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Abstract. We study the asymptotic of the spectrum of the spinc Dirac operator on
high tensor powers of a line bundle. As application, we get a simple proof of the main
result of Guillemin–Uribe [13, Theorem 2], which was originally proved by using the
analysis of Toeplitz operators of Boutet de Monvel and Guillemin [10].

1. Introduction

Let (X, ω) be a compact symplectic manifold of real dimension 2n. Assume that there

exists a hermitian line bundle L over X endowed with a hermitian connection ∇L with

the property that
√
−1
2π

RL = ω, where RL = (∇L)2 is the curvature of (L,∇L). Let E be

a hermitian vector bundle E on X.

Let gTX be a riemannian metric on X. Let J0 : TX −→ TX be the skew–adjoint

linear map which satisfies the relation ω(u, v) = gTX(J0u, v). Let J be an almost complex

structure which is compatible with gTX and ω. Then one can construct canonically a

spinc Dirac operator Dk acting on Ω0,•(X, Lk⊗E) =
⊕n

q=0 Ω0,q(X, Lk⊗E), the direct sum

of spaces of (0, q)–forms with values in Lk⊗E. Let λ = inf
u∈T

(1,0)
x X, x∈X

RL
x (u, u)/|u|2gTX > 0 .

One of our main results is as follows:

Theorem 1.1. There exists C > 0 such that for k ∈ N, the spectrum of D2
k is contained

in the set {0} ∪ (2kλ− C, +∞). Set D−
k = Dk �Ω0,odd, then for k large enough, we have

(1.1) Ker D−
k = {0}.

We recover with (1.1) the vanishing result of [6, Theorem 2.3], [11, Theorem 3.2]. Another

interesting application is to describe the asymptotics of the spectrum of the metric Lapla-

cian ∆k = (∇Lk⊗E)∗∇Lk⊗E acting on C∞(X, Lk ⊗ E). Introduce the smooth function

τ(x) =
∑

j RL(wj, wj) > 0, x ∈ X, where {wj}n
j=1 is an orthonormal basis of T

(1,0)
x X.

Corollary 1.2. The spectrum of the Schrödinger operator ∆#
k = ∆k − kτ is contained

in the union (−a, a) ∪ (2kλ − b, +∞), where a and b are positive constants independent

of k. For k large enough, the number dk of eigenvalues on the interval (−a, a) satisfies

dk = 〈ch(Lk ⊗ E) Td(X), [X]〉. In particular dk ∼ kn(rank E) volω(X).

In the case E is a trivial line bundle, Corollary 1.2 is the main result of Guillemin

and Uribe [13, Theorem 2] 1. The idea in [6], [11], [12], [13] is that one first reduces the

problem to a problem on the unitary circle bundle of L∗, then one applies Melin inequality

Partially supported by SFB 288.
1In [13], they only knew dk ∼ kn volω(X). When J0 = J , Borthwick and Uribe [6, p. 854] got the

precise value dk, for large enough k, in this case.
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[14, Theorem 22.3.2] to show that ∆#
k is semi–bounded from below. In order to prove

[13, Theorem 2], they apply the analysis of Toeplitz structures of Boutet de Monvel–

Guillemin [10]. For the interesting applications of [13, Theorem 2], we refer the reader

to Borthwick and Uribe [6], [8], [9]. For the related topic on geometry quantization, see

[16], [21]. Our proof is based on a direct application of Lichnerowicz formula.

This paper is organized as follows. In Section 2, we recall the construction of the spinc

Dirac operator and prove our main technical result, Theorem 2.5. In Section 3, we prove

Theorem 1.1 and Corollary 1.2. In Section 4, we generalize our result to the L2 case. In

particular, we obtain a new proof of [12, Theorem 2.6].

2. The Lichnerowicz formula

Let (X, ω) be a compact symplectic manifold. Let (L, hL), (E, hE) be two hermitian

complex vector bundles endowed with hermitian connections ∇L and ∇E respectively.

