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Abstract

We find a class of manifolds whose ‘pseudoconcave holes’ can be filled in, even in dimension two. To cite this article: G. Mari-
nescu, T.-C. Dinh, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Compactification de bouts hyperconcaves. On étudie une classe de variétés dont les bouts strictement pseudoconcaves peuvent
étre compactifiés, méme en dimension deux. Pour citer cet article : G. Marinescu, T.-C. Dinh, C. R. Acad. Sci. Paris, Ser. I 342
(2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abrégée

Il est bien connu [16] qu’on peut compactifier les bouts strictement pseudoconcaves des variétés de dimension
supérieure ou égale a trois. En revanche, en dimension deux, il existe des contre-examples tres intéressants [9,1,16].
Dans ce papier on montre que les bouts hyperconcaves sont compactifiables méme en dimension deux. On dit qu’une
variété X a des bouts hyperconcaves si elle possede une fonction ¢ : X — (—00, a), a € R U {oo}, propre, lisse et
strictement plurisousharmonique sur un ensemble {¢ < b}, ou b < a.

Theoreme 0.1. Toute variété X avec des bouts hyperconcaves admet une compactification, i.e., il existe un espace
complexe X tel que X est (biholomorphe a) un ouvert de X et pour tout d < a, (X \ X) U {p < d} est compact. Si ¢
est strictement plurisousharmonique sur X on peut prendre pour X un espace de Stein a singularités isolées.

En outre, on trouve des conditions suffisantes naturelles afin que la compactification se fasse en ajoutant un seul
point a chaque bout.
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Théoreme 0.2. Soient X une variété avec bouts hyperconcaves et X une compactification lisse. Supposons que X a
un recouvrement par des ouverts de Zariski dont les revétements universels sont de Stein. Alors X \ X consiste en un
ensemble fini D' et un ensemble analytique exceptionel qui se contracte sur un ensemble fini D. Chaque composante
connexe de X, pour ¢ assez petit, peut étre compactifié analytiquement par un seul point de D' U D. Si X admert un
revétement de Stein alors D' = @ et D coincide avec le lieu singulier de la réduction de Remmert de X.

Cela permet de donner une nouvelle preuve du théoréeme de Siu—Yau [18] et de généraliser les théoremes de Nadel
[14] en dimension deux. Nous utilisons la technique L? afin de construire des fonctions holomorphes permettant
d’immerger les bouts hyperconcaves dans un CV et d’utiliser le théoreme d’Hartogs pour les compactifier. Pour le
théoréme 0.2, nous utilisons un théoréme classique de Wermer.

1. Introduction
We will be concerned with the following class of manifolds.

Definition 1. A complex manifold X with dim X > 2 is said to be a strongly pseudoconcave end if there exists a proper,
smooth function ¢: X — (e, a), a € R U {400}, which is strongly plurisubharmonic on a set of the form {¢ < b},
b<a.lf e=—o00, X is called a hyperconcave end. Ford <c¢ <a we set X, ={p < c} and X ={d < ¢ < c}. We
call ¢ exhaustion function.

We say that a strongly pseudoconcave end can be compactified or filled in if there exists a complex space X such
that X is (biholomorphic to) an open set in X and for any d < a, (X \ X) U {p < d} is a compact set. We will call X
the completion of X.

By a theorem of Rossi [16, Th. 3, p. 245] and Andreotti—Siu [1, Prop. 3.2] any strongly pseudoconcave end X can
be compactified, provided dim X > 3. This is no longer true if dim X = 2, as shown in a counterexample of Grauert,
Andreotti—Siu and Rossi [9,1,16]. Our goal is to compactify the hyperconcave ends also in dimension two.

Theorem 2. Any hyperconcave end X can be compactified. Moreover, if ¢ is strongly plurisubharmonic on the
whole X, the completion X can be chosen a normal Stein space with at worst isolated singularities.

The motivation for the study of the compactification of hyperconcave ends comes from the theory of complex-
analytic compactification of quotients X = B"/I" of the unit ball in C*, n > 2 by arithmetic groups I". The
Satake—Baily—Borel compactification X of X =B" /I is obtained by adding a finite set of points which are iso-
lated singularities. Siu—Yau’s theorem gives a differential geometric proof of this fact, first by proving that X has
hyperconcave ends and then showing it can be compactified by adding finitely many points. Our next result is to find
sufficient conditions for a manifold with hyperconcave ends to be analytically compactified by adding one point at
each end. This also yields a complex analytic proof of the second step of Siu—Yau’s theorem (see Corollary 10).

