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CHAPTER 1

Introduction

Many important results in algebraic and complex geometry are derived by combining
a vanishing with an index theorem. The vanishing theorems we will encounter are in
turn obtained via harmonic theory and the Bochner technique. The key remark is that the
spectrum of the Laplace operator acting on (0,q)-forms, q > 1, with values in the tensor
powers of a positive line bundle shifts to the right linearly in the tensor power.

An important generalization which we will emphasize are the asymptotic Morse in-
equalities of Demailly. They give asymptotic bounds on the Morse sums of the Betti num-
bers of ∂ on high tensor powers of a holomorphic hermitian line bundle in terms of certain
integrals of the curvature form. The asymptotic Morse inequalities provide a useful tool
in complex geometry. They are again based on the asymptotic spectral behaviour of the
Laplace operator.

The applications of vanishing theorems and Morse inequalities are numerous. Let us
mention here only the Kodaira embedding theorem, the classical Lefschetz hyperplane the-
orem for projective manifolds, Donaldson’s version for symplectic ones, the computation
of the asymptotics of the Ray-Singer analytic torsion by Bismut and Vasserot, as well as
the solution of the Grauert-Riemenschneider conjecture by Siu and Demailly or the com-
pactification of complete Kähler manifolds of negative Ricci curvature by Nadel and Tsuji.

The holomorphic Morse inequalities are global statements which can be deduced from
local informations such as the behaviour of the heat or Bergman kernels. In this refined
form they can be used for the study of the existence of Kähler-Einstein metrics in relation
to Mumford-Chow stability, convergence of the induced Fubini-Study metric, distribution
of zeroes of random and quantum polynomials or sections, Berezin-Toeplitz quantization
and sampling problems.

Our goal is to study the interplay between the spectral properties of the Laplacian on
high tensor powers of line bundles and the analytic and geometric properties of the under-
lying manifolds.

Some words are in order about the conception of these notes. We wished to follow a
thought in some of its proteic transformations, from Witten’s proof of the Morse inequal-
ities to the asymptotic expansion of the Bergman kernel. So we started from the basic
results and included many natural applications, alongside with our original contributions.
The result is sometimes baroque in form, but could serve as reference for me and hopefully
(if well rewritten!) also for others. We would be delighted if these notes could as well
achieve the aim of being a successful Habilitation Thesis.

The rest of the introduction consists of two parallel sections. Section 1.1 illustrates
the richness of the subject and presents well-known results, announcing the themes of the
present work. In Section 1.2 we highlight our contribution to these questions and in the
same time describe the contents of each chapter.
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2 1. INTRODUCTION

1.1. Motivation and examples

Kodaira vanishing theorem. We begin with the famous Kodaira vanishing theorem
[88]. Let X be a compact complex manifold and L −→ X a positive line bundle. Then

H p(X ,O(Lk)) = 0, p > 1, for large k . (1.1)

By the Hirzebruch-Riemann-Roch formula (which for a general complex manifold is a
consequence of the index theorem of Atiyah-Singer [17])

n

∑
p=1

(−1)p dimH p(X ,O(Lk)) =
kn

n!
vol(X)+Pn−1(k) , (1.2)

where n = dimX , Pn−1(k)∈ Q[k] is a polynomial of degree n−1, and vol(X) is the volume

of X in the metric given by the curvature
√
−1

2π RL. By (1.1) all higher cohomology groups
in (1.2) vanish, so

dimH0(X ,O(Lk)) =
kn

n!
vol(X)+o(kn), k −→ ∞ . (1.3)

An important particular case had been considered by Poincaré. If X is a compact Riemann
surface of genus g > 2, the universal covering of X is the unit disc D ⊂ C. The Poincaré
metric on D, ωP = 4

(
1− |z|2

)−2
dz∧ dz, is invariant under automorphisms of D, and de-

scends to a metric on X , denoted with the same symbol. Moreover ωP is a Kähler–Einstein,
with Ricci curvature

Rdet = −ωP . (1.4)

Let KX be the canonical bundle of X (generated by holomorphic 1–forms). Equation (1.4)
implies RKX = ωP, so KX is positive. By Kodaira’s theory there are a lot of sections in Kk

X .
They correspond in fact to automorphic forms of degree k.

The analytic method of proving (1.1) consists in applying the Dolbeault isomorphism
to identify the sheaf cohomology H p(X ,O(Lk)) to the Dolbeault cohomology H0,p(X ,Lk)
and then, via Hodge theory, to the space of harmonic space H 0,p(X ,Lk). Let us denote by

∂ E
the ∂ -operator acting on a holomorphic vector bundle E and by ϑ E its formal adjoint.

The Kodaira-Laplacian is then 2
E =

(
∂ E

+ϑ E
)2

. The Bochner technique delivers, due to

the positivity of the curvature RL, that
(
2

Lk
u,u
)

> C k‖u‖2 for u a (0, p)-form with values
in Lk, p > 1 and k � 1. We see that the spectrum is contained in the set [Ck,+∞). This
is very similar to the spectral gap developed by the Witten Laplacian ∆t (see (1.7)), for t
going to +∞. The spectral gap will be important also for more refined questions such as
the asymptotic expansion of the Bergman kernel.

L2 estimates for ∂ . There are several wide–ranging and deep generalizations of the
Kodaira vanishing theorem. One of them is the L2 method for the ∂–equation. We briefly
state some of the results obtained by this method. Although we shall not use it directly,
it stays always in the background of our work, since it tackles the problem of finding
holomorphic sections.

The L2 estimates for ∂ on complete manifolds and were introduced by Andreotti–
Vesentini [15], Hörmander [80] and applied to a variety of problems by Nakano [97],
Skoda [118], Demailly [51], Ohsawa [99]. The solution of the ∂ –Neumann problem by
Kohn, Morrey, Hörmander can be seen as an extension of the Kodaira technique for mani-
folds with boundary.
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Bombieri [34] and Skoda [118] introduced a new technique to deal with singular her-
mitian metrics. This was generalized by Nadel [95] and Demailly [54] which introduced
the so called Nadel multiplier sheaf. If (L,hL) is a line bundle with singular metric hL let
I (hL) be the ideal sheaf of holomorphic functions square integrable with respect to the
local weights of hL. The Nadel–Demailly vanishing theorem asserts that Hq(X ,L⊗KX ⊗
I (hL)) = 0 for q > 1, if

√
−1RL > εω in the sense of currents. By using the liberty of

choosing local weights one can produce holomorphic sections with given jets at a finite
set of points. The Nadel–Demailly vanishing theorem implies the Kawamata–Viehweg
vanishing theorem, one of the cornerstones of modern algebraic geometry.

Returning to smooth complete metrics, the usual Bochner–Kodaira technique is not
sufficient to explain all vanishing theorems. For example, the fact that H1,1

(2)
(B) = 0 where

B is the unit disc in C endowed with the Bergman metric. Donnelly and Fefferman [63]
first found a method to get around this difficulty. This leads to important discoveries such
as the Oshawa-Takegoshi-Manivel extension theorem [102, 24, 92, 56] (which in turn has
many applications e.g. to the invariance of plurigenera of varieties of general type [117] or
Fujita conjecture [116]) or the solution of the Cheeger–Goreski–McPherson conjecture for
isolated singularities by Ohsawa [100].

The vanishing theorem of Donnelly–Fefferman asserts that H p,q
(2) (D) = 0 for p+q 6= n if

D is a smoothly bounded strictly pseudoconvex domain in Cn endowed with the Bergman
metric. The proof depends on the fact that the Bergman metric has a global potential whose
gradient is bounded (this follows from the asymptotic expansion of the Bergman kernel of
Fefferman and Boutet de Monvel–Sjöstrand). Gromov [74] generalized the Donnelly–
Fefferman condition and proved the vanishing theorem for complete Kähler manifolds
(X ,ω) with ω = dη for some form η with bounded norm. This yields a solution of the
Hopf conjecture in the Kähler case. Modified Bochner-Kodaira method which lead to a
simplified proof of the Donnelly-Fefferman vanishing theorem were found by Berndtsson
[23, 24] and Siu [116]. We will apply related ideas to the compactification of hyperconcave
manifolds in Chapter 6.

As references for the L2 method for ∂ let us mention Hörmander [80, 81, 82] Vesentini
[122], Demailly [57], Ohsawa [101].

Kodaira embedding and generalizations. The Kodaira vanishing theorem implies
the Kodaira embedding theorem, to the effect that for large k, the sections of Lk give an
embedding of X in the projective space. It is worthwhile to mention that to get the result,
we need only use and refine the vanishing of the first cohomology group H1

(
X , O(Lk)

)
.

Let us define the Kodaira map

Φk : X r Blk −→ PH0(X ,Lk)∗ , Φk(x) = {s ∈ H0(X ,Lk) : s(x) = 0} , (1.5)

which associates to each point x outside the base locus Blk (by definition, the set of points
where all sections of H0(X ,Lk) vanish) the hyperplane of sections vanishing at x. The
Kodaira’s embedding theorem gives an intrinsic characterization of projective manifolds:

1.1. KODAIRA EMBEDDING THEOREM. If L is positive the Kodaira map Φk is defined
everywhere and is an embedding for k sufficiently large. Therefore, X projective if and only
if X possesses a positive line bundle.

The generalization of the Kodaira embedding theorem was proposed by Grauert and
Riemenschneider in connection to the characterization of Moishezon varieties. Moishezon
varieties are simply compact complex spaces such that the transcendence degree of the
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meromorphic function field equals their complex dimension. They are so important in
algebraic geometry because most of the natural modifications of algebraic varieties can
be performed in the category of Moishezon varieties but sometimes not in the category of
algebraic varieties.

Projective varieties are Moishezon. Moreover, a fundamental result of Moishezon [93]
asserts that a Moishezon manifold X can be transformed into a projective manifold X̂ by
a finite number of blow ups along smooth centers. By taking the push-forward of the
positive line bundle on X̂ we obtain in general a sheaf on X , which is free outside a proper
analytic set and has a smooth metric of positive curvature. Such sheaves are called quasi-
positive. The question is, whether this property characterizes Moishezon manifolds. Since
the Moishezon property is bimeromorphically invariant, we can blow up X in order to
obtain a manifold X ′ possessing a line bundle with semi-positive curvature everywhere and
positive outside a proper analytic set. If we show that X ′ is Moishezon, it follows that X is
Moishezon too.

1.2. GRAUERT-RIEMENSCHNEIDER CRITERION. If X possesses a smooth hermitian
line bundle which is semi–positive everywhere and positive on an open dense set, X is
Moishezon. Therefore, X is Moishezon if and only if X carries a quasi-positive sheaf.

The criterion was known as the Grauert–Riemenschneider conjecture until it was solved
by Siu [113, 114], who used an asymptotic vanishing theorem. He showed namely, that

dimH p (X ,O(Lk)
)

= o
(
kn) for p > 1 and k −→ ∞ . (1.6)

By Hirzebruch-Riemann-Roch (1.2), dimH0
(
X ,O(Lk)

)
= O

(
kn
)
, which implies that L

is big and X is Moishezon. Recall that L is called big if its Kodaira–Iitaka dimension
κ(L) = dimX . By definition κ(L) := max{rankΦk : k > 1}, where Φk are the Kodaira
maps (1.5). If L is big, by taking quotients of sections of Lk for k large, we obtain enough
meromorphic functions on X .

In this situation zero might be in the spectrum of 2
Lk

on (0,1)–forms and is certainly
in the spectrum of 2

Lk
on sections. Siu [113, p. 433] raised however the following con-

jecture and proved that it implies the Grauert-Riemenschneider conjecture. Let X be a
compact complex manifold and L a hermitian holomorphic line bundle over X whose cur-
vature form is positive semidefinite everywhere and positive definite at some point. Then
infk λ1(X ,Lk) > 0, where λ1(X ,Lk) is the smallest positive eigenvalue of the Laplacian 2

Lk

on L2 sections of Lk.
There are also generalizations of the Kodaira emebedding Theorem to the case of sin-

gular vareties, cf. Schumacher–Tsuji [108]. We will also be concerned with algebraicity
criteria for singular spaces in Chapter 4.

Demailly’s Holomorphic Morse Inequalities. Siu’s argument in the proof of the
Grauert-Riemenschneider conjecture used all the higher p-th cohomology groups, p > 1.
We see, however, that in the proof of Kodaira embedding theorem only the vanishing of the
first cohomology group H1

(
X ,O(Lk)

)
matters. This can also be adapted for a new proof

of Grauert-Riemenschneider conjecture and this discovery was triggered by developments
in other areas.

In 1982, E. Witten [124] gave a new analytic proof of the Morse inequalities, by ana-
lyzing the spectrum of the Schrödinger operator

∆t = ∆+ t2|d f |2 + tV, (1.7)
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where t > 0 is a real parameter, f is a Morse function and V is a 0-order operator. For
t −→ ∞, the spectrum of ∆t approaches the spectrum of a sum of harmonic oscillators
attached to the critical points of f .

Using the same philosophy, Demailly [52] succeeded in proving asymptotic Morse
inequalities in the holomorphic setting. Heat equation proofs were subsequently given
by Bismut [27], Demailly [53] and Bouche [41]. Of particular importance are the strong
Morse inequalities, which involve partial sums of the Euler-Poincaré characteristic:

q

∑
j=0

(−1)q− j dimH j(X ,O(Lk)) 6
kn

n!

∫

X(6q)
(−1)q

(√
−1

2π RL
)n

+o(kn) (1.8)

as k −→ ∞. Here X(6 q) is the set of points where
√
−1RL is non-degenerate and has

at most q negative eigenvalues. For q = n we have equality, so we obtain an asymptotic
Hirzebruch-Riemann-Roch formula, weaker than (1.2). For q = 1 however, we get the very
precious

dimH0(X ,O(Lk)) >
kn

n!

∫

X(61)

(√
−1

2π RL
)n

+o(kn) , k −→ ∞ . (1.9)

We obtain therefore:

1.3. DEMAILLY CRITERION. If L satisfies
∫

X(61)

(√
−1

2π RL
)n

> 0 , (1.10)

relation (1.3) is satisfied and X is Moishezon.

This also solves the Grauert-Riemenschneider conjecture, for the integral (1.10) is certainly
positive if L is semi-positive and positive at one point.

This proof of the Grauert-Riemenschneider criterion deals with smooth hermitian line
bundles. However, smooth hermitian metrics with semi-positive curvature do not charac-
terize Moishezon manifolds, since there exists examples of Moishezon manifolds which do
not possess a line bundle satisfying (1.10) for a smooth metric [89]. Nevertheless, returning
to Moishezon’s theorem, it can easily be seen, that the push-forward of the curvature of a
positive line bundle on X̂ (the projective blow-up of X ) forms an integral Kähler current
on X . It implies the existence of a holomorphic line bundle on X , possessing a singular
hermitian metric with positive curvature (in the sense of currents). So arises the following.

1.4. SHIFFMAN-JI-BONAVERO CRITERION. X is Moishezon if and only if X possesses
a singular hermitian line bundle with positive curvature.

This was proved independently by Ji and Shiffman [86] and Bonavero [35] who pro-
posed a proof using Morse inequalities (1.8) for singular hermitian metrics. The new el-
ement in Bonavero’s paper is the introduction of the Nadel multiplier sheaf in the Morse
inequalities. Namely, if T ∈ c1(L) is a closed (1,1)-current with algebraic singularities,
(1.9) becomes

dimH0(X ,O(Lk)⊗I (kT )) >
kn

n!

∫

X(T,61)
T n

ac +o(kn) , k −→ ∞ . (1.9)′

where Tac is the absolute continuous part of T , I (kT ) is the Nadel multiplier sheaf of
kT , and the index set X(T,6 1) is the set of points where Tac is non-degenerate and has at
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most one negative eigenvalue. It is an interesting problem to prove the singular Morse in-
equalities for transcendental currents T , that is, without the hypothesis that T has algebraic
singularities.

Takayama [120] presented a proof using a variant of (1.8) for non-compact manifolds
and the generalized Poincaré metric.

The Shiffman–Ji–Bonavero criterion has many applications. An important one is the
projectivity criterion for hyperkähler manifolds given by Huybrechts [83, 84]. Let X be a
compact hyperkähler manifold. Then X is projective if and only if there exists a line bundle
L on X such that qX(c1(L)) > 0, where qX is the Beauville–Bogomolov quadratic form on
the second cohomology of an connected symplectic manifold. Another notable application
of the strong Morse inequalities is to the proof of the effective Matsusaka theorem by Siu
[115, 55].

Recently, the Morse inequalities were used by Boucksom [42] to calculate the volume
of a pseudoeffective line bundle over a compact Kähler manifold X and to prove a Fujita
theorem for big classes. Using the singular Morse inequalities of Bonavero, Boucksom
shows that for a pseudoeffective line bundle L and T ∈ c1(L) we have

vol(L) := limsup
k→∞

n!
kn dimH0(X ,O(Lk)) >

∫

X
T n

ac , k −→ ∞ .

Therefore, one has a Grauert-Riemanschneider-type criterion: if L is pseudoeffective and
its Chern class c1(L) contains a current T with

∫
X T n

ac > 0, vol(L) > 0 and L is big. It
is shown then in [42, Th.4.7] (using techniques from the proof of the Nakai-Moishezon
criterion of Demailly-Paun [58]) that the criterion extends to non-necesarily rational pseu-
doeffevctive classes.

Non–compact generalizations. The importance of inequality (1.9) lies in the fact that
it provides us with a substitute for the Riemann-Roch formula, which is particularly suit-
able to generalization to non-compact manifolds. The reason is that the usual Riemann-
Roch formula may break down, for example if the higher cohomology groups are infinite
dimensional.

The first use of (1.9) for non-compact manifolds are due to Nadel and Tsuji [96]. They
prove that, if (X ,ω) is a complete Kähler manifold of dimension n with Ricci curvature
Rdet 6 −ω ,

dimH0(X ,O(Kk
X)) >

kn

n!
vol(X)+o(kn) , k −→ ∞ , (1.11)

where KX is the canonical bundle of X . The proof is based on the fact that 2
Lk

on (0,1)-
forms has no spectrum in an interval (0,C k). As a consequence, they obtain a generaliza-
tion with a new analytic proof of the compactification of arithmetic quotients:

1.5. THEOREM (Nadel–Tsuji [96]). Let (X ,ω) be a complete Kähler manifold of di-
mension n of negative Ricci curvature. Assume that X is uniformized by a Stein manifold
and that X is very strongly (n− 2)-pseudoconcave. Then, X is biholomorphic to a quasi-
projective variety.

Napier and Ramachandran applied (1.11) to generalize a theorem of Burns which states
that a quotient of the unit ball in Cn (n > 3) by a discrete group of automorphisms which has
a strongly pseudoconvex boundary component has only finitely many ends. They proved
the following result.
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1.6. THEOREM (Napier–Ramachandran [98]). If a complete Hermitian manifold (X ,ω)
of complex dimension n > 3 has a strongly pseudoconvex end and its Ricci curvature satis-
fies Rdet < −Cω for some positive constant C, then, away from the strongly pseudoconvex
end, the manifold has finite volume.

Atiyah [16] initiated the index theory on covering manifolds. He shows that, if X is
a compact manifold and X̃ is a covering with X = X̃/Γ and P is an elliptic operator on X
whose lifting to X̃ is P̃, then the von Neumann index of P̃ equals the index of P. Moreover,
the vanishing theorems from the compact case carry over to vanishing theorems for the L2–
cohomology with respect to invariant metrics on the covering (Kollár, Demailly–Campana,
Eyssidieux, Braverman).

A nice example of how these ideas combine is the non-vanishing theorem of Kollár,
which asserts that, if a projective manifold X has generically large fundamental group and
is of general type, dimH0(X ,O(Kk

X)) > 1 for k > 2 and dimH0(X ,O(Kk
X)) > 2 for k > 4.

The idea is that the von Neumann dimension dimΓ H0
(2)(X̃ ,Kk

X̃
) equals dimH0(X ,O(Kk

X)),

where X̃ is a Galois covering of X with Galois group Γ [90, 15.5]. The study of L2–sections
of bundles over coverings proves fruitful also for deriving Lefschetz–type theorems à la
Nori [98].

1.7. THEOREM (Napier–Ramachandran). If X and Y are connected smooth projective
varieties of positive dimension and if f : Y −→ X is a holomorphic immersion with ample
normal bundle, the image of π1(Y ) in π1(X) is of finite index.

The proof is done by looking at the covering X̃ −→ X with Galois group associated to
the image of π1(Y ) in π1(X). One then constructs holomorphic L2–sections of an appro-
priate line bundle using the L2–method of Skoda–Bombieri–Hörmander and finds a bound
for the degree of the covering X̃ .

Analysis of the Bergman Kernel. In 1907 Poincaré proved that the ball and ellipsoid
in C2 are not biholomorphically equivalent. The problem was raised to classify domains
under biholomorphic maps. The start is the theorem of Fefferman which asserts that a
biholomorphic map Φ : D1 −→ D2 between smoothly bounded strictly pseudoconvex do-
mains extends to a diffeomorphism Φ : D1 −→ D2. The main tool in Fefferman’s proof is
the asymptotic expansion of the Bergman kernel P(z,z) as z approaches ∂D. Recall that the
Bergman kernel of a domain D in Cn is the smooth kernel of the projection on the space of
L2 (with respect to the Lebesgue metric) holomorphic functions on D. Boutet de Monvel
and Sjöstrand [44] related the analysis of P(z,z) to the analysis of the Szegö projection
defined on L2(∂D) with values in the space of boundary values of holomorphic functions
in D, or equivalently, functions on ∂D annihilated by the tangential Cauchy–Riemann op-
erator ∂ b.

A tradition says that Stefan Bergman discovered the Bergman kernel as a freshman
student at a German university. Due to his poor German he misunderstood an exercise
(Übungsaufgabe) about the unit interval in R and worked it out for the unit disc in C. A
similar “error” leads to a fertile point of view in the study of polarized projective manifolds.
Namely, consider a compact Kähler manifold (X ,ω) and (L,hL) a holomorphic hermitian

line bundle such that
√
−1

2π RL = ω . The Bergman projection is the orthogonal projection

Pk : LLL2(X ,Lk) −→ H0(X ,Lk) . (1.12)
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from the space of L2 sections to the space of holomorphic sections of Lk. The Bergman
kernel Pk(x,x′) is now the smooth kernel the Bergman projection

(PkS)(z) =

∫

X
Pk(z,z

′)S(z′)dvX(z′) , S ∈ LLL2(X ,Lk). (1.13)

We denote by Bk(z) = Pk(z,z) the restriction on the diagonal. The Bergman kernel is linked
to the Kodaira embedding in the following way. Let Φk : X −→PH0(X ,Lk)∗ be the Kodaira
map (1.5) and let ωFS be the Fubini-Study form on PH0(X ,Lk)∗. Then

1
k

Φ∗
kωFS −ω =

√
−1

2π ∂∂ logBk(z) (1.14)

which shows that ∂∂ logBk(x) measure how far is Φk from being an isometry. For abelian
manifolds, Kempf [87] and then Ji [85] showed that the induced Fubini-Study 1

k Φ∗
kωFS

metric converges to ω . Tian [121] extended the result to general projective manifolds and
showed the convergence is in the C 2 topology, so that Φk is asymptotically an isometry.
Bouche [41] gave later a heat kernel proof. The main motivation was the general philoso-
phy of Yau that the stability of embeddings in the sense of Chow–Mumford is connected
to the existence of Kähler–Einstein metrics. This was further substantiated in a ground-
breaking paper of by Donaldson [61] who used a refinement of the results of Tian–Bouche.
This is the Tian-Yau-Zelditch asymptotic expansion [125, 49].

1.8. THEOREM (Zelditch, Catlin). Let L −→X be a positive line bundle over a compact
manifold X and let Bk be the Bergmann kernel associated to Lk by (1.13). There exist
smooth functions b j on X such that

Bk(x) = kn(b0 +b1k−1 +b2k−2 + · · ·). (1.15a)

More precisely, for any R, l > 0 there exists a constant CR,l such that

‖Bk − kn ∑
j<R

b jk
− j‖C l 6 CR,lk

n−R. (1.15b)

The proof of (1.15a) is based on some beautiful observations which permit the applica-
tion of the asymptotic expansion of Boutet–Sjöstrand [44]. Let us define the Grauert tube
T = {v ∈ L∗ : |v|hL∗ = 1} (or generalized Hardy space) to be the associated circle bundle of
L∗. Then T is the boundary of the strongly pseudoconvex domain {v ∈ L∗ : |v|hL∗ < 1} as
a consequence of the positivity of RL. Then sections of Lk may be identified to equivariant

functions on T , and the family ∂ Lk

can be identified with the tangential Cauchy–Riemann
operator ∂ b on T . We have actually

H0(X ,Lk) ∼=
{

f : T → C : ∂ b f = 0, f (e
√
−1ϑ w) = e

√
−1kϑ f (w) , for w ∈ T , ϑ ∈ R

}

(1.16)
Now, the Bergman kernels Bk are the Fourier coefficients of the Szegö kernel on T and the
result of Boutet–Sjöstrand applies. The identification (1.16) was already used by Grauert
[72] to generalize the Kodaira embedding theorem to singular varieties.

An essential ingredient in Donaldson’s result is the calculation of the first coefficients
of the expansion (1.15a).

1.9. THEOREM ([91]). Assume that X is endowed with the metric ω =
√
−1

2π RL. The
functions b j are polynomials in the curvature of ω and its covariant derivatives (with
control over the number of differentiations required). Moreover b0 = 1 , b1 = 1

8π rX where
rX is the scalar curvature of (X ,ω).
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Assume now that the bundle L is not necessarily positive. Although it seems that the
asymptotic expansion (1.15a) of Bk does not exists in general, Berndtsson [25] and Berman
[21] determined the expansion up to order o(kn) and reproved in this way the Morse in-
equalities of Demailly.

Random and quantum chaotic sections, supersymmetric vacua. There is a growing
interest of physicists for the distribution of zeroes of eigenfunctions of quantum maps
[33, 77] and random polynomials or sections of positive line bundles are a good model
for them. In a series of papers Bleher, Shiffman and Zelditch [30, 32, 29, 31] studied
how the zeroes are disributed and correlated. In the simplest case let us consider sections
over X = Pn of powers Lk of the hyperplane line bundle L = O(1). As usual we identify
sections of Lk with homogeneous polynomials of degree k over Cn+1 and introduce an
SU(n+1)–invariant Gaussian probability measure on the space of such polynomials. It is
then proven in [109] that if a sequence {pk} is chosen independently and randomly from the
spaces of homogeneous polynomials of degree k and L2 norm one, the zero sets {pk = 0}
almost surely become uniformly distributed with respect to the Fubini–Study volume form.
The expansion of the Bergman kernel is again the main technical tool. These result have
interesting extensions in complex dynamics, see Dinh-Sibony [59].

In a very recent development Douglas, Shiffman and Zelditch [64, 65] studied the sta-
tistics of vacua in string/M theory. Vacua are critical points ∇s(z) = 0 of a holomorphic
section s of a line bundle L, where ∇ is the Chern connection. Physically, they model
extremal black holes in addition to vacua of string/M theory [46, 69].

Symplectic geometry. In an important work [60] (see also [112]), Donaldson found
a method of producing symplectic submanifolds of symplectic manifolds by extending to
the almost–complex case results linked to the existence of holomorphic sections of positive
line bundles. Let (X ,ω) be a compact Kähler manifold and assume that ω =

√
−1

2π RL, where
(L,hL) is a holomorphic line bundle. Then the Poincaré dual of the cohomology class k[ω]
is represented by a divisor for large k. The divisor is given as the zero set of a generic
holomorphic section of Lk.

Now, if (X ,ω) is a general symplectic manifold, the bundle Lk may have no holo-
morphic sections, so Donaldson proves the symplectic version of the above result by in-
troducing the notion of “asymptotically holomorphic sections” and eventually proves the
symplectic Lefschetz hyperplane section theorem. He constructs sections sk ∈ H0(X ,Lk)

such that |∂ sk| 6 1
k |∂ s| on {s = 0} and the method is reminiscent of the peak section con-

struction of Tian (although the L2 estimates for ∂ are not available).
The work of Donaldson, Auroux [18] and others to find symplectic analogues of the

objects in complex geometry motivated the introduction of a microlocal point of view by
Borthwick–Uribe [39] and Shiffman–Zelditch [110]. They define “almost holomorphic
sections” by a method of Boutet de Monvel–Guillemin [43]. Remember the identification
(1.16) of the holomorphic sections with equivariant functions on the Grauert tube which
are solutions of the system ∂ b f = 0. In the non–integrable case Boutet–Guillemin [43]
define an analogue of the ∂ b–operator, which is a first order pseudo–differential operator
Db on Y , with the same microlocal properties of ∂ b. The “almost holomorphic sections”
are obtained as sections of Lk corresponding to equivariant functions on Y annihilated
by Db. Although Db is not canonically defined, Shiffman–Zelditch show that they have
typically the same properties as the “asymptotically holomorphic sections” of Donaldson.
The proof is based on the near–diagonal asymptotic expansion of the Szegö kernel on the
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circle bundle Y , which generalizes Theorem 1.8. The asymptotic expansion implies also a
symplectic version of the Tian’s theorem of convergence of the Fubini–Study metrics and
a “nearly holomorphic” and “nearly isometric” embedding theorem [39], [110].

We will explain below a new geometric approach based on another substitute for holo-
morphic sections proposed by Guillemin–Uribe [76].

1.2. Contents and results

The previous examples illustrate how the spectrum of the Laplace operator on high
tensor powers of certain line bundles gives information about analytical and geometrical
properties of the manifold.

Our goal is to continue and complement this study. We shall consider

◦ singular varieties,
◦ manifolds satisfying complex convexity conditions,
◦ covering manifolds and
◦ symplectic manifolds.

As a warm up, we include in Chapter 2 Witten’s analytic proof of the usual Morse
inequalities. Witten’s approach is to deform the de Rham complex in a manner depending
on a Morse function, so that the low-energy eigenvectors of the corresponding Laplacians
(1.7), called Witten Laplacians, become concentrated near the critical points. The Witten
Laplacians written in Morse coordinates in the neighbourhood of critical points are given
essentially by harmonic oscillators. Comparing their spectra with the help of the minimax
principle finishes the proof.

The first rigorous account of the analytic proof of the Morse inequalities appeared in
the paper by Helffer-Sjöstrand [78], based on their results on Schrödinger operators and
in a paper by Bismut [26] where a proof by heat equation methods was presented (se also
[48]).

Chapter 3 is devoted to the proof of Demailly’s generalization of Weyl’s formula for
the asymptotic behaviour of the Kodaira–Laplacian 2

Lk
acting on high tensor powers of

a hermitian holomorphic line bundle (L,hL) on a complex manifold. Later, Bismut and
Bouche proved local Morse inequalities, in the sense of index theory. Namely, the global
Morse inequalities are derived by integrating the local ones. This is the approach we follow
here.

In Chapter 4 we prove the global holomorphic Morse inequalities. We start by proving
the Morse inequalities for the Dolbeault L2–cohomology spaces for a manifold satisfying
the fundamental estimate (Poincaré inequality) at infinity. It is straightforward to obtain
from here the holomorphic Morse inequalities of Demailly on compact manifolds. After
introducing the necessary apparatus of complex geometry (Siegel’s lemma, independence
of meromorphic functions and Moishezon spaces) we prove the Grauert-Riemenschneider
criterion.

Using the abstract formulation of the Morse inequalities we can find a lower bound
for the growth of holomorphic section space for uniformly positive line bundles (Theorem
4.30). From this we deduce the Ji–Shiffman–Bonavero criterion, by working on a Zariski
open set endowed with the generalized Poincaré metric. Using the same approach we can
obtain a sharper result in the case of isolated singularities, mamely a tale quale extension
of the Grauert-Riemenschneider criterion:
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1.10. THEOREM ([3]). Let X be a compact complex space of dimension n > 2 and with
isolated singularities. Suppose that we have one the following conditions.

(i) There exists a holomorphic hermitian line bundle L on Xreg which is semi-positive
in a deleted neighbourhood of Xsing and satisfies condition (1.10) on Xreg.

(ii) Assume that L is defined over all X, the hermitian metric may be singular at Xsing

but the cuvature current RL is dominated by the euclidian metric near Xsing and
moreover condition (1.10) is fulfilled on Xreg.

Then X is Moishezon.

The result is linked to the interesting question of extending to singular varieties the
harmonic theory and its consequences. For example, Brüning and Lesch [47] proved that
the L2-Kähler package holds on conformally conic Kähler manifolds and Pardon and Stern
[104] extended the Kodaira vanishing theorem to singular manifolds. In the case of com-
pact analytic surfaces in Rn D. Grieser [73] has given an L2 Gauss-Bonnet theorem for the
regular part, endowed with a riemannian metric induced from the ambient space. For an
account of a differential geometric approach to stratified spaces endowed with a smooth
structure we refer to the monograph of M. Pflaum [105].

We end the chapter with a study of a class of manifolds satisfying pseudoconvexity
conditions in the sense of Andreotti-Grauert, namely q-convex and weakly 1-complete
manifolds. Manifolds satisfying complex convexity conditions are very important in com-
plex geometry and analysis. The definition of pseudoconvexity or pseudoconcavity postu-
lates the existence of an exhaustion function whose complex hessian has certain positive
or negative eigenvalues so that, morally, the situation is similar to the usual Morse theory.
Technically, we use the representation of the Dolbeault cohomology by harmonic forms
satisfying ∂ –Neumann conditions and reduce to the problem studied before of the distri-
bution of small eigenvalues of the Bochner-Laplacian.

In Chapter 5 we deal also with Morse inequalities on coverings in the framework of
Atiyah. Here the usual dimension is replaced by the von Neumann dimension. Our main
technical device comes from Shubin’s generalization [111] of the usual Morse inequalities,
the so–called Novikov–Shubin inequalities. Actually, we generalize the Weyl type formula
of Demailly by describing the asymptotic behaviour of the spectrum of a Γ–invariant lapla-
cian associated to high powers of a Γ–invariant line bundle. As a consequence we have the
following.

1.11. THEOREM ([5]). Let (X ,ω) be an n–dimensional complete hermitian manifold
and let (L,hL) be a holomorphic hermitian line bundle. Let K b M and a constant C0 > 0
such that

√
−1RL > C0 ω on X r K. Let πΓ : X̃ → X be a Galois covering of Galois group

Γ, L̃ = π∗
Γ(L) and let U be any open subset with smooth boundary such that K b U b X.

Then, for k −→ ∞,

dimΓ Hn,0
(2)

(X̃ , L̃k) >
kn

n!

∫

U(61,hL)

(√
−1

2π RL
)n

+o(kn) , (1.17)

where Hn,0
(2)

(X̃ , L̃k) is the space of (n,0)–forms with values in L̃k which are L2 with respect

to any metric on X̃ and the metric π∗
Γ(hL) on L̃.

Our result pertains also to the work of Gromov, Henkin and Shubin [75] in which the
authors compute the von Neumann dimension of the space of L2 holomorphic functions
on coverings of strictly pseudoconvex domains. Their work was generalized for weakly
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pseudoconvex manifolds in [5] by using a variant for incomplete metrics of Theorem 1.11.
The case of the trivial covering was treated in [1, 120].

A nice application of theorem 1.11 are weak Lefschetz theorems à la Nori by extending
the method of Napier–Ramachandran.

1.12. THEOREM ([6]). Let (X ,ω) be an n–dimensional complete hermitian manifold
and let (L,hL) be a holomorphic hermitian line bundle such that

√
−1RL > Cω , C > 0,

outside a compact set. Let Y −→X be a holomorphic immersion with ample normal bundle
and assume that the image G of π1(Y ) in π1(X) is a normal subgroup. Then G has finite
index in π1(X).

As a consequence we derive weak Lefschetz theorems for Zariski open sets in Moishe-
zon manifolds (cf. Corollary 5.19).

Chapter 6 discusses the problem of compactifying complex manifolds. Satake [107],
Baily [19] and Baily–Borel [20] endowed the quotients of bounded symmetric domains
with a complex structure making them into Zariski–open sets of a projective algebraic
variety, called the Satake–Baily–Borel compactification. Their methods were algebraic.
We will be interested in the complex analytic and differential–geometric methods of com-
pactifying arithmetic quotients. Andreotti and Grauert [13] verified that certain arithmetic
quotients of the Siegel upper half plane are pseudoconcave and it was proved later that all
irreducible arithmetic quotients of dimension > 2 are pseudoconcave (Spilker [119], Borel
[37]). This is important since one hopes to apply a Kodaira type theorem for pseudocon-
cave manifolds (such as Andreotti–Tomassini theorem [14]) and embed them as open sets
of projective manifolds and prove eventually quasi–projectivity.

In the line of thought of Andreotti–Grauert we introduce a type of pseudoconcavity
which models arithmetic quotients of rank one and more generally spaces with isolated
singularities. A manifold X is called a hyperconcave end if there exists ϕ : X −→ R,
proper, smooth which is strictly plurisubharmonic on a set of the form {ϕ < a}, a ∈ R.
The following four results have been proved in [7].

1.13. THEOREM. Any hyperconcave end X can be compactified, i.e., there exist a com-
plex manifold X̂ such that X is (biholomorphic to) an open set in X̂ and X̂ r X ∪{ϕ 6 d}
is compact for any d < a. More specifically, if ϕ is strictly plurisubharmonic on the whole
X, X̂ can be chosen a Stein space with at worst isolated singularities.

One of the main points of the proof is to produce non-constant holomorphic on X via
the finiteness of the L2-cohomology in bidegree (0,1) with respect to a complete Kähler
metric satisfying the Donnelly-Fefferman condition. One application is the embedding of
sasakian manifolds in the euclidian space (cf. Theorem 6.37 and [8]). Theorem 1.13 was
independently used by Ornea-Verbitsky [103] to prove the embeddability into a sphere.

From the point of view of application it is desirable to find natural conditions for X to
be a Zariski open set in a compact manifold.

1.14. THEOREM. Let X be a hyperconcave end and let X̂ be a smooth completion of
X. Assume that X can be covered by Zariski-open sets which are uniformized by Stein
manifolds. Then X̂ r X is the union of a finite set D′ and an exceptional analytic set which
can be blown down to a finite set D. Each connected component of Xc, for sufficiently small
c, can be analytically compactified by one point from D′∪D. If X itself has a Stein cover,
D′ = ∅ and D consists of the singular set of the Remmert reduction of X̂ .
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As a consequence we have the following characterization which answers [94, Problem 1]
for the case q = 0.

1.15. THEOREM. Let X be a connected manifold of dimension n > 2. The following
conditions are necessary and sufficient for X to be a quasiprojective manifold which can
be compactified to a Moishezon space by adding finitely many points.

(i) X is hyper 1-concave.
(ii) X admits a positive line bundle E.

(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

Our motivation was to give a complex analytic proof of Siu–Yau’s theorem, which general-
izes the compactification of arithmetic quotients of rank one. The analysis of the Busemann
function shows that such manifolds are hyper 1–concave, so we can deduce the following
slightly sharper form from Theorem 1.15.

1.16. COROLLARY (Siu-Yau). Let X be a complete Kähler manifold of finite volume
and bounded negative sectional curvature. If dimX > 2, X is biholomorphic to a quasipro-
jective manifold which can be compactified by adding finitely many points to a Moishezon
space.

We present further a version “with boundary” of the Siu–Yau theorem.

1.17. THEOREM ([8]). Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that X is endowed with
a complete Kähler metric with pinched negative curvature.
(i) The following assertions are equivalent

(1) ∂X is embeddable in some CN

(2) X has finite volume away from a neighbourhood of ∂X

(ii) Assume that one of the equivalent assertions in (i) holds true. Then X can be compact-
ified to a strongly pseudoconvex domain in a projective variety by adding an exceptional
analytic set, that is, there exists a compact strongly pseudoconvex domain D in a smooth
projective variety and an embedding h : X −→ D which is a biholomorphism between IntX
and h(IntX), h(∂X) = ∂D, and Drh(X) is an exceptional analytic set which can be blown
down to a finite set of singular points.

The implication (1) ⇒ (2) uses the holomorphic Morse inequalities as in Theorem 1.5
and is contained in Theorem 1.6. For the reverse implication we show that with the ex-
ception of the end corresponding to the strongly pseudoconvex boundary, all the ends are
hyperconcave.

Nadel and Tsuji [96] generalized the compactification of arithmetic quotients of any
rank, by showing that certain pseudoconcave manifolds are quasiprojective. We will dis-
cuss the proof in Section 6.5. Let us note that in dimension two their condition coin-
cides with hyperconcavity. Theorem 1.15 yields, in dimension two, a stronger version of
their theorem together with a completely complex-analytic proof of the compactification
of arithmetic quotients, cf. Remark 6.48.

We consider then the problem of finding a Moishezon compactification for general q–
concave manifolds. Even the following innocent looking particular case is very interesting.
Consider a compact manifold Y and let X = Y r B the complement of a ball in some
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coordinate patch. Let L −→ Y be a line bundle which is positive on X . Is then X (and with
it Y ) Moishezon? What is the growth of dimH0(X ,Lk) as k → ∞?

The study of such questions was initiated in [2, 6] where some particular cases linked to
isolated singularities were settled. It was also conjectured that the Grauert–Riemenschneider–
Siu criterion holds in the case of 1–concave manifolds. We could verify the conjecture if,
roughly speaking, the volume of the manifold is more important than the volume of the
boundary. This follows from the following estimate.

1.18. THEOREM ([4]). Let D b X be a smooth domain in a complex manifold X such
that the Levi form of ∂D possesses at least 2 negative eigenvalues. Let (L,hL) be a holo-
morphic line bundle on X which is assumed to be positive on a neighbourhood of D. Then

liminf
k−→∞

k−n dimH0(D,O(Lk)) >
∫

D

(√
−1

2π RL
)n

−C(ϕ,L)

∫

∂D

dSL

|dϕ|L
(1.18)

The constant C(ϕ,L) depends explicitely on the curvature RL and on the Levi form
√
−1∂∂ ϕ .

The notations dSL and |dϕ|L mean the boundary volume form and the norm of dϕ
induced by the metric

√
−1RL.

The theorem was obtained first in collaboration with Prof. G. Henkin by using Siu’s
original method and the some result of Henkin-Leiterer on the solution of the ∂ -equation
near the boundary points using integral representations [79]. R. Berman [22] proved related
results by identifying more precisely the boundary integral. We apply Theorem 1.18 to the
deformation theory of concave manifolds. This is a very lively research area, see Epstein–
Henkin [66, 67, 68] and the references therein. As a consequence we obtain the following
stability result.

1.19. COROLLARY. Let X be a projective manifold with positive canonical bundle x0 ∈
X. There exists an r0 > 0 such that for any r < r0 and any sufficiently small perturbation
of the complex structure of X r B(x0,r), the new manifold compactifies to a Moishezon
manifold.

In Chapter 7 we take up the study of the Bergman kernel on symplectic manifolds.
The Bergman kernel for complex projective manifolds is the smooth kernel of the orthog-
onal projection from the space of smooth sections of a positive line bundle L on the space
of holomorphic sections of L, or, equivalently, on the kernel of the Kodaira-Laplacian

2
L = ∂ L∂ L∗

+ ∂ L∗∂ L
on L. It is studied in Tian [121], Ruan [106], Zelditch [125], Catlin

[49], Bleher-Shiffman-Zelditch [30], Z. Lu [91] in various generalities, establishing the
asymptotic expansion for high powers of L. Moreover, the coefficients in the asymptotic
expansion encode geometric information about the underlying complex projective mani-
folds.

Since on a symplectic manifold there are in general no holomorphic sections, we have
to look for a replacement of the ∂ operator. One option is the spinc Dirac operator. In
[50], Dai, Liu and Ma studied the asymptotic expansion of the Bergman kernel of the spinc

Dirac operator associated to a positive line bundle on a compact symplectic manifold was
studied, in relation to that of the corresponding heat kernel. As a by product, a new proof of
the above results is obtained. The approach is inspired by Local Index Theory, especially
by Bismut-Lebeau [28, §11].

We wish to propose another natural generalization of the operator 2
L in symplectic

geometry, which was initiated by Guillemin and Uribe [76]. In this very interesting short
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paper, they introduce a renormalized Bochner–Laplacian (cf. (1.19)) which is exactly 22
L

in the Kähler case. The asymptotic of the spectrum of the renormalized Bochner–Laplacian
on Lk when k → ∞ is studied in various generalities in [38, 45, 76] by applying the analysis
of Toeplitz structures of Boutet de Monvel–Guillemin [43], and in [9] as a direct application
of Lichnerowicz formula.

Of course, there exists also a replacement of the ∂ –operator and of the notion of holo-
morphic section based on a construction of Boutet de Monvel–Guillemin [43] of a first
order pseudodifferential operator Db which mimic the ∂ b operator on the circle bundle as-
sociated to L. However, Db is neither canonically defined nor unique. This point of view
was adopted in a series of papers [39, 110, 32]. Bleher, Shiffman and Zelditch used it in
order to study the probabilistic behaviour of sequences of ‘almost–holomorphic’ sections
of Lk.

Here we will study the asymptotic expansion of the generalized Bergman kernel of
the renormalized Bochner-Laplacian, namely the smooth kernel of the projection on its
bound states as k → ∞. The advantage of this approach is that the renormalized Bochner-
Laplacian has geometric meaning and is canonically defined. Moreover, it does not require
the passage to the associated circle bundle as we can work directly on the base manifold.
Let’s explain our results in detail.

Let (X ,ω) be a compact symplectic manifold of real dimension 2n. Assume that there
exists a Hermitian line bundle L over X endowed with a Hermitian connection ∇L with
the property that

√
−1

2π RL = ω , where RL = (∇L)2 is the curvature of (L,∇L). Let (E,hE)

be a Hermitian vector bundle on X with Hermitian connection ∇E and curvature RE . In-
troduce a Riemannian metric gTX on X with Levi-Civita connection ∇TX , curvature RTX

and scalar curvature rX . If dvX denotes the Riemannian volume form of (T X ,gTX), the
scalar product on C ∞(X ,Lk ⊗ E), the space of smooth sections of Lk ⊗ E, is given by
(s1,s2) =

∫
X〈s1(x),s2(x)〉Lp⊗E dvX(x) .

We introduce now the Bochner-Laplacian, defined by ∆Lk⊗E = (∇Lk⊗E)∗∇Lk⊗E , where
∇Lk⊗E is the induced connection from ∇L and ∇E . Let J : T X −→ T X be the skew–adjoint
linear map which satisfies the relation ω(u,v) = gTX(Ju,v), for u,v ∈ T X . There exists an
almost complex structure J which is (separately) compatible with gTX and ω , especially,
ω(·,J·) defines a metric on T X . Moreover J commutes also with J. We fix a smooth
hermitian section Φ of End(E) on X Set τ(x) = −π Tr|TX [JJ], and let

∆k,Φ = ∆Lk⊗E − kτ +Φ (1.19)

be the renormalized Bochner-Laplace operator. In Corollary 7.2 we will prove:

1.20. THEOREM ([9, Cor. 1.2]). There exist µ0, CL > 0 independent of p such that the
spectrum of ∆k,Φ satisfies Spec ∆k,Φ ⊂ [−CL,CL]∪ [2pµ0 −CL,+∞[ . For k large enough,
the number dk of eigenvalues on the interval [−CL,CL] satisfies dk = 〈ch(Lk⊗E)Td(T X), [X ]〉.
In particular dk ∼ kn(rankE)volω(X).

This means that ∆k,Φ has dk bound states whose energies are bounded uniformly inde-
pendent of k and the rest of the spectrum drifts to the right at linear rate, as k → ∞. There-
fore, we can use the space Hk as a replacement of the space of holomorphic functions for
the symplectic manifolds. Let P0,k be the orthogonal projection from (C ∞(X ,Lk ⊗E),( , ))
onto the eigenspace of ∆k,Φ with the eigenvalues in [−CL,CL]. We define Pq,k(x,x′), q > 0
as the smooth kernels of the operators Pq,k = (∆k,Φ)qP0,k (we set (∆k,Φ)0 = 1) with respect
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to dvX(x′). They are called the generalized Bergman kernels of the renormalized Bochner-
Laplacian ∆k,Φ. We denote by Bq,k(x) = Pq,k(x,x). Let detJ be the determinant function of
Jx ∈ End(TxX).

1.21. THEOREM ([10, 11]). There exist smooth coefficients bq,r(x) ∈ End(E)x which
are polynomials in RTX , RE (and RL, Φ) and their derivatives of order 6 2(r + q)− 1
(resp. 2(r +q)) at x, and

b0,0 = (detJ)1/2 IdE , (1.20)

such that for any p, l ∈ N, there exists Cp, l > 0 such that for any x ∈ X, k ∈ N,
∣∣∣ 1
kn Bq,k(x)−

p

∑
r=0

bq,r(x)k
−r
∣∣∣
C l

6 Cp, l k−p−1. (1.21)

Moreover, the expansion is uniform in the following sense: for any fixed k, l ∈ N, assume
that the derivatives of gTX , hL, ∇L, hE , ∇E , J and Φ with order 6 2n + 2k + 2q + l + 2
run over a set bounded in the C l– norm taken with respect to the parameter x ∈ X and,
moreover, gTX runs over a set bounded below. Then the constant Ck, l is independent of
gTX ; and the C l-norm in (1.21) includes also the derivatives on the parameters.

By derivatives with respect to the parameters we mean directional derivatives in the spaces
of all appropriate gTX , hL, ∇L, hE , ∇E , J and Φ (on which Bq,p and bq,r implicitly depend).

We calculate further the coefficients b0,1 and bq,0 , q > 1 as follows1.

1.22. THEOREM. If J = J, then for q > 1,

b0,1 =
1

8π

[
rX +

1
4
|∇XJ|2 +2

√
−1RE(e j,Je j)

]
, (1.22)

bq,0 =
( 1

24
|∇X J|2 +

√
−1
2

RE(e j,Je j)+Φ
)q

. (1.23)

The formulas are compatible with the Atiyah-Singer formula. Theorem 1.21 for q = 0
and (1.22) generalize the results of [49, 125, 91] and [123] to the symplectic case.