Let RL and RE be their curvatures. We assume rank L = 1 and RL = −2π
√
−1ω. Let

gTX be an arbitrary riemannian metric on TX. Let J be an almost complex structure

which is compatible with gTX and ω (For the existence of J , we refer to [17, p.61]). Then

J defines canonically an orientation of X. Let J0 : TX −→ TX be the skew–adjoint

linear map defined by

(2.1) ω(u, v) = gTX(J0u, v), for u, v ∈ TX.

Then J commutes with J0.

Let TXc = TX ⊗R C denote the complexification of the tangent bundle. The almost

complex structure J induces a splitting TXc = T (1,0)X ⊕ T (0,1)X, where T (1,0)X and

T (0,1)X are the eigenbundles of J corresponding to the eigenvalues
√
−1 and −

√
−1,

respectively. Accordingly, we have a decomposition of the complexified cotangent bundle:

T ∗Xc = T (1,0) ∗X ⊕ T (0,1) ∗X. The exterior algebra bundle decomposes as ΛT ∗Xc =

⊕p,qΛ
p,q, where Λp,q := Λp,qT ∗Xc = Λp(T (1,0) ∗X)⊗ Λq(T (0,1) ∗X).

Let ∇TX be the Levi–Civita connection of the metric gTX , and let ∇1,0 and ∇0,1 be

the canonical hermitian connections on T (1,0)X and T (0,1)X, respectively:

∇1,0 = 1
4
(1−

√
−1J)∇TX (1−

√
−1J) ,

∇0,1 = 1
4
(1 +

√
−1J)∇TX (1 +

√
−1J) .

Set A2 = ∇TX −
(
∇1,0 ⊕∇0,1

)
∈ T ∗X ⊗ End(TX) which satisfies J A2 = −A2 J .

Let us recall some basic facts about the spinc Dirac operator on an almost complex

manifold [15, Appendix D]. The fundamental Z2 spinor bundle induced by J is given

by Λ0,• = Λeven(T (0,1) ∗X) ⊕ Λodd(T (0,1) ∗X). For any v ∈ TX with decomposition v =

v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X, let v∗1,0 ∈ T (0,1)∗X be the metric dual of v1,0. Then

c(v) =
√

2(v∗1,0∧−iv 0,1) defines the Clifford action of v on Λ0,•, where ∧ and i denote the

exterior and interior product, respectively.

Formally, we may think

Λ0,• = S (TX)⊗
(
det T (1,0)X

)1/2
,

where S (TX) is the spinor bundle of the possibly non–existent spin structure on TX,

and
(
det T (1,0)X

)1/2
is the possibly non–existent square root of det T (1,0)X.
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Moreover, by [15, pp. 397–398], ∇TX induces canonically a Clifford connection on Λ0,•.

Formally, let ∇S(TX) be the Clifford connection on S(TX) induced by ∇TX , and let ∇det

be the connection on (det T (1,0)X)1/2 induced by ∇1,0. Then

∇Cliff = ∇S(TX) ⊗ Id + Id⊗∇det .

Let {wj}n
j=1 be a local orthonormal frame of T (1,0)X. Then

(2.2) e2j = 1√
2
(wj + wj) and e2j−1 =

√
−1√
2

(wj − wj) , j = 1, . . . , n ,

form an orthonormal frame of TX. Let {wj}n
j=1 be the dual frame of {wj}n

j=1. Let Γ be

the connection form of ∇1,0⊕∇0,1 in local coordinates. Then ∇TX = d+Γ+A2. By [15,

Theorem 4.14, p.110], the Clifford connection ∇Cliff on Λ0,• has the following local form:

∇Cliff = d + 1
4

∑
i,j

〈
(Γ + A2)ei, ej

〉
c(ei)c(ej) +

1

2
Tr|T (1,0)X Γ

= d +
∑
l,m

{〈
Γwl, wm

〉
w l ∧ iwm+

1
2

〈
A2wl, wm

〉
iwl

iwm + 1
2

〈
A2wl, wm

〉
w l ∧ w m ∧

}
.

(2.3)

Let ∇Lk⊗E be the connection on Lk ⊗ E induced by ∇L,∇E. Let ∇Λ0,•⊗Lk⊗E be the

connection on Λ0,• ⊗ Lk ⊗ E,

(2.4) ∇Λ0,•⊗Lk⊗E = ∇Cliff ⊗ Id + Id⊗∇Lk⊗E.