Theorem 3. Let X be a hyperconcave end and let X be a smooth completion of X. Assume that X can be covered
by Zariski-open sets which are uniformized by Stein manifolds. Then X \ X is the union of a finite set D' and an
exceptional analytic set which can be blown down to a finite set D. Each connected component of X, for sufficiently
small ¢, can be analytically compactified by one point from D' U D. If X itself has a Stein cover, D' = & and D
consists of the singular set of the Remmert reduction of X.

Theorem 3 affords the extension to dimension two of Nadel’s theorems [14]. If in Definition 1 we may take a = +o00
and ¢ bounded from above, the manifold X is said to be hyper 1-concave.

Corollary 4. Let X be a connected manifold of dimension n > 2. The following conditions are necessary and sufficient
for X to be a quasiprojective manifold which can be compactified to a Moishezon space by adding finitely many points:
(i) X is hyper 1-concave, (ii) X admits a line bundle E such that the ring @, HO(X, EX) separates points and gives
local coordinates, and (iii) X can be covered by Zariski-open sets which can be uniformized by Stein manifolds. If X
has a Stein cover, one adds only singular points.
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Theorem 4 yields, in dimension two, a stronger version of Nadel-Tsuji theorem [15] together with a completely
complex-analytic proof of the compactification of arithmetic quotients. It answers also [13, Prob. 1] for the case g = 0.
A detailed version of this Note is available in [11]. See also [12] for related questions.

2. Proof of Theorem 2

The idea of proof is to analytically embed small strips X g* , for d < d* in a neighbourhood of minus infinity, into the
difference of two concentric polydiscs. Then apply the Hartogs extension theorem to extend the image to an analytic
set which will provide the compactification. To obtain the embedding we follow the strategy of Grauert and Kohn for
the solution of the Levi problem. Namely, we solve the L? §-Neumann problem for (0, 1)-forms (see [7]) on domains
X with strongly pseudoconvex boundary {¢ = c} endowed with a complete metric at minus infinity. The function
x = —log (—¢) is smooth on Xo. We set w = /=199y = —+/—1 33 log (—¢). Note that 33 x = dd¢/(—¢) + (dgp A
3¢)/* and (g A 3p)/@> = dx A dx. Since v/—133¢/(—¢) represents a metric on Xo, we get the Donnelly—
Fefferman condition:

10xlo < L. ey

Since x : X9 — R is proper, (1) also ensures that w is complete. Let ¢ < 0 be a regular value of ¢. The metric w is
complete at the pseudoconcave end of X, and extends smoothly over the boundary bX ..

We wish to derive the Poincaré inequality for (0, 1)-forms on X.. For this goal we look first at the minus infinity
end and use the Berndtsson—Siu trick [3,17]. Roughly speaking, it uses the negativity of the trivial line bundle, thus

avoiding the problems raised by the control of the Ricci curvature of w at —oo. Let us denote by (‘?8 “1(X.) the space
of smooth (0, ¢)-forms with compact support in X,. Let % = — % 9% be the formal adjoint of 3 with respect to the
scalar product (u, v) = ch (u, v)dV,, where (u, v) = (u, v), and dV,, = " /n!.

Lemma 5. For any v € CO''(X,.) we have [|[v]® < 8(|3v])” + [[9v]?).

Proof. On the trivial bundle E = X, x C we introduce the auxiliary Hermitian metric eX/2. Let be 1ty the formal
adjoint of 0 with respect to the scalar product (i, v), = ch (u, v)eX/>dV,,. Then Wy = e X/29 eX/2. We apply the

Bochner-Kodaira—Nakano formula for u € (?8 o1 (Xo):

/([d—_laé(—x/z), Apu,u)er’?dv, < /(|éu|2 + [0, ul?) eX/* dV,, )

X, X,
where A, represents the contraction with @ and [A, B] = AB — (—1)924de¢B B A 5 the graded commutator of the
operators A, B. The idea is to substitute v = u eX/4. It is readily seen that

_ _ 1 - 1
|8u|2ex/2<2|av|2+§|ax|2|v|2, |z9xu|2e></2<2|z>‘v|2+§|8x|2|v|2. 3)

Moreover ([v/—109(—x/2), Awlu, u)eX/? = ([v/=103(—x /2), Ao]v, v). In general, for a (p, g)-form a we have
the identity ([w, Aplo, o) = (p+q — n)|a|?, where n = dimX Taking into account that w = /—1 099 x and that v is
a (0, 1)-form, we obtain ([v/—133(—x/2), Aulu, u)e*/> = |2 > L2 . By (2), 3), (1),