The term rX + 1
4 |∇X J|2 in (1.22) is called the Hermitian scalar curvature in the literature

[71, Chap. 10] and is a natural substitute for the Riemannian scalar curvature in the almost-
Kähler case. It was used by Donaldson [62] to define the moment map on the space of
compatible almost-complex structures.

We can view (1.23) as an extension and refinement of the results of [40], [76, §5] about
the density of states function of ∆k,Φ.

We apply the previous theorems to obtain a symplectic version of the convergence of
the induced Fubini-Study metric, cf. Theorem 7.28. This generalizes the Theorems of Tian
[121] and Bouche [41] and also gives a symplectic version of the Kodaira embedding the-
orem. Our method extends also to non-compact manifolds in Section 7.3.5. For example,
by integrating the expansion of the Bergman kernel we can also derive Morse inequalities
and reprove some of the results obtained in the previous chapters. We see therefore that
the analysis of the Bergman metric yields a unified treatment of the convergence of the
induced Fubini–Study metric, the holomorphic Morse inequalities and the characterization
of Moishezon spaces.

1Here |∇X J|2 = ∑i j |(∇X
ei

J)e j|2 which is two times the corresponding |∇X J|2 from [10].
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43–72.

[17] M. F. Atiyah and I. M. Singer, Index of elliptic operators. III, Ann. of Math. 87 (1968), 546–604.
[18] D. Auroux, Asymptotically holomorphic families of symplectic submanifolds, Geom. Funct. Anal. 7

(1997), no. 6, 971–995.
[19] W. L. Baily, On Satake’s compactification of Vn, Amer. J. Math. 80 (1958), 348–364.
[20] W. L. Baily and A. Borel, Compactification of arithmetic quotients of bunded symmetric domains,

Ann. of Math. 84 (1966), 442–528.
[21] R. Berman, Bergman kernels and local holomorphic Morse inequalities, Preprint available at

arXiv:math.CV/0211235, 2002.
[22] , Holomorphic Morse inequalities on manifolds with boundary, Preprint available at

arXiv:math.CV/0402104, 2004.
[23] B. Berndtsson, A simple proof of an L2-estimate for ∂ on complete Kähler manifolds, Preprint, 1992.
[24] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman,

Ann. Inst. Fourier 14 (1996), 1087–1099.
[25] , An eigenvalue estimate for the ∂ -Laplacian, J. Differential Geom. 60 (2002), no. 2, 295–313.
[26] J.-M. Bismut, The Witten complex and degenerate Morse inequalities, J. Diff. Geom. 23 (1986), 207–

240.
[27] , Demailly’s asymptotic inequalities: a heat equation proof, J. Funct. Anal. 72 (1987), 263–

278.
[28] J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ.

Math. (1991), no. 74, ii+298 pp. (1992).
[29] P. Bleher, B. Shiffman, and S. Zelditch, Poincaré-Lelong approach to universality and scaling of

correlations between zeros, Comm. Math. Phys. 208 (2000), no. 3, 771–785.
[30] , Universality and scaling of correlations between zeros on complex manifolds, Invent. Math.

142 (2000), no. 2, 351–395.
[31] , Correlations between zeros and supersymmetry, Comm. Math. Phys. 224 (2001), no. 1, 255–

269, Dedicated to Joel L. Lebowitz.
[32] , Universality and scaling of zeros on symplectic manifolds, Random matrix models and their

applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, 2001, pp. 31–69.
[33] E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random polynomials, J.

Statist. Phys. 85 (1996), no. 5-6, 639–679.
[34] E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267–287.
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CHAPTER 2

Witten’s proof of the Morse Inequalities

In this chapter we present, as a warm up, a short analytic proof of the Morse inequali-
ties, following Witten [14]. The ideas emerging here are ubiquitvous in our paper. Morse
theory was developped by Martson Morse in the 30’s and received a new impetus in topol-
ogy in the 50’s through the work of Bott, Milnor and Smale. The standard references for
classical Morse theory are the books of Milnor [10, 11]. Witten introduced a new approach
to Morse theory in 1982 (for a beautiful historical account, see [3]). The new approach
consists in viewing the manifold together with a Morse function as a phisycal system of
harmonic oscillators attached to the critical points. Along the way, Witten interprets from
this point of wiew the Thom–Smale complex [9], a developement which inspired the intro-
duction of the Floer homology [6]. The first rigorous account of Witten’s ideas appeared in
Helffer–Sjöstrand [8] where the authors make use of the theory of Schrödinger operators
(see also [5]). Later, Bismut [1] gave a heat equation proof. Bismut and Zhang used the
Witten deformation to give a proof of the equality of Redemeister and Ray–Singer torsions.
In his book [15], Zhang presents a short proof based on [2]. Our proof differs from his in
the use of the min-max principle in Section 2.2.2.

2.1. Witten deformation

2.1.1. Morse functions. Let X be an n–dimensional compact manifold. Let f ∈C ∞(X)
be a smooth function on X . A point p ∈ X is called a critical point of f if d f (p) = 0. The
set of critical points of f is denoted by Crit( f ). At a critical point p we can define sym-
metric bilinear form

d2 f (p) : TpX ×TpX −→ TpX

called the Hessian of f at p. Indeed, let v,w ∈ TpX and set ṽ, w̃ arbitrary smooth extensions
of v,w to smooth vector fields on X . Since

ṽ(w̃ f )(p)− w̃(ṽ f )(p) = d f ([ṽ, w̃])(p) = 0

it follows v(w̃ f )(p) = ṽ(w̃ f )(p) = w̃(ṽ f )(p) = w(ṽ f )(p). The map

d2 f (p)(v,w) := v(w̃ f )(p) = w(ṽ f )(p)

depends only on v,w and it is obviously bilinear symmetric. In local coordinates (x1, . . . ,xn),

d2 f (p) is represented by the matrix
(

∂ 2 f
∂x j∂xk (p)

)
.

A critical point is called nondegenerate if the Hessian d2 f (p) is non–singular, that is,
the nullity vanishes. This condition means that, as submanifolds of T X , X (the zero cross–
section) and d f (X) are transversal at p. From here follows that p is isolated in the set
Crit( f ) = X ∩d f (X).

The function f ∈ C ∞(X) is called a Morse function if all its critical points are nonde-
generate. For a Morse function the set Crit( f ) is therefore discrete, and since X is compact,
Crit( f ) is finite. It is well known that the Morse functions on X are dense in the space of
all smooth functions on X .
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From now on we fix a Morse function f on X . The index of the bilinear form d2 f (p),
p ∈ Crit(p), is called the index of f at x, denoted ind f (x). We denote Crit( f ; l) the set of
critical points with index l. The following lemma describes the local behavior of a Morse
function near a critical point. For a proof we refer to [10, p. 6].

2.1. MORSE LEMMA. For any critical point p of a Morse function f exists a coordinate
system (Up,x1, . . . ,xn) such that

f (x1, . . . ,xn) = f (p)− 1
2
(x1)2 − . . .− 1

2
(xl)2 +

1
2
(xl+1)2 + . . .+

1
2
(xn)2

where l is the index of p.

Since we have a finite number of critical points we may assume that Up, p ∈ Crit( f ),
are pairwise disjoint. Let ml be the cardinal of Crit( f ; l).

2.1.2. Betti numbers and Morse Inequalities. The Betti numbers of X are defined
by bl = dimH l

sing(X ,R), the dimension of the l–th singular cohomology of X . The Betti
numbers can be calculated with the help of the de Rham complex

(
Ω•

(X),d
)
:

0 −→ Ω0(X)
d−−−→ Ω1(X)

d−−−→ ·· · d−−−→ Ωn(X) −→ 0

The cohomology of this complex is called the de Rham cohomology of X , denoted H
•
dR(X ,R).

By the de Rham theorem [13] there exist a canonical isomorphism H
•
sing(X ,R)∼= H

•
dR(X ,R).

Moreover, by a Mayer–Vietoris argument [4] , the de Rham cohomology is finite dimen-
sional. Thus bl = dimH l

dR(X ,R) is finite for l = 0,1, . . . ,n.
Our purpose is to give an analytic proof of the following result known as the Morse

inequalities.

2.2. THEOREM. Let X be a compact differentiable manifold and let f : X −→ R be a
Morse function. Then the following relations hold for all l = 0,1, . . . ,n:

(i) Weak Morse inequalities: bl 6 ml ,
(ii) Strong Morse inequalities:

l

∑
j=0

(−1)l− jb j 6
l

∑
j=0

(−1)l− jm j,

with equality for l = n, that is,
(iii) χ(X) = ∑n

j=0 (−1) jm j.

We refer to [10] for a topological proof of this result.

2.1.3. Witten’s complex. Given the Morse function f , Witten deformed the exterior
derivative by conjugating with et f , t > 0:

dt = e−t f d et f (2.1)

Since d2 = 0, d2
t = 0 and we obtain the deformed de Rahm complex

(
Ω•

(X), dt
)

0 −→ Ω0(X)
dt−−−→ Ω1(X)

dt−−−→ ·· · dt−−−→ Ωn(X) −→ 0 (2.2)

Set H
•
t,dR(X ,R) for the cohomology of this complex. It is immediate that all the deformed

complexes are isomorphic and hence have the same cohomology.

2.3. THEOREM. The multiplication with e−t f :
(
Ω•

(X), d
)
−→

(
Ω•

(X), dt
)

induces an
isomorphism in cohomology H

•
dR(X) ∼= H

•
t,dR(X). The inverse isomorphism is induced by

et f :
(
Ω•

(X), dt
)
−→

(
Ω•

(X), d
)
.
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2.1.4. Some operators in riemannian geometry. Let gTX be a riemannian metric on
T X . Later we shall make a particular choice of gTX , but for the moment we keep gTX

arbitrary.
gTX induces riemannian metrics on T ∗X and Λ•

T ∗X in a canonical way. The scalar
product of two forms α,β ∈ Λ•

TxX is denoted 〈α,β 〉. In order to define a global scalar
product we introduce the canonical measure vX : C0(X)−→R so that for a chart (U,x1, . . . ,xn)

∫
ϕ dvX =

∫

Rn
ϕ(x1, . . . ,xn)

√
det(gi j)dx1 . . .dxn

for all ϕ ∈ C ∞(X), suppϕ ⊂U . If X is orientable, vX is induced by the volume form of the
metric. We have then a global scalar product

(α,β ) =

∫

X
〈α,β 〉dvX , α,β ∈ Ω•

(X). (2.3)

Let us now introduce some useful operators in riemannian geometry.
The metric gTX induces bundle isomorphism [ : T X −→ T ∗X (flat) and its inverse ] :

T ∗X −→ T X (sharp). Given a covector ξ ∈ T ∗
x X we associate the exterior product with

ξ , ξ∧ : Λ•
T ∗

x X −→ Λ•
T ∗

x X . Given a vector e ∈ TxX we associate the interior product with
e, ie : Λ•

T ∗
x X −→ Λ•

T ∗
x X . The adjoint of ξ∧ with respect to the induced scalar product on

Λ•
TxX is given by iξ ] , that is, (ξ∧)∗ = iξ ] , or explicitely

〈ξ ∧α,β 〉 = 〈α, iξ ](β )〉, α ∈ ΛlT ∗
x X , β ∈ Λl+1T ∗

x X .

We denote by ∇Λ•
T ∗X the Levi–Civita connection on X and the induced connection on

Λ•
T ∗X . Let (e1, . . . ,en) be a local frame of T X and (e1, . . . ,en) the dual frame. The

exterior differential may be expressed as

d =
n

∑
j=1

e j ∧∇Λ•
T ∗X

e j
(2.4)

The formal adjoint of d is a differential operator of degree −1 which satisfies

(dα,β ) = (α,δβ ), α ∈ Ωl(X), β ∈ Ωl+1(X). (2.5)

It is given explicitely by

δ = −
n

∑
j=1

(e j∧)∗∇Λ•
T ∗X

e j
= −

n

∑
j=1

i(e j)]∇
Λ•

T ∗X
e j

. (2.6)

Assume for a moment that the frame (e1, . . . ,en) is orthonormal. Then (e j)] = e j and we
have the formula δ = −∑n

j=1 ie j∇e j . Witten notes that the operators a j = ie j and a j∗ = e j

are called in the physics literature ‘fermion annihilation and creation operators’.
The Laplace–Beltrami operator is a second-order, degree 0 differential operator

∆ : Ω•
(X)−→ Ω•

(X), ∆ = dδ +δd . (2.7)

2.1.5. Witten’s laplacian. We now define the Witten Laplacian. It is easily seen that
the formal adjoint of dt satisfies δt := d∗

t = et f δe−t f . The Witten Laplace operator is then

∆t := dtδt +δtdt . (2.8)

Since for α,β ∈ Ωl(X), (∆tα,β ) = (dtα,dtβ )+ (δtα,δtβ ) we see that (∆tα,β ) =
(α,∆tβ ), i. e. ∆t is symmetric. Moreover, (∆tα,α) > 0, α ∈Ωl(X), that is, ∆t is positive.

2.4. PROPOSITION. ∆t is an elliptic operator. Actually, it has the same symbol as ∆.
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PROOF. It is clear that

dt = d + t d f∧, (2.9)

so dt is the sum of d and a 0-order differential operator. Thus dt and d have the same
symbol. For a function ϕ ∈ C ∞(X), we define the gradient by gradϕ := (dϕ)].

It is then easily checked, that

δ (ϕα) = ϕδα − igradϕ(α), α ∈ Ω•
(X), ϕ ∈ C

∞(X). (2.10)

This yields

δt = δ + t igrad f , (2.11)

so δt is the sum of δ and a 0-order differential operator and δt has the same symbol as δ .
By the formal calculation rules of symbols, ∆t has the same symbol as ∆ and is elliptic. �

2.1.6. Hodge Theory for the deformed complex. We can apply now the standard
elliptic theory to ∆t . For a vector bundle E −→ X , endowed with a riemannian metric, we
can introduce a global scalar product as in (2.3). Let LLL2(X ,E) be the completion of the
space of smooth sections Ω(X ,E) under this scalar product. In the case of E = Λl T ∗X we
denote LLL2(X ,Λl T ∗X) by LLLl

2(X). Since ∆t is elliptic, by Theorems A.8 and A.33, it is an
essentialy selfadjoint operator with compact resolvent, which we still denote by ∆t . The
spectrum of the selfadjoint extension consists of a sequence 0 6 λ0(t)6 λ1(t)6 . . .−→+∞
of eigenvalues of finite multiplicity. The eigenspace ker(∆t − µ Id) has smooth elements
and we denote by E l(λ ,∆t) = ⊕µ6λ ker(∆t −µ Id) the sum of eigenspaces corresponding
to the eigenvalues less or equal to λ . We have

Nl(λ ,∆t) := dimE
l

t (λ ,∆t) = #{ j : λ j 6 λ},

the number of eigenvalues less or equal than λ . N l(λ ,∆t) is called the spectral counting
function.

We introduce a subcomplex of the Witten deformed complex. First observe that dt∆t =
dtδtdt = ∆tdt so

dt ker(∆t −µ Id) ⊂ ker(∆t −µ Id) (2.12)

Let E(λ ,∆t) : LLL
•
2(X)−→ E

•
(λ ,∆t) be the orthogonal projections. By (2.12),

dtE
l(λ ,∆t) ⊂ E

l+1(λ ,∆t)

Pt(λ )dt = dtPt(λ )

2.5. PROPOSITION.
(
E

•
(λ ,∆t),dt

)
is a subcomplex of

(
E

•
,dt
)

having the same coho-
mology.

PROOF. By the definition (A.45) of the Green operator Gt of ∆t , and by (A.46)

Id−Pt(λ ) =
(
∆tG+Pt(0)

)(
Id−Pt(λ )

)
= dt

[
δtG
(

Id−Pt(λ )
)]

+
[
δtGt

(
Id−Pt(λ )

)]
dt

so δtGt
(

Id−Pt(λ )
)

is a homotopy operator between Id and Pt(λ ). �

By Theorem 2.3 we get

H
•(

E
•
(λ ,∆t),dt

)∼= H
•
dR,t(X) ∼= H

•
dR(X)



2.1. WITTEN DEFORMATION 27

2.1.7. A Bochner–type formula for ∆t . We deduce a formula for ∆t which shows the
role of the Morse function. ∆t can be written as a Schrödinger operator with potential
t2|d f |2, which outside Crit( f ) is very large, for big t. This will permit to localize the
problem to a neighbourhood of Crit( f ). By formulas (2.9), (2.11) we get for α ∈ E (X),

∆tα = (dtδt +dtδt)α = ∆α + t2(d f ∧ id f α + id f (d f ∧α)
)

+ t
(
d(id f α)+d f ∧δα +δ (d f ∧α)+ id f (dα)

)

The coefficient of t2 is easily calculated by the well known formula

ξ ∧ iξ α + iξ (ξ ∧α) = |ξ |2α, α ∈ Λ
•
T ∗X .

To calculate the coefficient of t, we denote

A(α) = d(id f α)+d f ∧δα +δ (d f ∧α)+ id f (dα), α ∈ Λ
•
T ∗X .

Upon using (2.10) and the fact that d and iξ are derivations on E
•
(X), we see that A(ϕα) =

ϕA(α), for α ∈ E
•
(X), ϕ ∈ C ∞(X). Thus A is defined by a bundle map, denoted still

A : Λ•
T ∗X −→ Λ•

T ∗X . To compute A it is sufficient to calculate A(dx1 ∧ . . .∧dxp) where
(x1, . . . ,xn) is an arbitrary coordinate system.

We fix a point x0 ∈ X and consider normal geodesic coordinates around x0. Then

gi j(x0) = δi j, dgi j(x0) = 0,

Γl
jk(x0) = 0, (2.13)

∇ ∂
∂x j

(dx1 ∧ . . .∧dxp)(x0) = 0, (2.14)

δ (dx1 ∧ . . .∧dxp)(x0) = 0 (2.15)

(see (2.6) and (2.14)). We get then

A(dx1 ∧ . . .∧dxp) = ∑
k,l

∂ 2 f

∂xl∂xk (dxl ∧ idxl − idxkdxp∧)(dx1 ∧ . . .∧dxp)+

+∑
k

∂ f

∂xk d
(
idxk(dx1 ∧ . . .∧dxp)

)
+∑

k

∂ f

∂xk δ (dxk ∧ . . .∧ xp).

At x0, the second term vanishes since x0 is a critical point and the third term vanish by
(2.15). Moreover, the components of the Hessian form Hess f = ∇T ∗Xd f ∈ E (T ∗X ⊗T ∗X)
satisfy

Hess f (
∂

∂x j ,
∂

∂xk
) : =

∂ 2 f
∂x j∂xk −

∂ f
∂xl Γl

jk , by definition

=
∂ 2 f

∂x j∂xk , by (2.13).

We infer

A = ∑
k,l

Hess f (
∂

∂xk ,
∂

∂xl )[dxl∧, idxk ] at x0.
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Since this formula is coordinate–invariant, it holds in all coordinate systems. All in all,
we have proved the following Bochner formula:

∆t = ∆+ t2|d f |2 + t ∑
l,k

Hess f (
∂

∂xl ,
∂

∂xk )[dxl∧, idxk ] (2.16)

The formula shows that ∆t a Schrödinger operator whose dominant part of the potential is
t2|d f |2. When t →+∞ the potential is huge on the set {d f 6= 0}. This is why the L2–norm
of the eigenforms will concentrate asymptotically in a neighbourhood of Crit( f ).

We study in the sequel what happens to ∆t in the neighbourhood of Crit( f ).

2.1.8. The model operator. Let p ∈ Crit ( f ;r) i.e. of index r. Let (Up,x1 . . .xn) be a
neighbourhood of p as in section 2.2. Therefore |d f |2 = |x|2 on Up. If α ∈C ∞

0 (Up), |J|= q
(2.16) delivers

∆t(αdxJ) =
n

∑
i=1

[
−
( ∂

∂x j

)2α + t|x j|2α
]
(dxJ)+α

n

∑
j=1

ε j
[
dx j∧, idx j

]
(dxJ)

where ε j = −1 for j 6 r, ε j = +1 for j > r +1. We consider then the following model
operator on LLL

•
2(R

n):

∆′
t,r =

n

∑
j=1

H j +
n

∑
j=1

ε jK j

where H j = −
( ∂

∂x j

)2
+ t2|x j|2 acts componentwise, and K j =

[
dx j∧, idx j

]
is a bundle mor-

phism Λ•
T ∗Rn −→ Λ•

T ∗Rn.
We want to compute the spectrum of ∆′

t,l. By [12, Vol. 1,p. 142], [7, p. 12] we know that

the spectrum of the harmonic oscillator −
( ∂

∂y

)2
+ y2 on LLL2(R) consist of the eigenvalues

with multiplicity one {2N +1 : N = 0,1,2, . . .} with corresponding eigenfunctions

ΦN(y) = (2N ·N!)−1/2(−1)Nπ−1/4ey2/2( ∂
∂y

)N
e−y2

. (2.17)

We infer that the spectrum of −
( ∂

∂xk

)2
+ t|xk|2 on LLLq

2(R
n) consists of the eigenvalues

{t(2N + 1) : N = 0,1,2, . . .} with multiplicity
(n

q

)
. The corresponding eigenforms are

ΦN(
√

ty)dyJ, |J| = q.
On the other hand K j(dxJ) = εJ

j dxJ , where εJ
j = 1 if j ∈ J, εJ

j =−1 if j /∈ J. Since the
operators Hk an H j commute, we find that LLLq

2(R
n) has the following ONB of eigenforms of

∆′
t,r: {

ΦN1(
√

tx1) · . . . ·ΦNn(
√

txn)dxJ : N1, . . . ,Nn ∈ N∪{0}, |J| = q
}

.

The corresponding eigenvalues are
{

t
n

∑
j=1

(2N j +1+ ε jεJ
j ) : N1, . . . ,Nn ∈ N∪{0}, |J| = q

}
(2.18)

2.6. THEOREM. The spectrum of ∆′
t,r on LLLq

2(R
n) is (2.18). Moreover

Ker
(
∆′

t,r|Lq
2(R

n)

)
=

{
0 , if r 6= q

Re−
t|x|2

2 dx1 ∧ . . .∧dxl , r = q
(2.19)

All other eigenvalues are O(t), t −→ ∞.
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PROOF. An eigenvalue t ∑N
j=1(2N j + 1 + ε jεJ

j ) vanishes if and only if all parenthesis
vanish (since they are all positive). This is the case if and only if N j = 0 for ε jεJ

j = −1 and
all j = 1, . . . ,n. This means precisely J = {1, . . . , l}, after the definitions of ε j and εJ

j . The
corresponding eigenvalue is

Φ0(
√

tx1) · · ·Φ0(
√

txn)dx1 ∧ . . .∧dxl = e−
t|x|2

2 dx1 ∧ . . .∧ xl.

�

2.2. Proof of the Morse Inequalities

2.2.1. Start of the proof. We need the following easy result of linear algebra.

2.7. LEMMA. Let

0 −→V 0 d0

−−−→ V 1 d1

−−−→ ·· · −→V n −→ 0

be a complex of finite–dimensional vector spaces, with dimV l = ml, dimH l(V
•
) = bl . Then

we have the following inequalities for 0 6 l 6 n

(i) Weak Morse inequalities: bl 6 ml ,
(ii) Strong Morse inequalities:

l

∑
j=0

(−1)l− jb j 6
l

∑
j=0

(−1)l− jm j

(iii) Equality of the Euler–Poincaré characteristics:
n

∑
j=0

(−1) jb j =
n

∑
j=0

(−1) jm j.

PROOF. Set zl = dimKerdl, rl = dimImdl−1. Then ml = zl + rl and bl = zl − rl−1.
Thus

l

∑
j=0

(−1)l− jm j = rl +
l

∑
j=0

(−1)q− jb j .

Since r−1 = rn = 0 and r j > 0 for all j we obtain the inequalities. �

The Morse inequalities are a consequence of the following result of Witten, to be
proven in the section 2.2.2.

We fix from now on a metric gTX such that we have gTX = d(x1)2 + . . .+d(xn)2, in the
neighbourhood Up with coordinates (x1, . . . ,xn) given by the Morse Lemma. Let p run in
Crit( f ) and let Up be a neighbourhood of p as in 2.1.1.

2.8. THEOREM. For λ > 0 sufficiently large there exists t(λ ) such that for all t > t(λ ),

Nl(λ ,∆t) = ml.

PROOF OF THE MORSE INEQUALITIES. By applying the algebraic Lemma to the com-
plex

(
E

•
(λ ,∆t),dt

)
together with Theorem 2.8 we get Theorem 2.2. �

2.9. REMARK. The teorem (2.8) holds true without the hypothesis on the form of the
form of the metric and of the function. In the non–euclidian case the estimate of the
quadratic forms Qt in 2.10 involves supplementary terms which are however O(t) for t −→
∞. The theorem in the present form suffices for the proof of the Morse inequalities.
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2.2.2. The spectral gap of ∆t . One of the key remarks of Witten [14, p. 666] is that
the eigenforms of the modified laplacian ∆t concentrate near the critical points of f as
t −→ ∞. We shall use in the proof of Theorem 2.10 below, especially in §2.2.4.

In this section we prove Theorem 2.8. For this purpose we study the spectrum of ∆t

comparing it with the spectrum of ∆′
t by means of the min–max principle. The result is as

follows:

2.10. THEOREM. There exist constants C1,C2 > 0 such that

Spec(∆t) ⊂
[
0,e−C1t]∪

[
C2t,+∞), t � 1.

∆t |Ll
2(X) has exactly ml eigenvalues (counted with multiplicity) in [0,e−C1t ], that is, N l(e−C1t ,∆t) =

ml.

It is obvious that Theorem 2.10 implies theorem 2.8. We prove Theorem 2.10 in two
steps.

Step 1: We show that there at least ml eigenvalues in [0,e−C1t ].
Step 2: We show that the (ml + 1)–th eigenvalue is an O(t), t → ∞. The proof shows

that Spec (∆t |Ll
2
) approaches for large t the spectrum of the sum over all critical points of

index l of model operators ∆′
t,l.

Each critical point contributes with one ground state, in total ml , the other states corre-
spond to eigenvalues wich are O(t), t → ∞.

2.2.3. Proof of Step 1. Let η ∈ C ∞
0 (R), suppη = [−2,2], η = 1 on [−1,1]. Set

ηε(t) = η(εt), for ε > 0. We fix l ∈ {0,1, . . . ,n}. For the points of Crit( f ; l) we con-
sider pairwise disjoint coordinate neighbourhoods (Up,x1, . . . ,xn), p ∈ Crit( f ; l), on which
the metric gTX is euclidian and f is a quadratic form (see section 2.2). We fix ε > 0
sufficiently small and we consider ψp,ε : Up −→ R, ψp,ε(x) = ηε(x1) · . . . ·ηε(xn) where
(x1, . . . ,xn) are the coordinates of Up.

Then suppψp,ε = {x ∈Up : |xi| 6 2ε, i = 1, . . . ,n}. We set

ωp,t =





1√
an

t
e−t|x|2ψp,ε(x)dx1 ∧ . . .∧dxl on Up

0 on X r suppψp,ε

where at =
∫
R e−ty2η2

ε (y)dy.
The forms ωp,t are obtained by transplanting to X the ground states (2.19) of ∆′

t,l|Ll
2(R

n),

by identifying Up to an open set in Rn. By definition ‖ωp,t‖= 1. Since suppωp,t ⊂Up, the
forms ωp,t are linearly independent when p runs in Crit( f ; l) . We set

F l
t = ⊕{Rωp,t : p ∈ Crit( f ; l)}.

2.11. LEMMA. There exists C1 > 0 such that for large t,

(∆tωp,t ,ωp,t) 6 e−C1t , p ∈ Crit( f ; l).

PROOF. We compute

(∆tωp,t ,ωp,t) = (∆′
tωp,t ,ωp,t) =

n
at

∫

R
[−η ′′

ε (y)ηε(y)+2tyη ′
ε(y)ηε(y)]e

−ty2
dy

Since the support of the function in brackets is [ε,2ε] we can estimate the integral by
Ce−tε2

. Moreover at > 1
2(π

t )
1/2 for large t. It follows that

(∆tωp,t ,ωp,t) 6 e−tε2/2 , t � 1.
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Let us denote by λ1(t) 6 λ2(t) 6 . . . the spectrum of ∆t on Ll
2(X).

We define the quadratic form associated to ∆t :

Qt(u) = ‖dtu‖2 +‖δtu‖2, u ∈W l
1(X) .

By the min–max principle A.30 we obtain

λml(t) 6 max
u∈F
‖u‖=1

Qt(u) 6 e−C1t

since dimF l
t = ml . The proof of Step 1 is finished. �

2.2.4. Proof of Step 2. By the min–max principle it is sufficient to prove that there
exists C2 > 0 such that

Qt(u) > C2t‖u‖2 , u ∈W l
1(X), u ⊥ F l

t . (2.20)

It follows from (2.20) that λml+1(t) > C2t for large t, so this proves Step 2.
To prove (2.20) we use a localisation procedure. We construct first a cover U of X as

follows. Let U0 = X r∪{U p : p ∈ Crit( f )} and set U = {U0}∪{Up : p ∈ Crit( f )}. We
consider a partition of unity {ϕU : U ∈ U } subordinated to U , with

∑ϕ2
U = 1, ϕUp = 1 on suppωp,t . (2.21)

Remember that an explicit formula for Qt is

Qt(u) =

∫

X

(
|du|2 + |δu|2 + t2|d f |2|u|2 + t〈Au,u〉

)
dvX (2.22)

where A ∈ End(ΛlT ∗X) is a symmetric operator determined in (2.16).
By (2.21) we obtain ∑ϕU dϕU = 0 and

∑ |d(ϕUu)|2 = |du|2 +∑ |dϕU ∧u|2

∑ |δ (ϕU u)|2 = |δu|2 +∑ |idϕU u|2

Thus for u ∈W l
1(X)

∑Qt(ϕU u) = ∑
∫

X

(
|dϕU ∧u|2 + |idϕU α|2

)
dV +Qt(u)

so there exist a constant C > 0 with

Qt(u) > ∑Qt(ϕU u)−C‖u‖2, u ∈W l
1(X). (2.23)

We examine Qt for each U ∈ U . For U ∈ U we consider the Sobolev space W l
1,0(U)

which is the closure of {u ∈ Ωl(X) : suppu ⊂U} in W l
1(X).

2.12. LEMMA. There exist C > 0 such that for t � 1

Qt(u) > Ct‖u‖2, u ∈W l
1,0(U0).

PROOF. This follows immediately from (2.22) since |d f | > c > 0 on U0 and A is
bounded from below on X . �

2.13. LEMMA. For any p ∈ Crit( f )r Crit( f ; l) there exists C > 0 such that

Qt(u) > Ct‖u‖2, u ∈W l
1,0(Up).

PROOF. Let r be the index of p. Then ∆t = ∆t,r on Up. Since r 6= l and ∆t,r acts on
l–forms, Theorem 2.1.8 entails the result. �
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2.14. LEMMA. For each p ∈ Crit( f ; l) there exists C > 0 such that for t � 1,

Qt(u) > Ct‖u‖2, u ∈W l
1,0(Up), u ⊥ F l

t .

PROOF. Let us identify Up with an open set of Rn endowed with the euclidian metric.
We denote by ũ the form on Rn which extend u with 0 outside Up. Then ‖u‖= ‖ũ‖. On Up

we have ∆t = ∆′
t, l . If we denote by Q′

t the quadratic form of ∆′
t, l we have Q′

t(ũ) = Qt(u).

Relation u ⊥ F l
t means u ⊥ Rωp,t . From this follows that ũ is asymptotically orthogonal

to Ker∆′
t, l = Re−t|x|2/2dx1 ∧ . . .∧dxl . Indeed

|(ũ,e−t|x|2/2dx1 ∧ . . .∧dxl)| = |(u,e−t|x|2/2dx1 ∧ . . .∧dxl)|

= |(u,(1−ψε,p)e
−t|x|2/2dx1 ∧ . . .∧dxl)| 6 C e−tε2/4‖u‖ = C e−tε2/4‖ũ‖ (2.24)

by the Cauchy–Schwarz inequality and the fact that 1−ψε,p vanishes on [−ε,ε]n. Let use
the orthogonal decomposition ũ = ũ1 + ũ2, u1 ∈ Ker∆′

t,l, u2 ⊥ Ker∆′
t,l . We have actually

u1 = (u,e−t|x|2/2 dx1 ∧ . . .∧dxl)e−t|x|2/2 dx1 ∧ . . .∧dxn. From (2.24) we learn that

‖ũ1‖ 6 Ce−tε2/4‖ũ‖
From Theorem 2.1.8 we have moreover

(∆′
t,lũ2, ũ2) > Ct‖ũ2‖2

Therefore

Qt(u) = Q′
t(ũ) = (∆′

t,lũ, ũ) = (∆′
t,lũ2, ũ2) > Ct(1−C e−tε2/4)‖ũ‖2 > Ct‖ũ‖2 = Ct‖u‖2

for large t. �

It is now easy to prove (2.20). Let u ∈W l
1(X), u⊥ F l

t . Then (ηU u,ωp,t) = (u,ωp,t) = 0,
by (2.21). We can apply thus lemmata 2.12, 2.13 and 2.14 for ηU u, for all U ∈U . Together
with (2.23) this implies (2.20).

This achieves the proof of Step 2 and of Theorem 2.10.
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CHAPTER 3

Local asymptotic Morse inequalities

At the foundation of many of the results of our paper lies a Weyl type formula of
Demailly for the spectrum of the Kodaira-Laplacian 1

k 2
Fk acting on twisted tensor powers

Fk = Lk ⊗F of a line bundle L. The analysis of Demailly is based on the the fact that in
the Bochner-Kodaira formula for 1

k 2
Fk on Lk ⊗F the metric of L formally plays the role

of the Morse function in the expresion of Witten’s laplacian (1.7). J.-P. Demailly [3] used
H. Weyl’s original localization procedure, which consists in dividing the manifold in small
pieces on which the spectrum of Dirichlet problem looks more and more as the spectrum of
a harmonic oscillator. The Weyl-type asymptotics holds actually for a Schrödinger operator
with magnetic field and is valid in the riemannian case.

Later, J.-M. Bismut [1] gave a heat equation proof based on his approach to the index
theorem. The inequalities obtained are pointwise in the sense of index theory, namely, they
yield through integration the global inequalities. We shall present here a related method
due to T. Bouche [4, 2]. One can also apply a similar method to that employed in Chapter
7.

3.1. Asymptotic of the heat kernel

This section is organized as follows. In 3.1.1 we introduce the Bochner Laplacians
and an associated Schrödinger operator ∆k,τ together with its heat kernels and the heat ker-
nels acting on Lk and we state the asymptotics of the heat kernel as k −→ ∞.The proof
starts in 3.1.2 by proving that the problem can be localized on balls of radius rk, where
kr2

k −→ +∞, kr3
k −→ 0. In 3.6 we compute the heat kernel of the tangent ∆0

k,τ operator to
∆k,τ at a point with the help of Mehler’s formula. Finally, we show in 3.7 that the heat
kernel of Schrödinger operator is an infinite sum depending only on the tangent operator
∆0

k,τ on a ball of radius rk. We can use then the explicit computation of 3.6 and the lo-
calization of 3.1.2 to achieve the proof. As a corollary we obtain in 3.10 the asymptotic
distribution of the eigenvalues of the laplacians. We refine the result on the asymptotic
in 3.1.6. This estimate will be used to determine the asymptotic of the heat kernel of the
Kodaira Laplacian in the next section.

3.1.1. Statement of the result. Now, we introduce our notations: (X ,gTX) is a com-
pact riemannian manifold of dimension m, with associated volume element dvX . The ma-
nifold X may have a non-empty boundary ∂X . We denote X = X ∪∂X . Let (L,hL),(F,hF)
be two hermitian complex vector bundles endowed with hermitian connections ∇L and ∇F

respectively. We assume rankL = 1 and rankF = r. Let us fix an isometric local trivialisa-
tion. The connection ∇L has then the form ∇L = d +ΓL∧ where ΓL is a 1–form. Since ∇L

is hermitian, ΓL = −
√
−1AL with a real 1–form AL. Let RL = (∇L)2 be the curvature of

(L,hL). In the local trivialisation, RL = dΓL. The curvature depends only on the connection
and not on the trivialisation. We set RL = −

√
−1ω , where ω =

√
−1RL is a 2-form on X ,

called the magnetic field of the connection. Fix a point x0 ∈ X . There exists a coordinate
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3.1. ASYMPTOTIC OF THE HEAT KERNEL 35

system (U,x1, . . . ,xm) such that dx1, . . . ,dxm is an orthonormal frame of T ∗
x0

X and such that

ω(x0) =
s(x0)

∑
j=1

ω j(x0)dx j ∧dx j+s (3.1)

where 2s = 2s(x0) 6 m is the rank of the skew-symmetric 2-form ω at x0 and ω1(x0) >
. . . > ωs(x0) > 0 = ωs+1(x0) = . . . = ωn(x0) are its eigenvalues with respect to the metric
gTx0X . Along the fibers of Λ•

T ∗X ⊗Lk ⊗F , we consider the pointwise scalar product 〈·, ·〉
induced by gTX , hL and hF . The L2–scalar product on Ω•

(X ,Lk ⊗F), the space of smooth
sections of Λ•

T ∗X ⊗Lk ⊗F , is given by

(s1,s2) =

∫

X
〈s1(x),s2(x)〉dvX(x) . (3.2)

We denote the corresponding norm with ‖·‖.
We will be primarily concerned with the spectral distribution of a Schrödinger operator

constructed as follows. Let us consider a hermitian section τ ∈ E (X ,End(F)), identified
to IdLk ⊗τ ∈ End(Lk ⊗F).

3.1. DEFINITION. Let ∇Lk⊗F be the connection on Lk ⊗F induced by ∇L and ∇F . The
Bochner Laplacian is the operator

∆Lk⊗F =
(
∇Lk⊗F)∗∇Lk⊗F +∇Lk⊗F (∇Lk⊗F)∗ (3.3)

on Ω•
(X ,Lk ⊗F). In the sequel we also use the notation Fk = Lk ⊗F . The Schrödinger

operator associated to τ is

∆k,τ =
1
k

∆Fk − τ. (3.4)

The heat operator is given by

Pk =
∂
∂ t

−∆k,τ . (3.5)

The selfadjoint extension of ∆k,τ which we consider is the operator ∆k,τ with Dirichlet
boundary conditions (see A.2.3). In general, if U is an open set with smooth boundary we
denote the operator ∆k,τ with Dirichlet boundary conditions by ∆k,τ,U . But in case U = X
we omit the subscript and write simply ∆k,τ for this extension.

The quadratic form associated to ∆k,τ is

Qk,τ(u) =
∫

X

(
1
k |∇

Lk⊗Fu|2 −〈τu,u〉
)
dvX , u ∈W1,0(X ,Lk ⊗F). (3.6)

As ∆k,τ is elliptic and X is compact, ∆k,τ has a discrete spectrum which can be recovered
from the heat kernel ek(t,x,y) which is the smooth kernel of the operator exp(−t∆k,τ). If
we want to indicate the open set where ∆k,τ acts, we denote the heat kernel of exp(−t∆k,τ,U)
by ek,U (t,x,y).

The heat kernel enjoys the following expansion: for j = 0,1, · · · , let λ k
j be the eigen-

values of ∆k,τ (counted with multiplicities), and (Sk
j) j be an orthonormal L2 basis of eigen-

forms associated to the eigenvalues λ k
j , then

ek(t,x,y) = ∑
j>0

exp
(
− tλ k

j

)
Sk

j(x)⊗Sk
j(x)

∗, (3.7)
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and is characterized by the following properties:

ek ∈ C
∞((0,∞)×X ×X ,End

(
Λ0,qT ∗X ⊗ Lk ⊗F

))
, (3.8a)

Pkek = 0 on X , where ∆k,τ acts on the first variable , (3.8b)

ek(t,x,y)−→ δy (Dirac δ -function at point y) if t −→ 0 , (3.8c)

ek(t,x,y) = e∗k(t,x,y) . (3.8d)

ek(t,∂X ,y) =
{

0
}

, (3.8e)

Our aim is to prove the following result from [2]. Let ω(x) be the magnetic field at a
point x ∈ X written as in (3.1). We denote

e∞(t,x) =
exp(t τ(x))

(4π)m/2 tm/2−s(x)

s(x)

∏
j=1

ω j(x)

sinhω j(x)t
∈ End(Ex) . (3.9)

3.2. THEOREM (Bouche). There exists ε ∈ (0,1), not depending on k, such that the
heat kernel k−m/2ek(t,x,x) converges to e∞(t,x), as k −→ +∞, uniformly with respect to
x ∈ X and t ∈ [t0, t1] ⊂ (0,+∞).

The rest of the section is devoted to the proof of Theorem 3.2.

3.1.2. Localization. Let us fix a point x0 ∈ X and local coordinates around this point.
Let Br be the ball of center x0 and radius r. Set

τr = sup
x∈Br

‖τ(x)‖

We prove now that the problem is local by comparing the heat kernel ek(t,x0,x0) to the
heat kernel ek,Br(t,x0,x0) over the ball Br.

3.3. PROPOSITION (Localization). There exist positive constants C1 and ε1 such that
for any t ∈ (0,min(kε1,kr2/2m)) we have

|ek(t,x0,x0)− ek,Br(t,x0,x0)| 6 C1
k

m
2

t
m
2

exp

(
−kr2

4t
+2tτr

)
. (3.10)

As preparation we need the following.

3.4. LEMMA. Let d(·, ·) the geodesic distance associated to the metric gTX . Then for
all t ∈ (0,kε1] and all x,y ∈ X we have

|ek(t,x,y)| 6 C1
k

m
2

t
m
2

exp

(
−k

d(x,y)2

4t
+ tτr

)
. (3.11)

PROOF. Let us denote by eg(w,x,y) the heat kernel associated to ∆g and êk(w,x,y) the
heat kernel associated to k ∆k,τ = ∆Fk − kτ . Kato’s inequality for ∆Fk reads

〈∆Fku,u〉 > |u|∆g|u| , for u ∈ Ω(Br,L
k ⊗F) , (3.12)

and hence
〈k ∆k,τu,u〉 > |u|((∆g− kτ r)|u|) (3.13)

By [5, Theorem 3.1], (3.13) entails

|êk(w,x,y)| 6 rankF exp(kτ r)eg(w,x,y) . (3.14)

Since eg(w,x,y) admits the asymptotic expansion in a neighbourhood of w = 0,

eg(w,x,y) ∼ u0(4πw)−
m
2 exp

(
−d2(x,y)

4r

)
(3.15)
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we infer the existence of constants u1,ε > 0 such that

eg(w,x,y) 6 u1(4πw)−
m
2 exp

(
−d2(x,y)

4r

)
, for w 6 ε . (3.16)

The statement of the lemma is now a consequence of (3.14) and (3.16) by setting w =
t/k. �

PROOF OF PROPOSITION 3.3. Let ϕ be a smooth function supported in Br. We set

ψ(t,x) =

∫

Br

(ek,Br − ek)ϕdvX

which, by (3.8b), (3.8c) has the properties

Pkψ =
∂ψ
∂ t

+∆k,τ ψ = 0 on (0,+∞)×Br , (3.17a)

ψ −→ 0 as t −→ 0 . (3.17b)

By Kato’s inequality, exp(−tτr)|ψ| satisfies the maximum principle for the heat operator
Pk. Indeed,

〈
∂
∂ t ψ,ψ

〉
= 1

2
∂
∂ t |ψ|2 = |ψ| ∂

∂ t |ψ| (3.18)

and (3.12) entail

〈Pkψ,ψ〉 > |ψ|
( ∂

∂ t + 1
k ∆g − τ r

)
|ψ| (3.19)

hence (
t ∂

∂ t + 1
k ∆g − τr

)
|ψ| 6 0 (3.20)

that is

( ∂
∂ t + 1

k ∆g)exp(−tτr)|ψ| 6 0 . (3.21)

Thus the function exp(−tτr)|ψ| takes its maximum on {0}×Br ∪ [0, t]×∂Br. Therefore

|ψ(t,x0)| 6 exp(tτr) sup{|ψ| : (r,x) ∈ [0, t]×∂Br}

6 C1
k

m
2

t
m
2

exp

(
−k

t
d2(supϕ,∂Br)+2tτr

)
‖ϕ‖1 (3.22)

if t 6 2kd2(suppϕ,∂Br)/2 where ‖ϕ‖1 is the Sobolev norm of ϕ . We let now ϕ −→ δx0

in (3.22) and we obtain (3.10). �

3.5. REMARK. We first remark that we may choose C1 and ε1 uniform in x ∈ X . In
order to have uniformity with respect to t of (3.10) we need to apply the estimate on balls
of radius rk such that

lim
k−→∞

kr2
k = +∞.

If we choose rk = k−
5

12 then kr2
k = k

1
6 so (3.10) holds for t ∈ (0,k

1
6 ) and k > k0, where k0

is uniform in x ∈ X .
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3.1.3. The heat kernel of the tangent operator. We consider now the operator ∆0
k,τ

on Rm which is the tangent operator to ∆k,τ at x0. We endow Rm with the metric g0 =

∑dx j ∧dx j and the trivial line bundle L0 = Rm ×C with the connection

∇L0 = d −
√
−1

s

∑
1

ω j x j dx j+s , AL0 =
s

∑
j=1

ω jx
jdx j+s (3.23)

having curvature ω = ∑s
j=1 ω jdx j ∧ dx j+s. We take ∇E flat and τ constant, 〈τu,u〉 =

∑16λ6r τλ |uλ |2 for u = ∑r
λ=1 uλ ⊗ eλ .

3.6. PROPOSITION. With this choices the heat kernel of ∆0
k,τ has the form:

e(t0,x,x) = km/2 exp(tτ)

(4π)m/2tm/2−s

s

∏
j=1

ω j

sinhω jt
. (3.24)

PROOF. By (3.6) and (3.23) the quadratic form of ∆0
k,τ is given by:

Qk(u) =

∫

Rm

1
k

[
∑

i6 j6s
16λ6r

(∣∣∣∂uλ
∂x j

∣∣∣
2
+
∣∣∣ ∂uλ
∂x j+s − ikω jx

juλ

∣∣∣
2)

+ ∑
j>2s

16λ6r

∣∣∣duλ
dx j

∣∣∣
2]

− ∑
16λ6r

Vλ |uλ |2.

In this situation, Qk is a direct sum of quadratic form acting on each component uλ and
the computation of exp(−t∆k,τ) is reduced to the following simple cases (3.25) and (3.26).
The first case is:

Q( f ) =

∫

R

∣∣∣d f
dx

∣∣∣
2
, associated to the operator−d2 f/dx2 (3.25)

Then, it is well known that the heat kernel is given by

e(t,x,y) =
1√
4πt

e−(x−y)2/4t .

The second case is:

Q( f ) =

∫

R2

∣∣∣ d f
dx1

∣∣∣
2
+
∣∣∣ d f
dx2 − iax1 f

∣∣∣
2
. (3.26)

A partial Fourier transform in the x2 variable gives

Q( f ) =
∫

R2

∣∣∣ d f̂
dx1 (x1,ξ 2)

∣∣∣
2
+a2

(
x1 − ξ 2

a

)2
| f̂ (x1,ξ 2)|2

and the change variables (x1)′ = x1 − x2/a, (x2)′ = ξ 2 leads to the so called “harmonic
oscillator” energy functional

q(u) =

∫

R

∣∣∣du
dx

∣∣∣
2
+a2x2|u|2 , associated to � = − d2

dx2 +a2x2.

The heat kernel of this operator is given by Mehler’s formula:

e(t,x,y) =

√
a

2π sinh2at
exp
(
− a

2
(coth2at)(x− y)2 −a(tanhat)xy

)
.

To see this we can use the form of the eigenvalues of the harmonic oscillator � as given in
(2.17): (

2p p!
√

π/a
)−1/2Φp(

√
ax), p = 0,1,2, . . . ,



3.1. ASYMPTOTIC OF THE HEAT KERNEL 39

with associated eigenvalues (2p+1)a, where (Φp) is the sequence of functions associated
to Hermite polynomials:

Φp(x) = ex2/2 d p

dxp (e−x2
).

Therefore we have

e(t,x,y) =

√
a
π

ea(x2+y2)/2
+∞

∑
p=0

e−(2p+1)

2p p!ap

d p

dxp (e−ax2
)

d p

dyp (e−ay2
)

and the summation ∑(x,y) can be computed from its Fourier transform

∑̂(ξ ,η) = e−at exp
(
− 1

2a
e−2atξ η

)
· 1√

2a
e−(ξ 2+η2)/4a.

The heat kernel operator of Q from (3.26) is thus given by

(e−t� f )∧(x1,ξ2) =

∫

R
e
(

t,x1 − ξ2

a
,y1 − ξ2

a

)
f̂ (y1,ξ2)dy1.

which by inverse Fourier transform reads:

e(t;x1,x2;y1,y2) =
a

4π sinhat
exp
(
− a

4
(cothat)

(
(x1 − y1)2 +(x2 − y2)2))

×exp
( i

2
a(x1 + y1)(x2 − y2)

)
.