Along the fibers of Λ0,•⊗Lk⊗E, we consider the pointwise scalar product 〈·, ·〉 induced

by gTX , hL and hE. Let dvX be the riemannian volume form of (TX, gTX). The L2–scalar

product on Ω0,•(X, Lk ⊗ E), the space of smooth sections of Λ0,• ⊗ Lk ⊗ E, is given by

(2.5) (s1, s2) =

∫
X

〈s1(x), s2(x)〉 dvX(x) .

We denote the corresponding norm with ‖·‖.

Definition 2.1. The spinc Dirac operator Dk is defined by

(2.6) Dk =
2n∑

j=1

c(ej)∇Λ0,•⊗Lk⊗E
ej

: Ω0,•(X, Lk ⊗ E) −→ Ω0,•(X, Lk ⊗ E) .

Dk is a formally self–adjoint, first order elliptic differential operator on Ω0,•(X, Lk ⊗ E),

which interchanges Ω0,even(X, Lk ⊗ E) and Ω0,odd(X, Lk ⊗ E). We denote

(2.7) D+
k = Dk �Ω0,even , D−

k = Dk �Ω0,odd .

Let RT (1,0)X be the curvature of
(
T (1,0)X,∇1,0

)
. Let

ωd = −
∑
l,m

RL(wl, wm) w m ∧ iwl
,(2.8)

τ(x) =
∑

j

RL(wj, wj) .
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Remark that by (2.1), at x ∈ X, there exists {wi}n
i=1 an orthonormal basis of T (1,0)X, such

that J0 =
√
−1 diag(a1(x), · · · , an(x)) ∈ End(T (1,0)X), and ai(x) > 0 for i ∈ {1, · · · , n}.

So

ωd = −2π
∑

l

al(x) w l ∧ iwl
,(2.9)

τ(x) = 2π
∑

l

al(x) .

The following Lichnerowicz formula is crucial for us.

Theorem 2.2. The square of the Dirac operator satisfies the equation:

(2.10) D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗
∇Λ0,•⊗Lk⊗E − 2kωd − kτ + 1

4
K + c(R),

where K is the scalar curvature of (TX, gTX), and

c(R) =
∑
l<m

(
RE + 1

2
Tr

[
RT (1,0)X

])
(el, em) c(el) c(em) .

Proof. By Lichnerowicz formula [3, Theorem 3.52], we know that

(2.11) D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗
∇Λ0,•⊗Lk⊗E + 1

4
K + c(R) + k

∑
l<m

RL(el, em) c(el) c(em) .

Now, we identify RL with a purely imaginary antisymmetric matrix−2π
√
−1J0 ∈ End(TX)

by (2.1). As J0 ∈ End(T (1,0)X), by [3, Lemma 3.29], we get (2.10). �

Remark 2.3. Let E = E+⊕E− be a Clifford module. Then it was observed by Braverman

[11, §9] that, with the same proof of [3, Proposition 3.35], there exists a vector bundle

W on X such that E = Λ0,• ⊗W as a Z2–graded Clifford module.

As a simple consequence of Theorem 2.2, we recover the statement on the drift of

spectrum of the metric Laplacian first proved by Guillemin–Uribe [13, Theorem 1], (see

also [6, Theorem 2.1], [11, Theorem 4.4]), by passing to the circle bundle of L∗ and

applying Melin’s inequality [14, Theorems 22.3.2–3].

Corollary 2.4. There exists C > 0 such that for k ∈ N, the metric Laplacian ∆k =(
∇Lk⊗E

)∗∇Lk⊗E on C∞(X, Lk ⊗ E) satisfies:

(2.12) ∆k − kτ > −C .

Proof. By (2.10), s ∈ C∞(X, Lk ⊗ E),

(2.13) ‖Dks‖2 = ‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s, s) +
((

1
4
K + c(R)

)
s, s

)
.