/|v| v, 2/ 802 + [9v]) dV, + ~ /|v| dv,,. )
Xe

c

This immediately implies Lemma 5 for elements v € GO’ (Xe). O

Let 1: (—00,0) — R be a smooth function such that () =0 on (—o0, =21, 7'(¢) > 0, n”(t) > 0 on (=2, 0). Let
us introduce the scalar product (u, v),) = ch (u,v)e "% dV,,, the corresponding norm || - Il and L? spaces,

denoted Lg’q (Xe, n(p)). Let Gg’q (X,) be the space of smooth (0, g)-forms with compact support in X_.. Consider the
maximal closed extension of 9 to Lg’q (X¢, n(p)) and let 6_);7"( ) be its the Hilbert-space adjoint.
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Lemma 6. If n grows sufficiently fast, there exists a constant C > 0 such that
Ity < € (108, + 15t + [ 17 av, ), ®
K

for any u € Domd N Dom §* ) C Lg’l(Xc, n(p)), where K = {-3 < ¢ < —3/2).

n(e
Proof. The Morrey—Kohn—-Hormander estimate [10, Th. 3.3.5] shows that there exists R > 0 such that for sufficiently
growing n:

lull? ) < <||au||2(¢)+||a(¢)u|| o+ / |u|2e—"<¢>de), (6)
{—3<e<—3/2}

foru e DomaﬂDomB* @ C L2 (XL, n(p)),suppu C {—3 < ¢} .Letu € DomaﬂDoma @ C L2 (XC, n(¢)). The
density lemma of Andreottl—Vesentlm shows that to prove (6) it suffices to consider smooth elements u compactly
supported in £2. We choose a cut-off function p; € C*°(X,) such that supp p; = {—3 < ¢}, p1 =1 on {-2 < ¢}.

Set pp =1 — p1. On supp p2, n(p) vanishes, therefore 5;7“(@ (pou) = ¥ (pou). Lemma 5 for ppu gives ||,02u||n(¢)

8(||8(,02u)||,/(¢) + ||8n(<p)('02”)||n(<p))' The latter estimate and (6) applied to pju together with standard inequalities
deliver (5).

In the sequel we fix a function 5 as in Lemma 6. Then the fundamental estimate (5) implies the solution of
the L? 3-Neumann problem. Consider the complex of closed, densely defined operators 7 = 9 L2 (XL, n(p)) —

LY (Xeon(@)), S =3: LY (X, (@) = LY (Xe, 1(9)).

Theorem 7. The operator T has closed range and Range(T) has finite codimension in Ker(S). If f € Range T, there
is a unique solution u L Ker T of the equation Tu = f; if f is smooth in §2 so is u.

By solving the d-equation we construct peak functions at each point of bX,.

Corollary 8. Let p € bX, and f be a holomorphic function on a neighbourhood of p such that {f =0} N X, = {p}.
Then for every m big enough, there is a function g € O(X) NC® (X \{p}), a smooth function ® on a neighbourhood
V of p and constants ay, ..., am_1 suchthat g = f (1 +am_1f +---+a1 f"1)+® on VN Q2. In particular, we
have lim,_, ,, |g(z)| = 00

Proceeding as in [1, Prop. 3.2] we show that XZ*, for ¢ — § <d < d* < ¢ can be holomorphically embedded as
submanifold of dimension > 2 in the difference of two concentric polydiscs in CV, for some N. By the Hartogs
theorem we compactify X; to a Stein space X, « C CN'. The uniqueness of the Stein completion [1, Cor. 3.2] entails
that 5(\0 does not depend on ¢, so letting ¢ — —oo we obtain the desired compactification X of X.

Remark. Our method was to embed small strips X g*, for c — 8 <d < d* < ¢ in CV using holomorphic functions
and apply the Hartogs phenomenon. One can produce easily holomorphic (n, 0)-forms on X( and an embedding
v Xj* — CPV, using the standard L? estimates for 3 [5]. However, the global Hartogs or Harvey—Lawson phe-
nomenon in CPV is an open question [6, Probleme 1]. Note that by pulling back l1/(Xj*) to CN*1\ {0} we obtain a
noncompact manifold, so we cannot apply the known results from the euclidean space.