The heat kernel associated to a sum of (pairwise commuting) operators �1,...,�m acting
on disjoint sets of variables is the product of all heat kernels exp(−t� j). Let eλ (t,x,y)
be the heat kernel of Qk acting on a single component uλ . The factor in the heat kernel
corresponding to the pair of variables (x j,x j+s), 1 6 j 6 s is obtained when substituting
kω j to a and t/k to t. Thus

e0
k(t,x,y) =

s

∏
j=1

kω j

4π sinhω jt
exp
(−kω j

4
cothω jt((x

j − y j)2 +(x j+s − y j+s)2)

+

√
−1
2

kω j(x
j + y j)(x j+s − y j+s)

)

× exp(tτ)
( k

4πt

)m−2s
2

exp
(
− k ∑

j>2s

(x j − y j)2/4t
)

(3.27)

Restricting to the diagonal we obtain (3.24). �

3.1.4. Heat asymptotic of the localized operator. Using a chart we identify now a
neighbourhood of x0 with Rm. We define a new operator ∆̃k,τ on Rm which coincides with
∆k,τ on a small ball. Let Bk = Brk with rk = k−5/12. We construct the operator ∆̃k,τ wich
coincides with ∆k,τ on Bk and with ∆0

k,τ on Rm r 2Bk. We achieve this in the following
manner. Let ϕ a smooth function with support in 2Bk which equals 1 on Bk. We consider
on Rm the metric g̃ = ϕgT X +(1−ϕ)g0, on L0 = Rm×C the connection ∇̃L = ϕ∇L +(1−
ϕ)∇L0 and on F the flat connection. We define ∆̃Lk⊗F as the laplacian associated to this
connection. We set τ̃ = ϕτ +(1−ϕ)τ(x0) and we get as in (3.4) the operator ∆̃k,τ .
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If we denote by A =
√
−1ΓL we know that

∆Fku =− 1√
detg

∂
∂xl

(
g jl
√

detg
∂u
∂x j

)
+
√
−1k

∂u
∂x j

Alg
jl

+
√
−1k

1√
detg

∂
∂xl

(A jg
jl
√

detgu)+ k2|A|2

This entails the estimate

∆̃k,τ −∆0
k,τ =

{
O
(
|x−x0|

k ∇2 +(1
k + |x− x0|2)∇+ |x− x0|+ k|x− x0|3

)

0 outside 2Bk

(3.28)

where ∇ is the trivial connection on Rm and A is chosen such that |A(x)−A(x0)| 6 C2|x−
x0|2. There is possible since |ω(x)−ω(x0)| = O(|x− x0|) and by the homotopy formula
on a ball, used to construct the potential A. Let ẽk(t,x,y) be the heat kernel of ∆̃k,τ .

Our purpose is to express the heat kernel ẽk(t,x,y) as an infinite sum depending only on

∆0
k,τ on a ball of radius rk = k−

5
12 . Using Lemma 3.3 and properties (3.6a−d) we obtain

ẽk(t,x,y)− e0
k(t,x,y) =

∫

Rm
e0

k(0,z,y)ẽk(t,x,z)dz−
∫

Rm
ẽk(0,x,z)e0

k(t,z,y)dz

=
∫ t

0
dw

∂
∂ r

∫

Rm
ẽk(w,x,z)e0

k(t −w,z,y)dz

= −
∫ t

0
dw
∫

Rm
{(∆̃k,τ)

∗ ẽk(w,x,z)e0
k(t −w,z,y)

− ẽk(t,x,z)∆
#,0
k e0

k(t −w,z,y)}dz

= −
∫ t

0
dw
∫

Rm
ẽk(w,x,z)(∆̃k,τ −∆#,0

k )z e0
k(t −w,z,y)dz

= −
∫ t

0
dw
∫

2Bk

ẽk(w,x,z)(∆̃k,τ −∆#,0
k )z e0

k(t −w,z,y)dz

Set fk(t,x,y) = (∆̃k,τ −∆
#,0
k )e0

k(t,x,y) and denote the previous equality by ẽk − e0
k =

ẽk] fk. We obtain the formal Levi sum

ẽk = e0
k + e0

k] fk + · · ·+ e0
k] fk] · · ·] fk + · · · = ∑

p>0
e0

k] f ]p
k (3.29)

3.7. LEMMA. The sum (3.29) converges to ẽk.

PROOF. In the sequel C stands for possibly different constants. By (3.27) we have

|∇e0
k(t,z,y)|6 C

(k
t
|z− y|

)
+ k(|z|+ |y|) |e0

k(t,z,y)|

|∇2e0
k(t,z,y)|6 C

(k
t
+ k +

k2

t2 |y− z|2 + k2(|y|+ |z|)2

+
k2

t
|y− z|(|y|+ |z|)

)
|e0

k(t,z,y)|

hence by (3.28)

| fk(t,z,y)|6 C
(k|z− y|3

t2 +
|z− y|+ k|z− y|2

t
+ kr3

k + r2
k

)
|e0

k(t,z,y)| .
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Since rk = k−5/12 and the function (0,+∞) 7−→ xp exp(−αx) is bounded for all p > 0,
α > 0 we find a0 > 0 such that for k sufficiently large

| fk(t,z,y)|6 C
k

m
2 − 1

4
√

t
exp(tτrk) t−

m
2 exp

(−a0k|x− y|2
t

)
(3.30)

hence

|e0
k] fk(t,x,y)|6 C k

m
2 − 1

4 exp(tτrk)·

·
∫ t

0
dw
∫

Rm
w−m+1

2 (t −w)−
m
2 exp

(
−a0k

( |z− y|2
w

+
|z− x|2
t −w

))
dz

(3.31)

Since
∫

Rm

w−m+1
2 (t −w)−

m
2 exp

(
−a0 k

( |z− y|2
w

+
|z− x|2
t −w

))
dz =

(2π
a0

)m
2 (kt)−

m
2

√
w

exp
(
−a0 k

|x− y|2
t

) (3.32)

Therefore



|e0
k] fk(t,x,y)|6 C2 k

m
2 − 1

4 exp(tτrk)
1
2t−

m+1
2 exp

(−a0k
t

|x− y|2
)

· · ·
|e0

k] · · ·] fk(t,x,y)|6 Cp k
m
2 −

p
4 exp(tτrk)

1
p!t

−m−1
2 +p exp

(−a0k
t

|x− y|2
) (3.33)

By (3.33) the series (3.29) and its derivatives converges on any compact of (0,∞)×Rm.
Therefore for any section S ∈ Ω

(
(0,∞)×Rm,End(E)

)
we get

∂
∂ t (e

0
k]S) = S and fk]S = (∆̃k,τ −∆0

k,τ)(e
0
k]S)

Hence
∂
∂ t (e

0
k + e0

k] f + · · ·) = −∆0
k,τ e0

k − (∆̃k,τ −∆0
k,τ)e

0
k − (∆̃k,τ −∆0

k,τ)e
0
k] fk + · · ·

= −∆̃k,τ(e
0
k + e0

k] fk + · · ·)
By e0

k(0,x,y) = δx(y) and (3.33),

|ẽk(t,x,y)− e0
k(t,x,y)| 6 k

m
2 t−

m−1
2 exp(tτrk)

(
exp(Ctk−1/4)−1

)
exp
(
− a0k

t
|x− y|2

)
,

(3.34)
where the second term converges to 0 in L1(0,∞) for t −→ 0.

Since the heat kernel is unique this achieves the proof of Lemma 3.7. �

PROOF OF THEOREM 3.2. Proposition 3.3 and Lemma 3.7 imply Theorem 3.2 due to
estimate (3.34). �

3.1.5. Asymptotic distribution of eigenvalues. Theorem 3.2 permits to determine the
asymptotic behaviour of the eigenvalue distribution of the operator ∆k,τ = 1

k ∆Fk − τ for
k −→ ∞.

3.8. PROPOSITION. For j = 0,1, . . . , let λ k
j be the eigenvalues of ∆k,τ counted with

multiplicities. The following relation holds for all t > 0 :

lim
k→∞

k−m/2
∞

∑
j=0

exp(−t λ k
j ) =

∫

X
TrF e∞(t,x)dvX . (3.35)
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PROOF. The definition of the heat kernel (3.7) implies

TrF ek(t,x,x) =
∞

∑
j=0

exp(−t λ k
j )|Sk

j|2 ,

and by integration

∫

X
TrF ek(t,x,x) =

∞

∑
j=0

exp(−t λ k
j ) .

The uniform convergence for x ∈ X and t fixed of k−m/2 TrF ek(t,x,x) to TrF e∞(t,x) as
k −→ ∞ implies then the statement. �

We define the spectrum counting function of ∆k,τ by

N(λ ,∆k,τ) = dimImEλ (∆k,τ) = card
{

j : λ k
j 6 λ

}
, (3.37)

and by

µk =
1

km/2

d
dλ

N(λ ,∆k,τ) =
1

km/2

∞

∑
j=0

δ (λ k
j ) , (3.38)

the spectral density measure, where δ (λ k
j ) is the Dirac measure at λ k

j , so that, µk is a sum
of Dirac measures on R supported on Spec∆k,τ .

3.9. PROPOSITION. The sequence of measures µk converges weakly to a measure µ
whose Laplace transform is

∫
X TrF e∞(t,x)dvX .

Indeed, (3.35) can be written limk→∞
∫
R exp(−tλ )dµk =

∫
X e∞(t,x)dvX .

Let us intoduce the function νω(x)(λ ) on X ×R given by

νω(λ ) =
2s−mπ−m/2

Γ(m
2 − s+1)

ω1 · · ·ωs ∑
(p1,...,ps)∈Ns

[
λ −∑(2p j +1)ω j

]m
2 −s
+

, (3.39)

with the convention [λ ]0+ = 0 for λ 6 0, [λ ]0+ = 1 for λ > 0. It is an increasing function,
left-continuous in λ and lower semicontinuous on X . We also consider the function

νω(λ ) = lim
ε→0+

νω(λ + ε) . (3.40)

which is increasing and right-continuous in λ and upper semicontinuous on X . It has the
form

νω(λ ) =
2s−mπ−m/2

Γ(m
2 − s+1)

ω1 · · ·ωs ∑
(p1,...,ps)∈Ns

{
λ −∑(2p j +1)ω j

}m
2 −s
+

, (3.41)

with the convention {λ }0
+ = 0 for λ < 0, {λ }0

+ = 1 for λ > 0.

Since νω(λ ) 6 νω(λ ) 6 λ m/2
+ , the functions νω(λ + τl(x)) and νω(λ + τl(x)) are

bounded on compact sets of the form R×X .
Let r := rankF . By taking the inverse Laplace transformation of

∫
X e∞(t,x)dvX we obtain:
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3.10. COROLLARY. We have the following estimates:

liminf
k→∞

k−m/2N(λ ,∆k,τ) >
∫

X

r

∑
l=1

νω(x)(λ + τl(x))dvX , (3.42a)

limsup
k→∞

k−m/2N(λ ,∆k,τ) 6
∫

X

r

∑
l=1

νω(x)(λ + τl(x))dvX , (3.42b)

There exists an at most countable set D ⊂ R such that for λ ∈ RrD

lim
k→∞

k−m/2N(λ ,∆k,τ) = µ
(
(−∞,λ ]

)
=

∫

X

r

∑
l=1

νω(x)(λ + τl(x))dvX , (3.43)

Indeed, the Lebesgue dominated convergence theorem shows that the function

g : R → R, g(λ ) =
∫

X

r

∑
l=1

νω(x)(λ + τl(x))dvX

is left-continuous and increasing. Moreover

lim
ε→0+

g(λ + ε) =

∫

X

r

∑
l=1

νω(x)(λ + τl(x))dvX .

The set D is the set of discontinuities of g.

3.1.6. A more refined estimate. For further use we need a more precise version of
Theorem 3.2:

3.11. THEOREM (Bouche). There exists ε ∈ (0,1) such that on the set
{

τ(x)−
s

∑
j=1

ω j(x) IdF 6 0
}

we have ∣∣∣ek(t,x,x)− km/2e∞(t,x)
∣∣∣
C 0

6 C
(

1+
1

tm/2

)
k−1/5 (3.44)

uniformly with respect to t ∈ [t0,kε ] for any t0 > 0.

PROOF. We want to obtain a better order of convergence for ẽk as in (3.33). The proof
of (3.30) shows in fact that

| fk(t,z,y)|6 C
k

m
2 − 1

4
√

t
exp(tτrk)

2s

∏
j=1

√ω j exp(−a0kω j cothω jt|y j − z j|2)√
sinhω jt

× ∏
j>2s

exp(−a0k
t |y j − z j|2)√

t
.

(3.45)

We make in the sequel the convention ω j = ω j−s for j ∈ {s+1, . . . ,2s}. We obtain

|e0
k] fk(t,x0,x0)| 6 km− 1

4 exp(tτrk)·

·
∫ t

o
dw
∫

Rm

2s

∏
j=1

ω j exp(−a0kω j(cothω jw+ cothω j(t −w))|z j − x j
0|2)√

sinhω jwsinhω j(t −w)

× 1√
w
× ∏

j>2s

exp(a0k( 1
w + 1

t−w)|z j − x j
0|2)√

w(t −w)

(3.46)
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For j > 2s we already know that

∫

R

exp
(
a0k( (t−w)w

t )|z j − x j
0|2
)

√
w(t −w)

dz j =

√
2π

ka0t
(3.47)

and for j ∈ {1, . . . ,2s} we have

∫

R

ω j exp
(
−a0kω j(cothω jw+ cothω j(t −w))|z j − x j

0|2
)

√
sinhω j wsinhω j(t −w)

dz j =

√
2πω j

a0k

× 1√
sinhω jt

(3.48)

By (3.46),




|e0
k] fk(t,x0,x0)| 6 Ck

m
2 − 1

4 exp(tτrk)∏s
j=1

ω j

sinhω jt
· ts−m

2 +1

2
· · ·

|e0
k] · · ·] fk(t,x0,x0)| 6 Cpk

m
2 −

p
4 exp(tτrk)∏s

j=1
ω j

sinhω jt
· ts−m

2 +p

(p+1)!

(3.49)

We obtain finally the following estimate

|ẽk − e0
k | 6 (eCt/k1/4 −1)k

m
2 exp(tτrk)t

s−m
2

s

∏
j=1

ω j

sinhω jt

6 Ck
m
2 − 1

4 ts−m
2 +1 exp(tτrk)

s

∏
j=1

ω j

sinhω jt
if t 6 k1/4

6 Ck−
1
4 t exp(Ctrk)|e0

k(t,x0,x0)|

(3.50)

Since rk = k−5/12 and since ε = 1/6 is the critical value for the validity of Proposition
3.3, Theorem 3.11 is a consequence of (3.50) with ε < 1/6, since k−m/2 TrF ek(t,x0,x0) is
bounded as function of t and k as long as τ(x0)−∑s

j=1 ω j(x0) IdF 6 0. �

3.2. Pointwise Morse inequalities

Let us consider the compact manifold X with boundary and the vector bundles L and F
as in 3.1.1. Now we assume moreover that X is a connected complex manifold of complex
dimension n and real dimension m = 2n. Assume also that gTX is compatible with the
complex structure J. We denote by η the Kähler form associated to the hermitian metric
induced by gTX . Let L, F be holomorphic vector bundles on X , and let ∇L, ∇F be the
canonical connections, compatible with the complex structure and with the hermitian met-
rics. For the curvature forms we use the notation RL = (∇L)2, so that with the previous
notation ω =

√
−1RL) is a 2-form on X , called the magnetic field of the connection.

3.2.1. Statement of the result. Let us denote Fk := Lk ⊗F . Our goal is to study the
Laplace-Beltrami operator

2
Fk = ∂

Fkϑ Fk +ϑ Fk∂
Fk on Lk ⊗F . (3.51)

We introduce a scalar product on Ω0,•(X ,Lk ⊗F) as in (3.2):

(s1,s2)
.
=
∫

X
〈s1(x),s2(x)〉hk dvX (x) , dvX = ηn/n ! . (3.52)



3.2. POINTWISE MORSE INEQUALITIES 45

2
Fk acting on Ω0,q(X ,Lk ⊗F) is elliptic and has discrete spectrum. We denote for j =

0,1, . . . by λ k,q
j , the eigenvalues and by Sk,q

j an orthonormal basis of LLL0,q
2 (X ,Lk ⊗F) such

that 2
FkSk,q

j = λ k,q
j Sk,q

j .

The operator exp
(
− 2t

k 2
Fk
)

has a Schwartz kernel whose restriction to the diagonal
has the expression:

e(0,q)
k (t,x,x) = ∑

j>0
exp
(
− 2t

k λ k,q
j

)
Sk,q

j (x)⊗Sk,q
j (x)∗ ∈ End(Fx ⊗Λ0,qT ∗

x X), (3.53)

In order to determine the asymptotics of e(0,q)
k (t,x,x) as k → ∞ we intoduce the eigenvalues

α1(x), . . . ,αn(x) of
√
−1RL with respect to η at x. For a multiindex J ⊂ {1,2, . . .,n} we

set
αJ

.
= ∑

j∈J
α j , {J

.
= {1,2, . . . ,n}r J . (3.54)

In accordance to (3.9) let us denote by

e(0,q)
∞ (t,x) =

∑|J|=q expt(α{J −αJ)

(4π)n tn−s

s

∏
j=1

|α j(x)|
sinh |α j(x)|t

IdF . (3.55)

3.12. THEOREM. Let e(0,q)
k (t,x,x) be the heat kernel associated to exp(− 2t

k 2
Fk) in

bidigree (0,q). Then there exists ε ∈ (0,1) such that the following asymptotic holds:
∣∣TrΛ0,qT ∗X e(0,q)

k (t,x,x)− kne(0,q)
∞ (t,x)

∣∣
C 0 = o(kn) , k −→ ∞ (3.56)

uniformly with respect to t ∈ [t0,kε ] for any t0 > 0.

The next two sections are devoted to the proof of Theorem 3.12.

3.2.2. 2
Fk as a Schrödinger operator. In order to apply Theorem 3.11 we have to

express the laplacian 2
k 2

Fk as a Schrödinger operator ∆k,τ = 1
k ∆k − τ as defined in (3.4).

For this purpose we shall consider a holomorphic hermitian vector bundle G over a
complex manifold X and derive the relation between the Kodaira-Laplace operator 2

G

acting on sections of G and the Bochner-Laplace operator on Λ0,qT ∗X ⊗G.
Consider the holomorphic vector bundle G̃ = G⊗ΛnT X . We denote by ∼ : Λ0,qT ∗X ⊗

G −→ Λn,qT ∗X ⊗ G̃, u 7→ ũ the natural isometry.

3.13. PROPOSITION. Let G be a holomorphic hermitian vector bundle over the hermit-
ian manifold (X ,ω) with torsion operator T . There exists a bundle morphism

V : Λ0,qT ∗X ⊗G −→ Λ1T ∗X ⊗Λ0,qT ∗X ⊗G , (3.57)

depending only on the metric ω such that for u ∈ Ω0,q
0 (G),

2(2Gu,u) = ‖∇Λ0,qT ∗X⊗Gu+Vu‖2 +
(
[
√
−1RG,Λ]u,u

)

+
(
[
√
−1RG̃,Λ]ũ, ũ

)
+
(
Su,u

)
+
(
Sũ, ũ

)
,

(3.58)

where S is the operator given by (B.22).

PROOF. Let us assume first that ω is Kähler. Let u ∈ Ωp,q
0 (G) be a smooth (p,q)–form

with compact support and values in G. The Bochner–Kodaira–Nakano formula (B.20)
yields by integration by parts

(2Gu,u) = ‖(∇G)′u‖2
+‖(∇G)′∗u‖2

+
(
[
√
−1RG,Λ]u,u

)
. (3.59)
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Let now u ∈ Ω0,q
0 (G). Since (∇G)′∗u = 0 (the type of (∇G)′∗ is (−1,0)) (3.59) gives

(2Gu,u) = ‖(∇G)′u‖2
+
(
[
√
−1RG,Λ]u,u

)
. (3.60)

The natural isometry ∼ : G −→ G̃, u 7→ ũ extends to isometries ∼ : Λ0,qT ∗X ⊗ G −→
Λn,qT ∗X ⊗ G̃. We have the following commutative diagrams:

Ω0,q(G)
(∇G)′′−−−→ Ω0,q+1(G)

∼
y

y∼

Ωn,q(G̃)
(∇G̃)′′−−−→ Ωn,q+1(G̃)

(3.61a)

and

Ω0,q+1(G)
(∇G)′′∗−−−−→ Ω0,q(G)

∼
y

y∼

Ωn,q+1(G̃)
(∇G̃)′′∗−−−−→ Ωn,q(G̃)

(3.61b)

which are consequences of the fact that ΛnT X is a holomorphic bundle.
Combining this two diagrams of (3.61a) and (3.61b) we obtain

Ω0,q(G)
2

G

−−−→ Ω0,q(G)

∼
y

y∼

Ωn,q(G̃)
2

G̃

−−−→ Ωn,q(G̃)

(3.61c)

By applying (3.61c) and (3.60) for ũ we obtain for u ∈ Ω0,q
0 (G):

(2Gu,u) = (2G̃ũ, ũ)

= ‖(∇G̃)′∗ũ‖
2
+
(
[
√
−1RG̃,Λ]ũ, ũ

) (3.62)

Let us recall the construction of ∇Λ0,qT ∗X⊗G. The bundle Λq,0T ∗X is holomorphic
and has a Chern connection which induces on the conjugate bundle Λ0,qT ∗X a connex-
ion ∇Λ0,qT ∗X whose (1,0) component coincides with ∂ .

The connection ∇Λ0,qT ∗X⊗G is obtained from ∇Λ0,qT ∗X and the Chern connection ∇G on
G. Since (∇Λ0,qT ∗X)′ = ∂ we obtain

(
∇Λ0,qT ∗X⊗G)′ =

(
∇G)′ : Ω0,0(Λ0,qT ∗X ⊗G) −→ Ω0,1(Λ0,qT ∗X ⊗G) (3.63)

Let us define the map

Ψ0 : Λ0,1T ∗X ⊗G
∼−−−→ Λn,1T ∗X ⊗ G̃

∗−−−→ Λn−1,0T ∗X ⊗ G̃

and

Ψ = IdΛ0,qT ∗X ⊗(−
√
−1)−n2

Ψ0 : Ω0,1(Λ0,qT ∗X ⊗G) −→ Ωn−1,q(G̃)
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We have then the commutation relation

Ω0,0(Λ0,qT ∗X ⊗G)

(
∇Λ0,qT∗X⊗G

)′′
−−−−−−−−−→ Ω0,q(Λ0,1T ∗X ⊗G)

∼
y

yΨ

Ωn,q(G̃)

(
∇G̃
)′∗

−−−−→ Ωn−1,q(G̃)

(3.64)

By (3.63) and (3.64) we have

|
(
∇G)′u|2 = |

(
∇Λ0,qT ∗X⊗G)′u|2

|
(
∇G̃)′∗u|2 = |

(
∇Λ0,qT ∗X⊗G)′′u|2

By (3.59) and (3.62) we obtain

2(RGu,u) = ‖∇Λ0,qT ∗X⊗Gu‖2 +
(
[
√
−1RG,Λ]u,u

)
+
(
[
√
−1RG̃,Λ]ũ, ũ

)

which proves (3.58) in the Kähler case.
If ω is not Kähler, we apply the Bochner-Kodaira-Nakano formula as given in (B.21).

We replace thus in (3.60) (∇G)′u by (∇G)′u + Tu and add the term (Su,u). Accordingly
we replace (∇G)′∗ũ by (∇G)′∗ũ+T ∗ũ and add (Sũ, ũ) to (3.62). We define

V ′ : Λ0,qT ∗X ⊗G −→ Λ1,0T ∗X ⊗Λ0,qT ∗X ⊗G , (3.65a)

V ′′ : Λ0,qT ∗X ⊗G −→ Λ0,1T ∗X ⊗Λ0,qT ∗X ⊗G . (3.65b)

where V ′ = T = [Λ,∂ω] and V ′′ is obtained by composing with ∼ and Ψ the morphism

T ∗ = [(∂ω)∗,ω∧] : Λn,qT ∗X ⊗ G̃ −→ Λn−1,qT ∗X ⊗ G̃

By (3.63) and (3.64) we have
∣∣((∇G)′ +T

)
u
∣∣2 =

∣∣(∇Λ0,qT ∗X⊗G)′u+V ′u
∣∣2

∣∣((∇G̃)′∗ +T ∗)u
∣∣2 =

∣∣(∇Λ0,qT ∗X⊗G)′′u+V ′′u
∣∣2

and we finally define V = V ′ ⊕V ′′. Using these relations as in the Kähler case we get
(3.58). �

3.2.3. Proof of Theorem 3.12. The proof consists in applying Theorem 3.11 together
with Proposition 3.13 for G = Lk ⊗F . Let us examine the term

(
[
√
−1RLk⊗F ,Λ]u,u

)
+
(
[
√
−1R

˜(Lk⊗F),Λ]ũ, ũ
)

=k
(
[
√
−1RL,Λ]u,u

)
+ k
(
[
√
−1RL,Λ]ũ, ũ

)

+
(
[
√
−1RF ,Λ]u,u

)
+
(
[
√
−1RF̃ ,Λ]ũ, ũ

)
.

(3.66)

We examine the term corresponding to
√
−1RL. Let x be a fixed point of X . We can find

complex coordinates (z1, . . . ,zn) centered at x such that both η and
√
−1RL are diagonal at

x and η(x) is euclidian:

η =
√
−1
2 ∑dz j ∧dz j ,

√
−1RL =

√
−1
2 ∑α j(x)dz j ∧dz j ,

(3.67)
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where α1(x), . . . ,αn(x) are the eigenvalues of
√
−1RL with respect to η at x. Let ( fλ ) an

orthonormal frame of Lk
x ⊗Fx. For a (p,q)–form with values in Lk ⊗F , we write at x

u = ∑
|I|=p,|J|=q,λ

uI,J,λ fλ ⊗dzI ∧dzJ , |u|2 = ∑
|I|=p,|J|=q,λ

|uI,J,λ |2 (3.68)

Let us define the hermitian endomorphism τ ∈ End(Λ0,qT ∗X) by

τ
(

∑
|J|=q

uJdzJ
)

= ∑
|J|=q

(α{J −αJ)uJdzJ atx.

We shall also denote with τ the endomorphism τ ⊗ IdLk⊗F which satisfies

τ
(

∑
|J|=q,λ

uJ fλ ⊗dzJ
)

= ∑
|J|=q

(α{J −αJ)uJ fλ ⊗dzJ atx. (3.69)

By [3, (3.9)] we have
〈
[
√
−1RL,Λ]u,u

〉
= ∑

|I|=p,|J|=q,λ
(αI −α{J)|uI,J,λ |2 , (3.70)

where the multiindex notation of (3.54) was used. Let u ∈ Ω0,q(X ,Lk ⊗F) written as in
(3.68) (I = ∅). After (3.70)

〈[
√
−1RL,Λ]u,u〉 =−∑α{J|uJ,λ |2

〈[
√
−1RL,Λ]ũ, ũ〉 =∑αJ|uJ,λ |2

Therefore

〈τu,u〉 = −〈[
√
−1RL,Λ]u,u〉−〈[

√
−1RL,Λ]ũ, ũ〉 = ∑

|J|=q,λ
(α{J −αJ)|uJ,λ |2. (3.71)

Let Ξ ∈ End(Λ0,qT ∗X ⊗F) be the hermitian endomorphism given by

〈Ξu,u〉 = 〈[
√
−1RF ,Λ]u,u〉+ 〈[

√
−1RF̃ ,Λ]ũ, ũ〉

+ 〈Su,u〉+ 〈Sũ, ũ〉.
(3.72)

Let Qk be the quadratic form

Qk(u) =

∫

X

(1
k
|∇Lk⊗Λ0,qT ∗X⊗Fu+Vu|2 −〈τu,u〉+ 1

k
〈Ξu,u〉

)
dvX ,

u ∈W1,0(X ,Lk ⊗Λ0,qT ∗X ⊗F).

(3.73)

By (3.58) we have

Qk(u) =
(

2
k 2

Fku,u
)

, u ∈W1,0(X ,Λ0,qT ∗X ⊗Lk ⊗F). (3.74)

Let us compare Qk with Q#
k defined as in (3.6), where τ is given by (3.69). Since V and

Ξ are bounded operators acting only on the component Λ0,qT ∗X ⊗F , we infer that there
exists a constant C > 0 such that for all ε > 0, there exists k(ε) with

(1− ε)Q#
k(u)−Cε‖u‖2 6 Qk(u) 6 (1+ ε)Q#

k(u)+Cε‖u‖2 , u ∈W1,0(X ,Lk ⊗Λ0,qT ∗X ⊗F)

for all k > k(ε).
(3.75)

The heat kernel of the quadratic form Qk is denoted by eQk(t,x,y) and the heat kernel of
Q#

k is denoted by ek(t,x,y). From (3.75) we deduce that

eQk(t,x,x) ∼ ek(t,x,x) ask −→ ∞. (3.76)
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But by (3.74), Qk is the quadratic form associated to 2
k 2

Fk . We obtain therefore from (3.76)

TrΛ0,qT ∗X e(0,q)
k (t,x,x) = TrΛ0,qT ∗X eQk(t,x,x)' TrΛ0,qT ∗X ek(t,x,x) , k −→ ∞ .

We apply now Theorem 3.11 to compute the asymptotic of ek(t,x,x). In Theorem 3.11 we
replace F with F ⊗Λ0,qT ∗X and take ω =

√
−1RL and τ given by (3.69). By (3.67) we

have

ω =
√
−1RL =

n

∑
j=1

α j dx j ∧dy j , if z j = x j +
√
−1y j. (3.77)

Let 2s = 2s(x) 6 2n be the rank of the skew–symmetric 2–form ω(x). We order the eigen-
values (by a linear change of coordinates) such that

|α1(x)| > |α2(x)| > . . . > |αs(x)| > 0 = αs+1(x) = . . . = αn(x). (3.78)

By a new linear change of coordinates we can put ω in the form (3.1):

ω(x) =
s(x)

∑
j=1

ω j(x)dx j ∧dx j+s , (3.79a)

ω j(x) = |α j(x)| , j = 1,2, . . . ,n . (3.79b)

By (3.69) we have τ(x)−∑s
j=1 ω j(x) IdF 6 0 for all x ∈ X . By (3.44) we obtain

k−nek(t,x,x)−
exp(tτ(x))
(4π)ntn−s

s

∏
j=1

|α j(x)|
sinh |α j(x)|t

= o(kn) , k −→ ∞

uniformly on (t,x)∈ [t0,kε ]×X , t0 > 0. By taking the trace TrΛ0,qT ∗X of the left–hand side
and using

TrΛ0,qT ∗X exp(tτ(x)) = ∑
|J|=q

(α{J(x)−αJ(x)) by (3.69)

we get (3.56). The proof of Theorem 3.12 is achieved.

3.2.4. Asymptotic distribution of eigenvalues. Let X be a complex compact mani-
fold with boundary. In Corollary 3.10 we determined the asymptotic behaviour of the
eigenvalue distribution of the operator ∆k,τ = 1

k ∆Fk −τ for k −→ ∞. We specialize here the
general results to the holomorphic case.

In the sequel 1
k 2

Fk = 1
k 2

Fk
X is the Kodaira–Laplacian operator with Dirichlet boundary

conditions. In Chapter 4, we’ll aplly to good effect the result for for a relatively compact
domain U and the Dirichlet Laplacian 1

k 2
Fk
U .

For j = 0,1, . . . , let λ k,q
j be the eigenvalues (counted with multiplicities) of 1

k 2
Fk acting

on (0,q)-forms with values in Lk ⊗F .

3.14. PROPOSITION. The following relation holds for all t > 0 :

lim
k→∞

k−n
∞

∑
j=0

exp(−2t λ k,q
j ) =

∫

X
TrF e(0,q)

∞ (t,x)dvX . (3.80)

where e(0,q)
∞ (t,x) is given by (3.55). The sequence of measures

µq
k =

1

kn/2

d
dλ

N(λ , 2
k 2

Fk) =
1
kn

∞

∑
j=0

δ (2λ k,q
j ) , (3.81)

converges weakly to a measure µq whose Laplace transform is
∫

X TrF e(0,q)
∞ (t,x)dvX .
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PROOF. The first statement follows immediately from Theorem 3.12 by taking TrF in
(3.56) and the second is the analog of Proposition 3.9. �

According to (3.1), (3.77), (3.78), and the definition (3.39) of the function νω(x)(λ ) on
X ×R transfoms to

νRL(x)(λ ) =
2s−2nπn

Γ(n− s+1)
|α1(x) · · ·αs(x)| ∑

(p1,...,ps)∈Ns

[
λ −∑(2p j +1)|α j(x)|

]n−s
+

,

(3.82)
with the convention [λ ]0+ = 0 for λ 6 0 and [λ ]0+ = 1 for λ > 0. We define νRL as in (3.41),
by replacing in (3.82) the symbol [λ ]0+ with {λ }0

+, where {λ }0
+ = 0 for λ < 0, {λ }0

+ = 1
for λ > 0.
Set

Nq(λ , 1
k 2

Fk) = card
{

j : λ k,q
j 6 λ

}
= dimImFλ (1

k 2
Fk �

L0,q
2 (X ,Lk⊗F)

) (3.83)

3.15. THEOREM. We have the following estimates:

liminf
k→∞

k−n/2N(λ , 1
k 2

Fk) > (rankF)

∫

X
∑
|J|=q

νRL(x)(2λ +α{J(x)−αJ(x))dvX . (3.84a)

limsup
k→∞

k−n/2N(λ , 1
k 2

Fk) 6 (rankF)

∫

X
∑
|J|=q

νRL(x)(2λ +α{J(x)−αJ(x))dvX . (3.84b)

There exists at most countable sets Dq ⊂ R such that for λ ∈ RrDq,

lim
k→∞

k−nNq(λ , 1
k 2

Fk) = Iq(X ,λ ) , (3.85)

Iq(X ,λ ) = (rankF)

∫

X
∑
|J|=q

νRL(x)(2λ +α{J(x)−αJ(x))dvX . (3.86)

Moreover,

lim
λ−→0

Iq(X ,λ ) = Iq(X ,0) =
1
n!

(rankF)

∫

X(q)
(−1)q

(√
−1

2π RL
)n

. (3.87)

PROOF. The proof is parallel to Corollary 3.10. Formulas (3.84a), (3.84b) and (3.86)
follow from Proposition 3.14 and are obtained by taking the inverse Laplace transform of∫

X TrF e(0,q)
∞ (t,x)dvX . We use here N(λ , 1

k 2
Fk) = N(λ

2 , 2
k 2

Fk) and the form (3.69) of the
endomorphism τ .

We compute the bahaviour of Iq(X ,λ ) for λ −→ 0. First it is clear that

lim
λ−→+0

Iq(X ,λ ) = Iq(X ,0) = (rankF)

∫

X
∑
|J|=q

νRL(α{J −αJ)dvX .

Since α{J −αJ −∑(2p j +1)|α j| 6 0 for all p ∈ Ns, it is clear that for a given p ∈ Ns,
{

α{J −αJ −∑(2p j +1)|α j|
}n−s

+

vanishes unless s = n (i.e.
√
−1RL(x) is non–degenerate) and α{J −αJ −∑(2p j +1)|α j|=

0. The last equality holds if and only if p1 = · · · = pn = 0, α j < 0 for j ∈ J and α j > 0 for
j ∈ {J. In particular, if νRL(α{J −αJ) 6= 0,

√
−1RL is non–degenerate and has exactly q

negative eigenvalues.
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Let X(q) be the set of points x of X such that
√
−1RL(x) is non–degenerate and has

exactly q negative eigenvalues. For x ∈ X(q), set J(x) = { j : α j(x) < 0}. For |J| = q it
follows

νRL(α{J −αJ) = (2π)−n|α1 · · ·αn| = (−1)q(2π)−nα1 · · ·αn , (3.88)

for J = J(x) and
νRL(α{J −αJ) = 0 for J 6= J(x). (3.89)

By (3.88), (3.89) and the relation

α1 · · ·αn dvX = (
√
−1RL)n

we get (3.87). �

To shorten the notation we set

νq
RL(λ ,x) = ∑

|J|=q

νRL(x)(2λ +α{J(x)−αJ(x)) (3.90)

so that

Iq(X ,λ ) = (rankF)

∫

X
νq

RL(λ ,x)dvX . (3.91)

3.16. REMARK. We can determine in the same way the asymptotic behavior of the
spectrum of 1

k 2
Fk acting on (p,q)–forms with values in Lk⊗F . For this purpose we identify

Λp,qT ∗X ⊗Lk⊗F to Λ0,qT ∗X ⊗Lk⊗(Λ0,pT ∗X ⊗F), that is, we replace F by Λ0,pT ∗X ⊗F .
Therefore Theorem 3.15 remains true by replacing rankF with

(n
p

)
rankF . Set

N p,q(λ , 1
k 2

Fk) = dimImFλ (1
k 2

Fk �LLLp,q
2 (X ,Lk⊗F)) (3.92)

Then there exists at most countable sets D p,q ⊂ R such that for λ ∈ RrDq,

lim
k→∞

k−nN p,q(λ , 1
k 2

Fk) = I p,q(X ,λ ) , (3.93)

I p,q(X ,λ ) =

(
n
p

)
Iq(X ,λ ) . (3.94)

Moreover,

lim
λ−→0

I p,q(X ,λ ) = I p,q(X ,0) =
1
n!

(
n
p

)
(rankF)

∫

X(q)
(−1)q

(√
−1

2π RL
)n

. (3.95)
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CHAPTER 4

Global asymptotic Morse inequalities

In this chapter we pass from local Morse inequalities to global ones, that is, we find
bounds for the cohomology of complex manifolds.

In Section 4.1 we prove Morse inequalities for the L2–cohomology in a quite general
contex, namely, when the fundamental estimate (4.1) holds. Almost all global Morse in-
equalities treated here can be reduced to this situation (with the exception of the covering
manifolds in Chapter 5; but there we can analyse a fundamental domain).

The main idea, going back to Witten and used by Nadel–Tsuji and Bouche, is to show
that the spectral spaces of the Laplacian, corresponding to small eigenvalues, inject in the
spectral spaces of the Laplacian with Dirichlet boundary conditions on a smooth relatively
domain containing the spectrum for the Dirichlet–Laplacian were calculated in Theorem
3.15.

The first particular case we treat is of course the case of compact manifolds. We obtain
then Demailly’s original Morse inequalities and as a corollary the solution of the Grauert–
Riemenschneider conjecture in Section 4.2. In this section we collected background mate-
rial about vanishing theorems, the Kodaira embedding and Moishezon manifolds.

In Section 4.3 we specialize the abstract Morse inequalities to a geometric situation
and we assume that we have a line bundle which is uniformly positive on a complete
hermitian manifold. An immediate consequence is the Nadel–Tsuji cohomology estimate
on complete Kähler manifolds with negative Ricci curvature.

The Morse inequalities for uniformly positive line bundles are applied in Sections 4.3.2
and 4.4 to extend Demailly’s criterion for compact complex spaces with isolated singular-
ities and prove Theorem 1.10 from the Introduction.

We turn next to Zariski open sets in compact complex spaces possesing a singular
hermitian line bundle in the sense of currents. Following Takayama we work on the regular
part of the space and of the curvature current and introduce the generalized Poincaré metric
and change the hermitian metric on the bundle, which implies the fundamental estimate.
We obtain in this way a proof of the Shiffman–Ji–Bonavero criterion.

Finally, Section 4.6 treats the q–convex and weakly 1–complete manifolds. We will
revisit some of these topics in Chapter 7 and treat then from the point of view of Bergman
kernels.

4.1. Abstract Morse inequalities for the L2–cohomology

We shall examine a general situation which permits to prove asymptotic Morse inequal-
ities for the L2–Dolbeault cohomology groups. Let (X ,ω) be a hermitian manifold, (L,hL)
and (F,hF) holomorphic hermitian vector bundles of rankL = 1, rankF = r. We postu-
late a general estimate for the quadratic form of the ∂ –laplacian 2

Fk acting on the bundle
Fk := Lk ⊗F , which implies estimates from above of the spectral function (4.2). Using the
estimate from below of lemma 4.4 we prove in Theorems 4.6 and 4.7 the abstract Morse
inequalities.
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4.1.1. The Fundamental Estimate. We consider the weak maximal extension ∂ Fk :
LLLp,q

2 (X ,Lk ⊗ F) −→ LLLp,q+1
2 (X ,Lk ⊗F), which is a closed densely defined operator with

domain Dom(∂ Fk
) (consisting of elements u such that ∂ Fku calculated in distributional

sense is in L2). We denote by ∂ Fk∗ the Hilbert-space adjoint of ∂ Fk .

4.1. FUNDAMENTAL ESTIMATE. We say that the fundamental estimate holds in bidi-
gree (p,q) for forms with values in Lk ⊗F if there exists a compact K ⊂ X and C > 0 such
that for sufficiently large k we have

‖u‖2 6
C
k

(
‖∂ Fku‖2 +‖∂ Fk∗u‖2)+C

∫

K
|u|2 dvX ,

u ∈ Dom(∂ Fk
)∩Dom(∂ Fk∗

)∩LLLp,q
2 (X ,Lk ⊗F).

(4.1)

K is called the exceptional compact of the estimate.

The estimate (4.1) is of course a variant with parameters of the fundamental estimate
(A.33). It affords to compare the spectral spaces of the laplacian on X and the spectral
spaces of the Dirichlet laplacian 2

Fk
U on a relatively compact domain U containing K.

First, we introduce the functional spaces and operators. We consider the self-adjoint
extension of the ∂ -laplacian given by the Gaffney extension (cf. (A.24)):

Dom(2Fk) :=
{

u ∈ Dom(∂ Fk
)∩Dom(∂ Fk∗

) : ∂ Fku ∈ Dom(D∗) , ∂ Fk∗u ∈ Dom(∂ Fk
)
}

,

2
Fku = ∂ Fk∂ Fk∗u+∂ Fk∗∂ Fku for u ∈ Dom(2Fk) .

(4.2)

The use of the Gaffney extension permits to treat at the same time the case of a com-
plete manifold and the case of a manifold with boundary. In the first case the ∂ -laplacian
is essentially self-adjoint by Corollary A.14 and the Gaffney extension coincides with its
unique self-adjoint extension. If the manifold has non-empty boundary, the Gaffney exten-
sion coincides with the ∂ -Neumann laplacian by Proposition A.22.

We normalize the operator (4.2) by 1
k 2

Fk . According to Proposition A.18 the quadratic
form associated to 1

k 2
Fk is

Qk(u,u) =
1
k

(
‖∂

Fku‖2 +‖∂
Fk∗u‖2

)
, DomQk = Dom(∂

Fk
)∩Dom(∂

Fk∗
) . (4.3)

Let {Eλ (1
k 2

Fk)}λ be the spectral resolution of 1
k 2

Fk and by E (λ , 1
k 2

Fk) = ImEλ (1
k 2

Fk)
the corresponding spectral spaces (compare definition A.28). All these objects decompose
in a direct sum according to the decomposition of forms after bidegree.

Let us fix an open, relatively compact neighbourhood U of K with smooth boundary.
We consider the laplacian with Dirichlet boundary conditions on U (see Example A.16)

associated to ∂
Fkϑ Fk +ϑ FkdbFk , denoted 1

k 2
Fk
U . Let {Eλ (1

k 2
Fk
U )}λ be its spectral resolution

and set:

E (λ , 1
k 2

Fk
U )) = ImEλ (1

k 2
Fk
U )

N•,•(λ , 1
k 2

Fk) = dimE
•,•(λ , 1

k 2
Fk)

N•,•(λ , 1
k 2

Fk
U ) = dimE

•,•(λ , 1
k 2

Fk
U )

(4.4)

One of the tools fo the proof of the Morse inequalities is to estimate N •,•(λ , 1
k 2

Fk)
from above and from below. We do this by a localization procedure as in Section 2.2.2
thanks to a remark of Witten (see [47, p. 666]): the L2 norm of the eigenforms of 1

k 2
Fk
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on (p,q)–forms concentrates asymptotically for k −→ ∞ on the critical set X(q). In the
original setting of classical Morse theory the rôle of the curvature is played by the hessian
of a Morse function f and the eigenforms of the modified laplacian ∆t = (dt +d∗

t )2 where
dt = e−t f det f and t > 0, concentrate near the critical points of f as t −→ ∞. This idea
was introduced in the complex geometry setting by Demailly [12], Nadel-Tsuji [31] and
Bouche [8].

We show now that if the fundamental estimate holds, the essential spectrum of 1
k 2

Fk

does not contain the open interval [0, 1
C0

]. Moreover, we can compare the counting function
on this interval with the counting function of the same operator considered with Dirich-
let boundary conditions on U . For the following compare [31, Proposition 2.1] and [8,
Théorème 2.1].

Consider a smooth function ρ on X , 0 6 ρ 6 1 such that ρ = 1 on K and ρ = 0 on
X rU . Set C1 = sup |dρ|2

4.2. THEOREM. Assume the fundamental estimate (4.1) holds in bidegree (p,q). Then

(1) 1
k 2

Fk on Lp,q
2 (X ,Lk ⊗F), has discrete spectrum in [0,1/C0] for large k.

(2) There exists a constant C2 depending only on C0 and C1 such that for λ < 1/(2C0)
the maps

E
p,q(λ , 1

k 2
Fk) −→ E

p,q(3C0λ +C2k−1, 1
k 2

Fk
U )

u −→ E3C0λ+C2k−1(1
k 2

Fk
U )(ρu)

(4.5)

are injective for k sufficiently large. In particular

N p,q(λ , 1
k 2

Fk) 6 N p,q(3C0λ +C2k−1, 1
k 2

Fk
U ) , λ < 1/(2C0) , k � 1 (4.6)

PROOF. (1) By the decomposition principle A.32, 1
k 2

Fk has the same essential spec-

trum as the Dirichlet laplacian 1
k 2

Fk
XrU , where U is a compact manifold with boundary

containing K. Let Qk,MrU be the associated Dirichlet form.
The fundamental estimate (4.1) shows then that Qk,XrU(u) > 1

C0
‖u‖2, u ∈ Dom(Qk,MrU ),

since Dom(Qk,MrU) ⊂ Dom(Qk). It follows that 1
k 2

Fk
U has no essential spectrum in [0, 1

C0
]

and 1
k 2

Fk has the same property.
(2) We need the following elementary estimate.

4.3. LEMMA. Let 0 6 ρ 6 1 be a smooth function with bounded gradient. Then

‖∂ Fk
(ρu)‖2 +‖∂ Fk∗

(ρu)‖2 6
3
2
(‖∂ Fku‖2 +‖∂ Fk∗u‖2)+6sup |dρ|2 · ‖u‖2 (4.7)

for all u ∈ Dom(∂ Fk
)∩Dom(∂ Fk∗

).

PROOF. By Leibniz formula

‖∂ Fk
(ρu)‖2 +‖∂ Fk∗

(ρu)‖2 = ‖ρ∂ Fku+∂ρ ∧u‖2 +‖ρ∂ Fk∗u+ i(∂ρ)u‖2

Using the inequality (x + y)2 6 3
2x2 + 3y2 together with the triangle inequality we obtain

(4.7). �

Let u ∈ E p,q(λ , 1
k 2

Fk), λ < 1/(2C0). Then ‖∂
Fku‖2 + ‖∂

Fk∗u‖2 6 λk‖u‖2. Plugging
this in the relation (4.1) we get

‖u‖2 6 2C0

∫

K
|u|2 dvX (4.8)
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Moreover by (4.7) we have

Qk,U(ρu,ρu) 6
3
2

Qk(u)+
6C1

k
‖u‖2

6
(3

2
λ +

6C1

k

)
‖u‖2

6
(3

2
λ +

6C1

k

)
·2C0

∫

K
|u|2 dvX

6
(
3C0λ +

12C0C1

k

)∫

U
|u|2 dvX .

(4.9)

We set C2 = 12C0C1. The inequality (4.9) shows that ρu ∈ E p,q(3C0λ +C2k−1, 1
k 2

Fk
U and

if E3C0λ+C2k−1(1
k 2

Fk
U )(ρu) = 0 implies ρu = 0. Since ρ = 1 on K, it follows u = 0 on K

and by (4.8) we infer u = 0. Thus (4.5) is injective. �

As for a lower bound of the counting function N p,q(λ , 1
k 2

Fk) we have a general result
which does not depend on the fundamental estimate.

4.4. LEMMA. The following estimate from below holds:

N p,q(λ , 1
k 2

Fk) > N p,q(λ , 1
k 2

Fk
U ) . (4.10)

PROOF. This is an immediate consequence of the Glazman’s lemma A.29. Let P be
a self-adjoint positive operator on a Hilbert space H . Then the spectrum distribution
function N(λ ,P) := dimImEλ (P) satisfies:

N(λ ,P) = sup
{

dimV |V closed ⊂ Dom(Q), Q( f , f ) 6 λ‖ f‖2, ∀ f ∈V
}

(4.11)

where Q is the quadratic form of P. The Lemma follows by the variational principle and
the simple remark that Dom(Qk) ⊃ Dom(Qk,U). Indeed, let us denote by λ0 6 λ1 6 . . .

the spectrum of 1
k 2

Fk
U acting on (p,q)–forms. Let {ei}i be an orthonormal basis which

consists of eigenforms corresponding to the eigenvalues {λi}i ; if we let ẽi = 0 on X rU
and ẽi = ei on U , ẽi ∈ Dom(Qk) and Qk(ẽi, ẽ j) = δi, jλi. Let Φ0

λ be the subspace spanned
by {ei : λi 6 λ} in LLLp,q

2 (U,Lk ⊗F) and Φλ the closed subspace spanned by {ẽi : λi 6 λ}
in LLLp,q

2 (X ,Lk ⊗F). Then dimΦλ = dimΦ0
λ = N(λ , 1

k 2
Fk
U ) . If f is a linear combination

of {ẽi : λi 6 λ}, Qk( f , f ) 6 λ‖ f‖2 and, as Dom(Qk) is complete in the graph norm, we
obtain Φλ ⊂ Dom(Qk) and Qk( f , f ) 6 λ‖ f‖2, f ∈ Φλ . The variational principle implies
now the Lemma. �

4.1.2. Estimate of the cohomology in bidigree (0,0) and (n,0). In the sequel we
study the L2 cohomology in bidegree (p,0) where p = 0 and p = n = dimX . In the next
subsection we will study the general Morse inequalities, but given their importance we
prefer to treat this case separately. Our assumption is that the fundamental estimate holds
in bidigree (p,1). We set

H p,0
(2)

(X ,Lk ⊗F) = {u ∈ LLLp,0
2 (X ,Lk ⊗F) : ∂ Fku = 0} , (4.12)

is the space of (p,0)–forms with values in Lk ⊗F which are L2 with respect to ω , hL and
hE .