From (2.3), we infer that∥∥∇Λ0,•⊗Lk⊗Es
∥∥2

=
∥∥∇Lk⊗Es

∥∥2
+

∥∥∥∑
l,m

〈
A2wl, wm

〉
w l ∧ w m ∧ s

∥∥∥2

.

and therefore there exists a constant C > 0 not depending on k such that

0 6 ‖Dks‖2 6
∥∥∇Lk⊗Es

∥∥2 − k(τ(x)s, s) + C‖s‖2 =
(
(∆k − kτ(x))s, s

)
+ C‖s‖2 .

�
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The following is our main technical result.

Theorem 2.5. There exists C > 0 such that for any k ∈ N and any s ∈ Ω>0(X, Lk⊗E) =⊕
q>1 Ω0,q(X, Lk ⊗ E),

(2.14) ‖Dks‖2 > (2kλ− C)‖s‖2 .

Proof. By (2.10), for s ∈ Ω0,•(X, Lk ⊗ E) ,

(2.15) ‖Dks‖2 = {‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s, s)} − 2k(ωds, s) +
((

1
4
K + c(R)

)
s, s

)
.

We consider now s ∈ C∞(X, Lk ⊗ E ′), where E ′ = E ⊗ Λ0,•. Estimate (2.12) becomes

(2.16)
∥∥∇Lk⊗E′

s
∥∥2 − k(τ(x)s, s) > −C‖s‖2 .

If s ∈ Ω>0(X, Lk ⊗ E), the second term of (2.15), −2k(ωds, s) is bounded below by

2kλ‖s‖2. While the third term of (2.15) is O(‖s‖2). The proof of (2.14) is completed. �

3. Applications of Theorem 2.5

Proof of Theorem 1.1. By (2.14), we get immediately (1.1). For the rest, we use the trick

of the proof of Mckean–Singer formula.

Let Hµ be the spectral space of D2
k corresponding to the interval (0, µ). Let H+

µ , H−
µ

be the intersections of Hµ with the spaces of forms of even and odd degree respectively.

Then Hµ = H+
µ ⊕H−

µ . Since D+
k commutes with the spectral projection, we have a well

defined operator D+
k : H+

µ −→ H−
µ which is obviously injective. But estimate (2.14)

implies that H−
µ = 0 for every µ < 2kλ−C, hence also H+

µ = 0, for this range of µ. Thus

Hµ = 0, for 0 < µ < 2kλ− C. The proof of our theorem is completed. �

Proof of Corollary 1.2. Let Pk : Ω0,•(X, Lk ⊗ E) −→ C∞(X, Lk ⊗ E) be the orthogonal

projection. For s ∈ Ω0,•(X, Lk ⊗ E), we will denote s0 = Pks its 0 – degree component.

We will estimate ∆#
k on Pk(Ker D+

k ) and (Ker D+
k )⊥ ∩ C∞(X, Lk ⊗ E).

In the sequel we denote with C all positive constants independent of k, although there

may be different constants for different estimates. From (2.13), there exists C > 0 such

that for s ∈ C∞(X, Lk ⊗ E),

(3.1)
∣∣‖Dks‖2 − (∆#

k s, s)
∣∣ 6 C‖s‖2 .

Theorem 1.1 and (3.1) show that there exists b > 0 such that for k ∈ N,

(3.2) (∆#
k s, s) > (2kλ− b)‖s‖2 , for s ∈ C∞(X, Lk ⊗ E) ∩ (Ker D+

k )⊥.

We focus now on elements from Pk(Ker D+
k ), and assume s ∈ Ker Dk. Set s′ = s−s0 ∈

Ω>0(X, Lk ⊗ E). By (2.15), (2.16),

(3.3) − 2k(ωds, s) 6 C‖s‖2 .

