U corresponding to these frames, and let uk,p be the psh functions defined in (21). Then 1p γk,p = ddcuk,p and 
c1(Lk, hk) = ddcuk on U . Note that uk is continuous on U \ Σ(hk). By (21) and by Part 1) of Theorem 3.1
and by the smoothness of hKX , we have

uk,p − uk = 1
2p logPk,p + ρ

p
→ 0,

locally uniformly on U \Σ(hk). It follows by Lemma 5.2 that T = c1(L1, h1) ∧c1(L2, h2) on U \Γ, and hence 
on X \ Γ, where Γ := Σ(h1) ∩ Σ(h2).

Next we write Γ = Y ∪(∪j≥1Yj), where Yj are the irreducible components of dimension n −2 and dimY ≤
n − 3. Then by Federer’s support theorem ([21], see also [23, Theorem 1.7]), T = c1(L1, h1) ∧ c1(L2, h2) on 
D = X \∪j≥1Yj , since Y is an analytic subset of D of dimension ≤ n −3. Siu’s decomposition formula ([32], 
see also [14, Theorem 6.19]) implies that

T = R +
∑
j≥1

cj [Yj ] , c1(L1, h1) ∧ c1(L2, h2) = R +
∑
j≥1

dj [Yj ] , (23)

where [Yj ] denotes the current of integration on Yj, cj , dj ≥ 0, and R is a positive closed current of bidegree 
(2, 2) on X which does not charge any Yj. To conclude the proof of Theorem 5.1 we show that cj ≥ dj for 
each j, by using slicing as in the proof of [5, Theorem 3.4].

Without loss of generality, let j = 1 and x ∈ Y1 be a regular point of Γ with a neighborhood U
as above. By a change of coordinates z = (z′, z′′) near x we may assume that x = 0 ∈ Δn ⊂ U and 
Γ ∩Δn = Y1 ∩Δn = {z′ = 0}, where Δ is the unit disk in C, z′ = (z1, z2), z′′ = (z3, . . . , zn). Let χ1(z′) ≥ 0
(resp. χ2(z′′) ≥ 0) be a smooth function with compact support in Δ2 (resp. in Δn−2) so that χ1 = 1 near 
0 ∈ C2 (resp. χ2 = 1 near 0 ∈ Cn−2), and let β = i/2 

∑n
j=3 dzj ∧ dzj be the standard Kähler form in Cn−2. 

We set

uz′′

k,p(z′) = uk,p(z′, z′′) , uz′′

k (z′) = uk(z′, z′′) .

Let Σk,p denote the base locus of H0
(2)(X, Lp

k⊗KX) and set Σp = Σ1,p∩Σ2,p. Then Σk,p∩U = {uk,p = −∞}. 
Since uk,p → uk locally uniformly on U \ Σ(hk) and uk is continuous there, it follows that Σp ∩ Δn ⊂
{(z′, z′′) ∈ Δn : |z′| < 1/2} for all p sufficiently large. Thus for each z′′ ∈ Δn−2 the analytic set {z′ ∈
Δ2 : (z′, z′′) ∈ Σp ∩ Δn} is compact, hence finite, so the measures ddcuz′′

1,p ∧ ddcuz′′
2,p are well defined [14, 

Corollary 2.11]. Moreover,

μz′′

p := ddcuz′′

1,p ∧ ddcuz′′

2,p → μz′′
:= ddcuz′′

1 ∧ ddcuz′′

2

weakly as measures on Δ2 by Lemma 5.2. One has the slicing formula (see e.g. [18, formula (2.1)])

∫
χ1(z′)χ2(z′′)ddcu1,p ∧ ddcu2,p ∧ βn−2 =

∫ ⎛
⎝∫

χ1(z′) dμz′′

p (z′)

⎞
⎠χ2(z′′)βn−2,
Δn Δn−2 Δ2
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and similarly for ddcu1 ∧ ddcu2. Since ddcu1,p ∧ ddcu2,p → T it follows from Fatou’s lemma that

∫
Δn

χ1(z′)χ2(z′′)T ∧ βn−2 ≥
∫

Δn−2

lim
p→∞

⎛
⎝∫

Δ2

χ1(z′) dμz′′

p (z′)

⎞
⎠χ2(z′′)βn−2

=
∫

Δn−2

⎛
⎝∫

Δ2

χ1(z′) dμz′′
(z′)

⎞
⎠χ2(z′′)βn−2

=
∫

Δn

χ1(z′)χ2(z′′)ddcu1 ∧ ddcu2 ∧ βn−2.

This implies that c1 ≥ d1, since by (23), T = R+ c1[z′ = 0] and ddcu1 ∧ ddcu2 = R+ d1[z′ = 0] on Δn. �
6. Equidistribution for sections of several adjoint line bundles

We prove here Theorem 1.6. We will need the following local property of the complex Monge–Ampère 
operator:

Proposition 6.1. Let U be an open set in Cn, Σ be a proper analytic subset of U , and u1, . . . , um be psh 
functions on U which are continuous on U \Σ. Assume that dim Σ ≤ n −m and that uk,p, where 1 ≤ k ≤ m

and p ≥ 1, are psh functions on U so that uk,p → uk locally uniformly on U \ Σ. Then the currents 
ddcu1,p ∧ . . . ∧ ddcum,p are well defined on U for p sufficiently enough, and ddcu1,p ∧ . . . ∧ ddcum,p →
ddcu1 ∧ . . . ∧ ddcum weakly as p → ∞ in the sense of currents on U .

Proof. It follows along the same lines as those given in the proof of [5, Theorem 3.4]. �
Proof of Theorem 1.6. Let U ⊂ X be a contractible Stein open set, uk,p, uk be the psh functions defined 
in (21), so ddcuk = c1(Lk, hk) and ddcuk,p = 1

p γk,p on U . By Part 1) of Theorem 3.1 we have that 
1
p logPk,p → 0 locally uniformly on U \ Σ, hence by (21), uk,p → uk locally uniformly on U \ Σ as p → ∞, 
for each 1 ≤ k ≤ m. Therefore, Proposition 6.1 implies that ddcu1,p ∧ . . . ∧ ddcum,p → ddcu1 ∧ . . . ∧ ddcum

weakly on U as p → ∞. Thus, we have shown that

1
pm

γ1,p ∧ . . . ∧ γm,p → c1(L1, h1) ∧ . . . ∧ c1(Lm, hm)

as p → ∞, in the weak sense of currents on X. This, combined with Theorem 4.4, implies Theorem 1.6. �
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