We start with a lemma which gives a lower bound of dimH p,0
(2)

(M,Lk ⊗F).



4.1. ABSTRACT MORSE INEQUALITIES FOR THE L2–COHOMOLOGY 57

4.5. LEMMA. Asssume that the fundamental estimate holds in bidigree (p,1). For
λ < 1/(2C0) and sufficiently large k we have

dimH p,0
(2)

(X ,Lk ⊗F) > N p,0(λ , 1
k 2

Fk)−N p,1(λ , 1
k 2

Fk) . (4.13)

PROOF. Since 2
Fk commutes with ∂ Fk it follows that the spectral projections of 1

k 2
Fk

commute with ∂ Fk too, showing thus ∂ Fk
E p,0(λ , 1

k 2
Fk) ⊂ E p,1(λ , 1

k 2
Fk) and therefore

we have the bounded operator ∂
Fk
λ : E p,0(λ , 1

k 2
Fk) −→ E p,1(λ , 1

k 2
Fk) where ∂

Fk
λ denotes

the restriction of ∂ (by the definition of E p,0(λ , 1
k 2

Fk), ∂ Fk
λ is bounded by

√
kλ ). Thus

N p,0(λ , 1
k 2

Fk) = dimker∂ Fk
λ +dimIm∂ Fk

λ . By Theorem 4.2, N p,1(λ , 1
k 2

Fk) is finite dimen-

sional. Obviously dimIm∂ Fk
λ 6 N1(λ , 1

k 2
Fk) and Ker∂ Fk

λ = H p,0
(2)

(M,Lk ⊗F) whereby the
desired inequality. �

Note that both sides of (4.13) may be infinite. This happens if dimH p,0(X ,Lk ⊗F) = ∞.

4.6. THEOREM. Let (X ,ω) be an n–dimensional complete hermitian manifold such
that the fundamental estimate holds in bidigree (p,1). Let U be any open set with smooth
boundary, K b U b X. Then, for k −→ ∞,

dimH p,0
(2) (X ,Lk ⊗F) >

kn

n!

∫

U(61,hL)

(√
−1

2π RL
)n

+o(kn) , (4.14)

where U(6 1,h) is the subset of U where
√
−1RL) is non–degenerate and has at most one

negative eigenvalue.

PROOF. Let us consider λ < 1/(2C0) and δ > 0. For k > C2/δ we have

N p,1(3C0λ +C2k−1, 1
k 2

Fk
U ) 6 N p,1(3C0λ +δ , 1

k 2
Fk
U ) (4.15)

The asymptotic of the left–hand side is computed in Theorem 3.15. By (4.6), (4.15) and
(3.84b)

limsup
k−→∞

k−nN p,1(λ , 1
k 2

Fk) 6 limsup
k−→∞

k−nN p,1(3C0λ +δ , 1
k 2

Fk
U )

6 (rankF)

∫

U
ν 1

ω(3C0λ +δ )dvX

(4.16)

Since ν 1
ω is right–continuous in λ and bounded on U , we can use the Lebesgue dominated

convergence theorem to let δ −→ 0 Hence

limsup
k−→∞

k−nN1(λ , 1
k 2

Fk) 6 (rankF)

∫

U
ν 1

ω(3C0λ )dvX = I1(U,3C0λ ) (4.17)

On the other hand, by (4.10) and (3.85) we obtain for λ 6∈ D0

liminf
k−→∞

k−nN p,0(λ , 1
k 2

Fk) > liminf
k−→∞

k−nN p,0(λ , 1
k 2

Fk
U ) = I0(U,λ ) (4.18)

The estimates (4.16), (4.18) and (4.13) imply

liminf
k−→∞

k−n dimH p,0
(2)

(X ,Lk ⊗F) > I0(U,λ )− I1(U,3C0λ ) .

for λ 6∈D0. By passing to the limit λ → 0 through values λ 6∈D 0 we obtain (4.14) invoking
(3.87). �
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4.1.3. Estimates for the cohomology in arbitrary degree. We study now the general
Morse inequalities for cohomology groups in arbitrary bidegree.

4.7. THEOREM. Let X be an n-dimensional hermitian manifold and (L,hL) , (F,hF) be
holomorphic hermitian bundles over X of rank1 and r, respectively.

(i ) Assume that there exists an integer 0 6 m 6 n such that the fundamental esti-
mate holds for (p,q)–forms with q > m. Let U be a relatively compact open set
with smooth boundary such that K b U. As k −→ ∞, the following strong Morse
inequalities hold for every q > m:

n

∑
j=q

(−1) j−q dimH p, j
(2)

(X ,Lk ⊗F) 6 r

(
n
p

)
kn

n!

∫

U(>q)
(−1)q

(√
−1

2π RL
)n

+o(kn) (4.19)

In particular, we get the weak Morse inequalities:

dimHq
(2)(X ,Lk ⊗F) 6 r

(
n
p

)
kn

n!

∫

U(q)

(√
−1

2π RL
)n

+o(kn). (4.20)

(ii ) Assume that there exists an integer 0 6 m 6 n such that the fundamental esti-
mate holds for (p,q)–forms with q 6 m. Let U be a relatively compact open set
with smooth boundary such that K b U. As k −→ ∞, the following strong Morse
inequalities hold for every q 6 m:

q

∑
j=0

(−1)q− j dimH p, j
(2)

(X ,Lk ⊗F) 6 r

(
n
p

)
kn

n!

∫

U(6q)
(−1)q

(√
−1

2π RL
)n

+o(kn) (4.21)

In particular, we get the weak Morse inequalities:

dimHq
(2)

(X ,Lk ⊗F) 6 r

(
n
p

)
kn

n!

∫

U(q)

(√
−1

2π RL
)n

+o(kn). (4.22)

For the proof we use the same steps as for compact manifolds.

Hodge theory for the L2–Dolbeault complex. Let
(

Dom(∂ Fk
)∩LLLp,•

2 (X ,Lk ⊗F),∂ Fk)

be the ∂ –complex of densely defined closed operators, shortly (LLLp,•
2 (X ,Lk ⊗F),∂

Fk
). Let

E
p,•(λ , 1

k 2
Fk) = ImEλ

(1
k 2

Fk
)
∩LLL2(X ,Lk ⊗F) .

Since ∂
Fk commutes to 1

k 2
Fk , it commutes to the spectral projections i.e.

∂ FkEλ
(

1
k 2

Fk
)

= Eλ
(

1
k 2

Fk
)
∂ Fk

.

We obtain therefore a subcomplex
(
E

p,•(λ , 1
k 2

Fk
)
,∂ Fk

)
↪−→

(
Dom(∂ Fk

)∩LLLp,•
2 (X ,Lk ⊗F),∂ Fk

)
(4.23)

The cohomology of this complex is denoted by H
•
(
E p,•

(
λ , 1

k 2
Fk
)
,∂ Fk

)
.

4.8. PROPOSITION. Let λ > 0. If the fundamental estimate holds for q > m (resp.
q 6 m),

Hq
(
E

p,•(λ , 1
k 2

Fk
))∼= H

p,q(X ,Lk ⊗F) ∼= H p,q
(2)

(X ,Lk ⊗F)

for q > m (resp. q 6 m).
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PROOF. By Theorem A.26 the strong Hodge decomposition holds in bidigrees (p,q),
q > m. Let us restrict the Hodge decomposition to the complex (4.23):

E
p,q(λ , 1

k 2
Fk
)

= H
p,q(X ,Lk ⊗F)⊕

(
Im(∂

Fk
)∩E

p,q(λ , 1
k 2

Fk)
)

⊕
(

Im(∂
Fk∗

)∩E
p,q(λ , 1

k 2
Fk
))

.

Due to the commutation of ∂ Fk to the spectral projections we see that

Im(∂ Fk
)∩E

p,q(λ , 1
k 2

Fk
)

= Im(∂ Fk � E
p,q(λ , 1

k 2
Fk)) .

On the other hand ∂ Fk∗ commutes to the spectral projections too, so we easily obtain

Im(∂
Fk∗

)∩E p,q
(
λ , 1

k 2
Fk
)

= Im(∂
Fk∗ � E p,q

(
λ , 1

k 2
Fk
)
). Therefore

E
p,q(λ , 1

k 2
Fk
)

= H
p,q(X ,Lk ⊗F)⊕ Im

(
∂ Fk � E

p,q(λ , 1
k 2

Fk
))

⊕ Im
(

∂ Fk∗ � E
p,q(λ , 1

k 2
Fk
))

,

and

Ker(∂ Fk � E
p,q(λ , 1

k 2
Fk
)
) = H

p,q(X ,Lk ⊗F)⊕ Im
(

∂ Fk � E
p,q(λ , 1

k 2
Fk
))

It follows that Hq
(
E p,•

(
λ , 1

k 2
Fk
))∼= H p,q(X ,Lk ⊗F). By Theorem A.26, we have also

H
p,q(X ,Lk ⊗F) ∼= H p,q

(2)
(X ,Lk ⊗F).

which finishes the proof. �

Algebraic Morse Inequalities. We also need a variant of the algebraic lemma 2.7.

4.9. LEMMA. Let

0 −→V 0 d0

−−−→ V 1 d1

−−−→ . . .
dn−1

−−−→ V n −→ 0

be a complex of vector spaces. Set dimDq = cq and hq = dimHq(V 0).

(i ) If cq < ∞ for q > m, we have
n

∑
j=q

(−1) j−qh j 6
n

∑
j=q

(−1) j−qc j , forq > m.

(ii ) If cq < ∞ for q 6 m, we have
q

∑
j=0

(−1)q− jh j 6
q

∑
j=0

(−1)q− jc j , forq 6 m.

PROOF. Set z j = dimKerd j , r j = dimImd j. Then c j = z j + r j , h j = z j − r j−1 and
∑n

j=q(−1) j−qh j = −rq−1 + ∑n
j=q(−1) j−qc j and ∑q

j=0(−1)q− jh j = rq + ∑q
j=0(−1)q− jc j.

Now the proof follows in the same way as the proof of Lemma 2.7. �

PROOF OF THE THEOREM 4.7. We prove only part (i) since (ii) is similar. Lemma 4.9
applied to the complex (4.23) delivers

n

∑
j=q

(−1) j−q dimH j
(
E

p,•(λ , 1
k 2

Fk
))

6
n

∑
j=q

(−1) j−qN j(λ , 1
k 2

Fk
)
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Proposition 4.8, Theorem4.2 and (4.10) show then
n

∑
j=q

(−1) j−q dimH j
(2)

(X ,Lk ⊗F) 6
n

∑
j=q

(−1) j−qN j(λ ( j−q), 1
k 2

Fk
U )

where λ (l) = λ for l even, λ (l) = 3C0λ +C2k−1 for all l odd. By proceeding as in the
proof of Theorem 4.6 to obtain

n

∑
j=q

(−1) j−q dimH j
(2)(X ,Lk ⊗F) 6 kn

n

∑
j=q

(−1) j−qI j(U,0)+o(kn)

where I j(U,0) is given in (3.87). �

Let us note that if X is compact, the hypothesis of Theorem 4.7 (ii) are trivially satisfied
for m = n, so that the following original holomorphic Morse inequalities is a special case of
Theorem 4.7. Indeed, the L2–cohomology is in this case isomorphic to the usual Dolbeault
cohomology by (A.40).

4.10. THEOREM (Demailly). Let X be a compact manifold and L, F holomorphic line
bundles, rankL = 1, rankF = r. As k → ∞, the following strong Morse inequalities hold
for every q = 0,1, . . .,n:

q

∑
j=0

(−1)q− j dimH j(X ,Lk ⊗F) 6 r
kn

n!

∫

X(6q)
(−1)q

(√
−1

2π RL
)n

+o(kn) . (4.24)

with equality for q = n (asymptotic Riemann-Roch formula).
In particular, we get the weak Morse inequalities

dimHq(X ,Lk ⊗F) 6
kn

n!

∫

X(q)

(√
−1

2π RL
)n

+o(kn). (4.25)

4.11. REMARK. In the compact case we can give a direct proof using the asymptotic
of the heat kernel, following [5, 13]. Set hq

k = dimHq(X ,Lk ⊗F). Then for every t > 0

hq
k −hq−1

k + · · ·+(−1)qh0
k 6

q

∑
l=0

(−1)q−l
+∞

∑
j=1

e−tλ k,l
j .

where λ k,l
j , j = 0,1, . . . is the spectrum of 2

Fk acting on Ω0,l(X). The left hand side is the
contribution of the 0 eigenvalues in the right hand side. All we have to check is that the
contribution of the other eigenvalues is > 0. The contribution of the eigenvalues such that
λ k,l

j = λ > 0 is

e−tλ
q

∑
l=0

(−1)q−l dimE
0,l(λ , 1

k 2
Fk). (4.26)

As E 0,•(λ , 1
k 2

Fk) has trivial cohomology if λ > 0, one easily sees that the sum (4.26) is
equal to the dimension of ∂E 0,q(λ , 1

k 2
Fk) ⊂ E 0,q+1(λ , 1

k 2
Fk), hence > 0. By Theorem

3.12 we have

hq
k −hq−1

k + · · ·+(−1)qh0
k 6 rkn

q

∑
l=0

(−1)q−l ∑
|J|=l

∫

X

∏ j6s |α j| · et(α{J−αJ−∑ |α j|)

22n−sπntn−s ∏ j6s(1− e−2t|α j|)
+o(kn).

as k → ∞, uniformly with respect to t ∈ [t0,kε ], for any t0 > 0. We let t = kε tend to +∞.
It is clear that α{J −αJ −∑ |α j| is always 6 0, thus the integrand tends to 0 at every point
where s < n. When s = n, we have α{J(x)−αJ(x)−∑ |α j(x)| = 0 if and only if α j(x) > 0
for every j ∈ {J and α j(x) < 0 for every j ∈ J. This implies x ∈ X(l,E); in this case there
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is only one multi–index J satisfying the above conditions and the limit is (2π)−n|α1 · · ·αn|.
By the monotone convergence theorem, our sum of integrals converges to

q

∑
l=0

(−1)q−l
∫

X(l,E)
(2π)−n|α1 · · ·αn|dvX =

1
n!

∫

X(6q,L)
(−1)q(√−1

2π RL)n
.

4.12. COROLLARY. In the same situation

dimH0(X ,Lk ⊗F) >
kn

n!

∫

X(61)

(√
−1

2π RL
)n

+o(kn). (4.27)

It follows that if (L,hL) satisfies
∫

X(61)

(√
−1

2π RL
)n

> 0 , (4.28)

there exists C > 0 and k0 such that we have

dimH0(X ,Lk ⊗F) > Ckn , k > k0 . (4.29)

4.2. The Grauert–Riemenschneider Criterion

In this section we will prove the Kodaira embedding theorem in order to explain the
context and the terminology of the Grauert–Riemenschneider criterion. Then we show the
connection between existence of meromorphic functions and the growth of the dimension
of the space of holomorphic sections of a line bundle.

For the basic definitions of positivity and complex projective spaces we refer to Ap-
pendix B.4.

4.2.1. Some vanishing theorems. We start by recalling three important vanishing the-
orems.

4.13. KODAIRA VANISHING THEOREM. Let X be a compact manifold and let (L,hL)
be a holomorphic hermitian line bundle of positive curvature. Then

( i ) (coarse vanishing) For any (E,hE) holomorphic hermitian vector bundle
(E,hE) over X, H p(X ,O(Lk ⊗E)) = 0 for p > 1 and k sufficiently large.

( ii ) (precise vanishing) H p(X ,O(L⊗KX)) = 0 for p > 1.

PROOF. (i) By applying the Bochner–Kodaira–Nakano formula as in (3.62) (or (B.25)
with void boundary) we have

(2Lk⊗Eu,u) > k([
√
−1RL,Λ]ũ, ũ)+([

√
−1(Rdet +RE),Λ]ũ, ũ)

for any u ∈ Ω0,p(X ,Lk ⊗E) , p > 1, where

:̃ Λ0,pT ∗X ⊗Lk ⊗E −→ Λn,pT ∗X ⊗ (Lk ⊗E ⊗ΛnT X)

is the natural isometry. We have to pass to the (n, p)-form ũ since the curvature term in the
Bochner–Kodaira–Nakano formula (3.70) does not permit to exploit directly the positivity
of the curvature for (0, p)-forms. We choose now the metric ω =

√
−1RL and then, from

(3.70),
([
√
−1RL,Λ]ũ, ũ) > kp‖ũ‖2 = kp‖u‖2 . (4.30)

Therefore (2Lk⊗Eu,u) > (kp−C)‖u‖2, for some C > 0 depending on the Ricci curvature
of ω and RE on X . As a consequence any harmonic form u ∈ H 0,p(X ,Lk) vanishes for
k > C/p. By Hodge theory we obtain H p(X ,O(Lk⊗E)) = 0 for p > 1 and k large enough.

(ii) is straightforward since we apply the Bochner-Kodaira-Nakano formula directly for
(n, p)-forms and we obtain (4.30). �
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We quote now Grauert’s generalization of Kodaira’s theorem. It is remarkable not only
for the fact that it treats the singular case, but also for the beautiful method. It reduces a
problem about the cohomology of the base manifold to a problem about the disc bundle of
L∗, the so called Grauert tube. For all definitions we refer to Appendix B.

4.14. GRAUERT VANISHING THEOREM. Let X be a compact complex space and
let L be a Grauert–positive line bundle. Then for any coherent analytic sheaf F on
X , Hq(X ,O(Lk)⊗F ) = 0 for q > 1 and k sufficiently large.

PROOF. The proof uses Grauert’s solution of the Levi problem for the Grauert tube
T ⊂ L∗ (see (B.28)), more precisely the finiteness property dimHq(T,F̃ ) < ∞, q > 1, for
all coherent analytic sheaves F̃ on T .

Let F be a coherent analytic sheaf on X and denote π : T −→ X the natural projection.
We have then an injective map

⊕

k>0

Hq(X ,F ⊗O(Lk)) −→ Hq(T,π∗
F ) (4.31)

It s is a section of Lk, we obtain a function on T by setting σ(v) = v⊗k(s(x)), where
v ∈ L∗, π(v) = x.

The restriction of σ to the fiber L∗
x is a homogeneous function of order k on Lx. This

construction carried at cohomology level gives rise to (4.31). It follows that Hq(X ,F ⊗
O(Lk)) = 0 for q > 1 and k large. �

We recall now the standard L2 existence theorem of Hörmander–Andreotti–Vesentini.

4.15. THEOREM (Hörmander-Andreotti-Vesentini). Let (X ,ω) be a complete Kähler
manifold of dimension n and let (L,hL) be a positive line bundle. Let γ1 6 . . . 6 γn be
the eigenvalues of

√
−1RL with respect to ω . Then for any form f ∈ Ln,q

2 (X ,L) satisfying

∂ L
f = 0 and

∫
X(γ1 + . . .+γq)

−1| f |2 dvX < ∞ there exists u∈ Ln,q−1
2 (X ,L) such that ∂ L

u = f
and ∫

X
|u|2 dvX 6

∫

X
(γ1 + . . .+ γq)

−1| f |2 dvX .

In the seminal works of Bombieri [6] and Skoda [42] it has been observed that the
above theorem still applies if hL is singular. We recall first the terminology abourt currents
and singular hermitian metrics [14, 17]. Let X be a complex manifold. we denote by
Ωp,q(X) the space of (p,q)–forms, endowed with the C ∞–topology. A (1,1)–current on X
is a continous linear functional T : Ωn−1,n−1(X) −→ C. The current T is called:

◦ closed, if T (dα) = 0, for any smooth form α with dα ∈ Ωn−1,n−1(X).
◦ real, if T = T , i.e., T (ϕ) = T (ϕ), for any α ∈ Ωn−1,n−1(X).

◦ positive, if
(√

−1
)(n−1)2

T (β ∧β ) > 0, for any β ∈ Ωn−1,0(X).
◦ strictly positive, if there exists a hermitian metric on X whose associated (1,1)–

form ω has the property that T −ω is positive.
◦ Kähler, if it is closed and strictly positive.
◦ integral, if it is closed and its cohomology class {T} ∈ H2(X ,R) lies in the image

of H2(X ,Z), under the natural map.

Let X be compact complex manifold and let L be a holomorphic line bundle over X . A
singular hermitian metric hL on L is a choice of a sesquilinear, hermitian–symmetric form
hL

x on each fiber Lx, such that, in any trivialization ϑ : L �U−→U ×C, we have hL
x (v,v) =

|ϑ(v)|2 exp(−ϕϑ (x)), v ∈ Lx, x ∈U , with ϕϑ ∈ L1(U, loc). If ϕϑ ∈ C ∞(U), we obtain the



4.2. THE GRAUERT–RIEMENSCHNEIDER CRITERION 63

usual definition of a hermitian metric. Another way to define a singular hermitian metric
hL is to give a smooth hermitian metric hL

D and a function ϕ ∈ L1
loc(X ,R) and then set

hL = hL
0e−ϕ .

As in the smooth case, the local (1,1)–currents
√
−1∂∂ ϕϑ patch together to give a

global (1,1)– current
√
−1R(L,hL), called the curvature current of (L,hL).

√
−1R(L,hL) is

obviously a closed and integral, representing the Chern class of L. If hL = hL
0e−ϕ the

curvature current is R(L,hL) = R(L,hL
0) +∂∂ ϕ (and it does not depend on the choice of hL and

ϕ such that hL = hL
0e−ϕ ).

4.16. THEOREM (Hörmander-Bombieri-Skoda). Let (X ,ω) be a complete Kähler ma-
nifold, dimX = n, and let (L,hL) be a singular hermitian line bundle such that

√
−1RL >

εω in the sense of currents, for some constant ε > 0. Then for any form f ∈ Ln,q
2 (X ,L)

satisfying ∂ L
f = 0 there exists u ∈ Ln,q

2 (X ,L) such that ∂ 2
f = 0 and

∫

X
|u|2hL 6

1
qε

∫

X
| f |2hL dvX .

The multiplier ideal sheaf I (hL) of a singular metric hL = hL
0e−ϕ is defined by

I (hL)(U) = { f ∈ OX(U) : | f |2e−ϕ ∈ L1(U ; loc)}

A basic result of Nadel [30] says that I (hL) is a coherent analytic sheaf if the curvature
current

√
−1RL is positive.

4.17. NADEL VANISHING THEOREM ([30], [16]). Let (X ,ω) be a compact Kähler
manifold and let (L,hL) be a singular hermitian line bundle such that

√
−1RL > εω in the

sense of currents, for some constant ε > 0.
Then Hq(X ,O(L⊗KX)⊗I (hL)) = 0 for q > 1.

4.2.2. The Kodaira embedding theorem. Let us introduce some piece of terminol-
ogy. Let X be a complex manifold and L be a holomorphic line bundle. We consider the
graded ring

A (X ,L) = ⊕k>0H0(X ,O(Lk)) (4.32)

of a holomorphic sections of the tensor powers of L (here L0 is the trivial line bundle).
(a) We say that A (X ,L) separates two points x 6= y in X , there exists k(x,y) = k > 0 and

sections s, t ∈ H0(X ,O(Lk)) such that s(x) = 0, s(y) 6= 0 and t(y) = 0, t(x) 6= 0. A (X ,L)
separates points on a set W if it separates all pairs (x,y) with x 6= y. This means that the
meromorphic function s/t takes different values at x and y.

(b) We say that A (X ,L) gives local coordinates at a point x ∈ X , if there exists k =
k(x)> 0 and sections s0, . . . ,sn ∈H0(X ,O(Lk)) such that s0(x) 6= 0 and d( s1

s0
)∧. . .∧d( sn

s0
) 6=

0 at x. In other words, the meromorphic functions s1
s0

, . . . , sn
s0

are holomorphic at x and
provide local coordinates.

Let us interpret these notions with the help of the Kodaira map (1.5). Let {s1, . . . ,sdk}
be a basis of H0(X ,O(Lk)) which induces an identification

H0(X ,O(Lk)) ∼= H0(X ,O(Lk))∗ ∼= Cdk and PH0(X ,O(Lk))∗ ∼= CPdk−1 .
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The base locus Blk of H0(X ,O(Lk)) is the set of points of X where all sections of
H0(X ,O(Lk)) vanish. We define Φ̃k by means of the following commutative diagramm.

X r Blk
Φk−−−→ PH0(X ,O(Lk))∗yId

y∼=

X r Blk
Φ̃k−−−→ CPdk−1

Let us choose a local holomorphic frame eL of L in the neighbourhood of x and set si =
fie

⊗k
L , for some (local) holomorphic functions fi. We check then that

Φ̃k(x) = [ f1(x); . . . ; fdk(x)]

and this does not depend on the choice of eL. We can also write Φ̃k(x) = [s1(x); . . . ;sdk(x)]
keeping in mind that the quotient of two sections is a meromorphic function.

Now, (a) is equivalent to the existence of k = k(x,y)> 0 such that Φk(x) 6= Φk(y) and (b)
to the existence of k = k(x) > 0 such that Φk is an immersion at x i.e. rankΦk(x) = dimX =
n. (Note that a set of sections satisfying (b) are linearly independent and can be completed
to a basis of H0(X ,O(Lk)).) We say that a bundle L is very ample if H0(X ,O(L)) is base
point free and the Kodaira map Φ1 is an embedding. The bundle L is called ample if there
exists k0 such that Lk is very ample for k > k0.

We want to find a sufficient conditions for A (X ,L) to separate points and to give local
coordinates. We say that A (X ,L) spans m-jets on a finite set {x1, . . . ,xN} if there exists k
such that the map

H0(X ,O(Lk)) −→⊕Lk
x j
⊗OX ,x j/M

m+1
x j

(4.33)

which sends a section to its m-jet at {x1, . . . ,xN} is onto. Of course, if A (X ,L) spans m-jets
(m > 1) on finite sets of X , A (X ,L) separates points and gives local coordinates on X . On
the other hand, a sufficient condition for (4.33) to hold is the vanishing of the cohomology
group

H1(X ,O(Lk)⊗I
m+1

x1
⊗·· ·⊗I

m+1
xN

), (4.34)

where I m+1
xi

is the ideal sheaf of holomorphic functions vanishing up to order m+1 at xi.

4.18. KODAIRA EMBEDDING THEOREM. Let X be a compact complex manifold and
L be a holomorphic line bundle. Then L is ample if and only if L admits a hermitian metric
of positive curvature.

PROOF. The approach of Kodaira is to use the harmonic theory in order to obtain the
vanishing of the sheaf cohomology group (4.34). For this purpose we blow-up the sheaves
and transform them into free sheaves of sections in a holomorphic vector bundle. Let
x 6= y ∈ X . We blow up the points x and y and denote by π : X̃ −→ X the blow up and D
the exceptional divisor. Let π∗ : H0(X ,O(Lk)) → H0(D,O(π∗Lk) be the pull-back map,
which is surjective by the Hartogs extension theorem. We notice that π ∗Lk is trivial on
the exeptional divisor and π∗ : H0(D,OD(π∗Lk))

∼−→ Lk
x ⊗Lk

y. We have the commutative
diagramm

H0(X ,O(Lk))
rk
x,y−−−→ Lk

x ⊕Lk
yyπ∗

yπ∗

H0(X̃ ,O(π∗Lk))
r̃kx,y−−−→ H0(D,OD(π∗Lk))



4.2. THE GRAUERT–RIEMENSCHNEIDER CRITERION 65

and the exact sheaf sequence

0 −→ O(π∗Lk ⊗ [D]−1) −→ O(π∗Lk) −→ OD(π∗Lk) −→ 0

whose associated exact cohomology sequence shows that the map r̃k
x,y (and thus rk

x,y) is

surjective if H1(X̃ ,O(π∗Lk ⊗ [D]−1)) vanishes. From Theorem 4.13 we know that this is
the case for k > k(x,y). Here k(x,y) depends on the curvature of the exceptional divisor
[D] and the Ricci curvature of X̃ . Note that KX̃ = π∗KX ⊗ [D]n−1. We can see therefore
that we can choose k(x′,y′) = k(x,y) for (x′,y′) in the neighbourhood of (x,y). Taking into
account the compactness of X we can choose k0 such that rk

x,y is surjective for all x 6= y if
k > k0. It follows that Φk is well defined on X and injective for k > k0. In a similar manner
we show that there exists k1 such that the restriction map H0(X ,O(Lk)) → Lk

x ⊗OX ,x/M 2
x

is surjective for all k > k1 and all x ∈ X . Therefore Φk is regular on X for k > k1. This
implies that Lk is very ample for all k > max{k0,k1}.

Using the Nadel vanishing theorem we obtain directly the vanishing of the sheaf co-
homology (4.34). Namely consider the singular metric hLe−ϕ , where ϕ is smooth on X r
{x,y} (resp. on X r{x}) and equals n log |z−x|2 and n log |z−y|2 (resp. (n+1) log |z−x|2)
in a neighbourhood of x and y (resp. x). Then I (hLe−ϕ) = Ix,y (resp. I 2

x ). �

4.19. REMARK. By using the curvature definition of the positivity we were able to
show that the bounds k(x,y) and k(x) are uniform in some neighbourhood of (x,y) and
x. So we obtain that all the maps Φk are embeddings for k > k0. If we use the Grauert
approach we obtain the following

(i) the ring A (X ,L) of a positive line bundle gives local coordinates and separates
points.

From this we infer that
(ii) Φk is an embedding for some k. We have thus:

4.20. GRAUERT EMBEDDING THEOREM ([19, Satz 2]). Let X be a compact complex
space and L → X a Grauert positive line bundle. Then X is projective algebraic.

Let us also note that the results of this section can be easily generalized by twisting the
powers of L with an arbitrary holomorphic vector bundle E over X . We then consider the
graded vector space ⊕k>0H0(X ,Lk ⊗E). If L is positive,

H0(X ,O(Lk ⊗E)) −→⊕Lk
x j
⊗E ⊗OX ,x j/M

m+1
x j

(4.35)

is surjective for large k. We denote dk = dimH0(X ,Lk ⊗E). Then the Kodaira map Φk :
X −→ G(dk,dk − rank(E)) which associates to each point x the dk − rank(E) dimensional
of sections from H0(X ,Lk ⊗E) which vanish at x, is well defined and an embedding for k
sufficiently large.

4.2.3. Algebraic dependence and Moishezon spaces. Let X be a complex space and
f1, . . . , fk meromorphic functions on X . We say that these functions are algebraically de-
pendent, if there exists a non–trivial polynomial P∈C[z1, . . . ,zk] such that P( f1, . . . , fk) = 0
wherever it is defined.

Let us denote by a(X) the transcendence degree of M (X) over C and call it the alge-
braic dimension of X . We have the following fundamental result of Siegel:

4.21. SIEGEL-THIMM-REMMERT THEOREM. Let X be a compact complex space.
Then the field of meromorphic functions M (X) is an algebraic field of transcendence de-
gree a(X) 6 dimC X.
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This theorem has a long and rich history, detailed in [39] and [34]. In the case of com-
plex tori the result was communicated in 1860 by Riemman to Hermite and it was stated
by Weierstrass in 1869. There were many attempts to generalize the result to the case of
several variables which failed due to the incomplete understanding of the indeterminacies
of meromorphic functions. The first complete proofs were given by Thimm [46] and Siegel
[38] in some special cases. Thimm follows Weierstrass original idea and gives a proof in
the case of a complex space X with dimX independent meromorphic functions. Siegel
uses an ansatz of Poincaré and considers quotients of holomorphy domains in Cn. In the
case of manifolds he gives an elementary proof based on the Schwarz lemma. The general
theorem, without any hypotesis on the number of independent meromorphic functions was
stated by Chow and proved by Remmert [34]. Finally, Andreotti extends Siegel’s method
to pseudoconcave complex spaces [1]. A generalization for CR manifolds has recently
been given by C. Denson–Hill and M. Nacinovich [22]. It is course hard to assign names
to this theorem whitout exceeding four or five authors. In [18] it is called theorem of
Weierstrass–Siegel–Thimm.

PROOF OF SIEGEL–THIMM–REMMERT THEOREM. For the proof we refer to the pa-
pers cited above. It is based on the fact that on a compact complex space analytic depen-
dence and algebraic dependece of meromorphic functions coincide. We want here only to
justify that a(X) 6 n, where n = dimX . Since X is bimeromorphic to a smooth manifold
by the desingularization theorem of Hironaka, we are entitled to assume X smooth.

The proof exploits the relations between the existence of independent meromorphic
functions and the growth of the spaces of holomorphic sections in holomorphic line bun-
dles.

Let L be a holomorphic line bundle over a compact complex manifold X of dimension
n. For the proof of Siegel’s theorem we need only to show that there exists C > 0 such
that dimH0(X ,Lk) 6 Ckn, for all k > 0. For other applications we shall prove a sharper
statement. Let us denote by ρk the maximal rank of Φk on X . If dimH0(X ,Lk) = 0 we set
ρk = −∞. The following lemma is crucial.

4.22. LEMMA (Siegel’s lemma). Let X be a compact complex manifold and L → X be
a holomorphic line bundle. Then there exists C > 0 such that

dimH0(X ,Lk) 6 Ckρk , k > 0.

Let f1, . . . , fm ∈ M (X) algebraically independent. We denote by D the divisor of poles
of all f j and by [D] the associated line bundle [20, p. 134]. By a basic correspondence in
algebraic geometry [20, p. 136], the space H0(X , [D]k) is identified to the space of mero-
morphic functions f satisfying div( f )+ [D]k > 0.

If P ∈ C[z1, . . . ,zm], degP 6 k, the meromorphic function P( f1, . . . , fm) has the former
property. By hypothesis, the linear map which associates to a polynomial P of degree 6 k
the function P( f1, . . . , fm) is injective. Therefore dimH0(X , [D]k) >

(m+k
m

)
for all k. For

k → ∞ this dimension grows like km. But by Siegel’s lemma dimH0(X , [D]k) 6 Ckn for all
k. Therefore m 6 n. We have thus showed that the transcendence degree of M (X) is less
than or equal to n = dimC X . �

PROOF OF LEMMA 4.22. For a point x ∈ X we denote by P(a,r) the polydisc {y ∈U :
|yi| < r} where (U,y1, . . . ,yn) is a coordinate system centered at x.

The set of points where Φk has rank less than ρk is a proper analytic set of X , so
{x ∈ X : rankx Φk = ρk} is dense in X .
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Let a1, . . . ,am ∈ X such that

X ⊂ ∪m
i=1P(ai,rie

−1)

and r1, . . . ,rm ∈ R+ and Φk has rank ρk at each a j.
Since Φk is a subimmersion at a j there exists a submanifold M j in the neighbourhood

of a j which is transversal in a j to the fibre Φ−1
k (Φk(a j)) and dimM j = ρk. Assume that the

line bundle L is given by the transition functions

ci j : P(ai,rie
−1)∩P(a j,r je

−1) −→ C∗

Set
‖L‖ = sup{|ci j(x)| : x ∈ P(ai,rie

−1)∩P(a j,r je
−1) for all i, j} = eµ .

Since ci j = c−1
ji , µ > 0. Consider a section s ∈ Γ(X ,O(Lk)) which vanishes up to order

h = k([µ]+1) at each a j along M j ([µ] is the integral part of µ). But s vanishes on the fibre
which passes form a j, hence s vanishes up to order h at a j on X . Assume that s is given on
P(ai,ri) by si : P(ai,ri) −→ C. Set ‖s‖ = sup{|s j(x)| : x ∈ P(ai,rie−1) for all i}.

There exists q ∈ {1,2, . . . ,m} such that for some w ∈ S(P(aq,rq)), |sq(w)| = ‖s‖. We
can find j 6= q such that w ∈ P(a j,r j). Hence sq(w) = cq j(w)s j(w) so that

‖s‖ = |sq(w)| = |cq j(w)s j(w)| 6 ‖Lk‖|s j(w)|.
By applying the Schwarz inequality to s j in P(a j,r j) we get |s j(w)| 6 ‖s‖|w|hr−h

j where

|w|= sup |p j(w)− p j(a j)|6 r je−1. Consequently, ‖s‖6 ‖s‖‖Lk‖e−h. If s is not identically
zero this leads to a contradiction, by our choice of h. Consider the map

H0(X ,O(Lk)) −→ ∏
16 j6m

OM j,a j/M
h
M j,a j

where M h
M j,a j

is the maximal ideal of the ring OM j,a j , which sends every section in his
Taylor developpment of order h at a j along M j. By the preceding argument this map is
injective. Since the dimension of the target space satisfies the desired estimate we are
done. �

4.2.4. Moishezon spaces. Let X be an irreducible compact complex space of dimen-
sion n. X is called Moishezon space if it possesses n independent meromorphic functions,
i.e. if a(x) = n. Assume that X is projective. Then X can be realized as finite cover of
Pn and we can pull-back n algebraically independent meromorphic functions on Pn. Thus,
every reduced compact projective space is Moishezon. Let X ′ be a projective space and
ϕ : X ′ −→ X be a proper modification. We know then that X is Moishezon.

The spaces with the property a(X)= dimX were named by Artin after B. G. Moishezon
(also transliterated Moı̆šezon) who proved in [28] the following fundamental result.

4.23. THEOREM (Moishezon). Let X be an irreducible compact complex space. Then
there exist a proper modification π : X ′ −→ X, obtained by a finite number of blowings–up,
such that X ′ is a projective algebraic variety.

Actually, Moishezon proves more. Let us introduce four classes of manifolds. The
first, A(1), is the class of complex manifolds obtained from algebraic varieties by a se-
quence of elementary contractions (that is to say, transformations which are the inverses
of monoidal transformations with non-singular centers). The second class, A(2), consists
of those manifolds satisfying the Chow lemma: namely, X is in A(2) if and only if there is
a regular modification f : X ′ → X , where X ′ is a projective algebraic variety. A(3) is the
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class of compact complex manifolds connected with algebraic varieties by bimeromorphic
maps. A(4) is the class of n-dimensional compact complex manifolds with n algebraically
independent meromorphic functions (called today Moishezon manifolds). It turns out in
the course of his three part work [27, 29, 29] that A(1) = A(2) = A(3) = A(4).

From the theorem we infer easily that a a smooth surface is Moishezon if and only if
it is projective. Indeed, we can blow up only points in dimension two and the blow up of
a manifold at a point is projective if and anly if the manifold is. It has been previously
proved by Kodaira and Chow that any two dimensional Moishezon manifold is projective
algebraic.

Moishezon gives moreover two criteria for an n-dimensional manifold possessing n al-
gebraically independent meromorphic functions to be projective algebraic. One of them
[27] is given in terms of Kähler metrics. If X is an irreducible compact complex n-
dimensional manifold with n algebraically independent meromorphic functions, then it
is projective algebraic if and only if it has a Kähler metric. The case n = 2 was previously
settled by Chow and Kodaira [10].

Let us remark that not all Moishezon spaces are projective. It seems that the first exam-
ple appeared as folklore in Russia during the 50’s and was named in Princeton the ”alge-
braic Sputnik”. Grauert constructed an example of a two-dimensional normal Moishezon
space in [19, §4]. As we saw, smooth Moishezon surfaces are always projective. So we
should look for a smooth example starting with dimension three. This was realized first
by Hironaka and we refer to the books of Hartshorne [21, Example 3.4.2] and Shafarevich
[36, Ch. 8, §3].

We wish to give a simple characterization of Moishezon manifolds in terms of order of
growth of spaces of sections of line bundles.

Let us define the Kodaira–Iitaka dimension of a line bundle L −→ X as

κ(L) = max{ρk = rankΦk : k > 0}

The bundle L is said to be big if κ(L) = n = dimX . It is clear that L is big if and only if
A (X ,L) gives local coordinates at a point.

4.24. PROPOSITION. X is Moishezon if and only if it carries a big line bundle.

PROOF. If X is Moishezon there exist n = dimX algebraically independent meromor-
phic functions. We can find a line bundle L such that these functions have the form
s1/s0, . . . ,sn/s0 where s0, . . . ,sn ∈ H0(X ,O(L)). (see [1]). Since the algebraic indepen-
dence implies the analytic independence it follows that d(s1/s0)∧ . . .∧ d(sn/s0) 6= 0 on
the set where the left–hand side is defined. By completing {s0, . . . ,sn} to a basis of
H0(X ,O(L)), we see that the Kodaira map Φ1 : X r Bl1 −→ PH0(H,O(L))∗ has maxi-
mal rank i.e. ρ1 = n and hence κ(L) = n.

Conversely, if L is big, there exists k > 0 such that ρk = n. Then the image Φk(L) is
an algebraic variety of dimension n. By pulling back n independent rational functions on
Φk(X) to X via Φk we obtain n independent meromorphic functions. �

4.2.5. Proof of the Grauert–Riemenschneider Criterion. Let X be a compact com-
plex manifold and L → X be a hermitian holomorphic line bundle (L,hL) which satisfies
Demailly’s condition ∫

X(61)

(√
−1

2π RL
)n

> 0 , (4.36)
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By Corollary 4.12 (especially (4.29)) and Siegel’s Lemma 4.22 there exists C1,C2 > 0 and
k0 such that

C1kρk > dimH0(X ,Lk) > C2kn , for k > k0 . (4.37)

Therefore ρk = n for k > k0 so κ(L) = n and L is big. By Proposition 4.24 we conclude
that X is Moishezon. This proves the Demailly’s Criterion 1.3 which of course implies the
Grauert-Riemenschneider Criterion 1.2, since a semipositive line bundle which is positive
at one point abviously satisfies (4.36).

Let us close by saying that we cannot prove the Grauert-Riemenschneider Criterion
by using the L2 method for the ∂ operator. This is due to the non-Kähler character of the
manifold X . There were a lot of attempts to prove the theorem until the paper of Siu [40]
(where some of the history is presented). That’s why the Morse inequaltities can be seen
as a quantitative version of the standard L2 estimates for ∂ of Hörmander-Bombieri-Skoda
4.16.

4.2.6. Generalization to pseudococave manifolds.

4.25. DEFINITION. We will call a connected manifold X Andreotti pseudoconcave if
there exists a smooth non–empty D b X such that the Levi form of D restricted to the
analytic tangent plane T 1,0(∂D) has at least one negative eigenvalue at each point of ∂D.

The notion of Andreotti–pseudoconcavity is more general, see [1], [2], but for our
purposes this definition is sufficient. Immediate examples are q–concave manifolds, q 6
n−1. Indeed, let X be a q–concave manifold as in definition B.29. The definition function
of Xc = {ϕ > c} b X is c−ϕ and for c sufficiently close to a, the Levi form of c−ϕ has
at least n− q + 1 negative eigenvalues in a neighbourhood of ∂Xc. Thus, the restriction
of the Levi form on the analytic tangent space T 1,0(∂Xc) has at least n− q > 1 negative
eigenvalues.

4.26. LEMMA. For each point x∈D we can choose holomorphic coordinates (U,y) and
a coordinate polydisc P(x,r) ⊂ U centred at x such that the Silov boundary S(P(x,r)) =
{y ∈U : |yi| = r} ⊂ D.

PROOF. Let ρ be the defining function of D near x = 0. We know that Lρ(0) restricted

to T 1,0
0 (∂D) has one negative eigenvalue.
After a suitable change of coordinates we can assume that

ρ(z) = 2Rez1 +
n

∑
j=1

α jz1z j −|z2|2 +
n

∑
j=3

β j|z j|2 +O(|z|3)

Geometrically this means that the tangent space at 0 to ∂D is {Rez1 = 0} and the Levi
form is negative definite on the plane {z1 = 0,z3 = . . . = zn = 0}. For r sufficiently small
we have

{z1 = 0,
r
2

< |z2| 6 r,z3 = . . . = zn = 0} ⊂ D .

The lemma follows now easily by a continuity argument. �

4.27. THEOREM. If X be an Andreotti–pseudoconcave manifold, Siegel’s Lemma 4.22
holds on X. The field of meromorphic functions M (X) is an algebraic field of transcen-
dence degree a(X) 6 dimC X.



70 4. GLOBAL ASYMPTOTIC MORSE INEQUALITIES

PROOF. The proof of Siegel’s lemma in the pseudoconcave case follows the proof
in the compact case. First we choose a set D b X as in Definition 4.25 and coordinate
polydiscs P(ai,ri) , i = 1, . . . ,m such that D ⊂ ∪m

i=1P(ai,rie−1) , L is trivial on P(ai,ri) and
the Silov boundary S(P(ai,ri)) ⊂ D, for i = 1, . . . ,m. Then the proof goes through as in
the compact case by observing that when choosing w with |sq(w)| = ‖s‖, we can assume
that w ∈ S(P(aq,rq)). This is true since the maximum of the modules of a holomorphic
function on the closure of a polydisc is attained on its Silov boundary. Thus we may take
w ∈ D.

The proof of the second statement is completely analogous to that of Theorem 4.21. �

4.28. REMARK. We observe that Siegel’s lemma 4.22 holds for the adjoint bundles,
that is dimH0(X ,Lk ⊗KX) 6 Ckρk , where ρk = rankΦk.

Theorem 4.27 allows to extend the notion of Moishezon manifold for the case of
Andreotti-pseudoconcave manifolds. Thus, an Andreotti-pseudoconcave manifold is called
Moishezon if a(X) = dimC X .

4.29. COROLLARY. Let X be an Andreotti–pseudoconcave manifold and L be a holo-
morphic line bundle over X. If rankΦk = dimX, where Φk is the Kodaira map asociated
to H0(X ,Lk) or H0(X ,Lk ⊗KX), X is Moishezon.

4.3. Uniformly positive line bundles

In this section we apply the results from the previous one to the study of the L2 coho-
mology of complex manifolds satisfying certain curvature conditions. If X is a complete
Kähler manifold and L a positive line bundle on X the L2 estimates of Andreotti–Vesentini–
Hörmander allow to find a lot of sections of Lk ⊗KX . We prove now a “compact perturba-
tion” of this result. In this case the underlying complete metric is no more assumed to be
Kähler, but we assume instead the existence of a uniformly positive line bundle outside a
compact set. As application we prove the Nadel–Tsuji theorem in Corollary 4.31 and the
Morse inequalities for hyperconcave manifolds.

4.3.1. A general cohomology estimate.

4.30. THEOREM. Let (X ,ω) be an n–dimensional complete hermitian manifold and let
(L,hL) be a holomorphic hermitian line bundle. Let K b X and a constant C0 > 0 such that√
−1RL > C0 ω on X r K.

(i) Then, for k −→ ∞,

dimHn,0
(2)

(X ,Lk) >
kn

n!

∫

X(61,hL)

(√
−1

2π RL)
)n

+o(kn) , (4.38)

where Hn,0
(2) (X ,Lk) is the space of (n,0)–forms with values in Lk which are L2 with respect

to any metric on L and the metric hL on L.
(ii) Assume moreover that the torsion of ω is bounded and the Ricci curvature Rdet is

bounded from below with respect to ω . Then, for k −→ ∞

dimH0,0
(2) (X ,Lk) >

kn

n!

∫

X(61)

(√−1
2π

RL)n
+o(kn) (4.39)

where H0,0
(2)

(X ,Lk) is the space of holomorphic sections in Lk which are L2 with respect to

the metrics ω on X and hL on L.
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As usual, U(6 1,hL) is the subset of U where
√
−1RL) is non–degenerate and has at

most one negative eigenvalue. We can state the theorem without reference to the auxiliary
metric ω , by saying that (L,hL) is positive outside a compact set and the curvature

√
−1RL

defines a complete metric on X (by extending it to a metric over X ).

PROOF. (i) Let us endow X with a metric ω0 such that ωL =
√
−1RL outside K, which

is complete, for ωL > C0ω on X rK. The Bochner–Kodaira–Nakano formula (B.20) gives

(2Lk
u,u) >

(
[
√
−1RLk

,Λ]u,u
)
, u ∈ Ωn,1

0 (X r K,Lk)

since ω0 is Kähler outside K. By (3.70) we know that
〈
[
√
−1RLk

,Λ]u,u
〉

> kα1(x)|u|2

where α1 6 . . . 6 αn are the eigenvalues of
√
−1RL with respect to ω0. In our case α1 =

. . . = αn = 1 outside K. Hence

‖u‖2 6
1
k
(‖∂

Lk

u‖2 +‖∂
Lk∗

u‖2) , u ∈ Ωn,1
0 (X r K,Lk) (4.40)

Let U be any open set with smooth boundary, K b U b X . Choose ρ ∈ C ∞
0 (X) such that

ρ = 1 on a neighbourhood of K and suppρ ⊂ U . Applying (4.40) for (1−ρ)u and using
(4.7) we obtain the fundamental estimate (4.1) (with a slightly larger K). in bidigree (n,1)

for all u ∈ Ωn,1
0 (X ,Lk). Since Ωn,1

0 (X ,Lk) is dense in Dom(∂ Lk

)∩Dom(∂ Lk∗
)∩LLLn,1

2 (X ,Lk)
by A.10 we infer that (4.1) holds true in bidigree (n,1). We conclude by Theorem 4.7 that

dimHn,0
(2)

(X ,Lk)0 > kn
∫

U(61)

(√−1
2π

RL)n
+o(kn) , k −→ ∞

Here Hn,0
(2)

(X ,Lk)0 is the L2–cohomology group with respect to the metric ωL on M. But

the L2 condition for (n,0)–forms does not depend on the metric on M, so Hn,0
(2)

(X ,Lk)0 =

Hn,0
(2)

(X ,Lk) where in the latter group the L2 condition is with respect to an arbitrary metric
on X .