We obtain thus [6, Theorem 2.3] (see also [7], [11, Theorem 3.13]) for k � 1,

(3.4) ‖s′‖ 6 Ck−1/2‖s0‖ ,

(from (3.4), they got KerD−
k = 0 for k � 1, as s0 = 0 if s ∈ Ker D−

k ). In view of (2.15)

and (3.4),

(3.5) ‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s0, s0) 6 C‖s0‖2 .
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By (2.3),

(3.6) ∇Λ0,•⊗Lk⊗Es = ∇Lk⊗Es0 + A′
2s2 + α ,

where s2 is the component of degree 2 of s, A′
2 is a contraction operator comming from

the middle term of (2.3), and α ∈ Ω>0(X, Lk ⊗ E). By (3.5), (3.6), we know

(3.7)
∥∥∇Lk⊗Es0 + A′

2s2

∥∥2 − k(τ(x)s0, s0) 6 C‖s0‖2 ,

and by (3.4), (3.7),

(3.8)
∥∥∇Lk⊗Es0

∥∥2
6 Ck‖s0‖2 ,

By (3.4) and (3.8), we get∥∥∇Lk⊗Es0 + A′
2s2

∥∥2
>

∥∥∇Lk⊗Es0

∥∥2 − 2
∥∥∇Lk⊗Es0

∥∥∥∥A′
2s2

∥∥
>

∥∥∇Lk⊗Es0

∥∥2 − C‖s0‖2.
(3.9)

Thus, (3.7) and (3.9) yield

(3.10)
∥∥∇Lk⊗Es0

∥∥2 − k(τ(x)s0, s0) 6 C‖s0‖2 .

By (2.12) and (3.10), there exists a constant a > 0 such that

(3.11)
∣∣(∆#

k s, s
)∣∣ 6 a‖s‖2 , s ∈ Pk(Ker D+

k ) .

By (3.4), we know that for k � 1, Pk : Ker D+
k −→ Pk(Ker D+

k ) is bijective, and

(3.12) C∞(X, Lk ⊗ E) = Pk(Ker D+
k )⊕ (Ker D+

k )⊥ ∩ C∞(X, Lk ⊗ E) .

The proof is now reduced to a direct application of the minimax principle for the

operator ∆#
k . It is clear that (3.2) and (3.11) still hold for elements in the Sobolev

space W 1(X, Lk ⊗E), which is the domain of the quadratic form Qk(f) =
∥∥∇Lk⊗Ef

∥∥2−
k(τ(x)f, f) associated to ∆#

k . Let µk
1 6 µk

2 6 · · · 6 µk
j 6 · · · (j ∈ N) be the eigenvalues

of ∆#
k . Then, by the minimax principle [18, pp.76–78],

(3.13) µk
j = min

F⊂Dom Qk

max
f∈F , ‖f‖=1

Qk(f) .

where F runs over the subspaces of dimension j of Dom Qk.

By (3.11) and (3.13), we know µk
j 6 a, for j 6 dim Ker D+

k . Moreover, any subspace

F ⊂ Dom Qk with dim F > dim Ker D+
k + 1 contains an element 0 6= f ∈ F ∩ (Ker D+

k )⊥.

By (3.2), (3.13), we obtain µk
j > 2kλ− b, for j > dim Ker D+

k + 1.

By Theorem 1.1 and Atiyah–Singer theorem [2],

(3.14) dim Ker D+
k = index D+

k = 〈ch(Lk ⊗ E) Td(X), [X]〉

where Td(X) is the Todd class of an almost complex structure compatible with ω. The

index is a polynomial in k of degree n and of leading term kn(rank E) volω(X), where

volω(X) is the symplectic volume of X.

The proof of our corollary is completed. �
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Remark 3.1. If (X, ω) is Kähler and if L, E are holomorphic vector bundles, then Dk =
√

2
(
∂+∂

∗)
where ∂ = ∂

Lk⊗E
. D2

k preserves the Z–grading of Ω0,•. By using the Bochner–

Kodaira–Nakano formula, Bismut and Vasserot [4, Theorem 1.1] proved Theorem 2.5. As

∂ : (Ker D+
k )⊥ ∩ C∞(X, Lk ⊗ E) −→ Ω0,1(X, Lk ⊗ E) is injective, we infer

(3.15) 2
∥∥∂s

∥∥2
> (2kλ− C)‖s‖2, for s ∈ (Ker D+

k )⊥ ∩ C∞(X, Lk ⊗ E).

By Lichnerowicz formula [4, (21)], 2∂
∗
∂ = ∆#

k + 1
4
K + c(R) on C∞(X, Lk ⊗ E), and

Corollary 1.2 follows immediately. This observation motivated our work.