3. Compactification by adding finitely many points

The present section is devoted to proving sufficient conditions for the set X \ X to be analytic. We begin with
some preparations. We say that a complex manifold V satisfies the Kontinuitdtssatz if for any smooth family of closed
holomorphic discs A, in V indexed by t € [0, 1) such that [ JbA, lies on a compact subset of V, then [ J A, lieson a
compact subset of V. If V or its universal cover is Stein then V satisfies Kontinuititssatz. A closed subset F' of V is
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called pseudoconcave if V \ F satisfies the local Kontinuitétssatz in V, i.e. for every x € F there is a neighbourhood W
of x such that W \ F satisfies the Kontinuititssatz. Finite unions of pseudoconcave subsets and complex hypersurfaces
are pseudoconcave.

We have the following proposition which implies Theorem 3.

Proposition 9. Let Q2 be a Stein space with isolated singularities S and K a completely pluripolar compact sub-
set of §2 which contains S. Assume that 2 = 2 \ K can be covered by Zariski-open sets which satisfy the local
Kontinuitdtssatz in 2\ S. Then K is a finite set. If 2 = 2 \ K has a Stein cover, K = S.

Proof. We can suppose that Qisa subvariety of a complex space C". Let B be a ball containing K such that 5B N Q
is transversal. By hypothesis, we can choose a finite family of Zariski-open sets V1, ..., Vi which are uniformized by
Stein manifolds and () F; is empty near bB, where F; = §2 \ V;. By Kontinuititssatz, F; is a hypersurface of £2. We
also have F; C F; U K. It is sufficient to prove that F; U K is a subvariety of Q. By slicing, one reduces the problem
to the case of dimension 2.

Set F = F;. Observe that I" = F N bB is an analytic real curve. The classical Wermer theorem [19] says that
hull(I") \ I" is an analytic subset of pure dimension 1 of CV \ I where hull(I") is the polynomial hull of I". By
the uniqueness theorem, hull(1") C 2. Since S is finite, hull(F U S) = hull(I") U S. Set F/ = (FUK)N B and
F” =hull(I")US. We have F’ C F”.Indeed, if F’ ¢ F”, using the maximum principle and some standard techniques,
we construct a smooth family of discs which does not satisfy the Kontinuitétssatz.

Now, since (F; U K) \ § is contained in a hypersurface of Q \ § and satisfies the Kontinuitétssatz, we can deduce
that (F; U K)\ S is a hypersurface of Q \ S. By the Remmert-Stein theorem, any analytic set can be extended through

a point, so F; U K is a hypersurface of 2. o

Proof of Theorem 3. Let X be a hyperconcave end such that the exhaustion function ¢ is overall strongly plurisub-
harmonic. Let X be a manifold which compactifies X. Then X \ X has a strongly pseudoconvex neighbourhood V. By
[8, Satz 3, p. 338] there exists a maximal analytic set A of V and [8, Satz 5, p. 340] shows the existence of a normal
Stein space V’ with at worst isolated singularities, a discrete set D C V’ and a proper holomorphic map 7 : V — V’,
biholomorphic between V \ A and V'\ D and 7w (A) = D. That is, A can be blown down to the finite set D. Of course,
Sing(V’) C D. The maximum principle for ¢ implies A C X \ X. Let ¥/ : V/ — [—00, 00) be given by ¥ = @ oz ! on
V’\ D and ¥/ = —o0 on 71(5(\\ X). Then v is a plurisubharmonic function on V' by [4] and 71(5(\ \ X) is its pluripolar
set. By Proposition 9, n()? \ X) is a finite set. Therefore X \ X consists of A and possibly a finite set D’. If X has a
Stein cover, it follows from the Kontinuititssatz that 7 (X \ X) = Sing(V’). Therefore D' = & and D = Sing(V’). O

Proof of Corollary 4. From (i) and (ii) follows via the embedding theorem of Andreotti—-Tomassini [2, Th. 2, p. 97],
[15, Lemma 2.1] that X is biholomorphic to an open set of a projective manifold. We conclude by Theorem 3. O

As a consequence we get a stronger form of [18, Main Theorem] (also noted by Nadel [14] for manifolds of
dimension greater than three):

Corollary 10. Let X be a complete Kihler manifold of finite volume and bounded negative sectional curvature. If
dim X > 2, X is biholomorphic to a quasiprojective manifold which can be compactified to a Moishezon space by
adding finitely many singular points.

Indeed, the same argument as in [18] or [15, §3] shows, with the help of the Busemann function, that X is hyper
1-concave. Moreover, the negativity of the curvature implies that Kx is positive and the universal cover of X is Stein.
We can thus apply Corollary 4.
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