(ii) Let u ∈ Ω0,1
0 (X r K,Lk). In order to apply the Bochner–Kodaira–Nakano formula

it is necessary to consider (0, p)–forms with values in Lk as (n, p)–forms with values in
Lk ⊗K∗

X . The reason are formulas (3.79a), (3.79b). If we work directly with (0, p)–forms
and use the curvature term

(
[
√
−1Θ(L),Λ]u,u

)
, then (3.79a) shows that we cannot ex-

ploit the positivity of the eigenvalues of the curvature of L. Let ∼: Λ0,qT ∗X ⊗ Lk −→
Λn,qT ∗X ⊗ (Lk ⊗K∗

X) , u −→ ũ be the natural isometry, where K∗
X = ΛnT X is the anti-

canonical bundle. Set L̃k = Lk ⊗K∗
X . By proceeding as in 3.2.2 we deduce from (3.61c),

(3.60)

(2Lk
u,u) = (2L̃k

ũ, ũ)

and by Bochner–Kodaira–Nakano (B.20)

(2L̃k
ũ, ũ) = (2L̃k

ũ, ũ)+
(
[
√
−1RL̃k

,Λω ]ũ, ũ
)
+
(
[(∇L̃k

)′,T ∗]ũ, ũ
)
−
(
[(∇L̃k

)′′,T ∗
]ũ, ũ

)

By using the Nakano’s inequality (B.23) we obtain

3(2L̃k
u,u) > 2k

(
[
√
−1RL,Λω ]ũ, ũ

)
+2
(
[
√
−1RK∗

X ,Λω ]ũ, ũ
)
− (‖Tu‖2 +‖T ∗u‖2 +‖T u‖2

+‖T
∗
u‖2)

(4.41)
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The Ricci curvature is by definition Rdet = RK∗
X . The hypothesis Rdet is bounded means that

its eigenvalues with respect to ω are bounded, so (3.79b) implies
(
[
√
−1RK∗

X ,Λω ]ũ, ũ
)

> −C1‖ũ‖2 = −C1‖u‖2 (4.42)

for some constant C1 > 0. Since the torsion operators are also bounded, there exists C2 > 0
with

‖Tu‖2 +‖T ∗u‖2 +‖T u‖2 +‖T
∗
u‖2 6 C2‖ũ‖2 = C2‖u‖2. (4.43)

Moreover (3.79b) entails
(
[
√
−1RL,Λω ]ũ, ũ

)
> C0‖ũ‖2 = C0‖u‖2. (4.44)

Combining (4.41)–(4.44) we get

3(2Lk
u,u) > (2kC0 −2C1 −C2)‖u‖2 > k‖u‖2

where the last inequality holds for k sufficiently large. We can thus proceed as in the proof
of (i). �

The following important special case is due to Nadel–Tsuji [31, Theorem 1.1]

4.31. COROLLARY (Nadel-Tsuji). Let (X ,ω) be a complete Kähler manifold with
Rdet 6 −ω . Then we have the following estimate:

dimH0
(2)(X ,Kk

X) > kn

n!

∫

X

(√−1
2π RKX

)n
+o(kn)

where RKX = −Rdet is the curvature of the canonical bundle KX equipped with the metric
induced from ω .

4.3.2. Hyperconcave manifolds.

4.32. DEFINITION. A complex manifold X is called hyperconcave or hyper 1-concave
if there exists a smooth function ϕ : X −→ (−∞,b ] where b ∈ R, such that Xc := {ϕ >
c} b X for all c ∈ (−∞,b ] and ϕ is strictly plurisubharmonic outside a compact set.

Let us describe some examples.

4.33. EXAMPLE. (i) Let Y be a compact complex manifold, S a complete pluripolar set.
By definition, S is complete pluripolar, if there exists a neighbourhood W of S and a strictly
plurisubharmonic function ψ : W −→ [−∞,∞) such that S = ψ−1(−∞). Then X = Y rS is
hyperconcave. Conversely, we will show in Chapter 6 that any hyperconcave manifold M
is biholomorphic to a complement of a pluripolar set in a compact manifold. If dimX > 3
this is a consequence of Rossi’s compactification theorem.

(ii) Let X be a compact complex space with isolated singularities. Then the regu-
lar locus Xreg is hyperconcave. Indeed, let {Uα} be pairwise disjoint neighbourhoods of
the singular points {pα} and let ια : Uα ↪−→ CNα be holomorphic embeddings. We may
assume that that the singular points are mapped to the origin, ια(pα) = 0. The func-
tion z 7−→ log |z|2 is strictly plurisubharmonic on CNα . By taking its pullback to each Uα
through ια we obtain a strictly plurisubharmonic function on Xreg ∩ (∪Uα) which tends to
−∞ at the singular points. By extending this function to Xreg by means of a partition of
unity, we get a function as in the definition.

(iii) If X is a complete Kähler manifold of finite volume and bounded negative sectional
curvature, M is hyperconcave as shown by Siu–Yau in [41] (see also [31]). Actually, this
example falls in the previous case since by Corollary 6.55, X can be compactified to an
algebraic space by adding finitely many points.
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4.34. THEOREM. Let X be a hyperconcave manifold carrying a line bundle (L,h) which
is semi-positive outside a compact set. Then, for k −→ ∞

dimHn,0
(2)

(X ,Lk) >
kn

n!

∫

X(61,h)

(√
−1

2π RL
)n

+o(kn) , (4.45)

where the L2 condition is with respect to h and any metric on X.

PROOF. Let us consider a proper function ϕ : X −→ (−∞,0) which is strictly plurisub-
harmonic outside a compact set K b X . The fact that ϕ goes to −∞ to the ideal boundary
of X allows to construct a complete hermitian metric on X . Denote

χ = − log(−ϕ), (4.46)

which is a smooth function on X . Note that

∂∂ χ =
∂∂ ϕ
−ϕ

+
∂ϕ ∧∂ ϕ

ϕ2

and

∂ϕ ∧∂ ϕ
ϕ2 = ∂ χ ∧∂ χ .

We can now patch ∂∂ χ and an arbitrary hermitian metric on X by using a smooth partition
of unity to get a metric ω on X such that

ω =
√
−1∂∂ χ = −

√
−1∂∂ log(−ϕ). (4.47)

on X r K.
Since

√
−1∂∂ ϕ/(−ϕ) represents a metric on X r K, we get

|dχ|ω 6 C. (4.48)

Since χ : X −→ R is proper, (4.48) ensures that ω is complete. Indeed, (4.48) entails
that χ is Lipschitz with respect to the geodesic distance induced by ω , so any geodesic ball
must be relatively compact.

Note that ω is obviously Kähler on X r K. Let us assume
√
−1RL > 0 on X r K (we

stretch K if necessary). We equip L with the metric hL
ε = hL exp(−εχ) and the curvature

relative to the new metric satisfies
√
−1R(L,hL

ε ) > ε ω on X r K. We are therefore in the
conditions of Theorem 4.30. Since hε & h there is an injective morphism

Hn,0
(2) (X ,Lk,ω,hε) ↪−→ Hn,0

(2) (X ,Lk,ω,h).

By this relation and Theorem 4.30 for the space Hn,0
(2) (X ,Lk,ω,hε),

liminf
k

k−n dimHn,0
(2)

(X ,Lk,ω,h) >
1
n!

∫

U(61,hε )

(√
−1

2π R(L,hε
L)
)n

(4.49)

We let now ε −→ 0 in (4.49); since hε converges uniformly together with its derivatives to h
on compact sets we see that we can replace hε with h in the right-hand side of (4.49). Now,
X(6 1,h) = X(0,h)∪X(1,h). By hypothesis X(1,h) ⊂ K and on X(0,h) the integrand is
positive. Hence we can let U exhaust X to get (4.45). �

Theorem 4.34 implies the first part of Theorem 1.10:
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4.35. COROLLARY. Let X be a compact complex space with ar most isolated singular-
ities. and let (L,hL) be a holomorphic hermitian line bundle on Xreg which is semi-positive
in a deleted neighbourhood of Xsing and satisfies Demailly’s condition (1.10) on Xreg (e.g.
L is everywhere semi-positive and positive at one point). Then X is Moishezon.

PROOF. We apply Theorem 4.34 for the hyperconcave manifold Xreg and since
∫

Xreg(61)

(√
−1

2π RL
)n

=
∫

Xreg

(√
−1

2π RL
)n

> 0

we deduce dimH0(Xreg,Lk⊗KX)>Ckn for some C > 0 and k sufficiently large. By Siegel’s
lemma for Andreotti pseudoconcave manifolds 4.27 and Remark 4.28 we deduce that the
rank of the Kodaira map of H0(Xreg,Lk ⊗KX) is maximal. Corollary 4.29 entails that there
exists dimX independent meromorphic functions on Xreg. By the Levi extension theorem
we conclude that these functions extend to dimX independent meromorphic functions on
X . �

Let us define the “adjoint” volume of a line bundle L over a complex manifold M by
vol∗(L) = limsupk→∞ n!k−n dimH0(M,Lk ⊗ KM). From the proof of Theorem 4.34 we
infer the following.

4.36. COROLLARY. Let L is a line bundle over Xreg , where X is a compact complex
space with only isolated singularities.

(i) If L is semipositive outside a compact set,
∫

Xreg(0)

(√
−1

2π RL
)n

6 vol∗(L)−
∫

Xreg(1)

(√
−1

2π RL
)n

< ∞.

(ii) If L is positive on Xreg∫

Xreg(0)

(√
−1

2π RL
)n

6 vol∗(L) < ∞.

(iii) If ψ : Xreg −→ R is a smooth function which is psh outside a compact set,
∫

Xreg(0)

(√
−1∂∂ ψ

)n
6 −

∫

Xreg(1)

(√
−1∂∂ ψ

)n
< ∞

where Xreg(0) is the open set where ψ is strictly psh.

PROOF. Relation (4.45) shows the left hand-side inequality in (i), since the integral in
(4.45) is the sum of two corresponding integrals taken over the sets Xreg(0) and Xreg(1).
The latter is finite since Xreg(1) is relatively compact by the hypothesis on the semiposi-
tivity of L. By the Serre-Siegel lemma we get also the finiteness in (i). From (i) we infer
immediately (ii). To prove (iii) we apply (i) to the trivial bundle L endowed with the metric
exp(−ψ) and we use the obvious fact that vol∗(L) = 0. �

4.4. Demailly’s criterion for isolated singularities

Our aim is to prove now the second part of Theorem 1.10. This shows that De-
mailly’s criterion generalizes to singular spaces with at most isolated singularities under
mild growth conditions of the curvature near the singular set.

We will work on the open manifold Xreg and prove that it posseses a lot of meromorphic
functions which extend to X by the Levi extension theorem.

In order to perform analysis on Xreg we introduce first a good exhaustion function and
a complete metric. Let π : X̃ −→ X be a resolution of singularities of X . Let us denote
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by Di the components of the exceptional divisor. Then there exist positive integers ni such
that D := ∑ni Di admits a smooth hermitian metric such that the induced line bundle [D] is
negative in a neighbourhood Ũ of D (cf. [35]). Let us consider a canonical section s of [D],
i.e. D = (s), and denote by |s|2 the poinwise norm of s with respect to the above metric.
By Lelong-Poincaré

√
−1

2π ∂∂ log |s| = (the current of integration on D)−
√
−1

2π R[D] . (4.50)

Hence ϕ = log |s|2 is strictly plurisubharmonic on Ũ r D and converges to −∞ on D. By
using a smooth function on X̃ with compact support in Ũ which equals one near D we
construct a smooth function χ on X̃ rD ' Xreg such that χ = − log(− log |s|2) on Ũ rD .

With the help of the function χ we construct a complete metric on Xreg. For this purpose
we recall first the notion of hermitian metric on a singular space. Let us consider a covering
{Uα} of X and embeddings ια : Uα ↪→ CNα . A metric on X is a metric ω on Xreg which
on every open set Uα as above is the pullback of a hermitian metric on the ambient space
CNα , ω = ι∗α ωα . It is constructed as usual by a partition of unity argument. Since the
singularities are isolated we can assume that the metric is distinguished, that is, in the
neighbourhood of the singular points ωα is the euclidian metric. In particular ω is Kähler
near Xsing. We consider then the metric ω0 = Aω +∂∂ χ where A > 0 is chosen sufficiently
large (to ensure that ω0 is a metric away from the open set where ∂∂ χ is positive definite).
ω0 is complete by the same argument as in the proof of Theorem 4.34 (see (4.48)). Note
that by Corollary 4.36 the metric ω0 has finite volume. This follows from the fact that, near
Xsing, χ is strictly psh and ω is given by the euclidian potential.

Assume now that L|Uα is the inverse image by ια of the trivial line bundle Cα on CNα .
Moreover we consider hermitian metrics hα = e−ϕα on Cα such that ι∗αhα = ι∗β hβ on Uα ∩
Uβ ∩Xreg. The system hL = {ι∗αhα} is called a hermitian metric on L. It clearly induces
a hermitian metric on L|Xreg. We shall allow our metrics to be singular at the singular
points, that is, ϕα ∈ L1

loc(C
Nα ) and ϕα is smooth outside ια(Xsing). The curvature current√

−1RL is given in Uα by ι∗α(
√
−1∂∂ ϕα) which on Xreg agrees with the curvature of the

induced metric. We shall suppose in the sequel that the curvature current is dominated
by the euclidian metric i.e.

√
−1∂∂ ϕα is bounded above and below by constant times

ωE =
√
−1∑dz j ∧d z̄j.

Let us consider now a neighbourhood U of the singular set. We assume that U is small
enough so that there are well defined on U a potential ρ for ω and a potential ϕ for the
curvature

√
−1RL (they are restrictions from ambient spaces). By suitably cutting-off we

may define a function ψ ∈ C ∞(Xreg) such that

ψ = χ −ϕ +Aρ (4.51)

near Xsing . Remark that, since
√
−1RL is bounded above by a continuous (1,1) form near

Xsing, the potential −ϕ is bounded above near the singular set. This holds true for ρ too
(it is smooth) so that ψ tends to −∞ at the singular set Xsing. Let us consider a smooth
function γ : R −→ R such that

γ(t) =

{
0 if t > 0 ,

t if t 6 −1 .

and the functions γν : R −→ R given by γν(t) = γ(t −ν) for all positive integers ν .
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Let us consider the metric hL
ν = hL exp

(
− γν(ψ)

)
with curvature

√
−1R(L,hL

ν ) =
√
−1R(L,hL) +

√
−1γ ′ν(ψ)∂∂ ψ +

√
−1γ ′′ν (ψ)∂ψ ∧∂ ψ .

On the set {ψ 6 −ν − 1} we have γν(ψ) = ψ −ν so that γ ′ν(ψ) = 1 and γ ′′ν (ψ) = 0 and
therefore

√
−1R(L,hL

ν ) =
√
−1R(L,hL) + ∂∂ ψ . Since ψ goes to −∞ when we approach the

singular set we may choose ν0 such that for ν > ν0 we have {ψ 6 −ν −1} ⊂U where U
is the neighbourhood of Xsing where ψ has the form (4.51). Bearing in mind the meaning

of ϕ and ρ together with the definition of ω0 it is straightforward that
√
−1R(L,hL

ν ) = ω0 on
{ψ 6 −ν −1} . By Theorem 4.30 we have for k −→ ∞,

dimH0(Xreg,L
k ⊗KX) >

kn

n!

∫

Uν (61,hL
ν )

(√−1
2π R(L,hL

ν )
)n

+ o(kn) .

We have denoted Uν the compact set {ψ ≥−ν −2} . We decompose this set in U ′
ν = {ψ >

−ν} and U ′′
ν = {−ν − 2 6 ψ 6 −ν} since on U ′

ν we have γν(ψ) = 0 and
√
−1R(L,hL

ν ) =√
−1R(L,h) . We infer that

∫

U ′
ν (61,hν )

(√
−1R(L,hL

ν )
)n

=

∫

Xreg(61,h)
1U ′

ν
α1 · · ·αn dv0 (4.52)

where α1, . . . ,αn are the eigenvalues of
√
−1R(L,hL) with respect to ω0 and dv0 is the vol-

ume form of the same metric. Our hypothesis on the domination of
√
−1R(L,hL) by the

euclidian metric implies that
√
−1R(L,hL) is dominated by ω and by ω0. Hence the product

α1 · · ·αn is bounded on Xreg. Since Xreg(6 1) has finite volume with respect to ω0 the func-
tions |1U ′

ν
α1 · · ·αn| are bounded by an integrable function. On the other hand 1U ′

ν
−→ 1

when ν −→ ∞ so that the integrals in (4.52) tend to
∫

Xreg(61,h)

(√
−1R(L,hL)

)n
which is

assumed to be positive.
Thus it suffices to show that the integral on the set U ′′

ν i.e.
∫

U ′′
ν (61,hν )

(√
−1R(L,hL

ν )
)n

tends to zero as ν −→ ∞. For this purpose we use the obvious bound
∫

U ′′
ν (61,hν )

(√
−1R(L,hL

ν )
)n

6 sup |δ1 · · · δn| ·vol(U ′′
ν )

where δ1, . . . ,δn are the eigenvalues of
√
−1R(L,hL) with respect to ω0 and the volume is

taken in the same metric. We use now the minimum-maximum principle to see that δ1 is
bounded bellow and δ2, . . . ,δn are bounded above on the set of integration U ′′

ν (6 1,hν). For
this we need the domination of

√
−1R(L,hL) by ω and the boundedness of γ ′ν and γ ′′ν . Since

vol(U ′′
ν ) −→ 0 as ν −→ ∞ our contention follows. Hence dimH0(Xreg,Ek ⊗KX) & kn so

that Xreg has n independent meromorphic functions which can be extended to X by the Levi
extension theorem. The proof is finished.

4.37. REMARK. The proof of the Theorem 1.10 is based on the existence of the ex-
haustion function from below χ and of the complete metric ω0 with the properties (4.48)
and (4.47). These objects are specific to the case of isolated singularities. If X is a compact
complex space with dimXsing > 1, Xreg does not generally possess a strictly psh exhaustion
function from below. That is why for general complex spaces we need stronger hypoth-
esis in order to obtain the fundamental L2 estimate for (n,1)–forms. For example if X
is a compact complex Kähler space, Xreg admits complete Kähler metric (Ohsawa [33]).
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Therefore, if Xreg admits a semipositive line bundle which is positive at a point p, stan-
dard L2 estimates for ∂ show that Lk ⊗KXreg gives local coordinates at p. Assuming that
codimXsing > 2 it follows first that Xreg has a maximal number of meromorphic functions
(since Xreg is pseudoconcave in the sense of Andreotti) and then that X is Moishezon (by
the Levi extension theorem).

In the non–Kähler case we need a sort of uniform positivity condition on L near Xsing

in order to absorb the torsion of a complete metric on Xreg. In this respect the hypothesis
in Takayama’s theorem 4.40 seem appropriate. If we want the line bundle L to be defined
only on Xreg we can introduce the following alternative condition.

Let ω be a hermitian metric on Xreg induced from a resolution of singularities X of
X . Assume that

√
−1RL > ω outside a compact set of Xreg and that L satisfies Demailly’s

condition (1.10). Suppose moreover that codimXsing > 2. Then X is Moishezon. Indeed,
the condition

√
−1RL > ω shows that we can argue as in Section 4.5 and use a generalized

Poincaré metric to deduce the fundamental L2 estimate.
It would be interesting to know whether criteria as the Theorem 1.10 carry over to

general complex spaces.

4.5. The Shiffman–Ji–Bonavero Criterion

In this section we study the L2 cohomology of Zariski open sets in compact complex
spaces. Using our previous results we will prove a theorem of Takayama [43] generalizing
the Siu–Demailly criterion if L −→ X is a line bundle endowed with a singular hermitian
metric which is smooth outside a proper analytic set Z ⊃ Xsing and defines a strictly positive
current near Z.

Let us briefly describe the generalized Poincaré metric. We denote by ∆ the unit disc
in C and by ∆∗ = ∆ r{0}. The Poincaré metric on ∆∗ is

ωP =

√
−1
2

dz∧dz
|z|2(log |z|2)2 (4.53)

More generally, on the product (∆∗)l ×∆n−l we introduce the metric

ω =

√
−1
2

l

∑
k=1

dzk ∧dzk

|zk|2(log |zk|2)2 +

√
−1
2

n

∑
k=l+1

dzk ∧dzk. (4.54)

Let us consider a compact complex manifold and let Z be a union of smooth divisors with
normal crossings. For any point p ∈ Z there exists a coordinate neighbourhood U of p
isomorphic to ∆n in which (X r Z)∩U = {z = (z1, . . . ,zn) : z1 6= 0, . . . ,zl 6= 0}. Such
coordinates are called special. We endow (X r Z)∩U ∼= (∆∗)l × ∆n−l with the metric
(4.54). It is a metric possessing the singularity of the Poincaré metric near the punctures.
We define further the generalized Poincaré metric (also called Griffiths-Carlson metric)
which is a very useful tool in the analysis on Zariski open sets. It was introduced in [9]
(see also [48]) and plays an important role in value distribution theory and hyperbolic
geometry.

4.38. PROPOSITION. There exists a complete metric (of finite volume) on X rZ, called
the generalized Poincaré metric, which in special coordinates is equivalent to the metric
(4.54). It has bounded torsion and Ricci curvature.

PROOF. We write Z = ∪Zi and consider a section σ j of the line bundle [Z j] which
vanishes to first order on Z j. Then we endow [Z j] with a hermitian metric such that the
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norm of σ j satisfies |σ j| < 1. We take an arbitrary smooth metric Θ′ on X and set

Θε0 = Θ′− ε0
2

√
−1∑∂∂ log(− log |σi|2)2. (4.55)

In special coordinates U in which Zi is defined by z = 0, |σi|2 = |z|2eu, u ∈ C ∞(U). Then

−1
2

∂∂ log(− log |σi|2)2 =
1

(u+ log |z|2)2

(dz
z +∂u

)
∧
(dz

z +∂u
)
− 1

u+ log |z|2 ∂∂ u .

The first term in the sum is semipositive. As for the second, −1/(u + log |z|2) > 0 and
tends to 0 near the singular set. Since ∂∂ u is smooth, the second term is bounded below
by the negative of some smooth metric on X . This argument shows that Θε0 is a metric on
U r Z for ε0 small enough. Taking ε0 small enough also ensures that Θε0 is positive on
the whole X r Z. It is clear that Θε0 and (4.54) have the same type of singularity and this
shows that Θε0 is complete and has finite volume. Let us denote by

ϕ = − log∏(− log |σi|2)2 (4.56)

The function ϕ is quasi–plurisubharmonic i. e. ∂∂ ϕ > −CΘ′ and Θε0 = Θ′− ε0
2

√
−1∂∂ ϕ .

We wish to show that there exist a constant C > 0 such that
√
−1Rdet > −CΘε0 , |Tε0| < C . (4.57)

where Tε0 = [Θε0,∂Θε0] is the torsion operator of Θε0 and |Tε0| is its norm with respect to
Θε0 . Now ∂Θε0 = ∂Θ′ by (4.55), so it extends smoothly over X̃ , and thus we get the second
relation of (4.57).

We turn now to the first condition of (4.57). We have

Θε0 = Θ′+2
√
−1ε0 ∑

i

( R[Σi]

log‖σi‖2
i

+
∂ log‖σi‖2

i ∧∂ log‖σi‖2
i

(log‖σi‖2
i )

2

)
. (4.58)

The terms R[Σi]/ log‖σi‖2
i tend to zero as we approach Σ so they can be absorbed in Θ′ and

do not contribute to the singularity of Θε0 near Σ . To examine the last term let us localize
to a point x0 ∈ Σ . We choose special coordinates in a neighborhood U of x0 in which Σ j

has the equation z j = 0 for j = 1, . . . ,k and Σ j, j > k, do not meet U . Then for 1 ≤ i ≤ k,
‖σi‖2

i = ui|zi|2 for some positive smooth function ui on U and

∂ log‖σi‖2
i ∧∂ log‖σi‖2

i

(log‖σi‖2
i )

2
=

dzi ∧dzi + vi

|zi|2(log‖σi‖2
i )

2
(4.59)

where vi is a smooth (1,1)– form on U . Without loss of generality we may assume that
Θ′ is the Euclidean metric on U so that Θ′n is the Euclidean volume element. Then there
exists a smooth function β such that

Θn
ε0

=

(
1+

1+β (z)

∏i |zi|2(log‖σi‖2
i )

2

)
Θ′n =: γ(z)Θ′n . (4.60)

and consequently

√
−1Rdet = −

√
−1∂∂ logγ(z) = −

√
−1
(∂∂ γ(z)

γ(z)
− ∂γ(z)∧∂γ(z)

γ(z)2

)
> −

√
−1

∂∂ γ(z)
γ(z)

.

(4.61)
A brute force calculation of −

√
−1∂∂ γ(z)/γ(z) and comparison to the singularities of Θε0

given by (4.59) show that
√
−1Rdet > −CΘε0 for some positive constant C . This achieves

the proof of (4.57). �
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4.39. THEOREM. Let X be an n–dimensional compact manifold and let L be a holo-
morphic line bundle with a singular hermitian metric hL. We assume that :

(1)
√
−1R(L,hL) is smooth on M := X rZ where Z is a divizor with only simple normal

crossings ;
(2)

√
−1R(L,hL) is a strictly positive current in a neighbourhood of Z .

Then,

dimH0
(2)(M,Lk) >

kn

n!

∫

M(61,h)

(√
−1

2π R(L,hL)
)n

+o(kn) , k → ∞ , (4.62)

where H0
(2)(M,Lk) is the space of sections of Lk which are L2 with respect to the restrictions

to M and L|M of smooth metrics on X and L .

PROOF. We use the notations from the proof of Proposition 4.38. We consider the
following family of metrics on L �M: hL

ε = hL ∏ j(− log |σ j|2)ε , ε > 0.
The curvature

√
−1RL is strictly positive in the sense of currents near Z, so there exists

A > 0 such that
√
−1RL > AΘ′ outside a compact set of X r Z. Note that

√
−1R(L,hL

ε ) =
√
−1RL + ε

√
−1∂∂ ϕ

where ϕ has been defined in (4.54). Then
√
−1R(L,hL

ε )−δΘε0 =
√
−1RL +(ε −δε0)

√
−1∂∂ ϕ −δΘ′

>
√
−1RL − (ε −δε0)CΘ′−δΘ′

>
(
A− (ε −δε0)C−δ

)
Θ′

If ε and δ are sufficiently small,
√
−1R(L,hL

ε )−δΘε0 > A
2 Θ′, so that

√
−1R(L,hL

ε ) > δΘε0 .
Near Z the metric hL is locally represented by a strictly plurisubharmonic weight. Thus

hL is locally bounded below near Z and hL > C hL
∗ on X for some positive constant C and

some smooth metric hL
∗ . Consider the space

H0
(2)(M,Lk)ε := {u ∈ LLL2(M,Lk,Θε0,h

L
ε ) : ∂ Lk

u = 0} .

Since the Poincaré metric dominates the euclidian metric in local coordinates near Z, the L2

condition with respect to the Poincaré metric implies the that the elements of H0
(2)(M,Lk)ε

extend holomorphically to sections of Lk, therefore H0
(2)(M,Lk)ε ⊂ H0

(2)(M,Lk). By Theo-
rem 4.30 for K b U b M

dimH0
(2)(M,Lk) > dimH0

(2)(M,Lk)ε >
∫

U(61,hL
ε )

(√
−1

2π R(L,hL
ε )
)n

+o(kn) .

We can let ε −→ 0 in the right–hand side in order to replace hL
ε with hL. Then we can let

U exhaust M to get the inequality from the statement. �

4.40. THEOREM (Takayama). Let X be an n–dimensional reduced and irreducible com-
pact complex space and let L be a holomorphic line bundle over X with a singular Hermit-
ian metric hL. Assume that the curvature current RL is smooth on the complement of some
proper analytic subset Z ⊃ Xsing and that

√
−1RL is strictly positive on some neighbour-

hood of Z. Then
∫
(XrZ)(61,L)(

√
−1RL)n exists and if it is strictly positive X is a Moishezon

space.
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PROOF. We show that we can reduce the proof to an application of Theorem 4.39. Let
τ : X̂ −→ X be a resolution of singularities of X (see [23]), such that τ−1(Z) = D, a divisor
with only simple normal crossings. There exists a finite sequence of blow-ups

X̂ = Xm
τm−−−→ Xm−1

τm−1−−−→ ·· · τ2−−−→ X1
τ1−−−→ X0 = X

such that
(a) τi is the blow-up along a non-singular center Yi−1 contained in the total transform

of Z in Xi−1, i > 1
(b) the total transform of Z in X̂ = Xm through τ = τm ◦ τm−1 ◦ · · · ◦ τ1 is a divisor with

only simple normal crossings.
We build next an integral Kähler current T̂ on X̂ . Let Y ∗

0 = τ−1
1 (Y0), the total transform

of Y0. Then there exists a smooth hermitian metric h0 on the line bundle
[
Y ∗

0

]−1
whose

curvature satisfies the following conditions:
1) is strictly positive along Y ∗

0 ,
2) is bounded on X1,
3) vanishes outside a neighbourhood of Y ∗

0 .
On X1 we consider the bundle L1 := τ∗1 (Lk1)⊗ [Y ∗

0 ]−1 endowed with the metric hL1 =

(hL)⊗k1 ⊗h0, for k1 ∈N. The curvature current of (L1,hL1) is T1 = k1τ∗1 T +
√
−1R([Y ∗

0 ]−1,h0).
The current τ∗1 T is positive on X1 and strictly positive on any compact set disjoint from
Y ∗

0 . Hence, properties 1) – 3) show that for k1 sufficiently large T1 is a strictly posi-
tive current near Z1 := τ−1

1 (Z), the integral
∫

X1reg(61,L1)
(
√
−1RL1)n is finite if and only

∫
Xreg(61,L)(

√
−1RL)n is finite and the first integral is > 0 if the second is.

Continuing inductively we construct a line bundle (L̂,hL̂) on X̂ with curvature current
T̂ smooth on M̂ := X̂ rτ−1(Z) and positive on Z. Note that τ−1(Z) = τ−1

m (Zm−1) = D . By
(4.62) we obtain

dimH0
(2)(M̂, L̂k) >

kn

n!

∫

M̂(61,hL̂)

(
1

2π T̂
)n

+o(kn) , k → ∞ , (4.63)

where the L2 condition is taken w.r.t. smooth metrics on M̂ and L̂. So actually H0
(2)(M̂, L̂k) =

H0(X̂ , L̂k) by [11, Lemme 6.9]. Thus the integral in (4.63) is finite and with it also∫
(XrZ)(61,L)(

√
−1RL)n. Moreover, if the latter integral is strictly positive, we have by(4.63)

that dimH0(X̂ , L̂k) = O(kn), for k → ∞, and consequently L̂ is big and X̂ is Moishezon.
Since X and X̂ are bimeromorphicallly equivalent, it follows that X is Moishezon, too. �

In the proof of Theorem 4.40 we cannot infer that L is big. Of course, M = X r Z
and M̂ = X̂ r τ−1(Z) are biholomorphic through τ and L̂|M̂ = τ∗(Lr|M), for some r ∈ N.
So H0

(2)(M̂, L̂k) ↪−→ H0(M,Lrk) and dimH0(M,Lrk) = O(kn). But in general the sections

of H0(M,Lrk) do not extend holomorphically past Z. This happens, however, in some
interesting cases.

4.41. COROLLARY. Under the same conditions as in Theorem 4.40 assume that X is
normal, Z = Xsing and and

∫
(Xreg)(61,L)(

√
−1RL)n > 0. Then L is big and X is Moishezon.

Indeed, in this case all sections of H0(M,Lk) extend to sections of H0(X ,Lk). However, if
we assume that X is smooth the situation is optimal.

4.42. COROLLARY. Let L be a holomorphic line bundle over a compact complex ma-
nifold. Then L is big if and only if there exists a current T ∈ c1(L) satisfying the following
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conditions: (i) singsuppT ⊂ Z, where Z is a proper analytic set, (ii) T is strictly positive
in the neighbourhood of Z and (iii)

∫
(XrZ)(61,T) T n > 0.

A manifold X is Moishezon if and only if there exists an integral current satisfying
the conditions (i)-(iii) (in particular, if and only if it possesses an integral Kähler current
satisfying (i)).

PROOF. Assume that L is big. Then we know that X is Moishezon and by Moishe-
zon’s characterization Theorem 4.23, there exists a proper modification τ : X̂ → X , with X̂
projective. Then L̂ = τ∗L is big, since the pull-back morphism H0(X ,Lk) → H0(X̂ , L̂k) is
injective. Using the existence of an ample line bundle on X̂ we can construct a singular her-
mitian metric hL̂ on L̂ with

√
−1RL̂ > 0 in the sense of currents (see [15], [17, Proposition

6.6. (f)], [37]). Indeed, one can write L̂r = A⊗E for some r large enough, where A is ample
and E is effective. On E there is a hermitian metric hE , such that

√
−1RE = [Divs] = [E],

where s is a global holomorphic section of E. Then hL̂ := (hA⊗hE)1/r is a hermitian metric

on L̂ with strictly positive curvature current T̂ . The metric hL := τ∗hL̂ on L has curvature
current T = τ∗T̂ , which satisfies the conditions (i) – (iii).

Conversely, we proceed as in the proof of Theorem 4.40 to construct a blow-up τ : X̂ →
X such that τ−1(Z) is a divisor with simple normal crossings. Moreover, we τ : M̂ → M is
biholomorphic, where we set as before M̂ = X̂ rτ−1(Z) and M = X rZ. We also construct
a line bunlde L̂ on X̂ such that L̂|M̂ = τ∗(Lr|M). Moreover, dimH0

(2)(M̂, L̂k) = O(kn), as

k → ∞, where the L2 condition is w.r.t. smooth metrics on X̂ and L̂. Such metrics are
quasi-isometric on M̂ ∼= M and L̂|M̂ ∼= Lr|M with smooth metrics on X and Lr. Thus, by
pushing forward the elements of H0

(2)(M̂, L̂k) we obtain that dimH0
(2)(M,Lrk) = O(kn),

k → ∞, where the L2 condition is w.r.t. smooth metrics on X and L. Since X is smooth,
[11, Lemme 6.9] shows again that H0

(2)(M,Lrk) = H0(X ,Lrk) and therefore Lr and L are
big. �

The Shiffman-Ji-Bonavero criterion is yet another characterization of big line bundles
and Moishezon manifolds, where one can drop the hypothesis (i) that the current T has
singular support contained in an analytic set.

4.43. COROLLARY (Shiffman-Ji-Bonavero). Let L be a holomorphic line bundle over
a compact complex manifold. Then L is big if and only if there exists a strictly positive
current T ∈ c1(L).

A manifold X is Moishezon if and only if it possesses an integral Kähler current.

PROOF. The crucial ingredient is the approximation theorem of Demailly [14]. We first
introduce a definition. A locally integrable function ϕ has analytic singularities if, locally,
equals c

2 log
(
∑λ j | f j|2

)
+ψ , where f j are holomorphic functions and, λ j are non-negative

smooth functions, whithout common zeroes, ψ is smooth and c ∈ Q+ . In particular the
singular set of ∂∂ ϕ is an analytic set.

4.44. THEOREM ([14]). Let T be a closed (1,1)–current on a compact complex ma-
nifold X, which is bounded below by a smooth (1,1)–form α . There exists a sequence of
Kähler currents Tε =

√
−1∂∂ ϕε +β , ε > 0, in the same de Rham cohomology class as T ,

converging weakly to T as ε −→ 0, where ϕε is a real function with analytic singularities
and β is a C ∞ representative of T .
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Now, if T ∈ c1(L) is strictly positive, it follows from Theorem 4.44 that Tε ∈ c1(L) is
strictly positive for ε > 0 sufficiently small, and that Tε satisfies condition (i) of Corollary
4.42. By the latter result, L is big. �

4.45. REMARK. The approach of Ji-Shiffman [24] is to approximate T by Tε as above
and consider a complete Kähler metric on X r Z, where Z = singsuppTε , which allows
to apply the L2 estimates of Hörmander-Bombieri-Skoda (Theorem 4.16) in order to show
that ⊕H0(X ,Lk) gives local coordinates outside Z.

The proof of Bonavero [7] is based on his singular Morse inequalities (1.9)’ and Theo-
rem 4.44. Actually the following characterization holds:

4.46. COROLLARY (Bonavero). Let L be a holomorphic line bundle over a compact
complex manifold. Then L is big if and only if there exists a current T ∈ c1(L) satisfying
the following conditions: (i) T =

√
−1∂∂ ϕ + β , where ϕ is a real function with analytic

singularities and β is a C ∞ representative of T , and (ii)
∫
(XrZ)(61,T ) T n > 0 where Z =

singsuppT .

4.6. Holomorphic Morse Inequalities for q-convex manifolds

Let X be a q–convex manifold of dimension n and let ϕ : X −→ R be an exhaustion
function which is q–convex outside a compact set K.

Let us consider a smooth sublevel set Xc = {ϕ < c} such that K ⊂ Xc. We know that
Lϕ has at least n−q+1 positive eigenvalues in the neighbourhood of ∂Xc. By [3, Lemma
18] we may choose a hermitian metric ω on X such that n inf{λ1,0}+λq is bounded from
below on a neighbourhood of ∂Xc. Then [3, Lemma 19] shows that

Lϕ(u,u) > C|u|2 on∂X , u ∈ Ω0, j(Xc,L
k ⊗E) , j > q.

Let us replace the metric hL with hL
χ = he−χ(ϕ) for some rapidly increasing convex function

χ .
We have thus

∫

∂X
Lϕ(u,u)dS > 0 , u ∈ B0, j(Xc,L

k ⊗E) , j > q (4.64)

(√
−1R(L,hL

χ )u,u
)

> Ck‖u‖2 , u ∈ B0, j(Xc,L
k ⊗E) , suppu ⊂V (4.65)

with a positive constant C > 0, for any k > k0, with convenient k and some small neigh-
bourhood V of ∂Xc.

Using now the Bochner–Kodaira formula with boundary term (B.25) and (4.64), (4.65)
we deduce that

‖u‖2 6 C
k (‖∂ Eku‖2 +‖∂ Ek∗u‖2) , u ∈ B0, j(Xc,L

k ⊗E) , suppu ⊂V , j > q (4.66)

with a possibly different C > 0. By applying (4.66) to ζ u where u ∈ B0, j(Xc,Lk ⊗E) , j >
q and ζ is a cut–off function with ζ = 1 near ∂Xc and suppζ ⊂ V we deduce that the
fundamental estimate (4.1) holds for any u ∈ B0, j(Xc,Lk ⊗E). Since B0, j(Xc,Lk ⊗E) is

dense in Dom(∂ Ek
)∩Dom(∂ Ek∗

) by Lemma A.21 we see that (4.1) is satisfied. Therefore
we can apply the abstract Morse inequalities (4.19) for the spaces H0, j

(2)
(Xc,Lk ⊗E), where

the L2 condition is taken with respect to the metrics ω on Xc and hL
χ , hE .
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By the strong Hodge theorem A.26 we have H0, j
(2)

(Xc,Lk ⊗E) ∼= H 0, j(Xc,Lk ⊗E) and
by the representation theorem B.43 we know that

H
0, j(Xc,L

k ⊗E) ∼= H0, j(Xc,L
k ⊗E) ∼= H j(Xc,O(Lk ⊗E)).

Finally we obtain the following result of Th. Bouche [8]. His proof is based on the same
principle of showing the fundamental estimate outside a compact set but he works with
complete metrics.

4.47. THEOREM. Let X be a q–convex manifold of dimension n and let (L,hL) , (E,hE)
holomorphic vector bundles of rank one and r respectively Py.

Then
n

∑
j=p

(−1) j−p dimH j(X ,O(Lk⊗E)) 6 r
kn

n!

∫

Xc(>p,hL
χ )

(√−1
2π

R(L,hL
χ )
)n

+o(kn)

as k → ∞, for any smooth sublevel set Xc ⊃ K, and p > q. If
√
−1RL is semi–positive out-

side a compact set K, we can replace the right–hard side integral by
∫

X(>p,hL)

(√
−1

2π RL
)n

.

In order to justify the last assertion of the theorem let us choose d < c such that L is
semi–positive outside Xd and

√
−1∂∂ ϕ has n−q+1 positive eigenvalues.

Let us choose χ such that χ = 0 on (−∞, f ) where d < f < c. The curvature
√
−1R(L,hL

χ )

has then n−q+1 positive eigenvalues in Xc r Xd so that Xc( j,hL
χ) ⊂ X f for j > q. But on

the last set hL
χ = hL and the assertion follows.

Instead of assuming L to be semi–positive we can assume as in [8] that L is l–positive
outside a compact set i.e.

√
−1RL has at least n− l +1 positive eigenvalues. Then one can

prove that the second assertion holds for p > q+ l −1.
In the same vein one can study the growth of the cohomology groups of pseudoconvex

domains and weakly 1–complete manifolds.

4.48. THEOREM ([26]). Let X be a smooth, relatively compact pseudoconvex domain
in a complex manifold M and let L −→ M be a holomorphic line bundle which is positive
in a neighbourhood of ∂X. Then

n

∑
j=p

(−1) j−p dimH0, j
(2)

(X ,Lk ⊗E) 6 r
kn

n!

∫

X(>p)

(√
−1

2π RL
)n

+o(kn)

for p > 1, where the L2 condition is taken with respect to smooth metrics over X. Moreover

dimH0(X ,O(Lk ⊗E)) > r
kn

n!

∫

X(61)

(√
−1

2π RL
)n

+o(kn). (4.67)

In particular, if L is positive, dimH0(X ,O(Lk)) > kn vol(X)+ o(kn), where the volume is

taken with respect to metric
√
−1

2π RL.

Assume now that X is a weakly 1–complete manifold. Then Xc are smooth pseudocon-
vex domains for c a regular value of the exhaustion function so the previous result apply if
L is positive outside a compact set K ⊂ Xc. Moreover, by [45, Theorem 6.2]

H j(Xc,O(Lk ⊗E)) ∼= H
0, j(Xc,L

k ⊗E) ∼= H0, j
(2)

(X ,Lk ⊗E).

The isomorphism theorem permits therefore to state Theorem 4.48 for the cohomology
groups H j(X ,O(Lk⊗E)) , j > 1. This result was proved in [8, Th.0.2] where actually a q–
positive bundle L is considered over a Kähler weakly 1–complete manifold X . The Kähler
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assumption was removed in [25] answering positively a question of Ohsawa [32, p.218]
about the polynomial growth of degree n with respect to k of dimH j(X ,O(Lk⊗E)) , j > 1.

More importantly, (4.67) was proved by Takayama for the particular case of a sublevel
set Xc of a X . By using the liberty to modify the curvature of L multiplying it with a factor
e−χ(ϕ) we can achieve that the integral in the right–hand side is infinite:

lim
k→∞

k−n dimH0(Xc,O(Lk ⊗E)) = ∞

if L is positive near ∂Xc.
This result toghether with the effective base point freeness methods introduced in alge-

braic geometry by Angehrn–Siu produce a answer to the conjecture of Nakano and Ohsawa
about the embeddability of weakly 1–complete manifolds.

4.49. THEOREM ([44, Theorem 1.2]). Let X be an n–dimensional weakly 1–complete
manifold with a positive line bundle L. Then Lm ⊗KX is ample for m > n(n + 1)/2. In
fact, X is then embeddable into P2n+1 by a linear subsystem of |(KX ⊗ Lm)⊗(n+2)| for
m > n(n+1)/2.

Actually, in the compact case the effective base point freeness was proved by Angehrn–
Siu [4] with the help of the Riemann–Roch theorem, Nadel’s vanishing theorem and Ohsawa–
Takegoshi L2 extension theorem. Takayama applies the same strategy replacing the Riemann–
Roch theorem with (4.67).
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281–291.

44. , Adjoint linear series on weakly 1–complete manifolds I: Global projective embedding,
Math.Ann. 311 (1998), 501–531.

45. K. Takegoshi, Global regularity and spectra of Laplace-Beltrami operators on pseudoconvex domains,
Publ. Res. Inst. Math. Sci. 19 (1983), no. 1, 275–304.

46. W. Thimm, Meromorphe Abbildungen von Riemannschen Bereichen, Math. Z. 60 (1954), 435–457.
47. E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661–692.
48. S. Zucker, Hodge theory with degenerating coefficients: L2–cohomology in the Poincaŕe metric, Ann. of
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CHAPTER 5

Covering manifolds

5.1. Automorphic forms and the L2–index theorem of Atiyah

5.1.1. Une observation de Poincaré. Let X be a compact Riemann surface. There
is a close connection between the function theory on X and the function theory on the
universal cover X̃ . Thanks to the uniformization theorem of Poincaré–Klein–Koebe we
know that that the universal cover of a Riemann surface of genus 0 (the sphere) is a sphere,
the universal cover of a Riemann surface of genus 1 (torus) is C and the universal cover of
a Riemann surface of genus > 2 is the unit disc.
One of the main theorems in the theory of Riemann surfaces states that any holomorphic
line bundle on X admits non-trivial meromorphic sections. In the case of tori which are
quotients C/Γ where Γ is a discrete group of translations, the result follows by the theory
of theta functions . These are roughly speaking functions on C almost periodic modulo Γ
and there is a one-to-one correspondence between them and the sections of holomorphic
line bundle on C/Γ.
If the genus g of X is > 2 then the universal cover X̃ is the unit disc D and X = D/Γ where
Γ = π1(X) acts on D. It is clear that Γ-invariant holomorphic or meromorphic functions
on D correspond to holomorphic or meromorphic functions on X . We could try to find a
non-trivial Γ-invariant meromorphic function by writting it as a quotient m = g1/g2 of two
holomorphic functions on D. We have now the task to see what is the relation between
the f ’s and the group; they are certainly not invariant, otherwise they would correspond to
functions on X so they would be constants.

Poincaré solved the problem by making the following twist. Consider the canonical
bundle KD and its tensor powers K⊗k

D ; they are trivial and a nowhere vanishing section is
given by dz⊗k. Then any meromorphic function can be written as a quotient m = f1/ f2

where fi are Γ-invariant sections of the pluricanonical bundle K⊗k
D for k > 2. To speak of a

Γ-invariant section of a vector bundle L we need a lifting of the action of Γ on the base; if
we denote by γ̃ : L −→ L the action on the bundle, then it induces a linear map γ̃z from Lz

to Lγz. A section f is called invariant if γ̃z( f (z)) = f (γz). In our special case the action on
K⊗k

D is given by

γ̃(z,dz⊗k) = (γz,
(dγ

dz

)−k
dz⊗k) (5.1)

i.e. γ̃z : K⊗k
D,z −→ K⊗k

D,γz is f (z) 7−→ ((γ−1)? f )(γz), so that f is invariant if and only if

γ? f = f , γ ∈ Γ, where the star indicates the pull-back of forms. Writting f = gdz⊗k for a
holomorphic function g on d we get that f is invariant if and only if

g(γz) =
(dγ

dz

)−k
g(z). (5.2)

Functions satisfying (5.2) are called automorphic forms. If we have two automorphic forms
g1 and g2 it is obvious that their quotient is an invariant meromorphic function. More
generally, given two Γ-invariant sections of a holomorphic line bundle with a lifting of the
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action of Γ we see by using local frames that their quotient is a Γ-invariant meromorphic
function.
To construct automorphic forms we use the so-called Poincaré series of order k:

Pk(g)(z) = ∑
γ∈Γ

g(γz)
(dγ

dz

)k

where g is a bounded holomorphic function on D. It turns out that for k > 2 the series
Pk(g) is convergent and it satisfies the relation (5.2). Let us note that if f = gdz⊗k then the
Poincaré series has the form:

Pk( f )(z) = ∑
γ∈Γ

γ̃−1
z f (γz).

Now we can use the rich function structure of D; the freedom in the choice of g ∈ O(D)
allows us to find a lot of automorphic forms Pk(g) for k > 2. If we regard them as sections
of the pluricanonical line bundle K⊗k

D they can be pushed down to sections of K⊗k
X that

separe points and tangent vectors, therefore implying that K⊗k
X , k >> 2, is very ample.

This procedure can be generalized to any relatively compact open set of a Stein manifold,
by replacing dγ

dz (z) by the determinant of the jacobian matrix detJγ(z).

5.1. THEOREM. Let M b Y be an open set of a Stein manifold Y . Let Γ ∈ Aut(M) act
properly discontinuous and freely on M such that X = M/Γ is compact. Then the canonical
bundle KX is ample.

For a proof see Siegel [15] or Kollár [10].

5.1.2. The L2–index theorem. A draw-back of the method of Poincaré series is that it
doesn’t say anything about the existence of automorphic forms of low degree i.e. sections
of K⊗k

X for small k. The L2 index theorem of Atiyah gives us the possibility of investigating
this problem.

Let (X̃,gTX̃) be a riemannian manifold on which a discrete group Γ acts freely and

properly discontinously such that gTX̃ is Γ–invariant.
Let X = X̃/Γ be the quotient and πΓ : X̃ −→ X the canonical projection. Then X̃ is

a Galois covering of X of Galois group Γ. We assume X̃ paracompact so that Γ will be
countable. Since gTX̃ is Γ–invariant there exists a riemannian metric gTX on X such that
π∗

ΓgTX = gTX̃ . We denote by dvX̃ the volume form of gTX̃ . We call U a fundamental

domain of the action of Γ on X̃ if the following conditions are satisfied:
a) X̃ is covered by the translations of U ,
b) different translations of U have empty intersection and
c) U rU has zero measure.
Let (Ẽ,hẼ) be a hermitian vector bundle over X̃ such that the action of Γ lifts to Ẽ . This

means that for each γ ∈ Γ there exists an automorphism γ Ẽ : Ẽ −→ Ẽ which induces an iso-
morphism γ Ẽ

X : ẼX −→ ẼγX such that (γ Ẽ
X )∗hẼ

γX = hẼ
X . Then there exists a hermitian vector

bundle (E,hE) on X such that (Ẽ,hẼ) = (π∗
ΓE,π∗

ΓhE). On the sections Ω0(X̃ , Ẽ) we intro-
duce the scalar product (s1,s2) =

∫
X̃〈s1,s2〉hẼ dvX̃ and let L2(X̃ , Ẽ) be the corresponding L2

space. There is an action of Γ on Ω(X̃ , Ẽ) given by Lγ : Ω(X̃ , Ẽ) −→ Ω(X̃, Ẽ),

Lγu(x) = γ Ẽ
γ−1xu(γ−1x) , u ∈ Ω(X̃, Ẽ) , x ∈ X̃ .
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By using a change of variables it is easy to check that Lγ extends to a unitary operator
Lγ : L2(X̃ , Ẽ) −→ L2(X̃ , Ẽ).