Remark 3.2. As in [5], we assume that (L, hL,∇L) is a positive Hermitian vector bundle,

i.e. the curvature RL is an End(L)–valued (1, 1)–form, and for any u ∈ T (1,0)X r {0},
s ∈ Lr{0}, 〈RL(u, u)s, s〉 > 0. Let Sk(L) be the kth symmetric tensor power of L. Then

if we replace Lk in Sections 2 and 3 by Sk(L), or by the irreducible representations of

L, which are associated with the weight ka (where a is a given weight), when k tends to

+∞, the techniques used in our paper still apply.

4. Covering manifolds

We extend in this section our results to covering manifolds.

4.1. Covering manifolds, von Neumann dimension. We present here some gener-

alities about elliptic operators on covering manifolds and Γ–dimension. For details, the

reader is referred to [1, §4], [19, §1, §3].

Let X̃ be a paracompact smooth manifold, such that there is a discrete group Γ acting

freely on X̃ having a compact quotient X = X̃/Γ. Let gT eX be a Γ–invariant metric on

TX̃. Let p : X̃ −→ X be the projection.

For a Γ–invariant hermitian vector bundle (F̃ , h
eF ), we denote by C∞c (X̃, F̃ ) the space

of compactly supported sections. Then gT eX , h
eF define an L2–scalar product on C∞c (X̃, F̃ )

as in (2.5). The corresponding L2 space is denoted by L2(X̃, F̃ ).

We have a decomposition L2(X̃, F̃ ) ∼= L2Γ ⊗ H where H = L2(U, F̃ ) is the L2 space

over the relatively compact fundamental domain U of the Γ action. This makes L2(X̃, F̃ )

into a free Hilbert Γ–module. Since Γ acts by left translations lγ on L2Γ, we obtain a

unitary action of Γ on L2(X̃, F̃ ) by left translations Lγ = lγ ⊗ Id. We will consider in

the sequel closed Γ–invariant subspaces of L2(X̃, F̃ ) for this action, called (projective)

Γ–modules.

Let AΓ be the von Neumann algebra which consists of all bounded linear operators

in L2Γ ⊗ H which commute to the action of Γ. Let RΓ be the von Neumann algebra

of all bounded operators on L2Γ which commute with all lγ. Then RΓ is generated by

all right translations. Let B(H) be the algebra of all bounded operators on H. Then

AΓ = RΓ ⊗ B(H).

If we consider the orthonormal basis (δγ)γ in L2Γ, where δγ is the Dirac delta function

at γ ∈ Γ, then the matrix of any operator A ∈ RΓ has the property that all its diagonal

elements are equal. Therefore we define a natural trace on RΓ as the diagonal element,

that is, trΓ A = (Aδe, δe) where e is the neutral element. Let Tr be the usual trace on

B(H), then we define a trace on AΓ by TrΓ = trΓ⊗Tr.
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For any closed Γ–invariant space V ⊂ L2Γ ⊗H i.e. for any Γ–module, the projection

PV ∈ AΓ and we define dimΓ V = TrΓ PV . In general the Γ–dimension is an element of

[0,∞]. We also need the following fact [20, p. 398].

Proposition 4.1. Let A : V1 −→ V2 be a bounded linear operator between two Γ–modules,

commuting with the action of Γ. Then Ker A = 0 implies dimΓ V1 6 dimΓ V2.

Consider an elliptic, Γ–invariant, formally self–adjoint differential operator P̃ defined

in the first instance on C∞c (X̃, F̃ ). By a theorem of Atiyah [1, Proposition 3.1], the

minimal extension of P̃ (i.e. the operator closure of P̃ ) and the maximal extension of P̃

(i.e. P̃ ∗) coincide. Hence

Lemma 4.2 (Atiyah). P̃ defined on C∞c (X̃, F̃ ) is essentially self–adjoint.

Therefore P̃ has a unique self–adjoint extension, namely its closure. From now on, we

always work with this extension of P̃ , which we will denote with the same symbol.

Then the self–adjoint extension P̃ , as well as its spectral projections commute with

the action of Γ. In particular, the spectral spaces are Γ–modules. For a Borel set B ⊂ R,

we denote by E(B, P̃ ) the spectral projection corresponding to the subset B, and for

µ ∈ R, set Eµ(P̃ ) = E
(
(−∞, µ], P̃

)
. We introduce now a quantitative characteristic of

the spectrum, namely the von Neumann spectrum distribution function. For µ ∈ R, set

NΓ(µ, P̃ ) := TrΓ Eµ(P̃ ) = dimΓ Range Eµ(P̃ ) .

It is non–decreasing and the spectrum of P̃ coincides with the points of growth of

NΓ(µ, P̃ ). If P̃ is semi–bounded from below, we have Range Eµ(P̃ ) ⊂ Dom P̃m for m ∈ N.

Using the uniform Sobolev spaces [19, pp. 511–2], it is easily seen that Range Eµ(P̃ ) ⊂
C∞(X̃, F̃ ), so that Eµ(P̃ ) : L2(X̃, F̃ ) −→ C∞(X̃, F̃ ) is linear continuous. Let Kµ(x̃, ỹ)

be the kernel of Eµ(P̃ ) with respect to the riemannian volume dv eX of gT eX . By Schwartz

kernel theorem, Kµ(x̃, ỹ) is smooth. By [1, Lemma 4.16],

NΓ(µ, P̃ ) = TrΓ Eµ(P̃ ) =

∫
U

Tr Kµ(x̃, x̃) dv eX < +∞.

Assume that there exists a Γ–invariant pre–quantum line bundle L̃ on X̃ and a Γ–

invariant connection ∇eL such that ω̃ =
√
−1
2π

(∇eL)2 is non–degenerate. Let (Ẽ, h
eE) be a

Γ–invariant hermitian vector bundle. Let ∇ eE be a Γ-invariant hermitian connection on

Ẽ. Let J̃ be an Γ-invariant almost complex structure on TX̃ such that J̃ is compatible

with ω̃ and gT eX . Let J̃0 ∈ End(TX) be defined by

ω̃(u, v) = gT eX(J̃0u, v), for u, v ∈ TX̃.

Then J̃ commutes with J̃0 and J̃0, g
T eX , ω̃, J̃ are the pull-back of the corresponding objects

in Section 2 by p : X̃ → X.

We use in the sequel the same notation as in Section 2 for the corresponding objects

on X. Following Section 2, we introduce the Γ–invariant spinc Dirac operator D̃k on

Ω0,•(X̃, L̃k⊗Ẽ) and the Γ–invariant Laplacian ∆̃k =
(
∇eLk⊗ eE)∗∇eLk⊗ eE on C∞(X̃, L̃k⊗Ẽ).

Let D̃+
k and D̃−

k be the restrictions of D̃k to L0, even
2 (X̃, L̃k ⊗ Ẽ) and L0, odd

2 (X̃, L̃k ⊗ Ẽ),

respectively.
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Proposition 4.3. There exists C > 0 such that for k ∈ N, ∆̃k − k · τ ◦ p > −C on

L2(X̃, L̃k ⊗ Ẽ).

Proof. By applying Lichnerowicz formula (2.10) for s ∈ C∞c (X̃, L̃k ⊗ Ẽ), we obtain as in

the proof of Corollary 2.4, that there exists C > 0 such that
(
(∆̃k−k·τ◦p)s, s

)
> −C‖s‖2.

By Lemma 4.2, this is valid for any s ∈ Dom(∆̃k − k · τ ◦ p). �

In the same vein, we can generalize Theorem 2.5.

Theorem 4.4. There exists C > 0 such that for k ∈ N and any s ∈ Dom(D̃k) with

vanishing degree zero component,

(4.1) ‖D̃ks‖2 > (2kλ− C) ‖s‖2 .

As an immediate application of the estimate (4.1) for the Dirac operator and Remark

2.3, we get the following asymptotic vanishing theorem, which is the main result in [12,

Theorem 2.6].

Corollary 4.5. Ker D̃−
k = {0} for large enough k.

We have also an analogue of Theorem 1.1.

Corollary 4.6. There exists C > 0 such that for k ∈ N, the spectrum of D̃2
k is contained

in the set {0} ∪ (2kλ− C, +∞).