It is easy to see that

L2(X̃ , Ẽ) ∼= L2Γ⊗L2(U, Ẽ) ∼= L2Γ⊗L2(X ,E) (5.3)

where U is a fundamental domain for the action of Γ. A basis for L2Γ is formed by the
functions

δγ(γ ′) =

{
1 if γ = γ ′

0 if γ 6= γ ′.

Then for f ∈ L2(X̃ , Ẽ) the above identification is given by

f ∼= ( f |γU)γ ∼= ∑
γ

δγ ⊗ γ̃−1 ( f |γU)

which means that L2(U, Ẽ) is identified with those sections of Ẽ wich vanish outside U and
for any γ we identify Cδγ ⊕L2(U, Ẽ) with those sections wich vanish outside γU .
There is an unitary action of Γ by left translations on L2Γ by lγδη = δγη . It is easy to check
that actually Lγ = lγ ⊗ Id and that {Lγ : γ ∈ Γ} defines a unitary action of Γ on L2(X̃ , Ẽ).

Let (F̃,hF̃) be a further Γ–invariant hermitian vector bundle over X̃ and let P̃ : Ω(X̃, Ẽ)−→
Ω(X̃, F̃) be a linear differential elliptic operator.

We assume that P̃ is Γ–invariant if it commutes to the action of Γ i.e. P̃Lγ = Lγ P̃. This
is equivalent to the existence of a differential elliptic operator P : Ω(X ,E) −→ Ω(X ,F)

such that P̃ = π∗
ΓP.

We suppose from now on that X is compact. Then we can define the index of P and we
wish to find a notion of index also for P̃. The difficulty is that

Ker P̃ = {u ∈ L2(X̃ , Ẽ) : P̃u = 0}
is in general infinite dimensional, so we cannot use the usual dimension for the defini-
tion. Nevertheless, Atiyah [3] showed how one can associate a positive, possibly infinite
real number to this space, called the Γ–dimension. Let us call a free Hilbert Γ–module
a Hilbert space of the form L2Γ⊗H , H a Hilbert space, with the action γ 7−→ lγ ⊕ Id.
For example L2(X̃ , Ẽ) is a free Hilbert Γ–module. We call a (Hilbert) Γ–module any Γ–
invariant subspace of a free Hilbert Γ–module. Note that Ker P̃ is a Γ–module since P̃ is
invariant. We shall soon take the task of defining the Γ–dimension of a Γ–module in the
next Section. For the moment let us just remark that if Γ is trivial then it coincides with the
usual dimension and if Γ is finite we have

dimΓ =
1
|Γ| dim .

We define now the von Neumann index of P̃. Let P̃t : Ω(X̃ , F̃) −→ Ω(X̃, Ẽ) be the
formal adjoint of P̃, which is also Γ–invariant. We set

indexΓ P̃ = dimΓ Ker P̃−dimΓ Ker P̃t

We can now state Atiyah’s L2 index theorem [3]:

5.2. THEOREM (Atiyah). Let P̃ : Ω(X̃ , Ẽ) −→ Ω(X̃, F̃) be a Γ–invariant elliptic oper-
ator on a Galois covering πΓ : X̃ −→ X of a compact manifold X = X̃/Γ. Then

indexΓ P̃ = indexP

where P : Ω(X ,E)−→ Ω(X ,F) satisfies π∗
ΓP = P̃.
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Let assume in the sequel that X̃ is a complex manifold and the vector bundle Ẽ is

holomorphic. Then the Cauchy–Riemann operator ∂
Ẽ

: Ω0, j(X̃ , Ẽ) −→ Ω0, j+1(X̃ , Ẽ) is Γ–

invariant i.e. Lγ∂ Ẽ
= ∂ Ẽ

Lγ : in terms of the decomposition (5.3) Lγ acts only on the first

factor and ∂ Ẽ
only on the second. Recall that the formal adjoint ϑ Ẽ = −#Ẽ∗∂

Ẽ
#Ẽ where

#Ẽ : Ω0, j(X̃ , Ẽ) −→ Ω0,n− j(X̃ , Ẽ∗) is the Hodge operator (B.7).

Therefore, ϑ Ẽ and the Kodaira–laplacian 2
Ẽ = ∂ Ẽϑ Ẽ + ϑ Ẽ∂ Ẽ

are also Γ–invariant.
The Γ–index of 2

Ẽ is the Γ–Euler characteristic of Ẽ,

indexΓ(2Ẽ) =
n

∑
j=0

(−1) j dimΓ H
0, j
(2)(X̃ , Ẽ)

where H
0, j
(2)(X̃ , Ẽ) are the reduced cohomology groups (A.29). From Theorem 5.2 we ob-

tain:

5.3. THEOREM. Let X̃ be complex manifold of dimension n with a properly discontinu-
ous and free action of a discrete group Γ such that X = X̃/Γ is a compact Kähler manifold.
Assume that there exist a holomorphic line bundle Ẽ on X̃ such that the action of Γ lifts to
Ẽ and suppose that we have fixed on X̃ the pull-back of the Kähler metric from X and on
Ẽ the pull-back of a hermitian metric on E = Ẽ/Γ. Then the Euler characteristic of the
adjoint bundle KX ⊗E equals the Euler Γ–characteristic of the adjoint bundle KX̃ ⊗ Ẽ:

n

∑
q=0

(−1)q dimHq(X ,KX ⊗E) =
n

∑
q=0

(−1)q dimΓ H
q
(2)(X̃ ,KX̃ ⊗ Ẽ).

Unfortunately the previous theorem involves higher cohomology groups. But if we make
additional assumptions on the bundle E the higher cohomology vanishes:

5.4. THEOREM. Suppose that E is a positive line bundle. Then dimΓ H
0
(2)(X̃ ,KX̃ ⊗ Ẽ) =

dimH0(X ,KX ⊗E).

PROOF. Indeed, by the Kodaira vanishing theorem Hq(X ,KX ⊗E) = 0 for q > 1 since
E is positive. Moreover, H

q
(2)(X̃ ,KX̃ ⊗ Ẽ) = 0 by the vanishing theorem of Andreotti-

Vesentini [2] (see also the vanishing results from [5]) since X̃ is a complete Kähler manifold
and Ẽ is positive. �

The use of Theorem 5.4 is twofold. We can either deduce the existence of automorphic
forms of low degree obtaining non-vanishing theorems on X or we can find holomorphic
L2 sections on X̃ obtaining non-vanishing theorems on X̃ . As an example of the first appli-
cation we have the following.

5.5. COROLLARY ([10]). Let X̃ b Y be an open set of a Stein manifold Y and Γ a
discrete group acting properly discontinuous and freely on X̃. If X = X̃/Γ is compact then:
i) dimH0(X ,K⊗k

X ) > 1 for k > 2.
ii) dimH0(X ,K⊗k

X ) > 2 for k > 4.

Indeed we can apply the previous theorem together with the fact that KX̃ is generated by its

L2 sections which shows that dimΓ H
0
(2)(X̃ ,K⊗k

X̃
) > 1.

The other direction is to apply Theorem 5.4 in order to get information about the existence
of holomorphic sections on X̃ .
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5.6. COROLLARY ([10], Theorem 16.5). Let X be a projective manifold of dimension
n and E a positive line bundle on X. Fix a positive integer a(E) such that K−1

X ⊗Ea(E) is
positive also. Let p : X̃ −→ X a covering corresponding to a quotient Γ of π1(X). Then for
k > (n + 2)(n+6)(a(E)+ n) we have that Ek is very ample and Ẽk = p?Ek is generated by
its holomorphic L2 sections. Moreover for k large enough holomorphic L2 sections of Ẽk

separate points of X̃ .

This corollary has connections to the Shafarevich conjecture:

5.7. SHAFAREVICH CONJECTURE. Let X be a smooth projective manifold and X̃ its
universal cover. Then there is a proper holomorphic morphism with connected fibers onto
a normal Stein space.

Since by the Remmert reduction every holomorphically convex space admits such a
morphism it would be sufficient to prove that X̃ is holomorphically convex (i.e. for every
discrete sequence {xi} there exists a holomorphic function f which blows up on the se-
quence, sup | f (xi)| = ∞). We can introduce a weaker form, the convexity with respect to a
hermitian line bundle, by replacing the function with a holomorphic section. Napier [11]
showed that if X carries a positive line bundle E then X̃ is holomorphically convex with
respect to Ẽk for large k. In particular the dimension of the space of holomorphic sections
is infinite for large k.

5.1.3. Definition and properties of the Γ–dimension. It is probably high time to give
a definition of the Γ–dimension of a Γ–module of L2(X̃ , Ẽ). We follow the elementary ac-
count of Kollár [10]. For a general account in the natural framework of von Neumann
algebras see Cohen [6]. Let us consider a Hilbert space G and denote by B(G) the al-
gebra of bounded linear endomorphisms of G. Let us remind that there exists a function
Tr : B(G) −→ C∪{∞} called trace which is linear and TrAB = TrBA for A,B ∈ B(G).
Moreover for a positive operator A > 0 (i.e. (Ag,g) > 0 for all g ∈ G) we have TrA > 0 and
TrA = 0 if and only if A = 0 (for notions of operator algebras like trace see Strătilă & Zsidó
[16]). Let us remind the definition of the trace of a positive operator. Fix an orthonormal
basis {ei} of G and put TrA := ∑(Aei,ei) ∈ [0,∞]. The definition does not depend on the
choice of the basis. An important case of positive operator is the orthogonal projection P
on a closed subspace of F ⊂ G: choosing an orthonormal basis in F and in the orthogonal
complement of F we check that

TrP = dimF. (5.4)

Let us also note that for any B ∈ B(G), B∗B and BB∗ are positive and if B is represented
by the matrix

(
bi j = (Bei,e j)

)
then TrB∗B = ∑ |bi j|2 and in particular TrB∗B = TrBB∗.

Let us take now G = L2Γ for a discrete group Γ. As we have already noted a basis of
this space is (δγ)γ and there is a unitary action of Γ on L2Γ given by the left translations
lγ . Let consider now the algebra AΓ ⊂ B(L2Γ) of all operators that commute with all left
translations. Let us denote the unit element of Γ by e. Then we can introduce a trace on
AΓ by

TrΓ A = (Aδe,δe), A ∈ AΓ. (5.5)

This definition is justified by the following. Suppose that A is given by the matrix
(
aγη =

(Aδγ ,δη)
)
. Applying the equality Alγ = lγA to δe and using lγδe = δγ we get that the matrix

coefficients satisfy the relation aγη = ae,γ−1η . In order to define a trace as before we should
consider ∑(Aδγ ,δγ) = ∑aγγ = |Γ|aee which is finite only if Γ is finite or A = 0. Therefore
we renormalize and obtain (5.5). It is easy to see that TrΓ satisfies the same properties as
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Tr. Let us consider a left Γ–invariant subspace F ⊂ L2Γ (i.e. a Γ–module), so that the
orthogonal projection P on F belongs to AΓ. Imitating (5.4) we put

dimΓ F = TrΓ P = (Pδe,δe).

The Γ–dimension has the following properties:

(1) 0 6 dimΓ F 6 1.
(2) dimΓ F = 0 if and only if F = 0.
(3) F ⊂ F ′ implies dimΓ F 6 dimΓ F ′ with equality if and only if F = F ′.

There is a useful formula for dimΓ F in terms of an othonormal basis {ei} of F . We com-
plete this basis to an ONB { fi,g j} of L2Γ and expanding δe = ∑(δe, fi) fi + ∑(δe,g j)g j =

∑ f̄i(e) fi +∑(δe,g j)g j we get

dimΓ F = (Pδe,δe) = (∑ f̄i(e) fi,δe) = ∑ | fi(e)|2. (5.6)

As an example let us consider the isomorphism L2(S1) ≈ L2Z given by u 7−→ (un)n∈Z

where un are the Fourier coefficients with respect to athe basis exp(int). This basis corre-
spond to the basis δn of L2Z so the action of Z on L2(S1) is given by the multiplication
with exp(int). Let us consider the subspace FB ∈ L2(S1) of functions vanishing outside the
measurable set B. It is a Z–invariant set and the projection on FB is given by PB f = χB f
where χB is the characteristic function of B. Thus

dimZ FB = (PBδ0,δ0) = (χB ·1,1) = measure(B).

Finally let us introduce the Γ–dimension for Γ–modules of L2(X̃ , Ẽ). As before we
denote by AΓ ⊂ B(L2(X̃ , Ẽ)) the algebra of all operators which commute with the action
of Γ. Then to any operator A∈B(L2(X̃ , Ẽ)) we can associate operators aγη ∈B(L2(U, Ẽ))

such that aγη( f ) is the projection of A(δγ ⊕ f ) on Cδη ⊕B(L2(U, Ẽ)). If moreover A∈AΓ
then the matrix (aγη) satisfies the relation aγη = ae,γ−1η and we can define

TrΓ A = Traee.

Remark that if A is positive then aee is positive too so we have a formula for Traee. If
F ∈ L2(X̃ , Ẽ) is a Γ–module then the projection P on F is in AΓ and we put

dimΓ F = TrΓ P.

Imitating (5.6) we get

dimΓ F = ∑
i

∫

U
|ei|2dvX̃ (5.7)

where {ei} is an orthonormal basis in F .
Let us introduce now the notion of Γ–morphism A : V1 −→V2 between two Γ–modules:

it is a bounded operator which commutes with the action of Γ on V1 and V2. We say that A
is a quasi-isomorphism if Ker(A) = 0 and Im(A) is dense in V2.

5.8. PROPOSITION. The Γ–dimension just introduced has the properties:

(1) 0 6 dimΓ F 6 ∞.
(2) dimΓ F = 0 if and only if F = 0.
(3) F ⊂ F ′ implies dimΓ F 6 dimΓ F ′ with equality if and only if F = F ′.
(4) If A : V1 −→V2 is a Γ–morphism then dimΓ Ker(A)⊥ = dimΓ Im(A).
(5) If two Γ–modules are quasi-isomorphic then dimΓ L1 = dimΓ L2.
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Let us justify the next to the last assertion. The polar decomposition A = SW , where
S > 0 and W is a partial isometry (i.e. Ker(A) = Ker(W ) and W : Ker(A)⊥ −→ Im(A) is
an isometry), has the property that W is a Γ–morphism too. On the other hand WW ∗ is the
projection on Im(A) and W ∗W is the projection on Ker(A)⊥. Thus we have to prove that
TrΓ WW ∗ = TrΓ W ∗W . Let us consider the matrix (wγη) of W ; since W ∈ AΓ there exists a
function w : Γ −→ BL2(U, Ẽ) such that w(γ−1η) = wγη . Then (WW ∗)ee = ∑w(γ)w∗(γ)
and

TrΓWW ∗ = ∑Trw(γ)w∗(γ) = ∑Trw∗(γ)w(γ) = TrΓ W ∗W.

The following proposition will be useful in the proof of the Morse inequalities.

5.9. PROPOSITION. Let

0 → L0 → L1 → ... → Lq → Lq+1 → . . . → Ln → 0

be a complex of Γ–modules (dq commutes with the action of Γ and dq+1dq = 0). If lq =
dimΓ Lq < ∞ and h̄q = dimΓ H̄q(L) where

H̄q(L) = Ker(dq)/Im(dq−1)

then
q

∑
j=1

(−1)q− jh̄ j ≤
q

∑
j=1

(−1)q− jl j (5.8)

for every q = 0,1, ...,n and for q = n the inequality becomes equality.

The proof is the same as in the case of vector spaces of finite dimension with the single
difference that we use now the property 5.8 (4) of the Γ–dimension.

5.2. Estimates of the spectrum distribution function

As before let (X̃,gTX̃) be a paracompact Γ–invariant riemannian manifold, let X = X̃/Γ
be the quotient and πΓ : X̃ −→ X the canonical projection. Let (Ẽ,hẼ) be a Γ–invariant

hermitian vector bundle and let (E,hE) be a bundle on X such that (Ẽ,hẼ) = (π∗
ΓE,π∗

ΓhE).
We consider an open set Y b X with smooth boundary and its preimage Ỹ = π−1

Γ Y ; Γ
acts on Ỹ and Ỹ/Γ = Y . In general we will decorate with tildes the preimages of objects
living on the quotient. Let U be a fundamental domain of the action of Γ on Ỹ .

Let us consider a formally self-adjoint, strongly elliptic, positive differential operator
P on X̃ acting on sections of Ẽ. Denote by P̃ the Γ–invariant differential operator which is
its pull-back to X̃ . From P̃ we construct the following operators: the Friedrichs extension
in L2(Ỹ , F̃) of P̃ with domain Ω0(Ỹ , F̃) and the Friedrichs extension in L2(U, F̃) of P̃
with domain Ω0(U, F̃). From now on we denote these extensions by P̃ and PU . They
are closed self-adjoint positive operators. It is known that the Fridrichs extension P̃ is
also Γ invariant i.e. it commutes with all Lγ . This amounts to saying that the spectral
projectors E(λ , P̃) of P̃ commute with all Lγ . On the other hand the Rellich lemma tells
us that PU has compact resolvent and hence discrete spectrum. We will undertake the task
of comparing the distribution of the two spectra. Namely since E(λ , P̃) is Γ invariant its
image Im(E(λ , P̃)) is a Γ invariant closed subspace of the free Hilbert Γ–module L2Γ⊗
L2(U, F̃) ∼= L2(Ỹ , F̃) and we can consider its von Neumann dimension. We denote in
the sequel NΓ(λ , P̃) = dimΓ Im

(
E(λ , P̃)

)
. Similarly we consider the counting function of

PU , N(λ ,PU) = dimIm
(
E(λ ,PU)

)
. In order to compare NΓ(λ , P̃) and N(λ ,PU) we use
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essentially the analysis of Shubin [14]. Let P̃ be a Γ invariant self-adjoint positive operator
on a free Γ–module L2Γ⊗H where H is Hilbert space. Then we have the following
variational principle [14, Lemma 2.4]:

NΓ(λ , P̃) = sup
{

dimΓ L | L ⊂ Dom(Q̃), Q̃( f , f ) 6 λ‖ f‖2, ∀ f ∈ L
}

(5.9)

where L is a Γ–module and Q̃ is the quadratic form of P̃.

5.10. PROPOSITION (Estimate from below). For all λ ∈ R,

NΓ(λ , P̃) > N(λ ,PU) . (5.10)

PROOF. Let us denote by λ0 6 λ1 6 . . . the spectrum of PU . Let {ei} be an orthonormal
basis of L2(U, Ẽ) which consists of eigenfunctions of PU corresponding to the eigenvalues
λi . Let ẽi be the extension by 0 on Ỹ r U of ei. Then {Lγ ẽi} is an orthonormal basis
of L2(Ỹ , Ẽ) and Lγ ẽi ∈ Dom(Q̃). Let Φλ the Γ–module spanned by the orthonormal set
{Lγ ẽi : λi 6 λ} in L2(Ỹ , F̃). Then by (5.7) dimΓ Φλ = ∑λi6λ 1 = N(λ ,PU). Moreover, it is

easy to see that Φλ ⊂ Dom(Q̃) and Q̃( f , f ) 6 λ‖ f‖2, f ∈ Φλ , as Dom(Q̃) is complete in
the graph norm. Thus (5.10) follows from (5.9). �

The next step is an estimate from above of NΓ(λ , P̃). We denote by rankΓ T =

dimΓ Im(T ). For the following we refer to [14, Lemma 3.7].

5.11. LEMMA. Let us consider the same setting as in the variational principle. Assume
T : L2(Ỹ , Ẽ) → L2(Ỹ , Ẽ) is a Γ–morphism such that

(
(P̃+T ) f , f

)
> µ‖ f‖2, f ∈ Dom(P̃)

and rankΓ T 6 p. Then
NΓ(µ − ε, P̃) 6 p , ∀ε > 0. (5.11)

In order to get an estimate from above we have to enlarge a little bit the fundamental
domain U and compare the counting function of P̃ on Ỹ to the counting function of P̃
with Dirichlet boundary conditions on the enlarged domain. For h > 0, let Uh = {x ∈
Ỹ : d(x,U) < h} where d is the distance on X̃ associated to the Riemann metric on X̃
and then let Uh,γ := γUh. Next we need a partition of unity. Let ϕ (h) ∈ C∞(Ỹ ), ϕ(h) > 0,

ϕ(h) = 1 on Ū and suppϕ(h) ⊂Uh, ϕ(h)
γ = ϕ(h) ◦ γ−1. We define the function J(h)

γ ∈C∞(Ỹ )

by J(h)
γ = ϕ(h)

γ
(

∑γ(ϕ
(h)
γ )2

)− 1
2 so that ∑γ∈Γ(J(h)

γ )2 = 1. If P̃ is of order 2, which will be
assumed from now on, by [14, Lemma 3.1] (variant of IMS localization formula, see [7]),

P̃ = ∑
γ∈Γ

J(h)
γ P̃J(h)

γ − ∑
γ∈Γ

σ0(P̃)(dJ(h)
γ )

where σ0 is the principal symbol of P̃. Since the derivative of J(h)
γ is O(h−1) and the order

of P̃ is 2 we deduce that there exists C > 0 independent of h such that:

P̃ > ∑
γ∈Γ

J(h)
γ P̃J(h)

γ − C
h2 Id (5.12)

We let P̃ act on D(Uγ,h, F̃) and take its Friedrichs extension PUγ ,h . Since PUγ ,h is positive,

PUγ ,h + λ E(λ ,PUγ ,h) > λ Id. We define the bounded operators Gγ on L2(Ỹ , F̃) given by

Gγ = J(h)
γ λ E(λ ,PUγ ,h)J(h)

γ and G = ∑γ∈Γ Gγ . Since J(h)
γ P̃J(h)

γ = J(h)
γ PUγ ,hJ(h)

γ , (5.12) yields

P̃+G >

(
λ − C

h2

)
Id. (5.13)
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5.12. LEMMA.

rankΓ G 6 N(λ ,PUh) (5.14)

PROOF. We start with the finite rank operator G on L2(Uh, F̃),

G = J(h)
e λ E(λ ,PUh)J

(h)
e .

Then, rankG 6 rankE(λ ,PUh) = N(λ ,PUh). Next we consider the free Γ–module L2Γ⊗
L2(Uh, F̃) and the bounded Γ–invariant operator Id⊗G. Then R(Id⊗G) = L2Γ⊗R(G) so
that rankΓ Id⊗G = rankG. We now identify the space L2Γ⊗L2(Uh, F̃) with

⊕
γ∈Γ L2(Uh,γ , F̃)

by the unitary transform K : ∑γ δγ ⊗wγ 7−→
(
Lγwγ

)
γ . Thus

⊕
γ∈Γ L2(Uh,γ , F̃) is naturally

a free Γ–module for which K is Γ invariant. We transport Id⊗G on
⊕

γ∈Γ L2(Uh,γ , F̃)
by K and we think of it as acting on this latter space. We construct then a restriction
operator V :

⊕
γ∈Γ L2(Uh,γ , F̃) −→ L2(Ỹ , F̃) , V

(
(wγ)γ

)
= ∑γ∈Γ wγ which is a surjective

Γ–morphism. We have also the Γ–morphism I from L2(Ỹ , F̃) to
⊕

γ∈Γ L2(Uh,γ , F̃), I(u) =
(u �Uh,γ )γ which is obviously bounded. With our identifications, and replacing E(λ ,PUγ ,h)

by LγE(λ ,PUh)L
−1
γ in the definition of Gγ , we have G =V (Id⊗G) I . As in the case of usual

dimension rankΓ V (Id⊗G) I 6 rankΓ(Id⊗G) (see [14, Lemma 3.6]). Hence rankΓ G 6
rankΓ(Id⊗G) = rankG 6 N(λ ,PUh) . �

5.13. PROPOSITION (Estimate from above). There is a constant C > 0 such that

NΓ(λ , P̃) 6 N

(
λ +

C
h2 ,PUh

)
λ ∈ R, h > 0 . (5.15)

PROOF. We obtain NΓ(λ , P̃) 6 N
(

λ + C
h2 + ε,PUh

)
by Lemma 5.11, (5.13), (5.14) and

let ε −→ 0 (the counting function is right continuous). �

We are going to apply the above results to the semi-classical asymptotics as k −→ ∞
of the spectral distribution function of the laplacian k−1

2
Ẽk

on X̃ . We let Ẽ and G̃ be
two Γ–invariant holomorphic line bundles. Let us form the Laplace–Beltrami operator
2

Ẽk
= ∂ ϑ + ϑ∂ on (0,q) forms with values in Ẽk ⊗ G̃. We apply the previous results for

P̃ = k−1
2̃

Ẽk |Ỹ , the operator of the Dirichlet problem on Ỹ . Now we have to make a good

choice of the parameter h. We take h = k−
1
4 so that the derivative of the cutting off function

J(h)
γ is just O(k

1
4 ). Then σ0(k−1

2
Ẽk

)(dJ(h)
γ ) = k−1|∂̄J(h)

γ |2 = O(k−
1
2 ). Modifying (5.12),

(5.13) and (5.15) accordingly we obtain the following semi–classical estimate.

5.14. PROPOSITION. There exists a constant C > 0 independent of k such that for λ ∈R
and k > 0 we have

N

(
λ ,

1
k
2

Ẽk
�U

)
6 NΓ

(
λ ,

1
k
2

Ẽk |Ỹ
)

6 N

(
λ +

C√
k

,
1
k
2

Ẽk
�U

k−1/4

)
(5.16)

Let us fix ε > 0. Then N(λ + C√
k

, 1
k 2̃

Ẽ) 6 N(λ + ε, 1
k 2̃

Ẽ �Uε ) since for sufficiently

large k we have U
k−

1
4
⊂ Uε . So limsupk k−nNΓ(λ , 1

k 2̃
Ẽk |Ỹ ) 6 Iq(Uε ,λ + ε) by (5.16) and

Theorem 3.15. The use of dominated convergence to make ε −→ 0 in the last integral
yields:
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5.15. THEOREM. The spectral distribution function of 1
k 2̃

Ẽk |Ỹ on L2
0,q(Ỹ , Ẽk ⊗ G̃) with

Dirichlet boundary values satisfies

limsup
k

k−nNΓ

(
λ ,

1
k
2

Ẽk |Ỹ
)

6 Iq(U,λ ). (5.17)

Moreover, there exists an at most countable set N ⊂ R such that for λ in RrN the limit
exists and we have equality in (5.17).

5.3. Weak Lefschetz Theorems

5.16. THEOREM. Let (X ,ω) be an n–dimensional complete hermitian manifold and let
(L,hL) be a holomorphic hermitian line bundle. Let K b M and a constant C0 > 0 such
that

√
−1RL > C0 ω on X r K. Let πΓ : X̃ → X be a Galois covering of Galois group Γ,

L̃ = π∗
Γ(L) and let U be any open subset with smooth boundary such that K bU b X. Then,

for k −→ ∞,

dimΓ Hn,0
(2) (X̃ , L̃k) >

kn

n!

∫

X(61,hL)

(√
−1

2π RL
)n

+o(kn) , (5.18)

where Hn,0
(2)

(X̃ , L̃k) is the space of (n,0)–forms with values in L̃k which are L2 with respect

to any metric on X̃ and the metric π∗
Γ(hL) on L̃.

PROOF. We endow X̃ and L̃ with the metric ω̃ = π∗
Γω and hL̃ = π∗

ΓhL respectively.
Then (X̃ , ω̃) is complete. Let K̃ = π−1

Γ (K). Since πΓ is locally biholomorphic we have√
−1RL̃ > C0ω̃ on X̃ r K̃.

Using the Bochner–Kodaira–Nakano formula as in the proof of Theorem 4.30 we ob-
tain that

‖u‖2 6
1
k

QL̃k
(u,u) (5.19)

for any u ∈ Ωn,1
0 (X̃ r K̃, L̃k), where QL̃k

is the quadratic form of 2
L̃k

. Let W ⊂ V be two
open neighbourhoods of K. Let 0 6 ρ 6 1 be a smooth function on X such that ρ = 1 on W
and ρ = 0 on X rV . Set ρ̃ = ρ ◦πΓ. Applying (5.19) for (1− ρ̃)u where u ∈ Ωn,1

0 (X̃ , L̃k)
and (4.7) we get by the density lemma of Andreotti–Vesentini A.10

‖u‖2 6
6
k

QL̃k
(u,u)+2

∫

X
|ρ̃u|2 dvX , u ∈ DomQL̃k ∩Ln,1

2 (X̃ , L̃k) (5.20)

From (5.20) we infer that the spectral spaces corresponding to the lower part of the spec-
trum of 1

k 2
L̃k

on (n,1)–forms inject into the spectral spaces of the Γ–invariant operator
1
k 2

L̃k

Ṽ
which correspond to the Dirichlet problem on Ṽ = π−1

Γ (V ). For the latter operator
we know the Weyl law. We consider, analogously to (4.5) the Γ–morphism

E
0,1(λ , 1

k 2
L̃k

) −→ E
0,1(6λ +24C1k−1, 1

k 2
L̃k

Ṽ
)

u −→ E6λ+24C1k−1(
1
k
2

L̃k

Ṽ
)(ρ̃u)

is injective for λ < 1
12 . �

Nori [13] generalized the Lefschetz hypersurface theorem. Assume X and Y are smooth
connected projective manifolds and Y is a hypersurface in X with positive normal bundle
and dimY > 1. Then the image of π1(Y ) in π1(X) is of finite index. Recently, Napier and
Ramachandran [12] proposed an analytic approach and generalized Nori’s theorem show-
ing that Y may have arbitrary codimension (but dimY > 1). They use the ∂–method on
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complete Kähler manifolds to separate the sheets of appropriate coverings. In the sequel
we use the Morse inequalities to study non–necessarily Kähler manifolds. However our
method requires that the image group is normal since we can deal only with Galois cov-
erings. First we introduce the notion of formal completion (see [4]). Let Y be a complex
analytic subspace of the manifold U and denote by IY the ideal sheaf of Y . The formal
completion Û of U with respect to Y is the ringed space (Û ,OÛ) = (Y,proj limOU/I ν

Y ).

If F is an analytic sheaf on U we denote by F̂ the sheaf F̂ = proj limF ⊗(O/I ν
Y ). If F

is coherent then F̂ is too. Moreover by [4, Proposition VI.2.7] the kernel of the mapping
H0(U,F ) −→ H0(Û ,F̂ ) consists of the sections of F which vanish on a neighbourhood
of Y . Hence for locally free F the map is injective.

5.17. THEOREM. Let (X ,ω) and (L,hL) as in Theorem 5.16 and assume that the inte-
gral in (5.18) is positive. Let moreover Y be a connected compact complex subspace of X
satisfying: (i) for any k, dimH0(X̂ ,F̂k) < ∞, where Fk = O(Lk ⊗KX), (ii) the image G of
π1(Y ) in π1(X) is normal in π1(X). Then G is of finite index in π1(X).

PROOF. We follow the proof given in [12]. Since G is normal there exists a connected
Galois covering π : X̃ −→ X such that the group of deck transformations is Γ = π1(X)/G.
The cardinal |Γ| equals the index of G in π1(X). Let Ẽ = π−1E. By applying Theorem
5.16, there exists C > 0 such that for large k, dimΓ Hn,0

(2)
(X̃ , L̃k) > C kn. Let us choose

a small open neighbourhood V of Y such that π1(Y ) −→ π1(V ) is an isomorphism; so
the image of π1(V ) in π1(M) is G. Hence, if we denote by j the inclusion of V in X ,
there exists a holomorphic lifting j̃ : V −→ X̃ , π ◦ j̃ = j. Since j̃ is locally biholomor-
phic the pull–back map j̃∗ : Hn,0

(2)
(X̃ , L̃k) −→ Hn,0(V,Lk) is injective. On the other hand

H0(V,Fk) ↪→ H0(V̂ ,F̂k) = H0(X̂ ,F̂k). By (i) the latter space is finite dimensional so
dimHn,0

(2)
(X̃ , L̃k) < ∞. We know that dimΓ H0

(2)(X̃ , L̃k ⊗KX̃) > 0 for k > C−1/n. If Γ were

infinite this would yield dimHn,0
(2) (X̃ , L̃k) = ∞ which is a contradiction. Therefore |Γ| < ∞

and dimHn,0
(2) (X̃ , L̃k) > C |Γ|kn > |Γ| for k > C−1/n. Thus |Γ| 6 dimH0(X̂,F̂k) for large

k. �

5.18. REMARK. (a) By a theorem of Grothendieck [9], condition (i) is fulfilled if Y is
locally a complete intersection with ample normal bundle NY (or k–ample in the sense of
Sommese, k = dimY −1).
(b) Moreover, we can slightly generalize the statement of Theorem 5.17, by assuming
that Y is a subset of a manifold V , where condition (i) holds, and there exists a locally
biholomorphic map ψ : V → X . The proof is the same, but we use the map ψ instead of
the inclusion j. In particular, if Y admits an immersion in X with positive normal bundle,
we can take V to be a small neigbourhood of the zero section and we obtain Theorem 1.12.
(c) We can replace condition (i) with the requirement that Y has a fundamental system of
pseudoconcave neighbourhoods {V}. Then dimH0(V,Fk) is finite by [1]. This happens
for example if Y is a smooth hypersurface and NY has at least one positive eigenvalue or,
if Y has arbitrary codimension, if NY is sufficiently positive in the sense of Griffiths [8,
Proposition 8.2].
(d) Condition (ii) is trivially satisfied if π1(Y ) = 0. Thus, if X contains a simply connected
subvariety satisfying either (a) or (b), π1(X) is finite.
(e) It follows from Remark 2.1 that, Theorem 4.1 holds for compact manifolds M, and also
for Zariski open sets in Moishezon manifolds.
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5.19. COROLLARY. Let X be a Zariski open set in a compact normal Moishezon space
X. Let Y −→ Xreg be a holomorphic immersion with ample normal bundle and assume that
the image G of π1(Y ) in π1(X) is a normal subgroup. Then G has finite index in π1(X).

PROOF. Since X is normal we have an isomorphism π1(Xreg) −→ π1(X), so we can
replace X with Xreg. We can thus desingularize X and assume that it is a manifold. We
consider on X a singular hermitian positive line bundle L. We modify then the proof of
Theorem 4.40 in the following way. First we consider the singular support S of

√
−1RL

and construct the generalized Poincaré metric on X r S. Then we consider a covering
πΓ : X̃ −→ X of group Γ and apply Theorem 5.16 (or a covering version of Theorem 4.40)
on the covering X̃ r π−1

Γ (S) of X r S. We obtain in this way (n,0)-forms on X̃ r π−1
Γ (S)

which are L2 with respect to the pull-back of the Poincaré metric on X̃ r π−1
Γ (S) and a

metric on π−1
Γ (L) over X̃ r π−1

Γ (S) which is bounded below by a smooth metric on X̃ . But
for (n,0)-forms the L2 condition does not depend on the metric on the base manifold so we
can take the L2 condition with respect to a smooth metric on X̃ and π−1

Γ (L). Hence these
sections extend to X̃ and we can apply the proof of Theorem 5.17. �



Bibliography
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CHAPTER 6

Compactification Theorems

In this chapter we apply the ideas developped so far about the spectral gap and the
Morse inequalities to the compactification problem. We wish to find sufficient conditions
under which a given noncompact complex manifold can be compactified - i.e. exhibited as
open or Zariski-open subset of a compact complex space (better yet, projective or Moishe-
zon variety). By considering such a problem, one hopes to reduce the study of certain
noncompact complex manifolds to that of compact ones, which are often easier to handle
from the perspectives of intersection theory, analysis, and classification.

The main motivating examples are the arithmetic quotients, which are quotients X of
bounded symmetric domains Ω by torsion–free arithmetic lattices Γ ⊂ Aut(Ω). There are
three points of view on the compactification of arithmetic quotients: algebraic, differential
geometric and complex analytic.

On the algebraic side, the theory of compactification of such X was first considered by
Satake [60, 61] who gave certain quotients of Siegel upper half spaces and other bounded
symmetric domains topological compactifications. This was later extended to other bounded
Baily [7], and Baily–Borel [8], based in part on the works of Satake, endowed such topo-
logical compactifications with complex structures making X into a Zariski–open subset
of a (highly singular) projective–algebraic variety X , called Satake-Baily-Borel compact-
ifications. They showed this for all arithmetic quotients of bounded symmetric domains.
A further succes was the toroidal compactifications of arithmetic quotients on bounded
symmetric domains by Ash-Mumford-Rapopport-Tai [6].

Let us consider the arithmetic quotients from the point of view of differential geometry.
The bounded symmetric domains Ω are equipped with Bergman metrics ωB invariant un-
der Aut(Ω). (Ω,ωB) are automatically Kähler-Einstein, inducing complete Kähler-Einstein
metrics ω = ωKE on X . (X ,ω) are automatically of finite volume (cf. [56]). Moreover,
if we restrict our attention to ball quotients, the sectional curvature is pinched between
two negative constants. This allowed Siu and Yau [64] to apply differential geometric
methods to obtain the compactification of complete Kähler manifolds with pinched neg-
ative sectional curvature and finite volume. They therefore yield a generalization of the
compactification of arithmetic quotients of rank one.

The first step in the proof Siu-Yau theorem is to show that the manifold is hypercon-
cave and then use results on compactifying X using complex analysis. One key point is
that Siegel’s theorem holds true for pseudoconcave manifolds [1]. Actually, Andreotti
and Grauert [2, 3] introduced the theory of pseudoconcave manifolds for the purpose to
study the arithmetic quotients. In [2] it was verified that certain arithmetic quotients X
of the Siegel upper half planes are pseudoconcave. It was later proved that all irreducible
arithmetic quotients of dimension > 2 are pseudoconcave (Spilker [65], Borel [14]). The
primary interest of [2] was to give an elementary analytic proof of the extendability of
meromorphic functions to Satake-Baily-Borel compactifications, but their method can also

100
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be used to embed X as open subset in certain projective varieties Z independent of the work
of Satake-Baily (cf. Pjatetskii–Shapiro [55]).

The approach of compactifying complete Kähler manifolds by using pseudoconcavity
was taken up again by Nadel-Tsuji [51]. Their result completed in particular the efforts
started by Andreotti-Grauert [2] to give a complex-analytic proof that arithmetic quotients
of bounded symmetric domains are biholomorphic to quasi-projective varieties.

We will be concerned here again with the complex-analytic point of view. In the case of
strongly pseudoconcave manifolds X Andreotti-Tomassini [5] and Andreotti-Siu [4], based
in part on an idea of Grauert, proved a general theorem for embedding X as open subsets
of projective varieties Z. It is also known that general strongly pseudoconvex manifolds
of dimension greater than three can be always compactified (cf. Rossi [57]). However, in
dimension two there exists a famous conterexample of Grauert, Andreotti-Siu and Rossi
[31, 4, 57, 38, 27, 20]. The imposibility to compactify some strongly pseudoconcave man-
ifolds is intimately linked to the imposibility to CR-embed its boundary in the euclidian
space. This is a strongly pseudoconvex CR manifold which does not have enough CR
functions (solutions of the tangential ∂ equation). Actually the non-solvable Lewy opera-
tor appears as the tangential ∂ operator on a three dimensional strongly pseudoconvex CR
manifold and the CR structutes on such manifolds are generically non-embeddable. There
has been a tremendous activity about the PDE aspects of the tangential ∂ operator and
classification of CR structures.

Let us explain the contents of the chapter. In Section 6.1 we review the known re-
sult about the compactification of strongly pseudoconcave ends. Here we also discuss the
Grauert–Andreotti–Rossi counterexamples.

Our approach is to take the model of the manifolds studied by Siu-Yau and introduce
the notion of manifold with hyperconcave ends. The first result is that such ends can be
always compactified [46], even in dimension two. This is done in Section 6.2.

It is then natural to seek conditions for a manifold with hyperconcave ends to be a
Zariski open set in its compactification. Indeed, in the case of Siu-Yau one compactifies
by adding one singular point to each end. The answer is provided in Section 6.3 Theorem
6.38 shows that it is sufficient for the manifold to possess a covering with Zariski-open
sets whose universal cover is Stein (the condition mimics the affine cover of a projective
manifold). Using this we can give a new proof of the Siu-Yau theorem and extend Nadel’s
compactification theorems (a sort of Kodaira characterization of projective varietes with
isolated singularities) in dimension two. This is the object of Section 6.4. In Section
6.5 we prove Theorem pinched about complete Kähler manifolds with pinched negative
curvature, with a strongly pseudoconvex end and finite volume away from this end. It
turns out that all the other ends are hyperconcave. We include the proof, based on the
holomorphic Morse inequalities, that the volume is automatically finite if the dimension is
bigger than three (Napier and Ramachandran [52]). We also discuss some applications to
ball quotients due in dimension bigger than three to Napier and Ramachandran (previously
announced by Burns).

Manifolds with hyperconcave ends model arithmetic quotients of rank one. In Section
6.6 we present a proof of the compactification theorem of Nadel-Tsuji, which generalizes
the compactification of arithmetic quotients of any rank. It is based in an essential way on
the Morse inequalities from Theorem 4.31.
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6.1. Filling strongly pseudoconvex ends

We overview here the basic results about filling strongly pseudoconvex ends of com-
plex manifolds. We start with some piece of terminology and explain what a strongly
pseudoconvex end is. For a compact subset K of a complex manifold X , an unbounded
connected component of X r K is called an end of X (with respect to K). If K1 ⊂ K2 are
two compact subsets, the number of ends with respect to K1 is at most the number of ends
with respect to K2, so that we can define the number of ends of X . Namely, X is said to
have finitely many ends if for some integer k, and for any K ⊂ X , the number of ends with
respect K is at most k. The smallest such k is called the number of ends of X , and then
there exists K0 ⊂ X such that the number of ends with respect to K0 is precisely the number
of ends of X . If no such k exists, we say that X has infinitely many ends.

In general, a manifold X is said to be strongly pseudoconcave end if there
exists a proper, smooth function ϕ : X −→ (c,a), a ∈ R∪{+∞}, which is strictly plurisub-
harmonic on a set of the form {ϕ < b}, b 6 a. For d < a we set Xd = {ϕ < c}. We call ϕ
exhaustion function.

We say that a strongly pseudoconcave end can be compactified or filled in
if there exists a complex space X̂ such that X is (biholomorphic to) an open set in X̂ and
for any d < a, (X̂ r X)∪{ϕ 6 d} is a compact set. We will call X̂ somehow abusively the
compactification of X , although it is not necessarily compact.

6.1.1. Embedding and filling. A useful device for filling an end X is first to embedd
X holomorphically in the euclidian or projective space and then compactify it using the
Hartogs or Harvey-Lawson phenomenon.

The following theorem is due to Rossi [57, Th. 3, p. 245]. Andreotti-Siu [4, Prop.
3.2] improved the result in different directions, e.g. they showed that it holds for normal
complex spaces. The uniqueness result comes from [4, Cor. 3.2].

6.1. ROSSI-ANDREOTTI-SIU THEOREM. All strongly pseudoconcave end X can be
compactified provided dimX > 3. If the exhaustion function is strictly plurisubharmonic
on X, the compactification X̂ can be taken to be a normal Stein space with at worst isolated
singularities. Two normal Stein compactifications are biholomorphic by a map which is the
identitiy on X.

Let us describe briefly the method of [4, 57]. Let e < d < b. If dimX > 3, we can
use the Andreotti-Grauert theory [3] to show that the natural restrictions H1(Xd,F ) −→
H1(Xe,F ) are isomorphisms for any coherent analytic sheaf F (see [4, Propositions 1.2-
3]). Therefore, for any coherent ideal sheaf I ⊂ O whose zero set is disjoint from Xe, the
natural restriction H0(Xd,O) −→ H0(Xd,O/I ) is surjective. This leads [4, Proposition
1.4] to the existence of many holomorphic functions that separate points, give local coor-
dinates and have a peak at pseudoconvex boundary points of Xd . This means that we can
embed the strip Xd

e into two concentric polydiscs and use Hartogs theorem [35, Theorem
VII, D.6]:

6.2. HARTOGS THEOREM. Let P1 ⊂ P2 be two concentric polydiscs in CN and let
A ⊂ P2 r P1 be an analytic set of dimension at least two. Then there exists an analytic set
Â ⊂ P2 such that Â∩ (P2 r P1) = A.

Another useful idea is to try to fill in the CR manifold ∂Xe intead of the strip Xd
e .

This means to solve the complex Plateu problem for which we need the Harvey-Lawson
theorem. Let us first review the notion of CR manifold of hypersurface type [19, 18, 15].
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Let X be a strongly pseudoconvex domain in a complex manifold M. From the complex
structure of M, we can build on the boundary Y = ∂X a partial complex structure which is
called a Cauchy-Riemann or CR structure. More generally, let Y be a smooth orientable
manifold of (real) dimension (2n− 1). A CR structure on Y is an (n− 1)-dimensional
complex subbundle H(1,0)Y of the complexified tangent bundle TCY such that

H(1,0)Y ∩H(1,0)Y = {0},
and such that H(1,0) is integrable as a complex subbundle of TCY (i.e. if u and v are sections
of H(1,0)Y , the Lie bracket [u,v] is still a section of H(1,0)Y ).

If Y is a CR manifold, then its Levi distribution H is the real subbundle of TY defined
by H = Re{H(1,0)Y ⊕H(1,0)Y}. There exists on H a complex structure J given by J(u+u) =√
−1(u− u), with u ∈ H(1,0)Y . As Y is orientable, the real line bundle H⊥ ⊂ T ∗Y admits

a global nonvanishing section θ . The CR structure is said to be strongly pseudoconvex if
dθ(.,J.) defines a positive definite metric on H. Notice that in this case, θ ∧ (dθ)n−1 6= 0,
and θ defines a real contact structure on Y .

The tangential Cauchy-Riemann operator, denoted ∂ b : C 1(Y )→H(1,0)Y ,
associates to a function f ∈ C 1(Y ) the projection on H(1,0)Y of the exterior differential d f .

A function f ∈ C 1(Y ) is called CR function if ∂ b f = 0. By a CR embedding of a mani-
fold in a complex manifold we mean an embedding whose components are CR functions.
When we say that a CR manifold is a submanifold of a complex manifold, we understand
that the inclusion is a CR embedding, that is, the CR structure is induced from the ambient
manifold.

If Y = ∂X , where X is a domain in a complex manifold M, then all restrictions of
holomorphic functions on M to Y are CR functions. We have also the following converse
[42] which may be also seen as a form of Hartogs phenomenon for CR functions.

6.3. KOHN-ROSSI THEOREM. Assume that X is smooth, relatively compact domain in
a complex manifold whose Levi form of the boundary has at least one positive eigenvalue
everywhere. Then any CR function defined on ∂X extends to a holomorphic function in X.

We also need the abstract notion of complex manifold with strongly pseudoconvex
boundary. Apriori, it is not a domain with boundary in a larger complex manifold.

6.4. DEFINITION. A complex manifold X with strongly pseudoconvex boundary is a
real manifold with boundary, of dimension 2n, satisfying the following conditions: (i) the
interior IntX = X r ∂X has an integrable complex structure and (ii) for each point x ∈ ∂X
there exist a neighborhood U in X , a strongly pseudoconvex domain D ⊂ Cn with smooth
boundary, and a diffeomorphism h from U onto a relatively open subset h(U) such that
h(∂U) ⊂ ∂D and h is biholomorphic from IntU to Inth(U).

From this definition we infer:

6.5. CONSEQUENCE. The complex structure induces an integrable Cauchy-Riemann
structure on the boundary ∂X . Moreover, if ∂X is compact, there exists a defining function
ϕ : X → (−∞,c] such that ∂X = {ϕ = c}, with the properties: (1) its Levi form is positive
definite on the holomorphic tangent space of ∂X and (2) ϕ is strictly plurisubharmonic on
{c0 < ϕ < c}.

It follows actually from results of Heunemann [39, Theorem 0.2] (see also Ohsawa
[54]) that if X is compact X can be realized as a domain with boundary in a larger complex
manifold. We quote now a fundamental result [37].
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6.6. HARVEY-LAWSON THEOREM. Let Y be a compact strongly pseudoconvex CR
submanifold of CN . Then there exists a Stein space with boundary S⊂CN such that ∂S =Y .

We say that Y bounds the Stein space S. Of course, we can resolve the singularities of
S and obtain that Y bounds a strongly pseudoconvex complex manifold (this might not be
however embeddable in the euclidian space). Conversely, if Y bounds a a strongly pseudo-
convex complex manifold M, a theorem of Grauert [30] shows that M bounds the Remmert
reduction S of M, which is a Stein space obtained by blowing down the exceptional set
of M. Heunemann’s theorem implies then that S can be realised as a complex space with
boundary in a larger Stein space S′, which can be embedded in the euclidian space by the
Remmert-Bishop-Narasimhan theorem [53].

6.7. REMMERT-BISHOP-NARASIMHAN THEOREM. If X is a Stein space of dimension
n of finite type N > n, that is, it can be locally realized as an analytic set of dimension,
the set of proper regular embedings og X in Cn+N is dense in the set of all holomorphic
mappings of X in Cn+N endowed with the topology of uniform convergence.

We see therefore that the embeddability of Y is equivalent to the bounding property
of Y . In order to apply the Harvey-Lawson theorem we need conditions for a strongly
pseudoconvex CR manifold to be embeddable in the euclidian space.

6.8. BOUTET DE MONVEL THEOREM ([19][p. 5]). Any compact CR manifold Y of real
dimension greater than three admits a CR embedding in the euclidian space.

The proof is based on the Hodge decomposition for the Kohn-Laplacian 2b = ∂ b∂ ∗
b +

∂
∗
b∂ b, which is not an elliptic operator but has however a parametrix a pseudodifferential

operator of type 1/2. For this purpose Boutet de Monvel uses the microlocalisation: for
each cotangent vector (x,ξ ) in the cone Σ+ of vectors on which the Levi form is positive
definite, one can find a canonical transformation and an assocoated elliptic Fourier integral
operator which transforms the ∂ b-complex to a simple form in the neighbourhood of (x,ξ ).
On this form one can easily read all the relevant properties of the complex. If dimRY = 3,
Boutet de Monvel’s theorem breaks down. A counterexample is given by the boundary
of the strongly pseudoconcave manifold constructed in the example of Grauert-Andreotti-
Rossi. A straightforward argument can be found in Burns [17], where the author shows that
the CR functions on S3 equiped with the induced CR structure from the complex structure
of Example 6.20 are equal at antipodal points. Therefore, CR functions cannot embed this
structure in the euclidian space. Sarkis [58] showed that meromorphic functions do not
separate antipodal points and this structures cannot be embedded in the projective space,
too. A theorem of Jacobowitz-Treves [40] shows that a generic strongly pseudoconvex CR
structure on a compact manifold is not embedable. We are led to the following beautiful re-
sult which follows from the works of Boutet de Monvel-Sjöstrand, Harvey-Lawson, Burns
and Kohn [16, 37, 15, 41].

6.9. THEOREM. Let Y be a compact complex CR manifold of real dimension greater
than three. The following conditions are equivalent:

(a) Y is embeddable in the euclidian space,
(b) Y bounds a complex manifold,
(c) The tangential Cauchy-Riemann operator 2b on functions of Y has closed range

in L2.
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The equivalent conditions for the bounding property are not easily verifiable. So one
seeks answers to simpler questions such as the stability of an embedding. An embeddable
CR structure J is called stable, if for any sufficiently close (in the C ∞ topology) embeddable
CR structure one finds a close embedding to the embedding of J. Lempert treated this
problem in [44, 45, 43]. (see also J. Bland and C. L. Epstein [12], D. M. Burns and
C. L. Epstein [18]) His idea is to link the deformation of the CR structure on Y to the
deformation of the complex structure on a strongly pseudoconcave manifold Z bounding
Y . This was further developed by Epstein and Henkin [25, 24, 26]. In this context we have
the following.

6.10. LEMPERT SEPARATION THEOREM. Suppose a compact, strongly pseudoconvex
CR manifold M bounds a strongly pseudoconvex Stein space (or, equivalently, a strongly
pseudoconvex complex manifold ). Then M can be realized as a smooth real hypersur-
face in a complex projective manifold that M divides into a strongly pseudoconvex and a
strongly pseudoconcave part.

The main ingredient is the following Nash-type approximation result.

6.11. LEMPERT APPROXIMATION THEOREM. Assume a reduced Stein space X has
only isolated singularities, and K ⊂ X is a compact subset. Then there are an affine alge-
braic variety V , and a neighbourhood of K in X that is biholomorphic to an open set in
V .

The question whether the Harvey–Lawson holds for CR compact manifolds embed-
ded in the projective space is open [21, Problème 1]. Even the analogue of the Rossi–
Andreotti–Siu theorem is not known in the projective space. More precisely, let ϕ : X −→R
be a strictly plurisubharmonic function on a noncompact complex surface embedded in
CPN .

Consider a (1,1)–convex–concave strip X d
c = {c < ϕ < d} (this means by definition

that the boundary component {ϕ = d} is strongly pseudoconvex and {ϕ = c} is strongly
pseudoconcave). Can one compactify X d

c at the pseudoconcave end?
We know that the answer is positive if we can compactify the pseucoconvex end. This

is a converse of Lempert’s theorem.

6.12. ANDREOTTI THEOREM ([1, Théorème 6]). Let X be an Andreotti pseudoconcave
( in particular q–concave ) manifold embedded in the projective space. Then X is an open
set of its projective closure X̂.

This is obviously a generalization of Chow’s theorem. The proof is easy using the
Siegel–Remmert–Thimm Theorem 4.27 for Andreotti pseudoconcave manifolds. Indeed,
we know that dimC X 6 dimC X̂ and X̂ is irreducible since X is. Let M (X) and M (X̂)

be the fields of meromorphic functions on X and X̂ . Since X̂ is minimal the restriction
M (X̂) −→ M (X) is injective. By Theorem 4.27 we have degtrM (X) 6 dimC X . It
follows that dimC X̂ 6 degtrM (X) 6 degtrM (X) 6 dimC X .

We need a criterion for the embeddability of 1–concave manifolds. Let us recall that
the proof of the Kodaira-Grauert embedding theorem has two parts (cf. Remark 4.19):

(i) prove that the ring ⊕k>1H0(X ,Lk) = A (X ,L) of a positive line bundle gives local
coordinates and separates points (by means of the L2 estimates for ∂ ).

(ii) show that the canonical map Φk : X −→ PH(X ,Lk)∗ is an embedding.
Since X is compact, (ii) is an easy consequence of (i). But if X is non-compact the

implication (i) =⇒ (ii) is in general not true. Ohsawa gave an example of a positive line
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bundle on a weakly 1–complete manifold which is not ample (but one can show however
that (i) holds true). In general, (i) easily implies that any relatively compact subset of X
embeds into the projective space. The difficulty is to obtain an embedding of all of X .

6.13. ANDREOTTI–TOMASSINI THEOREM. Let X be a 1–concave manifold and let
L −→ X be a holomorphic line bundle such that A (X ,L) gives local coordinates and
separates points every where on X. Then X admits a projective embedding.

This can be found in [5, Theorem 3, p.97], [4, Theorem 4.1] (a generalization for
complex normal spaces) and [51, Lemma 2.1] (see also the proof of Proposition 6.52).
The hypotheses of the theorem are satisfied if e.g. X is the quotient of a bounded domain
D ⊂ Cn by a properly discontinous group Γ, and there exists a positive integer N such that
for any x ∈ D the isotropy group Γx = {γ ∈ Γ : γx = x} has order less then N.

If dimC X > 3 in the previous theorem the assumption that the ring A (X ,F) separates
points can be dropped; one has in fact the following

6.14. THEOREM. Let X be a 1-concave manifold with dimC X > 3. Suppose there exists
on X a holomorphic line bundle L such that the ring A (X ,L) gives local coordinates ev-
erywhere on X. Then A (X ,L) does also separate points of X so that X admits a projective
embedding.

In dimension two this is no longer true, as we shall see in Example 6.51, but holds for
hyperconcave manifolds.

We finish with a generalization due to Epstein-Henkin [26] of the embedding results of
Grauert, R. Narasimhan, Andreotti and Y.-T. Siu for compact, pseudoconvex and pseudo-
concave two-dimensional complex spaces, respectively.

6.15. DEFINITION. A compact CR–hypersurface M0 is called strictly CR–cobordant
to a compact CR–hypersurface M1 if there exists a complex space X̃ with at most isolated
singularities and a C ∞–strictly plurisubharmonic function ρ with at most isolated critical
points on X̃ such that the set X = {x ∈ X̃ : 0 < ρ(x) < 1} is relatively compact, complex
subspace in X̃ and ∂X = M1 r M0.

6.16. EPSTEIN-HENKIN THEOREM ([26, Theorem 2]). Let M1 be embeddable strictly
pseudoconvex CR–hypersurface. Then any (not necesarry smooth) CR–hypersurface M0,
strictly cobordant to M1, is also embeddable.

6.17. COROLLARY ([26, Corollary 2]). If under the hypothesis of Theorem 6.16 a com-
plex space X defines complex cobordism between M1 and M0, then X is embeddable in some
CN .

6.1.2. The Grauert-Andreotti-Rossi example. If dimX = 2, the Andreotti-Grauert
theory cannot be applied. Theorem 6.1 is no longer true if dimX = 2, as shown in the
counterexample of Grauert-Andreotti-Rossi [31, 4, 57]. They are obtained as finite cover-
ings of small neighbourhoods of the boundaries of Stein manifolds of dimension 2. The
basic lemma for construction of non-fillable holes is [4, Proposition 7.1, p. 263]. We call
henceforth a non-ramified covering simply covering.

6.18. LEMMA. Let V be a relatively compact simply connected Stein domain in a com-
plex manifold of dimension > 2. Let U be a neighbourhood of bV and let p : W −→ U
be a nontrivial finite cover of U. Then W cannot be compactified. If π1(bV ) has proper
subgroups of finite index, such coverings do exist.
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PROOF. Indeed, assume that Ŵ is a completion of W . Then Ŵ rW has a strongly
pseudoconvex boundary. By the Hartogs’ extension theorem for functions [35, Theorem
VII, D 4] we obtain an extension p̂ : Ŵ −→ V . The map p̂ must be ramified, otherwise p̂
would be a nontrivial cover of the simply connected manifold V . The ramification set R
is analytic and contained in V rU , thus a finite set. Since V is simply connected, non–
singular and of dimension > 2, V r R is simply connected. Therefore Ŵ r p̂−1(R) is an
irreducible covering of V r R. But this is possible only if p is trivial. This contradiction
shows that Ŵ cannot possibly exist.

Now, if π1(bV ) contains non-trivial subgroups of finite index, this remains true for
π1(U) where U is any small neighbourhood which retracts on bV . This means that U has
non-trivial finite coverings. �

Note that, if n > 3, π1(bV ) = π1(V ) = {0}, by a Morse theoretic argument of Andreotti-
Frankel, so examples when Lemma 6.18 is not empty can occur only for dimV = 2.

6.19. EXAMPLE (Andreotti-Siu [4, p. 267–70]). Let K ⊂ P3 be a Kummer surface
with 16 isolated, non-degenerate, canonical singular points. K is isomorphic to a quo-
tient T/{id,τ}, where T is an algebraic torus and τ is an involution (τ 2 = id) with 16 fixed
points. Therefore Kreg admits as double covering the torus T minus 16 points.

There exists a 1-real-parameter family of algebraic surfaces {Kε} such that for ε 6= 0,
Kε is non–singular and K0 = K. There exists a manifold K ⊂ R× P3 such that Kε =
pr−1

R (ε), where prR is the projection on the first factor.
If G ⊂ P3 is the union of 16 small neighbourhoods of the singular points in P3, K r

pr−1
P3 (G) is differentiably trivial near 0. This implies that Kε rpr−1

P3 (G) is diffeomorphic to

K0 r pr−1
P3 (G) for small ε .

Consider now a singular point p of the Kummer surface K and B be a small ball around
p in P3. Then Vε = Kε ∩ pr−1

P3 (B) are simply connected Stein spaces, which for ε 6= 0
are non-singular. From the preceding paragraph if follows that, from small ε 6= 0, ∂Vε is
diffeomorphic to ∂V , so that small neighbourhoods Uε of ∂Vε have differentiable double
cover small concentric shells Wε in the neighbourhood of a fixed point of the involution
τ : T −→ T .

On Wε we take the induced complex structure. By Lemma 6.18 the holes of Wε cannot
be filled.

6.20. EXAMPLE. This example appeared in Rossi [57, p. 252–6] (being attributed to
Andreotti), Andreotti-Siu [4, p. 262–70] (where credit is given to Grauert) and Grauert
[31, p. 273]. It is constructed by the same principle as above, but it is more spectacular. It
provides complex structures on a ball minus a point, actually on P2 r {[1 : 0 : 0]}, which
are not fillable.

Let Qε be the family of quadrics in P3 given in the homogeneous coordinates [w0 : w1 :
w2 : w3] by the equation w3(w3 + εw0) = w1 w2. For ε 6= 0 they are non-singular. There
exists an application Φ : P2 r {[1 : 0 : 0]} −→ VrA, see [4, (1), p. 265], where A is a real
analytic sphere, such that Φ is a two-sheeted differentiable ramified covering. We can use
Φ to induce a new complex structure on P2 r{[1 : 0 : 0]}, so that Φ becomes holomorphic.
By a variant of Lemma 6.18 for ramified coverings, we see that P2 r {[1 : 0 : 0]} with the
new structure cannot be compactified.
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6.2. Compactification of hyperconcave ends

We already studied hyperconcave manifolds in Section 4.3.2. A generalization of this
concept is as follows.

6.21. DEFINITION. A manifold X of dimension > 2 is a hyperconcave end if
there exists a proper, smooth function ϕ : X −→ (−∞,a), a ∈ R∪{+∞}, which is strictly
plurisubharmonic on a set of the form {ϕ < b}, b 6 a. For d < c < a we set Xc = {ϕ < c}
and X c

d = {d < ϕ < c}.

The regular part of a variety with isolated singularities or the complement of a compact
completely pluripolar set of a strongly plurisubharmonic function in a complex manifold
have hyperconcave ends. Of course, hyperconcave manifolds have hyperconcave ends.

Our goal is to compactify hyperconcave ends at {ϕ = −∞} (to fill the hole at −∞).

6.22. THEOREM. Any hyperconcave end X can be compactified, i.e., there exists a
complex space X̂ such that X is (biholomorphic to) an open set in X̂ and for any d < a,
(X̂ rX)∪{ϕ 6 d} is a compact set. More specifically, if ϕ is strictly plurisubharmonic on
the whole X, X̂ can be chosen a normal Stein space with at worst isolated singularities.

Theorem 6.22 identifies a large class of strongly pseudoconcave ends which can be
compactified even in dimension two.

In the rest of the section we will prove Theorem 6.22. The idea of proof is to analyti-
cally embed small strips X c

c−δ , for c in a neighbourhood of minus infinity, into the differ-
ence of two concentric polydiscs. Then apply the Hartogs extension theorem to extend the
image to an analytic set which will provide the compactification. To obtain the embedding
we follow the stategy of Grauert and Kohn for the solution of the Levi problem. Namely,
we solve the L2 ∂ -Neumann for (0,1)-forms on domains Xc with strongly pseudoconvex
boundary {ϕ = c} endowed with a complete metric at minus infinity. Instead of using the
finiteness of the sheaf cohomology, which is not available, we prove the finiteness of L2

Dolbeault cohomology H0,1
(2)

(Xc) which in turn implies the existence of peak holomorphic

functions at each point of the boundary {ϕ = c}.

6.2.1. Existence of peak functions. As in Section 4.3.2 we consider the smooth func-
tion χ = − log(−ϕ). We set ω =

√
−1∂∂ χ = −

√
−1∂∂ log(−ϕ). Note that ∂∂ χ =

∂∂ ϕ/(−ϕ)+(∂ϕ ∧∂ ϕ)/ϕ2 and (∂ϕ ∧∂ ϕ)/ϕ2 = ∂ χ ∧∂ χ . Since
√
−1∂∂ ϕ/(−ϕ) rep-

resents a metric on X0, we get the Donnelly-Fefferman condition:

|∂ χ|ω 6 1 . (6.1)

Since χ : X0 −→ R is proper, (6.1) also ensures that ω is complete. Let c < 0 be a regular
value of ϕ . The metric ω is complete at the pseudoconcave end of Xc and extends smoothly
over the boundary ∂Xc.

We wish to derive the fundamental estimate for (0,1)-forms on Xc. For this goal we
look first at the minus infinity end and use the Berndtsson-Siu trick [10, 63]. Roughly
speaking, it uses the negativity of the trivial line bundle, thus avoiding the problems raised
by the control of the Ricci curvature of ω at −∞. Let us denote by Ω 0,q

0 (Xc) the space of
smooth (0,q)-forms with compact support in Xc. Let ϑ = −∗ ∂ ∗ be the formal adjoint
of ∂ with respect to the scalar product (u,v) =

∫
Xc
〈u,v〉dvω , where 〈u,v〉 = 〈u,v〉ω and

dvω = ωn/n! .

6.23. LEMMA. For any v ∈ Ω0,1
0 (Xc) we have ‖v‖2 6 8

(
‖∂ v‖2

+‖ϑv‖2).
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PROOF. On the trivial bundle L = Xc ×C we introduce the auxilliary hermitian met-
ric eχ/2. Let be ϑχ the formal adjoint of ∂ with respect to the scalar product (u,v)χ =∫

Xc
〈u,v〉eχ/2 dvω . Then ϑχ = e−χ/2 ϑ eχ/2. We apply the Bochner-Kodaira-Nakano for-

mula for u ∈ C
0,1

c (Xc):
∫

Xc

〈
[
√
−1∂∂ (−χ/2),Λω ]u,u

〉
eχ/2 dvω 6

∫

Xc

(
|∂u|2 + |ϑχu|2

)
eχ/2 dvω , (6.2)

where Λω represents the contraction with ω and [A,B] = AB − (−1)degA·degBBA is the
graded commutator of the operators A, B. The idea is to substitute v = ueχ/4. It is readily
seen that

|∂ u|2 eχ/2 6 2|∂v|2 + 1
8 |∂ χ|2|v|2 , |ϑχu|2 eχ/2 6 2|ϑv|2 + 1

8 |∂ χ|2|v|2 . (6.3)

Moreover
〈
[
√
−1∂∂ (−χ/2), Λω ]u,u

〉
eχ/2 =

〈
[
√
−1∂∂ (−χ/2), Λω ]v,v

〉
. In general, for

a (p,q)–form α we have the identity 〈[ω,Λω ]α,α〉 = (p + q− n)|α|2, where n = dimX .
Taking into account that ω =

√
−1∂∂ χ and that v is a (0,1)–form, we obtain

〈
[
√
−1∂∂ (−χ/2),Λω ]u,u

〉
eχ/2 = n−1

2 |v|2 > 1
2 |v|

2 . (6.4)

By (6.2), (6.3), (6.4) and (6.1) we obtain

1
2

∫

Xc

|v|2 dvω 6 2
∫

Xc

(
|∂v|2 + |ϑv|2

)
dvω + 1

4

∫

Xc

|v|2 dvω . (6.5)

This immediately implies Lemma 6.23 for elements v ∈ Ω0,1
0 (Xc). �

Let η : (−∞,0)−→R be a smooth function such that η(t) = 0 on (−∞,−2], η ′(t) > 0,
η ′′(t) > 0 on (−2,0). Let us introduce the scalar product

(u,v)η(ϕ) =
∫

Xc

〈u,v〉e−η(ϕ) dvω , (6.6)

the corresponding norm ‖·‖η(ϕ) and L2 spaces, denoted L0,q
2 (Xc,η(ϕ)). Let Ω0,q

0 (Xc) be
the space of smooth (0,q)-forms with compact support in X c. Consider the maximal closed
extension of ∂ to L0,q

2 (Xc,η(ϕ)) and let ∂
∗
η(ϕ) be its the Hilbert-space adjoint. Note that

L0,q
2 (Xc,η(ϕ)) = L0,q

2 (Xc) and that the two norms are equivalent. We denote by ϑη the
formal adjoint of ∂ with respect to the scalar product (6.6). Then ϑη = ϑ + i

(
∂η(ϕ)

)
,

where i( ·) represents the interior product. Let σ(ϑ ,d f ) = ∗∂ f ∧∗ be the symbol of ϑ ,
calculated on the cotangent vector d f . It is clear that σ(ϑη ,d f ) = σ(ϑ ,d f ) does not
depend on η . We introduce the spaces B0,q = {α ∈ Ω0,q

c (Xc) : σ(ϑ ,dϕ)α = 0 on ∂Xc}
(cf. (A.19)), where σ(ϑ ,dϕ) = ∗∂ϕ ∧∗ be the symbol of ϑ , calculated on the cotangent
vector dϕ . Integration by parts [28, Propositions 1.3.1–2] yields Dom∂ ∗

η ∩C
0,q

c (Xc) =

B0,q, ∂ ∗
η = ϑη on B0,q,

6.24. LEMMA. The space B0,q is dense in Dom∂ ∩Dom∂ ∗
η in the graph norm

u 7−→
(
‖u‖2

η(ϕ) +‖∂u‖2
η(ϕ) +‖∂ ∗

u‖2
η(ϕ)

)1/2
.

PROOF. We use first the idea from A.10 in order to reduce the proof to the case of a
compactly supported form u. The completeness of the metric ω implies the existence of a
sequence {aν}ν ⊂ C ∞

c (Xc), such that 0 6 aν 6 1, aν+1 = 1 on suppaν , |daν | 6 1/ν for
every ν > 1 and {suppaν}ν exhaust X c. Indeed, consider a smooth function ρ : R−→ [0,1]
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such that ρ = 0 on a neighbourhood of (−∞,−2], ρ = 1 on a neighbourhood of [−1,∞)
and 0 6 ρ ′ 6 2. Then aν = ρ(χ/2ν+1) satisfies the conditions above.

Let u ∈ Dom(∂ )∩Dom(∂ ∗
). Then aνu ∈ Dom(∂ )∩Dom(∂ ∗

) and

‖∂ (aνu)−aν∂ u‖η = O(1/ν)‖u‖η ,

‖∂
∗
(aνu)−aν∂

∗
u‖η = O(1/ν)‖u‖η .

Hence {aνu} converges to u in the graph norm. So to prove the assertion we can start with
a form u having compact support in X c. But then the approximation in the graph norm
follows from the Friedrichs theorem on the identity of weak and strong derivatives (see
Lemma A.21). �

We confine next our attention to the fundamental estimate on Xc.

6.25. LEMMA. If η grows sufficiently fast, there exists a constant C > 0 such that

‖u‖2
η(ϕ) 6 C

(
‖∂u‖2

η(ϕ) +‖∂ ∗
η(ϕ)u‖2

η(ϕ) +
∫

K
|u|2 e−η(ϕ) dvω

)
, (6.7)

for any u ∈ Dom∂ ∩Dom∂ ∗
η(ϕ) ⊂ L0,1

2 (Xc,η(ϕ)), where K = {−3 6 ϕ 6 −3/2}.

PROOF. We give the trivial line bundle L = Xc ×C the metric e−η(ϕ). Let u ∈ B0,1,
suppu ⊂ {−3 6 ϕ}.

Let us use a form of the Bochner-Kodaira formula introduced by Andreotti-Vesentini
and Griffiths. The curvature of the hermitian bundle (L,e−η(ϕ)) is denoted RL. It is a (1,1)-
form on X , RL = ∑θαβ dzα ∧d z̄β , where θαβ = ∂zα ∂ z̄β η(ϕ). Let θ µ

β be the curvature tensor

with the first index raised. Let u = ∑uλ d z̄λ be a (0,1)–form on Xc. We define the (0,1)–
form RLu = ∑θ µ

λ uµ d z̄λ . We also introduce the Ricci curvature Rdet = −RKX , where KX is
the canonical bundle of X .

By (B.25) we have for any u ∈ B0,1 we have:

‖∂u‖2
η(ϕ)+‖∂ ∗

u‖2
η(ϕ) =

∥∥∇u
∥∥2

η(ϕ)
+
(
RLu,u

)
η(ϕ)

+
(
Rdetu,u

)
η(ϕ)

+
∫

∂Xc

L (u,u)e−η(ϕ) dS

(6.8)
where L is the Levi operator (B.24) and ∇ denotes the covariant derivative in the (0,1)–
direction.

Since ∂Xc is pseudoconvex, L (u,u) > 0 for all u ∈ B0,1. On {−3 6 ϕ 6 −1}, Rdet

is bounded and independent of η , so there exists a constant R > 0 such that 〈Rdetu,u〉 >
−R|u|2, pointwise, for any u with suppu ⊂ {−3 6 ϕ}. On the other hand, we can use the
strict plurisubharmonicity of ϕ to choose a sufficiently increasing η (replace η with τη
for τ � 1) such that 〈RLu,u〉 > (R+1)|u|2, pointwise on {(−3/2) 6 ϕ}, for any u. Since
〈RLu,u〉 > 0 everywhere, we obtain from (6.8)

‖u‖2
η(ϕ) 6 ‖∂u‖2

η(ϕ) +‖∂ ∗
η(ϕ)u‖2

η(ϕ) +(R+1)
∫

{−36ϕ6(−3/2)}
|u|2 e−η(ϕ) dVω ,

u ∈ B0,1 , suppu ⊂ {−3 6 ϕ} . (6.9)

Let u ∈ B0,1. We choose a cut-off function ρ1 ∈ C ∞(Xc) such that suppρ1 = {−3 6 ϕ},
ρ1 = 1 on {−2 6 ϕ}. Set ρ2 = 1−ρ1. On suppρ2, η vanishes, therefore ∂ ∗

η(ϕ)(ρ2u) =

ϑ(ρ2u). Upon applying (6.23) for ρ2u we get

‖ρ2u‖2
η(ϕ) 6 8

(
‖∂ (ρ2u)‖2

η(ϕ) +‖∂ ∗
η(ϕ)(ρ2u)‖2

η(ϕ)

)
, u ∈ B0,1 . (6.10)
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The estimate (6.9) for ρ1u and (6.10) together with standard inequalities deliver (6.7)
for elements u ∈ B0,1. By Lemma 6.24, estimate (6.7) holds for all forms u ∈ Dom∂ ∩
Dom∂ ∗

η(ϕ) ⊂ L0,1
2 (Xc,η(ϕ)). �

In the sequel we fix a function η as in Lemma 6.25. Then the fundamental estimate
(6.7) implies the solution of the L2 ∂ -Neumann problem. Consider the complex of closed,
densely defined operators

T = ∂ : L0,0
2 (Xc,η(ϕ))

T=∂−−−→ L0,1
2 (Xc,η(ϕ))

S=∂−−−→ L0,2
2 (Xc,η(ϕ)) ,

and the Gaffney extension (cf. Section A.2.4)

Dom2 = {u ∈ DomS∩DomT ∗ : Su ∈ DomS∗ , T ∗u ∈ DomT} ,

2u = S∗Su+T T ∗u for u ∈ Dom2 .

Remark that 2 is an extension of the operator ∂ϑη(ϕ) +ϑη(ϕ)∂ defined on
{

u ∈ B0,q :

∂u ∈ B0,q+1
}

. It is actually its Friedrichs extension, which can be seen with a similar
argument as in Proposition A.22. Once the fundamental estimate (6.7) is established we
deduce the strong Hodge decomposition from Theorem A.26:

6.26. THEOREM. The operator T has closed range and Range(T ) has finite codimen-
sion in Ker(S). If f ∈ RangeT , there is a unique solution u ⊥ KerT of the equation Tu = f
given by u = ∂ ∗

η(ϕ)G f , where G is the green operator; if f is smooth in Xc so is u.

Theorem 6.26 can be regarded as a variant ‘with boundary’ of the vanishing theorem of
Donelly–Fefferman [22], which asserts that H p,q

(2) (X)= 0 for p+q 6= dimX , where (X ,ω) is
a complete Kähler manifold, where the Kähler form ω admits a global potential satisfying
(6.1).

By solving the ∂ –equation we construct peak functions at each point of ∂Xc.

6.27. COROLLARY. Let p ∈ ∂Xc and f be a holomorphic function on a neigbourhood
of p such that { f = 0} ∩ X c = {p}. Then for every m big enough, there is a function
g ∈ O(Xc)∩C ∞(Xc r{p}), a smooth function Φ on a neigbourhood V of p and constants
a1, · · · ,am−1 such that

g =
1+am−1 f + · · ·+a1 f m−1

f m +Φ

on V ∩Ω. In particular, we have limz→p |g(z)| = ∞.

PROOF. We will apply the last theorem for a domain Xc+δ = {ϕ < c + δ} with δ > 0
small enough. Let U be a small neighbourhood of p where f is defined. Pick ψ ∈ C ∞

0 (U)
such that ψ = 1 on a neighbourhood V of p. Set

hm = ψ/ f m on U and 0 on X rU

and
vm = 0 on V and ∂ hm on X rV.

Observe that vm belongs to Ω0,1
c (Xc+δ ) for δ small enough. Moreover, we have ∂vm = 0

on Xc+δ . Fix a such δ and now apply Theorem 6.26 for Xc+δ . By this theorem, the
codimension of RangeT in KerS is finite. For every m big enough, there are constants
a1, · · · ,am−1 such that v = vm + am−1vm−1 + · · ·+ a1v1 belongs to RangeT . Then there is
Φ′ ∈ C 0,0(Xc+δ ) such that ∂ Φ′ = −v. Set h = hm +am−1hm−1 + · · ·+a1h1 and g = h+Φ′.
We have ∂ g = 0 on X ′

c r{ f = 0}. Then g ∈ O(Xc)∩C ∞(Xc r{p}). The function Φ in the
corollary is equal to Φ′ on V . Thus it is smooth on V . The proof is completed. �
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By using the estimates in local Sobolev norms near the boundary points, we can prove
as in Folland-Kohn [28] that N maps L0,1

2 (Xc,η(ϕ))∩ Ω0,1(Xc) into itself. We could
repeat then the solution of the Levi problem as given in [28, Theorem 4.2.1], in order
to find holomorphic peak functions, for each boundary point. However, we propose in
Corollary 6.27, a simpler proof for the existence of peak functions, which doesn’t involve
the regularity up to the boundary of the ∂ -Neumann problem.

6.2.2. The embedding. In this section we prove Theorem 6.22, using the results from
Section 6.2.1 and the method of [4].

6.28. PROPOSITION. Let c be a regular value of ϕ . Then for δ > 0 small enough we
have:

(a) The holomorphic functions on Xc separate points on X c
c−δ ,

(b) The holomorphic functions on Xc give local coordinates on X c
c−δ , and

(c) for any d ∈ (c−δ ,c) there exists d∗ ∈ (d,c), such that the holomorphically convex
hull of Xd, with respect to the algebra of holomorphic functions on Xc, is contained
in Xd∗ .

6.29. REMARK. If dimX > 3, an analogous statement to Proposition 6.28 was proved
in [4, Proposition 1.4], using the Andreotti-Grauert theory, as explained at the beginning
of §6.2.1.

Proposition 6.28 will be the consequence of the following two lemmas. We can assume
that ∂Xc−ε is smooth for ε > 0 small enough. Choose a projection π from a neighbourhood
of ∂Xc into ∂Xc. We will denote by (x,ε) the point of ∂Xc−ε whose projection is x ∈ ∂Xc.

6.30. LEMMA. Let x1, x2 be two different points in ∂Xc. Then there are two neigh-
bourhoods V1, V2 of x1, x2 and ν = ν(x1,x2) > 0 such that the holomorphic functions of Xc

separate V1 × (0,ν] and V2 × (0,ν].

PROOF. This is a direct corollary from the existence of a function holomorphic in Xc ,
and C ∞ in X̄c r{x1} which tends to ∞ at x1. �

6.31. LEMMA. Let x be a point of ∂Xc. Then there are a neighbourhood V of x and
τ = τ(x) > 0 such that the holomorphic functions in Xc give local coordinates for V ×(0,τ].

PROOF. Without loss of generality and in order to simplify the notations, we consider
the case n = 2. Choose a local coordinates system such that x = 0 and locally Xc ⊂ {|z1 −
1/2|2 + |z2|2 < 1/4}. We now apply Corollary 6.27 for functions f1(z) = z1 and f2(z) =
z1(1− z2). Denote by g1, g2 the holomorphic functions constructed by this corollary for a
number m big enough. We can also construct the analogue functions if we replace m by
m+1. Denote by g′1 and g′2 these new functions.

Let G : Xc −→ C4 given by G = (g1,g2,g′1,g
′
2). We will prove that G gives local coor-

dinates. Set

I(z) =

(
z1

z3
,1− z2z3

z1z4

)
.

Let W be a small neigbourhood of 0. By Corollary 6.27, the map I ◦G is defined on W ∩Xc

and can be extended to a smooth function on W . Moreover, on W we have

I ◦G(z) =
(

z1 +O(z2
1),z2 +O(z1)

)
.

Then I ◦G gives an immersion of W ∩Xc in C2, whenever W is small enough. In conse-
quence, G gives coordinates on W ∩Xc. �



6.2. COMPACTIFICATION OF HYPERCONCAVE ENDS 113

PROOF OF PROPOSITION 6.28. We cover ∂Xc×∂Xc by a finite family of open sets of
the form V1 ×V2 (from Lemma 6.30) and the form V ×V (from Lemma 6.31). We have a
finite family of ν and τ . Then properties (a) and (b) hold for every δ smaller than these τ
and ν . Property (c) is an immediate consequence of Corollary 6.27. �

PROOF OF THEOREM 6.22. First let us remark that the assertion (i) is a consequence
of (ii), so we shall prove only the latter. We assume therefore that the function ϕ : X −→
(−∞,a) is strictly plurisubharmonic everywhere.

The proof of the compactification statement for dimX > 3 in [4, Proposition 3.2] uses
only the assertions (a), (b) and (c) of Proposition 6.28, so we just have to follow it. For
the readers’ convenience we give here the details. The main tool is the Hartogs extension
phenomenon.

Let c and δ as in Proposition 6.28 and choose d ∈ (c−δ ,c). By Proposition 6.28, (c),
the holomorphically convex hull of {ϕ 6 d}, with respect to O(Xc), is contained in Xd∗ ,
for some d∗ ∈ (d,c). We can therefore find a finite number of open sets Ui, and functions
fi ∈ O(Xc), 1 6 i 6 k, such that

{ϕ = d∗} ⊂ ∪k
i=1Ui , | fi �Ui | > 1 , | fi �{ϕ6d} | < 1/2 . (6.11)

By Proposition 6.28, (a) and (b), we can find fk+1, · · · , fl ∈ O(Xc) which separate points
and give local coordinates on {d 6 ϕ 6 d∗}. Whithout lost of generality we can assume
that | fi �{ϕ6d} | < 1/2.

Consider the map α : Xc −→ Cl , α(x) = ( f1(x), · · · , fl(x)). We shall use the notation

Pε =
{

z ∈ Cl : |zi| < ε , 1 6 i 6 l
}

, 0 < ε 6 1 .

From relation (6.11) we deduce

α
(
{ϕ 6 d}

)
⊂ P1/2 , α

(
{ϕ = d∗}

)
∩P1 = /0 . (6.12)

Denote G = P1 r P1/2 and set H = α−1(G)∩ Xd∗
d . It is clear that α(H) is a complex

submanifold of G, for α is a proper injective immersion. Since α(H) has dimension at
least 2, it follows from the Hartogs phenomenon 6.2 that we can find an ε ∈ [1/2,1], such
that α(H)∩ (P1 r Pε) can be extended to an analytic subset V of P1.

We can glue the topological spaces Xc rα−1(Pε) and V along H rα−1(Pε) using the
identification given by the holomorphic map α . Hence, we obtain a complex space X̃c ,
such that Xc r α−1(Pε) and V are open subsets of X̃c .

We show next that X̃c is a Stein space. It is enough to construct a strictly plurisub-
harmonic exhaustion function. For this purpose, observe first that fi, 1 6 i 6 l, extend
naturally to functions f̃i, by setting f̃i = zi on V . Choose 0 < δ1 < δ2 < δ and a cut-off
function ρ which equals 0 on {ϕ 6 c− δ2} and 1 on {ϕ > c− δ1}. Consider moreover
a smooth increasing convex function λ defined on (−∞,c), such that limt→c λ (t) = +∞.
Then for a sufficiently large constant A > 0, the function

ψ = A
l

∑
i=1

| f̃i|2 +ρλ (ϕ)

is a strictly plurisubharmonic exhaustion function on X̃c.
We have thus found for every c < a a Stein space X̃c, such that the strip Xa

c is (biholo-
morphic to) an open subset of X̃c. By passing to the normalization, we may assume that
X̃c is normal. From [4, Corollary 3.2], we deduce that for any c∗ < a the normal Stein
spaces X̃c and X̃c∗ are biholomorphic and the biholomorphism is the identity on the smaller
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strip. We can drop the subscript c and denote by X̃ the common Stein completion. By
letting c −→−∞ we obtain that X itself is biholomorphic to an open set of X̃ . The proof is
complete. �

6.32. REMARK. We can use another argument than Proposition 6.28 to show Theorem
6.22. Firstly, we can find a CR embedding Ψ : ∂Xc −→ CN , using Sarkis [59, Corollaire
4.13]. The latter result asserts that a compact strictly pseudoconvex 3-dimensional CR
manifold is embeddable in the euclidian space provided it is embeddable in the projective
space and possesses a non-constant CR function. In our case these conditions are fullfiled.
Using the complete metric (4.47) and the positivity of the trivial line bundle, it is easy to
see that the (n,0)-forms embed ∂Xc in the projective space. By Corollary 6.27 and Sarkis’
theorem the embedability of ∂Xc in some CN follows.

Secondly, we apply the Harvey-Lawson theorem 6.6 to find a Stein space S⊂CN which
bounds Ψ(∂Xc), show that Ψ extends to a holomorphic map Ψ̂ : Xc −→ S, injective near
∂Xc, and finally infer from here that X can be compactified.

The existence of peak holomorphic functions in Corollary 6.27 affords however the
simpler and more elementary proof based on Proposition 6.28.

6.33. REMARK (Generalization of Theorem 6.22). Theorem 6.22 holds also for normal
complex spaces with isolated singularities. These are the only allowed normal singularities
in dimension 2.

Indeed, let X be a hyperconcave end with isolated normal singularities. Note that
Definition 6.21 makes sense also for complex spaces. Let ai denote the singular points
and choose functions ϕi with pairwise disjoint compact supports, such that ϕi is strictly
plurisubharmonic in a neighbourhood of ai and limz→ai = −∞. Using the function ϕ̂ =
ϕ +∑εiϕi, with εi small enough, we see that Xreg is a hyperconcave end. By Theorem 6.22
we get a normal Stein compactification Y of Xreg.

Take {Vi} pairwise disjoint Stein neighbourhoods of {ai}. Then Vi r {ai} ⊂ Xreg and
a normal Stein compactification of Vi r{ai} is Vi. Using the uniqueness of a normal Stein
compactification [4, Corollary 3.2] we infer that the Vi are disjointly embedded in Y . There-
fore, Y is also a compactification of X .

In particular, the singular set of a hyperconcave end with only isolated singularities
must be finite.

6.34. REMARK (Complex cobordism). Another point of view on Theorem 6.22 is to
consider the sets Yc = {ϕ = c}, which, for regular values c of ϕ , are compact strongly
pseudoconvex CR manifolds of dimension 3. Following Epstein and Henkin [26], we call
two CR manifolds Y1 and Y2 of dimension 3 strictly complex cobordant, if there exists
a complex manifold X with boundary, such that ∂X = Y1 ∪Y2 and there exists a strictly
plurisubharmonic function ρ on X so that Y1 and Y2 are two non-critical level sets of ρ .
They show then [26, Theorem 1] that if Y1 bounds a complex manifold, also the components
of Y2 bound complex manifolds.

Theorem 6.22 can be rephrased by saying that, if a compact strongly pseudoconvex
CR manifold Y is strictly complex cobordant to −∞, the manifold Y bounds a strongly
pseudoconvex compact manifold. In particular, Y is embeddable in CN , for some N.

Note that, by the example of Grauert, Andreotti-Siu and Rossi, there exist compact
strongly pseudoconvex CR manifolds of dimension 3 which do not bound a complex ma-
nifold and are not embeddable in CN . This is in contrast to theorem 6.8.
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6.2.3. Comparison with the Grauert-Andreotti-Rossi example. We want now to
compare the compactification result with the examples of Grauert, Andreotti-Siu and Rossi.
We call as before a non-ramified covering simply covering. An immediate consequence of
Theorem 6.22 is the following.

6.35. COROLLARY. Let V be a Stein manifold of dimV > 2. Let K be a compact
completely pluripolar set, K = ϕ−1(−∞) where ϕ is a strictly plurisubharmonic function
defined on a neighbourhood U of K, smooth on U r K. Then any finite covering of V r K
can be compactified to a strongly pseudoconvex space.

PROOF. V rK is a hyperconcave end and any finite covering of a hyperconcave end is
also a hyperconcave end. �

Corollary 6.35 is in stark contrast to the examples of non-compactifiable pseudocon-
cave ends of Examples 6.19 and 6.20. They are obtained as finite coverings of small neigh-
bourhoods of the boundaries of Stein manifolds of dimension 2. Such coverings have ‘big’
holes which cannot be filled, whereas ‘small’, i.e. completely pluripolar holes can always
be. Moreover, if dimV = 2 and K b V is completely pluripolar, it follows from Corollary
6.35 and Lemma 6.18 that π1(V r K) doesn’t have proper subgroups of finite index.

It is obvious that the manifolds Wε constructed in Example 6.19 are not hyperconcave
ends. Also, P2 r{[1 : 0 : 0]} with the new complex structure constructed in Example 6.20
cannot be a hyperconcave end, for if it were, VrA would be one too (we average the values
of a defining function on the two sheets). So A would be completely pluripolar, which is a
plain contradiction.

6.2.4. Embedding of Sasakian 3−manifolds. We explain first some well known facts
about Sasakian manifolds. Let X be a strictly pseudoconvex CR manifold, with com-
pactible complex structure J, and compactible contact form θ . This allows us to define
a Riemannian metric gθ on X given by

gθ (., .) = dθ(.,J.)+θ(.)θ(.).

Let R be the Reeb vector field associated to θ , defined by

iRθ = 1, iRdθ = 0.

Associated to the data (X ,θ ,R,J,gθ), there is a canonical connection ∇ on T X , called the
Tanaka-Webster connection (see Tanaka [66] and Webster [69]), which is the unique affine
connection on T X such that

• ∇gθ = 0, ∇J = 0, ∇θ = 0.
• For any u, v in the Levi distribution H, the torsion T of ∇ satisfies T (u,v) =

dθ(u,v)R and T (R,Ju) = JT (R,u)

In particular, the torsion of the Tanaka-Webster connection cannot vanish identically. How-
ever, we have the following definition

6.36. DEFINITION. A strictly pseudoconvex manifold is called a Sasakian manifold if
the torsion of its Webster connection in the direction of the Reeb vector field vanishes, i.e.
T (R, .) = 0 with the notations above.

Examples of compact Sasakian manifolds are the unit sphere in Cn or the Heisenberg
nilmanifold (see Urakawa [68]). Sasakian 3-manifolds were classified up to diffeomor-
phism by H. Geiges [29]. They were further studied by F. Belgun in [9]: every Sasakian
3−manifold is obtained as a deformation of some standard model (see [9] for more details).
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In [11], O. Biquard and M. Herzlich consider a class of manifolds which are modelled
on the complex unit ball, and are thus called asymptotically complex hyperbolic. This
construction will allow us to get an embedding theorem for Sasakian manifolds. Let us
first recall what an asymptotically complex hyperbolic manifold is.

Let X be a (2m− 1)−dimensional compact manifold, m > 2. We assume that X has a
strongly pseudoconvex CR-structure. Let θ be a compatible contact form, and J a compati-
ble almost complex structure. γ(., .) := dθ(.,J.) is then a metric on the contact distribution.
Following Biquard and Herzlich [11], we endow M := (0,∞)×X with the metric

g = dr2 + e−2rθ 2 + e−rγ. (6.13)

Actually, in [11], the authors consider the metric dr2 + e2rθ 2 + erγ on M, but the reason
for our choice will become clear later.

We can extend the almost complex structure to act on the whole tangent bundle as
follows. Consider the Reeb vector field R and define

J∂r = erR,

where ∂r is the unit vector field in the r direction. g is then a Hermitian metric with respect
to J, i.e. J is an g−isometry. The fundamental 2−form associated to g is

ω = d(e−rθ). (6.14)

Although ω is a closed form, in this general setting, ((0,∞)× X ,g) is not necessarily
a Kähler manifold, because J is not necessarily an integrable almost complex structure.
Indeed, the proof of [11, Proposition 3.1] shows that J is integrable if and only if the
torsion of the Webster connection of (X ,θ) in the direction of the Reeb vector field vanishes
identically, i.e. if and only if X is a Sasakian manifold (see Definition 6.36).

Assume now that X will be a Sasakian manifold, so that (M,g) is a Kähler manifold.
Then

ω = −2
√
−1∂∂ r, (6.15)

so that −r : M → (−∞,0) is a proper smooth strictly plurisubharmonic function. (this ex-
plains the choice of sign of the r variable for g in (6.13): with our choice, M has a strongly
pseudoconvex boundary, whereas with the choice of [11] M has a strongly pseudoconcave
boundary). Therefore M is a hyperconcave end, and the following theorem is a direct
consequence of Theorem 6.22:

6.37. THEOREM ([47]). Let X be a Sasakian manifold of dimension at least 3. Then
there is a CR embedding of X in CN for some integer N.

6.3. Compactification by adding finitely many points

The present section is devoted to proving sufficient conditions for the set X̂ r X to be
analytic. If this is the case, it can be actually blown down to a finite set, due to the existence
of a strongly pseudoconvex neighbourhood.

6.38. THEOREM. Let X be a hyperconcave end and let X̂ be a smooth completion of
X. Assume that X can be covered by Zariski-open sets which are uniformized by Stein
manifolds. Then X̂ r X is the union of a finite set D′ and an exceptional analytic set which
can be blown down to a finite set D. Each connected component of Xc, for sufficiently small
c, can be analytically compactified by one point from D′∪D. If X itself has a Stein cover,
D′ = /0 and D consists of the singular set of the Remmert reduction of X̂ .
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In order to prove Theorem 6.38 we consider first the particular case when the compact-
ification X̂ is a Stein space.

We begin with some preparations. Let V by a complex manifold. We say that V satisfies
the Kontinuitätssatz if for any smooth family of closed holomorphic discs ∆t in V indexed
by t ∈ [0,1) such that ∪b∆t lies on a compact subset of V , then ∪∆t lies on a compact
subset of V . It is clear that every Stein manifold satisfies the Kontinuitätssatz, using the
strictly plurisubharmonic exhaustion function and the maximum principle. Moreover, if the
universal cover of V is Stein then V satisfies Kontinuitätssatz since we can lift the family
of discs to the universal cover.

Let F be a closed subset of V . We say that F is pseudoconcave if V r F satisfies the
local Kontinuitätssatz in V , i.e. for every x ∈ F there is a neigbourhood W of x such that
W \F satisfies the Kontinuitätssatz. Observe that the finite union of pseudoconcave subsets
is pseudoconcave and every complex hypersurface is pseudoconcave.

We have the following proposition which implies the Theorem 6.38.

6.39. PROPOSITION. Let X̂ be a Stein space with isolated singularities S and K a
completely pluripolar compact subset of X̂ which contains S. Assume that X = X̂ r K can
be covered by Zariski-open sets which satisfy the local Kontinuitätssatz in X̂ r S. Then K
is a finite set. If X = X̂ r K satisfies the local Kontinuitätssatz, K = S.

PROOF. We can suppose that X̂ is a subvariety of a complex space CN . Let B be a ball
containing K such that bB∩ X̂ is transversal. By hypothesis, we can choose a finite family
of Zariski-open sets V1, . . ., Vk which are uniformized by Stein manifolds and ∩Fi is empty
near bB, where Fi = X rVi . Observe that Fi is an analytic subset of X , F i ⊂ Fi ∪K. Since
Fi ∪ (K r S) is pseudoconcave in X̂ r S, Fi have no component of codimension > 2. By
Hartogs theorem, if n = dimX > 2, there is a complex subvariety F̂i of X̂ which contains Fi.
This is also a consequence of Harvey-Lawson theorem [37]. We will prove this property
for the case n = 2. Set F = ∪Fi.

Observe that Γ = F ∩bB is an analytic real curve. The classical Wermer theorem [70]
says that hull(Γ)r Γ is an analytic subset of pure dimension 1 of CN r Γ where hull(Γ) is
the polynomial hull of Γ. By uniqueness theorem, hull(Γ) ⊂ X̂ . Since S is finite, we have
hull(Γ∪S) = hull(Γ)∪S. Set F ′ = (F ∪K)∩B and F ′′ = hull(Γ)∪S.

6.40. LEMMA (In the case n = 2). We have F ′ ⊂ F ′′.

PROOF. Assume that F ′ 6⊂ F ′′. Then there are a point p ∈ F ′ and a polynomial h on
U such that supF ′′ |h| < supF ′ |h| = |h(p)|. Set r = h(p). By maximum principle, we have
h−1(r)∩F ′ ⊂ K rS. In particular, we have p ∈ K rS. Recall that F ′rS is pseudoconcave
in X̂ ′ = X̂ ∩B r S. We will construct a smooth family of discs which does not satisfy the
Kontinuitätssatz. This gives a contradiction. The construction is trivial if p is isolated in
F ′. We assume that p is not isolated. By using a small perturbation of h, we can suppose
that h(p) is not isolated in h(F ′).

Set Σ′ = h(F ′) and Σ′′ = h(F ′′). Then Σ′ (resp. Σ′′) is included in the closed disk (resp.
open disk) of center 0 and of radius |r|. The holomorphic curves {h = const} define a
holomorphic foliation, possibly singular, of X̂ ′. The difficulty is that the fibre {h = r} can
be singular at p. Denote by T the set of critical values of h in h(B). Then T is finite.

Denote also Θ the unbounded component of C r (Σ′′ ∪ T ). It is clear that Σ′ meets
Θ. This property is stable for every small pertubation of the polynomial h. Since K is a
completely pluripolar, K ∩h−1(a) is a polar subset of h−1(a) for every a ∈ C.
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Choose a point b ∈ Θ such that 0 < dist(b,Σ′) < dist(b,Σ′′∪T ) and a ∈ Σ′ such that
dist(a,b) = dist(b,Σ′). We have a 6∈ Σ′′∪T . Replacing b by a point of the interval (a,b)
we can suppose that dist(a,b) < dist(a′,b) for every a′ ∈ Σ′′r{a}. Fix a point q ∈ F ′ such
that h(q) = a. Set δ1 = |a− b|. Since a 6∈ T , we can choose a local coordinates system
(z1,z2) of an open neigbourhood W of q in Ω̂′ such that z1 = h(z)− b, q = (a− b,0) and
{(z1,z2), |z1| < δ1 + δ2, |z2| < 2} ⊂ W with δ2 > 0 small enough. We can choose a W
which does not meet F ′′ and is small as we want.

Let L be the complex line {z1 = a− b}. By maximum principle, K ′ = F ′∩L is equal
to K ∩L. Then K ′ is a polar subset of L. This implies that the length of K ′ is equal to 0.
Thus, for almost every s ∈ (0,2) the circle {|z2| = s}∩L does not meet K ′. Without lost of
generality, we can suppose that K ′ does not meet {|z2| = 1}∩L. Now we define the disk
∆t by

∆t = {z1 = (a−b)t, |z2| ≤ 1}
for t ∈ [0,1). This smooth familly of discs does not verify the Kontinuitätssatz for W r
F ′. �

Now, denote by F̂i the smaller hypersuface of X̂ which contains Fi. Set F̂ = ∪F̂i. If
n = 2 we have F ∪K ⊂ F̂ . This is also true for n > 2. It is sufficient to apply the last lemma
for linear slices of X̂ .