Proof. The proof of Theorem 1.1 does not use the fact that the spectrum is discrete.

Therefore it applies in this context, too. �

We study now the spectrum of the Γ–invariant Schrödinger operator ∆̃k − k · τ ◦ p.

Corollary 4.7. The spectrum of the Schrödinger operator ∆̃#
k = ∆̃k−k ·τ ◦p is contained

in the union (−a, a) ∪ (2kλ − b, +∞) , where a and b are positive constants indepen-

dent of k. For large enough k, the Γ–dimension dk of the spectral space E
(
(−a, a), ∆̃#

k

)
corresponding to (−a, a) satisfies dk = 〈ch(Lk ⊗ E) Td(X), [X]〉. In particular dk ∼
kn(rank E) volω(X).

Proof. By repeating the proof of Corollary 1.2, we get estimates (3.2) and (3.11) for

smooth elements with compact support. Lemma 4.2 yields then∣∣(∆̃#
k s, s

)∣∣ 6 a‖s0‖2 , s ∈ Dom(∆̃#
k ) ∩ Pk(Ker D̃+

k ) ,(4.2a)

(∆̃#
k s, s) > (2kλ− b)‖s‖2 , s ∈ Dom(∆̃#

k ) ∩ (Ker D̃+
k )⊥ .(4.2b)

Recall that Pk represents the projection L0, •
2 (X̃, L̃k ⊗ Ẽ) −→ L0,0

2 (X̃, L̃k ⊗ Ẽ). Since

the curvatures of all our bundles are Γ–invariant, estimate (3.4) extends to the covering

context with the same proof. In particular, Pk : Ker D̃+
k −→ Pk(Ker D̃+

k ) is bijective,

Pk �Ker eD+
k

and its inverse are bounded. So Pk(Ker D̃+
k ) is closed. By Proposition 4.1,

(4.3) dimΓ Ker D̃+
k = dimΓ Pk(Ker D̃+

k ) .

As in (3.12), we have

(4.4) Dom(∆̃#
k ) = Pk(Ker D̃+

k )⊕ (Ker D̃+
k )⊥ ∩Dom(∆̃#

k ) .
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We use now a suitable form of the minimax principle from [20, Lemma 2.4]:

(4.5) NΓ(µ, ∆̃#
k ) = sup{dimΓ V : V ⊂ Dom ∆̃#

k ;
(
∆̃#

k f, f
)

6 µ‖f‖2 ,∀ f ∈ V }

where V runs over the Γ–modules of L2(X̃, L̃k ⊗ Ẽ).

By (4.1), (4.2a) and (4.5), we get

(4.6) NΓ(a, ∆̃#
k ) > dimΓ Ker D̃+

k .

Let us consider ν < 2kλ− b. We prove that

(4.7) NΓ(ν, ∆̃#
k ) 6 dimΓ Ker D̃+

k .

Let V ⊂ Dom(∆̃#
k ) be an arbitrary Γ–module with

(
∆̃#

k u, u
)

6 ν‖u‖2. If dimΓ V >

dimΓ Ker D̃+
k , by Proposition 4.1 and (4.4), there exists 0 6= v ∈ V ∩ (Ker D+

k )⊥, which

in view of (4.2b) is a contradiction. Therefore dimΓ V 6 dimΓ Ker D̃+
k . By (4.5), we get

(4.7).

By (4.6) and (4.7), we know that the function NΓ(ν, ∆̃#
k ) is constant in the interval

ν ∈ [a, 2kλ− b) and equal to dimΓ Ker D̃+
k . Enlarging a bit a if necessary, we see that the

spectrum of ∆̃#
k is indeed contained in (−a, a)∪ (2kλ− b, +∞), and the Γ–dimension dk

of the spectral space E
(
(−a, a), ∆̃#

k

)
equals dimΓ Ker D̃+

k .

By Corollary 4.5, dimΓ Ker D̃+
k = indexΓ D̃+

k . Moreover, Atiyah’s L2 index theorem [1,

Theorem 3.8] shows that indexΓ D̃+
k = index D+

k .

By (3.14), the proof is achieved. �
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