6.41. LEMMA. Let L be a pseudoconcave subset of a complex manifold V . If L is
included in a hypersurface L′ of V then L is itself a hypersurface of V .

PROOF. Observe that L is not included in a subvariety of codimension ≥ 2 of V . As-
sume that L is not a hypersurface of V . Then there is a point p in RegL′ which belongs to
the boundary of L in L′. Choose a local coordinates system (z1, . . . ,zn) of a neigbourhood
W of p such that W contains the unit polydisk ∆n, p ∈ ∆n and L′∩W = {z1 = 0}∩W . We
can suppose that 0 6∈ L and we can choose W small as we want.

Let π : ∆n −→ ∆n−1 be the projection on the last n − 1 coordinates. Let q ∈ L∗ =
π(L∩∆n) such that dist(0,L∗) = dist(0,q). Consider the smooth family of discs given by
∆t = {z = (z1,z′′) : |z1|< 1/2 ,z′′ = tq}. This family does not verify the Kontinuitätssatz in
W r L. �

We can end the proof of Proposition 6.39. We know that (Fi∪K)rS is pseudoconcave
in X̂ r S and Fi ∪K ⊂ F̂ . By Lemma 6.41, (Fi ∪K) r S is a hypersurface of X̂ r S. By
Remmert-Stein theorem, any analytic set can be extended through a point, so Fi ∪K is a
hypersurface of X̂ . Then Fi ∪K ⊂ F̂i since ∩Fi = ∅. We deduce that K is included in ∩F̂i

which is analytic and bounded subset of CN . Therefore K must be a finite set. �

6.42. REMARK. The Proposition 6.39 holds for K not pluripolar. For this case, the
proof is more complicated. Using another submersion of X̂ given by the map z 7−→
(h(z),h(z)+ εz1, · · · ,h(z)+ εzN), we can suppose that R = maxKrS |z| > maxF ′′ |z|. Let
q ∈ bBR ∩ (K r S) where BR is is a ball of center 0 and radius R. Using a small affine
change of coordinates, we can suppose that bBR ∩ X̂ is transversal at q. We then construct
easily a family of discs close to Tq(bBR)∩ X̂ , which does not satisfy the Kontinuitätssatz,
where Tq(bBR) is the complex tangent space of bBR at q.

PROOF OF THEOREM 6.38. Let X be a hyperconcave end such that the exhaustion
function ϕ is overall plurisubharmonic. Let X̂ be a smooth completion of X . Then X̂ r X
has a strictly pseudoconvex neighbourhood V . Based on Remmert’s reduction theory,
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Grauert [30, Satz 3, p.338] showed that there exists a maximal analytic set A of V . More-
over, by [30, Satz 5, p.340] there exists a normal Stein space V ′ with at worst isolated
singularities, a discrete set D ⊂ V ′ and a proper holomorphic map π : V −→ V ′, biholo-
morphic between V r A and with V ′ r D and π(A) = D. That is, A can be blown down to
the finite set D. Of course, V ′

sing ⊂ D.

The maximum principle for ϕ implies A ⊂ X̂ r X . Let ψ : V ′ −→ [−∞,∞) be given by
ψ = ϕ ◦π−1 on V ′ r D and ψ = −∞ on π(X̂ r X). Then ψ is a strictly plurisubharmonic
function on V ′ and π(X̂ r X) is its pluripolar set. By Proposition 6.39, π(X̂ r X) is a
finite set. Therefore X̂ r X consists of A and possibly a finite set D′. If X has a Stein
cover, it follows from the Kontinuitätssatz that π(X̂ r X) = V ′

sing. Therefore D′ = /0 and
D = V ′

sing. �

6.43. REMARK. If in Theorem 6.38 we suppose only that X admits a Zariski-open
dense set which is uniformized by a Stein manifold, we can prove in the same way, that
X̂ r X is included in a hypersurface of X̂ , i.e. X contains a Zariski-open dense set of X̂ .

6.4. Extension of Nadel’s theorems

We are in the position to extend the theorems of Nadel [50] to dimension two. If X
is a hyper 1-concave manifold, it follows from [1] that the meromorphic function field
K (X) has transcendence degree over C less or equal than dimX . If the transcendence
degree equals dimX , that is, if there exist dimX algebraically independent meromorphic
functions over C , we say that X is Moishezon . We have the following characterization.

6.44. PROPOSITION. A hyper 1-concave manifold X is Moishezon if and only if X is
biholomorphic to an open set of a compact Moishezon space X̂. A sufficient condition for
X to be Moishezon is to admit a semipositive line bundle which is positive at one point.

PROOF. By Theorem 6.22 there exist a compact complex space X̂ , such that X ⊂ X̂ .
Moreover X̂ r X is a pluripolar set. Let us remark that, due to the existence of a Stein
neighbourhood of the set X̂ r X , all meromorphic functions on X extend uniquely to X̂ .
Hence K (X̂) = K (X), which implies the first part of the proposition. The second part is
the content of [67, Corollary 3.2]. �

We extend now Nadel’s main result [50, Theorem 0.1] to dimension 2.

6.45. PROPOSITION. Let X be a connected manifold of dimension n > 2. Assume that:

(i) X is hyper 1-concave.
(ii) X is Moishezon.

(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

Then X can be compactified by adding finitely many points to a compact Moishezon space.

PROOF. By conditions (i) and (iii) and Theorem 6.38, we can find a compact complex
space X̂ , with at worst isolated singularities, such that X is an open set of X̂ and X̂ r X is
finite. Since K (X̂) = K (X), X̂ is itself Moishezon. �

Note that Proposition 6.45 implies that a manifold satisfying (i)-(iii) has finite topolog-
ical type.

The next result characterizes, along the lines of Kodaira, those non-compact manifolds
of dimension n > 2 that can be compactified by adding finitely many points and that admit
quasiprojective algebraic structure.
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It corresponds to [50, Theorem 0.2], where the case n > 3 is considered. We have formu-
lated condition (ii) below more geometrically. In [50] the corresponding condition is that
the ring ⊕k>0H0(X ,Ek) gives local coordinates and separates points of X . Note also that
the next result answers [48, Problem 1] for the case q = 0.

6.46. PROPOSITION. Let X be a connected manifold of dimension n > 2. The following
conditions are necessary and sufficient for X to be a quasiprojective manifold which can
be compactified to a Moishezon space by adding finitely many points.

(i) X is hyper 1-concave.
(ii) X admits a positive line bundle E.

(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

PROOF. The necessity of conditions (i) and (ii) is obvious, while the necessity of (iii)
follows from a theorem of Griffiths [34, Theorem I].

For the sufficiency, we need a variant of the embedding theorem of Andreotti-Tomassini
6.13.

6.47. LEMMA. Let X be a hyperconcave manifold and E be a positive line bundle on
X. Then X is biholomorphic to an open set of a projective algebraic manifold.

PROOF. If ϕ denotes the exhaustion function of X ,
√
−1
(
RE +∂∂ (− log(−ϕ))

)
, A �

1, is a complete Kähler metric on X . Using the L2 estimates with singular weights for
positive line bundles (Theorem 4.16), we obtain that ⊕k>0H0(X ,Ek⊗KX) separates points
and gives local coordinates everywhere on X . Repeating the proof of [51, Lemma 2.1] we
obtain an embedding in the projective space and then conclude by Theorem 6.12. �

Let X̂ be a projective compactification given by Lemma 6.47. Then Theorem 6.38
implies that X̂ r X is an analytic set. Proposition 6.46 is proved. �

6.48. REMARK. We can obtain a stronger version of [51, Theorem 0.1] in dimension
two. Nadel and Tsuji use the following terminology. A manifold X of dimension n is
called very strongly (n− 2)-concave if there exists a C 2 function ψ : X −→ R such that
{ψ > c}b X , for all c∈R, and outside a compact set ψ is plurisubharmonic and

√
−1∂∂ ψ

has at least 2 positive eigenvalues. If dimX = 2, this notion coincides with hyperconcavity.
Nadel and Tsuji prove the following theorem: a complete Kähler manifold (X ,ω), dimX =
n, satisfying the conditions

(i) Ric(ω) < 0,
(ii) X is very strongly (n−2)-concave,

(iii) The universal covering of X is Stein,

is biholomorphic to a quasiprojective manifold. By Proposition 6.46 we can, if dimX = 2,
remove the requirement that X is complete Kähler and replace (i) with the existence of a
positive line bundle.

Let X = M/Γ be an irreducible arithmetic quotient of dimension n > 2. The proof of
Borel [13] shows that X is very strongly (n−2)-concave. Thus, Proposition 6.46 gives, in
dimension two, a generalization of the fact that arithmetic quotients can be compactified,
with a completely complex-analytic proof.

6.49. REMARK. A compact Moishezon space X̂ with isolated singularities such that
X̂ r X is finite needs not be either projective or algebraic in the sense of Weil. See the
example of Grauert [30, p. 365–6].
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6.50. REMARK. We can obtain the following version of Proposition 6.45. Namely, a
manifold X , dimX = 2, satisfying the two conditions,

(i)’ X is hyperconcave and
(ii)’ X can be covered by Zariski-open sets which can be uniformized by

bounded domains of holomorphy in Cn,

can be compactified by adding finitely many points to a compact Moishezon space. Indeed,
we show first as in [50, p. 187] that X is Moishezon, using the result of Mok -Yau on the
existence of complete Kähler-Einstein metrics on bounded domains of holomorphy, as well
as the L2-estimates for ∂ . Then we resort to Proposition 6.45.

Note that in [50, Theorem 0.3] it is shown that a manifold X as above, with dimX > 2,
has moreover the stucture of an abstract algebraic variety.

We close the section with an extension of Theorem 6.14. Generalizing the Andreotti-
Tomassini theorem, Andreotti-Siu [4, Theorem 7.1] show that a strongly 1- concave mani-
fold X of dimX > 3 can be embedded in the projective space, if it admits a line bundle E
such that ⊕k>0H0(X ,Ek) gives local coordinates on a sufficiently large compact of X . The
proof is based on techniques of extending analytic sheaves. Moreover, the result breaks
down in dimension 2 as the following example shows.

6.51. EXAMPLE. We use Example 6.19 and its notations. The strongly 1- concave ma-
nifold Yε = Kε rpr−1

P3 (G) has as differential double covering the torus minus 16 small balls
around the fixed points of the involution. Denote Xε this new manifold. With the induced
complex structure from Yε , Xε is a strongly 1-concave, non-compactifiable manifold. If
on Xε we consider the pull-back Eε of the hyperplane line bundle on Yε , ⊕k>0H0(Xε ,Ek

ε )
gives local coordinates everywhere. But Xε is not embeddable in the projective space, for
if it were, we could compactify it by Theorem 6.13.

We show in the next proposition that, if we impose the condition of hyperconcavity,
such phenomenon cannot occur. Here ϕ and b have the same meaning as in Definition
6.21.

6.52. PROPOSITION. Let X be a hyperconcave manifold of dimension n > 2. Let c be
a real number such that c < b. Assume there is a line bundle E over X ′ = {ϕ > c} such
that the ring ⊕k>0H0(X ′,Ek) gives local coordinates on X ′. Then X is biholomorphic to
an open subset of a projective manifold.

PROOF. By Theorem 6.22, X is an open subset of a variety X̂ with isolated singularities.
Moreover X̂ r X ′ is a Stein space.

Replacing c by a c′ such that c < c′ < b we can suppose that there are holomorphic
sections s0, . . ., sm of H0(X ′,Ek) which give local coordinates of X ′ where k is big enough.
We can define a holomorphic map π : X ′ −→ Pm by

π(z) = [s0(z) : · · · : sm(z)].

Then π gives a local immersion of X ′ in Pm. Since X̂ r X ′ is embeddable in an euclidian
space, a theorem of Dolbeault-Henkin-Sarkis [21], [58] implies that π can be extended to
a meromorphic map from X̂ into Pm.

Denote by Z the set consisting of the singular points of X̂ , the points of indeterminacy
of π and the critical points of π . Then Z is a compact analytic subset of X̂ r X ′. Since
X̂ r X ′ is Stein space, Z is a finite set. The map π gives local immersion of X̂ r Z in Pm.
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Let H be the canonical line bundle of Pm and set L = π∗(H). Then L is a positive line
bundle of X̂ r Z. In particular L is positive on X r Z and by a theorem of Shiffman [62]
extends to a positive line bundle on X . By Lemma 6.47, X is biholomorphic to an open
subset of a projective manifold. �

6.5. Compactification of manifolds with pinched negative curvature

Our goal is to prove the following generalization of the Siu-Yau theorem in the case
when a strongly pseudoconvex end is allowed.

6.53. THEOREM ([47]). Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that IntX is endowed
with a complete Kähler metric with pinched negative curvature, such that away from a
neighborhood of ∂X, the volume of X is finite. Then

(1) ∂X is embeddable in some CN .
(2) There exists a compact strongly pseudoconvex domain D in a smooth projective

variety and an embedding h : X → D which is a biholomorphism between IntX
and h(IntX), h(∂X) = ∂D, and Drh(X) is an exceptional analytic set which can
be blown down to a finite set of singular points.

PROOF. We show that all the ends of X , with the exeption of the end corresponding
to ∂X , are hyperconcave. Indeed, let E1, . . . ,Em be the cusps of X r U , where U is a
neighbourhood of ∂X . We fix some end E j and consider the associated Busemann function
r : E j → (0,∞). It follows from [64, Proposition 1] that −r : E j → (−∞,0) is a strictly
plurisubharmonic proper function (note that for the Busemann function, Siu and Yau use
the opposite sign convention). From Theorem 6.22 we deduce that there exists a Stein
space S with boundary and an embedding of X as an pen set in S, such that ∂S = ∂X .

In particular, the Kohn-Rossi theorem 6.3 shows that every holomorphic function de-
fined in a neighbourhood of ∂X extends to a holomorphic function on X . As a by-product
we obtain that ∂X is connected.

Using [39, Theorem 0.2] (see also Ohsawa [54]) the space S can be embedded as a
domain with boundary in a larger Stein space S′ such that ∂S is a hypersurface in S′. By the
embedding theorem of Remmert-Bishop-Narasimhan [53], S′ admits a proper holomorphic
embedding in CN for some N. Restricting this embedding to ∂S = ∂X we obtain the
conclusion (1).

We prove now point (2). Note that by applying theorems 6.22 and 6.38 we can deduce
(2) for some strongly pseudoconvex domain D, but we cannot say directly that this domain
is an open set of a projective manifold. Therefore we proceed as follows. We start by
glueing S′ to a pseudoconcave projective manifold. Lempert’s approximation theorem 6.11
allows to assume that the Stein space S′ constructed before is an open set in an affine
algebraic variety, hence also in a projective variety Y . We use now the notations from the
proof of Consequence 6.5. Let ε ∈ (0,c) be sufficiently small. We set W = {ε−δ < ϕ 6 c}
and glue the manifolds X and (Y rS)∪W along W . The resulting manifold will be denoted
by X̂ . Hence X is a domain with compact strongly pseudoconvex boundary in X̂ .

Since S′ is an affine space in some CN , we can regard the embedding of W ′ = {ε − δ <
ϕ < ε} in Y as a map with values in CN . Now X can be compactified to a compact strongly
pseudoconvex domain, so the extension theorem of Kohn-Rossi, applied to the components
of this embedding, show that the embedding extends to a holomorphic map from X to
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CN ⊂ PN . Pulling back the hyperplane line bundle of PN through this map, we obtain a
line bundle E → X̂ which is semi-positive on X̂ and positive on (X r S′)∪W .

A partition of unity argument delivers a Hermitian metric on X̂ which agrees with
the original metric ω of IntX on say {ϕ < ε}. With respect to this metric the canonical
bundle of X is positive on {ϕ < ε}. Hence, the bundle L = Ek ⊗KX̂ is positive on X̂ for
k sufficiently large. Moreover, the curvature

√
−1RL of L dominates ω on {ϕ < ε} and

therefore
√
−1RL is a complete metric on X̂ . The L2 estimates of Hörmander-Andreotti-

Vesentini from Theorem 4.16 produce sections of ⊕ν H0(X̂ ,Lν ⊗KX̂) that separate points
and give local coordinates on X̂ .

On the other hand the manifold X̂ is hyper 1-concave (we use again the plurisuper-
harmonicity of the Busemann function on each cusp). By Lemma 6.47 we find a smooth
compactification X̃ ⊂ PN of X̂ and therefore of X . The desired projective strongly pseu-
doconvex domain is D = M̃ r (X r S′). By [30, Satz 3, p.338] there exists a maximal,
nowhere discrete analytic set A of D (the exceptional analytic set [30, Definition 3, p. 341])
and by [30, Satz 5, p.340] there exists a Remmert reduction π : D → D′, which blows down
A to a discrete set of points. The set D r M = M̃ r M is a pluripolar set, namely the set
where the plurisubharmonic function −r takes the value −∞. By the maximum principle
for plurisubharmonic functions, A ⊂ D r M. The set π(D r M) is also a pluripolar set,
and D′

sing ⊂ π(A) ⊂ π(D r M). By Wu’s theorem [32], any simply connected complete
Kähler manifold of nonpositive sectional curvature is Stein. Hence the universal covering
of M is Stein. It is then shown in [64, § 4] (using the Schwarz-Pick Lemma of Yau) and in
Proposition 6.39 (using Wermer’s theorem) that D′

sing = π(D r M).
Therefore D r M = A is an exceptional analytic set in the sense of Grauert and by

blowing down this exceptional set we obtain the set D′
sing. Actually, each end E1, . . . ,Em of

M can be compactified with one point of the singular set D′
sing = {x1, . . . ,xm}. Moreover,

by the uniqueness of the Stein completion from Theorem 6.1 we see that D′ and S′ coincide.
�

6.54. REMARK. It follows from the proof that each end of X , exept that corresponding
to ∂X , can be analytically compactified by adding one singular point. Theorem 6.53 also
holds true if we assume that the complete Hermitian metric is defined on X (including
the boundary). However, in the case of quotients in Corollary 6.56 the induced Hermitian
metric is defined only in the interior of X .

The first application of Theorem 6.53 is the classical theorem of Siu–Yau, which is the
particular case when ∂X = ∅.

6.55. COROLLARY (Siu-Yau). Let X be a complete Kähler manifold of finite volume
and bounded negative sectional curvature. If dimX > 2, X is biholomorphic to a quasipro-
jective manifold which can be compactified to a Moishezon space by adding finitely many
singular points.

As a second application we study some quotients of the unit complex ball Bn in Cn

which where considered by Burns and Napier-Ramachandran [52, Theorem 4.2].

6.56. COROLLARY. Let Γ be a torsion-free discrete group of automorphisms of the unit
ball Bn in Cn, n > 2, and let X = Bn/Γ. Assume that the limit set Λ is a proper subset of
∂Bn and that the quotient (∂Bn r Λ)/Γ has a compact component A. Let E be the end of
x corresponding to A and assume that X r E has finite volume. Then A is embeddable in
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some CN and X can be compactified to a strongly pseudoconvex domain in a projective
variety by adding an exceptional analytic set.

PROOF. As is well known, the limit set Λ is the set of accumulation points of any
orbit Γ · x, x ∈ Bn, and is a closed Γ-invariant subset of the sphere at infinity ∂Bn. The
complement ∂Bn rΛ is precisely the set of points at which Γ acts properly discontinuously,
and the space X ∪(∂Bn rΛ)/Γ is a manifold with boundary (∂Bn rΛ)/Γ (see for example
[23, §10]). A is a compact subset of this boundary, hence there is a neighborhood E of
A in X which is diffeomorphic to the product A× (0,1). It follows that E is an end of
X , because A is compact and connected. Actually, E is a strongly pseudoconvex end, in
the sense that its boundary A at infinity is strictly pseudoconvex. Since X = Bn/Γ is a
complete manifold with sectional curvature pinched between −4 and −1, Corollary 6.56
is an immediate consequence of Theorem 6.53. �

The third application is to actually establish the equivalence between the finite volume
condition and the embeddability of the boundary.

6.57. COROLLARY. Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that X is endowed with
a complete Kähler metric with pinched negative curvature. The following assertions are
equivalent :

(a) ∂X is embeddable in some CN .
(b) X has finite volume away from a neighbourhood of ∂X.

If one of the equivalent conditions (a) or (b) holds true, X can be compactified to a strongly
pseudoconvex domain in a projective variety by adding an exceptional analytic set.

PROOF. The implication (b) ⇒ (a) was proved in Theorem 6.53. We wish to prove
(a) ⇒ (b). Indeed, once ∂X is assumed to be embeddable, we follow the second part of
the proof of Theorem 6.53. The difficulty is now that we do not know apriori that X can be
compactified.

Since ∂X = {ϕ = c} is embeddable it follows from the Epstein-Henkin Theorem 6.16
that also {ϕ = ε} is embeddable for ε ∈ (0,c). Using the Harvey-Lawson theorem we fill
in {ϕ = ε} and we compactify the stip {ε < ϕ < c} to an affine Stein space S, which can be
realized as a Stein domain with boundary in a bigger Stein space. Lempert approximation
theorem entails that we can assume that S is a domain in an affine variety. We extend now
the embedding of {ε < ϕ < c} in S ⊂ CN to X by using the following Hartogs type result:

6.58. PROPOSITION ([52, Prop. 4.4]). Let (M,ω) be a connected complete Hermitian
manifold of dimension n > 1 and let X ⊂ M be a domain with nonempty smooth compact
strongly pseudoconvex boundary. Assume that the restriction ω|X of ω to X is Kähler.
Suppose f is a holomorphic function on U ∩X for some neighbourhood U of ∂X in X.
Then there exists a holomorphic function h on M such that h = f near ∂X. In particular,
∂X is connected.

We can repeat the proof of Theorem 6.53 and construct the positive holomorphic line
bundle L on the manifold X̂ . By applying Theorem 4.34 we obtain

dimHn,0
(2)

(X̂,Lk) >
kn

n!

∫

X̂

(√
−1

2π RL
)n

+o(kn) , (6.16)
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Since dimHn,0
(2)

(X̂ ,Lk) < ∞ (X̂ is hyperconcave) and the curvature
√
−1RL of L dominates

ω on {ϕ < ε}, where ε < c, we deduce that (X ,ω) has finite volume away from a neigh-
bourhood of ∂M. �

The assertion (a) ⇒ (b) is [52, Theorem 4.1]. We infer the following result anounced
by D. M. Burns and proved by T. Napier and M. Ramachandran [52, Theorem 4.2]:

6.59. THEOREM (Burns, Napier-Ramachandran). Let Γ be a torsion-free discrete group
of automorphisms of the unit ball B in Cn with n > 3 and let X = B/Γ. Assume that the
limit set Λ is a proper subset of ∂B and that the quotient (∂B r Λ)/Γ has a compact
component A. Then X has only finitely many ends, all of which, except for the unique end
corresponding to A, are cusps. In fact, X is diffeomorphic to a compact manifold with
boundary and can be compactified.

The proof is based on [52, Theorem 4.1] which shows that the finite volume hypothesis
of Corollary 6.56 is automatically satisfied in the case n > 3. The presence of the strongly
pseudoconvex boundary forces the volume to be finite, since ∂X is then embeddable by
6.8, having real dimension at least 5.

If n = 2 we have to assume the volume to be finite in order to obtain the embedding of
the boundary. It is interesting to ask whether Burns’ theorem holds also in dimension 2 or,
equivalently, whether the compact strongly pseudoconvex component of a set (∂B r Λ)/Γ
is embeddable for all torsion-free discrete groups of automorphisms of the unit ball B in
C2.

6.6. Nadel-Tsuji compactification theorem

In this section we discuss briefly a generalization of the theorem of Siu-Yau, namely a
geometric proof of the compactification of arithmetic quotients of arbitrary rank. We will
call a complex manifold of dimension n very strongly (n−q)–pseudoconcave if there exists
a C 2 function ψ : X →R such that {ψ > b} is compact for any b∈R and outside a compact
set ψ is weakly plurisubharmonic and its Levi form has at least q positive eigenvalues. Note
that in the case q = n we recover the class of hyperconcave manifolds.

6.60. THEOREM (Nadel–Tsuji [51]). Let (X ,ω) be a complete Kähler manifold of di-
mension n of negative Ricci curvature. Assume that X is uniformized by a Stein manifold
and that X is very strongly (n− 2)–pseudoconcave. Then, X is biholomrphic to a quasi–
projective variety.

The first step is to generalize the Andreotti-Tomassini embeding theorem to the present
context [51, Lemma 2.1]. There exists therefore a holomorphic embedding F : X −→ Z of
X onto a non–singular projective–algebraic variety Z. We will henceforth identify X with
its image under F . The goal is to show that Z r X is an analytic set of Z. The main toll
are the Morse inequalities of Theorem 4.31 and existence theorems for complete Kähler–
Einstein metrics on bounded domains of holomophy and certain quasi–projective varieties.
Let us briefly explain the proof. Z r X contains at most a finite number of irreducible
hypersurfaces Di of Z. Denoting the union of Di by D we will show that X = Z r D. By
removing some hypersurface V in Z and using existence theorems for complete Kähler–
Einstein metrics [49, Main Theorem] one can show that both W = X rV and W ′ = (Z r
D)rV admit Kähler–Einstein metrics of Ricci curvatures ≡−1. Denote the Kähler forms
by ω and ω ′ resp. From Yau’s Ahlfors–Schwarz lemma [] for volume forms we have
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ωn > ω ′n. To show that W = W ′ and hence X = Z rD it suffices to show that ωn ≡ ω ′n. In
fact, since Kähler–Einstein metrics are determined by their volume forms this would imply
ω ≡ ω ′ and hence W = W ′.

Denote by K the canonical line bundle and by [D] the divisor line bundle. We relate the
volumes of (W,ω) and (W,ω ′) to the asymptotic growth of the dimensions of the spaces
of L2 holomorphic sections H0

(2)(W,(K ⊗ [D]⊗ [V ])k) and H0
(2)(W

′,(K ⊗ [D]⊗ [V ])k). As
pseudoconcavity implies extension theorems for holomorphic sections of line bundles from
W to W ′ the asymptotic growth of these spaces is the same. On the one hand for the quasi–
projective variety W ′ the asymptotic growth of H0

(2)(W
′,(K ⊗ [D]⊗ [V ])k) is determined

by the volume of (W ′,ω ′). On the other hand, Theorem 4.31 gives a lower bound for the
asymptotic growth of H0

(2)(W,(K⊗ [D]⊗ [V ])k) by the volume of (W,ω). Equating the two

asymptotic rates yields the inequality vol(X ,ω) 6 vol(X ′,ω ′). Combined with ωn > ω ′n

this yields the desired identity ωn ≡ ω ′n and hence X = Z r D.
It should be possible to give a proof of the Nadel-Tsuji theorem without recourse to

the existence of Kähler-Einstein metrics by using complex-analytic tools, as we did in the
previous sections for the case of hyperconcave manifolds.

6.7. Embedding of strongly q-concave manifolds

Let us consider the problem of embedding a q–concave manifold in a projective space
or more generally in a Moishezon manifold.

The first basic result in this direction is the Andreotti Theorem 6.12, which shows that
the embeddability implies the compactification of the manifold, which is a generalization
of Chow’s algebraicity theorem. An analytic criterion for the embeddability is given by the
Andreotti-Tomassini embedding Theorem 6.13. We wish to discuss now a more intrinsic
characterisation of q–concave manifolds. The general problem is the following:

6.61. PROBLEM. Let X be a q–concave manifold and let L −→ X be a positive line
bundle. Find sufficient conditions for X to be an open set of a projective or Moishezon
manifold. Find examples of non–algebraic X (if any).

It is easy to see that hyper 1–concave manifolds possesing a positive line bundle are
projectively embeddable. Moreover, when X admits a positively embedded (i.e. with pos-
itive normal bundle) smooth compact divisor Z, from the rigidity theorem of Griffiths [33]
we infer that global sections in high tensor powers of the the associated bundle [Z] embed a
small neighbourhood V of Z in the projective space. In particular X has a maximal number
of independent meromorphic functions, since the meromorphic functions extend from V to
X .

In general, the difficulty consists in applying the Bochner–Kodaira–Nakano formula for
solving ∂ . Indeed, there is a conflict of signs between the negativity of the Levi form of the
exhaustion function and the positivity of the curvature. If we want to modify the curvarure
of L by multiplying the metric with a suitable weight we lose the positivity. Therefore, we
cannot solve the ∂–equation directly but rather use a quantitative version of the ∂ –method,
namely the holomorphic Morse inequalities.

We will prove an existence criterion giving a lower bound for dimH0(X ,Lk) in terms
of geometric data such as the Levi form of ∂X and the curvature of L. As a corollary we
see that, roughly speaking, if the volume of X in the metric

√
−1RL exceeds the volume

of ∂X times a constant expressing the size of the Levi form and of the curvature
√
−1RL

near the boundary, the ring A (X ,L) contains local coordinates for each point outside a
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proper analytic set of X . An important feature of our estimate is the presence of a negative
boundary term which expresses the obstruction to finding holomorphic sections. We need
some preparations and notations in order to state the result. Let X be a q–concave manifold
with exhaustion function ϕ . If ∂Xc is smooth the Levi form of ∂Xc has at least n− q− 1
negative eigenvalues (since the defining function for Xc is c−ϕ). Therefore the following
setting may be considered.

Let D b X be a smooth domain in a complex manifold X such that the Levi form of ∂D
has at least 2 negative eigenvalues. Then we can choose a defining function ϕ for D which
is smooth on D, D = {ϕ < 0} and ∂∂ ϕ has at least 3 negative eigenvalues. We can in
fact modify a defining function in order to get an extra negative eigenvalue in the complex
normal direction to ∂D. In the following we keep the function ϕ fixed.

Let us explain why we need at least two negative eigenvalues of the Levi form restricted
to the boundary, or at least 3 positive eigenvalues for

√
−1∂∂ ϕ . Our method is based on L2

estimates for (0,1)–forms on D which imply the finiteness of the first cohomology group
H1(X ,F) for holomorphic vector bundles F over X . By the Andreotti–Grauert theory we
have dimH p(X ,F) < ∞ for p 6 n− (q + 1)− 1 = n− q− 2 and dimH p(X ,F) = ∞ for
p = n−q−1. Therefore we have to impose n−q−1 > 1 i.e. n−q > 2.

We introduce a hermitian metric ω = ωϕ in the neighbourhood of D such that in a
neighbourhood V of ∂D the following property holds:

6.62. PROPERTY. The first 3 eigenvalues of
√
−1∂∂ ϕ with respect to ω are at most

−2n+3 and all others are at most 1.

Finally set dSL for the volume form of ∂D in the induced metric from
√
−1RL and

|dϕ|L for the norm of dϕ in the metric associated to
√
−1RL.

We can state the estimate for the dimension of the space holomorphic sections on the
concave domain D.

6.63. EXISTENCE CRITERION. Let D b X be a smooth domain in a complex manifold
X such that the Levi form of ∂D possesses at least 2 negative eigenvalues. Let L be a
holomorphic line bundle on X which is assumed to be positive on a neighbourhood of D.
Then

liminf
k−→∞

k−n dimH0(D,Lk) >
∫

D

(√
−1

2π
RL
)n

−C(ϕ,L)

∫

∂D

dSL

|dϕ|L
(6.17)

The constant C(ϕ,L) depends explicitely on the curvature of L and on the Levi form√
−1∂∂ ϕ (cf. (6.18)).

PROOF. We proceed as follows. In a first instance we find the fundamental L2 esti-
mate for the (0,1)–forms with values in Lk. Then following the proof of Theorem 4.2 we
compare the spectrum of the Laplace operator on D (for a complete metric) with the spec-
trum of the Dirichlet problem over a smaller domain D(ε/2) which is a set of points of
D at distance less than

√
ε/2 times a certain constant from ∂D (see (6.28) for the precise

definition). On D(ε/2) we can use Demailly’s spectral formula and get a lower bound for
the dimension of the space of sections in Lk for large k. We shall need the full strength of
Demailly’s result since the curvature of the changed metric has negative eigenvalues. In the
last step we apply the results to metrics which approximate the positive metric on L in the
interior of the manifold. In the process of approximation the set where the curvature has a
negative part concentrates to the boundary ∂D and is responsible for the negative boundary
term in the final estimate of the Existence Criterion.
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We begin by setting some notations and defining the constant C(ϕ,L).
Let η a hermitian metric on X , Φ a real (1,1)–form and K a compact set in X . We set:

Mη(Φ,K) = sup
x∈K

sup
v∈TxXr{0}

Φ(v,v)
η(v,v)

,

the supremum over K of the highest eigenvalue of Φ with respect to η . In hindsight to our
previous situation denote:

ML(ϕ) = M√
−1RL(

√
−1∂∂ ϕ,D)

ML(−ϕ) = M√
−1RL(−

√
−1∂∂ ϕ,D)

Mω(L) = Mω(
√
−1RL,D)

M′
ω(L) = 1+2(n−1)Mω(

√
−1RL,D)

ML(∂ϕ) = M√
−1RL(

√
−1∂ϕ ∧∂ ϕ,∂D)

which represent the relative size of the respective (1,1)–forms. We also put:

C1 =
√

2ML(−ϕ)M′
ω(L)−1

C2 = 2ML(−ϕ)M′
ω(L)−1

C3 = 2ML(ϕ)M′
ω(L)+1

C4 = 2M′
ω(L)ML(∂ϕ)

The definition of C(ϕ,L) is then

C(ϕ,L) = (2π)−nC1 C2Cn−2
3 C4 . (6.18)

Let γ1 6 γ2 6 · · · 6 γn be the eigenvalues of
√
−1∂∂ ϕ with respect to ω . We have

chosen ω such that (see Property 6.62) in a neighbourhood V of ∂D,

Γ1 6 Γ2 6 Γ3 6 −2n+3 , (6.19a)

Γn 6 1 . (6.19b)

Let χ : (−∞,0) −→ R, χ(t) = t−2. We consider the complete metric:

ω0 = ω + χ(ϕ)∂ϕ ∧∂ ϕ (6.20)

which grows as ϕ−2 in the normal direction to ∂D. Along the fibers of L we introduce the
metric:

hL
ε = hL exp

(
−ε
∫ ϕ

infϕ
χ(t)dt

)
(6.21)

where hL is the given metric on L (for which
√
−1RL is positive). The curvature of hL

ε is
√
−1R(L,hL

ε ) =
√
−1RL +

√
−1εχ(ϕ)∂∂ ϕ +

√
−1εχ ′(ϕ)∂ϕ ∧∂ϕ

We evaluate the eigenvalues of
√
−1R(L,hL

ε) with respect to ω0 with the goal to apply the
Bochner–Kodaira formula. Denote by Γ0

1 6 Γ0
2 6 · · · 6 Γ0

n the eigenvalues of
√
−1∂∂ ϕ

and Γε
1 6 Γε

2 6 · · · 6 Γε
n the eigenvalues of

√
−1εχ(ϕ)∂∂ ϕ +

√
−1εχ ′(ϕ)∂ϕ ∧ ∂ϕ with

respect to ω0. The minimum–maximum principle yields

Γ1 6 Γ0
1 6 Γ2 6 Γ0

2 6 Γ3 6 −2n+3 by (6.19a) , (6.22a)

Γ0
3 < 0 since Γ3 < 0 , (6.22b)

Γ0
j 6 max{Γn,0} 6 1 for 4 6 j 6 n , by (6.19b) . (6.22c)



6.7. EMBEDDING OF STRONGLY q-CONCAVE MANIFOLDS 129

on V . It is also easy to see that the highest eigenvalue of
√
−1χ ′(ϕ)∂ϕ ∧∂ ϕ with respect

to ω0 satisfies

sup
v∈TxXr{0}

√
−1χ ′(ϕ)∂ϕ ∧∂ϕ(v,v)

ω0(v,v)
6 χ(ϕ) , for all x ∈ D . (6.23)

By (6.23) we have
Γε

j 6 εχ(ϕ)(Γ0
j +1)

and therefore,

Γε
1 6 Γε

2 6 (−2n+4)εχ(ϕ) by (6.22a) ,

Γε
3 6 εχ(ϕ) by (6.22b) ,

Γε
j 6 2εχ(ϕ) for 4 6 j 6 n , by (6.22c) .

Summing up we obtain
Γε

2 + · · ·+Γε
n 6 −εχ(ϕ) . (6.24)

This sum will appear in the Bochner–Kodaira formula and carries the information about
the concavity of D.

We also have to estimate the eigenvalues of
√
−1RL with respect to ω0. We denote by

α1 6 α2 6 · · ·6 αn the eigenvalues of
√
−1RL with respect to ω and by α0

1 6 α0
2 6 · · ·6 α0

n
the eigenvalues of

√
−1RL with respect to ω0. It is straightforward that

α0
n 6 αn 6 Mω(E) < ∞ on V . (6.25)

Since the torsion operator of ω0 with respect to ω0 are bounded by a constant A > 0 (de-
pending only on ω0), the Bochner–Kodaira formula (B.20), (3.70) assumes the following
form:

3
2

(
‖∂ Lk

u‖2 +‖∂ Lk∗
u‖2
)

>
∫

D

[
−k(Γε

2 + · · ·+Γε
n)− k(α0

2 + · · ·+α0
n )−Aχ(ϕ)

]
|u|2 dV (6.26)

for any compactly supported (0,1)–form in D with values in Lk. The volume form is taken
with respect to ω0 and the norms are with respect to ω0 on D and hL

ε on L. The inequalities
(6.24), (6.25) and (6.26) entail

3
2

(
‖∂ Lk

u‖2 +‖∂ Lk∗
u‖2
)

>
∫

D
[−k(n−1)Mω(L)+ kεχ(ϕ)−Aχ(ϕ)] |u|2 dV (6.27)

for any compactly supported (0,1)–form in D with values in Lk and support in V . We
use now the term kεχ(ϕ) to absorb the negative terms in the left–hand side of (6.27). We
introduce the following notation:

D(ε) =
{

x ∈ D : ϕ(x) < −
√

ε/M′
ω(L)

}
. (6.28)

We may assume that V contains the set {D(ε) (for ε small enough). In the set {D(ε) we
have εχ(ϕ) > M′

ω(L) and if we choose k > 2Aε−1 we get

−k(n−1)Mω(L)+ kεχ(ϕ)−Aχ(ϕ) >
k
2

so that (6.27) yields

3

(
‖∂ Lk

u‖2 +‖∂ Lk∗
u‖2
)

> k
∫

D
|u|2 dV , suppu b {D(ε) , k > 2Aε−1 (6.29)
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Since the metric ω0 is complete we deduce that (6.29) holds true for any (0,1)–form u ∈
Dom∂ ∩Dom∂ Lk∗

with support in {D(ε) (by the density lemma of Andreotti–Vesentini
A.10).

Having obtained the fundamental estimate (6.29) we follow the proof of the abstract
Morse inequalities Theorem (4.6). We fill in the details since we need the precise output to
be able to make ε −→ 0.

By (4.13), for λ sufficintly small and k sufficintly large,

dimH0(D,Lk ⊗KX)+N1
(

λ ,2Lk
)

> N0
(

λ ,2Lk
)

. (6.30)

Thus, we have to estimate N1(λ ,2Lk
) from above and then N0

(
λ ,2Lk

)
from below.

Following Theorem 4.2 we show that the essential spectrum of 2
Lk

on (0,1)–forms
does not contain the open interval (0,1/24) and we can compare the counting function
on this interval with the counting function of the same operator considered with Dirichlet
boundary conditions on the domain D(ε/2) (introduced in (6.28)) and denoted 2

Lk

D(ε/2). In

particular N1
(

λ ,2Lk
)

is finite dimensional for λ < 1/24. Let ρε ∈C ∞(D) such that ρε = 0

on a closed neighbourhood of D(ε) and ρε = 1 on {D(ε/2). Denote Cε = 6sup |dρε |2 < ∞.
The constant depends on ε (which is fixed) but not on k. Then for k sufficiently large the
operator 2

Lk
on (0,1)–forms has discrete spectrum in (0,1/24) and

N1
(

λ ,2Lk
)

6 N1
(

24λ +16Cεk−1,2Lk

D(ε/2)

)
, for λ ∈ (0,ε/2). (6.31)

We obtain now a lower estimate for N0
(

λ ,2Lk
)

. For λ < 1/24 and sufficiently large k the

following relation holds :

N0(λ ,2Lk
) > N0(λ ,2Lk

D(ε/2)) . (6.32)

The asymptotic behaviour of the spectrum distribution function for the Dirichlet prob-
lem has been determined explicitely in Theorem 3.15. There exists a function ν j

ε(µ,x) =

ν j

R(L,hL
ε )

(µ,x) (cf. (3.90)), depending on the eigenvalues of the curvature of (L,hL
ε ), which

is bounded on compact sets of D and right continuous in µ such that for any µ ∈ R

limsup
k−→∞

k−nN j
(

µ,2̃Ẽk |Ỹ
)

6 1
n!

∫

D(ε/2)
ν j

ε(µ,x)dvX . (6.33)

Moreover there exists an at most countable set Dε ⊂ R such that for µ outside Dε the limit
of the left–hand side expression exists and we have equality in (6.33).
For λ < (1/24) and sufficiently large k we have

dimH0(D,Lk) > N0
(

λ ,2Lk
)
−N1

(
λ ,2Lk

)
(6.34)

For λ < (1/24) and λ outside Dε we apply (6.33) and (6.32):

lim
k−→∞

k−nN0(λ ,2Lk
) > 1

n!

∫

D(ε/2)
ν0

ε(λ ,x)dvX . (6.35)

On the other hand given δ > 0 we learn from (6.31) that for large k

N1
(

λ ,2Lk
)

6 N1
(

24λ +16Cεk−1,2̃Ẽk |Ỹ
)

6 N1
(

24λ +δ , 2̃Ẽk |Ỹ
)
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hence

limsup
k−→∞

k−nN1(λ ,2Lk
) 6 1

n!

∫

D(ε/2)
ν1

ε(24λ +δ ,x)dV (x) .

and after letting k go to infinity we can also let δ go to zero. Using these remarks we see
that for all but a countable set of λ we have

liminf
k−→∞

k−n dimH0(D,Lk) > 1
n!

∫

D(ε/2)

[
ν0

ε(λ ,x)−ν1
ε(24λ ,x)

]
dV (x)

In the latter estimate we may let λ −→ 0 (through values outside the exeptional countable
set) and this yields, by the formulas in (3.87) for the right–hand side

liminf
k−→∞

k−n dimH0(D,Lk) > 1
n!

∫

D(ε/2)(61,hε )

(√
−1

2π R(L,hL
ε )
)n

(6.36)

The set D(ε/2)(6 1,hε) is the set of points in D(ε/2) where
√
−1R(L,hL

ε ) is non–degenerate
and has at most one negative eigenvalue. Thus D(ε/2)(6 1,hε) splits in two sets: the
set D(ε/2)(0,hε) where

√
−1R(L,hL

ε ) is positive definite and the set D(ε/2)(1,hε) where√
−1R(L,hL

ε ) is non–degenerate and has exactly one negative eigenvalue. The integral in
(6.36) splits accordingly into one positive and one negative term:

liminf
k−→∞

k−n dimH0(D,Lk) > 1
n!

∫

D(ε/2)(0,hL
ε )

(√
−1

2π R(L,hL
ε )
)n

+ 1
n!

∫

D(ε/2)(1,hL
ε )

(√
−1

2π R(L,hL
ε )
)n

(6.37)

Our next task is to make ε −→ 0 in (6.37). For ε −→ 0 the metrics hε converges
uniformly to the metric h of positive curvature on every compact set of D. So on any
compact of D we recover the integral of RL. On the other hand D(ε/2) exhausts D and the
sets D(ε/2)(1,hL

ε) concentrate to the boundary ∂D.
Let us fix a compact set K ⊂ D. For sufficiently small ε we have K ⊂ D(ε/2) and

∫

D(ε/2)(0,hε )

(√
−1

2π R(L,hL
ε )
)n

>
∫

K(0,hε )

(√
−1

2π R(L,hL
ε )
)n

We have hL
ε −→ hL on L in the C ∞–topology. Since K(0,h) = K letting ε −→ 0 in the

previous inequality yields

liminf
ε−→0

∫

K(ε/2)(0,hε )

(√
−1

2π R(L,hL
ε )
)n

>
∫

L

(√
−1

2π R(L,hL)
)n

(6.38)

Let us study the more delicate second integral in (6.37). For this goal we fix on D
the ground metric ωL = RL. This choice will simplify our computations. We denote by
λ ε

1 6 λ ε
2 6 · · · 6 λ ε

n the eigenvalues of
√
−1R(L,hL

ε ) with respect to ωL. Then the integral
we study is

Iε = 1
n!

∫

D(ε/2)(1,hε )

(√
−1

2π R(L,hL
ε )
)n

= 1
(2π)n

∫

S(ε)
λ ε

1 λ ε
2 · · ·λ ε

n ωn
L/n!

where the integration set is

S(ε) := D(ε/2)(1,hε) = {x ∈ D(ε/2) : λ ε
1 (x) < 0 < λ ε

2 (x)}

We find an upper bound for |Iε | so we determine upper bounds for |λ ε
1 |, |λ ε

2 |, . . . , |λ ε
n | on

S(ε). Since λ ε
1 is negative on S(ε) we have to obtain a lower bound for this eigenvalue. By
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the min-max principle

λ ε
1 (x) = min

v∈TxD

[
R(L,hL) +

√
−1εχ(ϕ)∂∂ ϕ +

√
−1εχ ′(ϕ)∂ϕ ∧∂ ϕ

]
(v)

RL(v)
.

We use now
√
−1εχ ′(ϕ)∂ϕ ∧∂ ϕ(v) > 0. Moreover, since λ ε

1 (x) < 0 we have

min
v∈TxD

√
−1∂∂ ϕ(v)

RL(v)
< 0 , min

v∈TxD

√
−1∂∂ ϕ(v)

RL(v)
= − max

v∈TxD

−
√
−1∂∂ ϕ(v)
RL(v)

.

Hence

λ ε
1 > 1− εχ(ϕ)ML(−ϕ) on S(ε) . (6.39)

The inequality (6.39) gives information about the size of S(ε). Indeed, λ ε
1 < 0 and (6.39)

entail ϕ > −
√

εML(−ϕ). Thus the integration set is contained in a ‘corona’ of size
√

ε :

S(ε) ⊂ D(ε/2)
⋂{

x ∈ D : ϕ(x) > −
√

εML(−ϕ)
}

. (6.40)

Since εχ(ϕ) < 2M′
ω(L) on D(ε/2) (see (6.28)) we deduce the final estimate for the first

eigenvalue:

|λ ε
1 | 6 2ML(−ϕ)M′

ω(L)−1 =: C2 on S(ε) . (6.41)

We examine now the eigenvalues λ ε
j for j = 2, . . . ,n−1. The min–max principle yields:

λ ε
j 6 1+ εχ(ϕ)ML(ϕ)+ min

F⊂TxD
dimF= j

max
v∈F

√
−1εχ ′(ϕ)∂ϕ ∧∂ ϕ(v)

RL(v)
.

The minimum in the last expression is 0 and is attained on some space F ⊂ ker∂ϕ . There-
fore we get:

|λ ε
j | 6 1+2M′

ω(L)ML(ϕ) =: C3 on S(ε) for j = 2, . . . ,n−1 . (6.42)

The highest eigenvalue satisfies the estimate:

λ ε
n 6 1+ εχ(ϕ)ML(ϕ)+ εχ ′(ϕ) max

v∈TxD

√
−1∂ϕ ∧∂ ϕ(v)

RL(v)
.

The inequalities: εχ(ϕ) < 2M′
ω(L) and εχ ′(ϕ) 6 (2M′

ω(L))3/2ε−1/2 hold on D(ε/2) (the
last one since χ ′(ϕ) = −ϕ−3). We introduce the short notation:

Mε
L(∂ϕ) = M√

−1RL(
√
−1∂ϕ ∧∂ϕ,Kε) ,

where Kε := D r
{

x ∈ D : ϕ(x) > −
√

εML(−ϕ)
}

. It is clear that Mε
L(∂ϕ) converges to

ML(∂ϕ) for ε −→ 0. With this notation,

|λ ε
n | 6 1+2M′

ω(L)ML(ϕ)+ ε−1/2(2M′
ω(L))3/2Mε

L(∂ϕ) on S(ε) . (6.43)

At this point we may return to |Iε | and use the obvious inequality

|Iε | 6 (2π)−n VolRL(S(ε)) sup
S(ε)

|λ ε
1 | |λ ε

2 | · · · |λ ε
n |
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where VolRL represents the volume with respect to the metric
√
−1RL. We need to find a

bound only for the volume. Taking into account (6.40),

VolRL)(S(ε)) 6
√

ε
(√

ML(−ϕ)−
√

(2M′
ω(L))−1

)
×

× sup

{∫

{ϕ=c}

dSL

|dϕ|L
: c ∈

[
−
√

εML(−ϕ),−
√

ε(2M′
ω(L))−1

]}
(6.44)

Relations (6.43) and (6.44) yield:

limsup
ε−→0

VolRL(S(ε))sup
S(ε)

|λ ε
n |

6
(√

2M′
ω(L)ML(−ϕ)−1

)
2M′

ω(L)ML(∂ϕ)

∫

∂D

dSL

|dϕ|L
= C1 C4

∫

∂D

dSL

|dϕ|L
Using (6.41) and (6.42) we conclude

limsup
ε−→0

|Iε | 6 (2π)−nC1C2 Cn−2
3 C4

∫

∂D

dSL

|dϕ|L
(6.45)

We are ready to let ε −→ 0 in (6.37) and we use (6.38) and (6.45). In (6.38) we can further
let the compact K exhaust D. This proves (6.17) and with it the Existence Criterion. �

6.7.1. Perturbation of line bundles. As application of the existence theorem we prove
a stability property for certain q–concave manifolds. Let us consider the complement X of
a sufficiently small neighbourhood of a submanifold of codimension > 3 in a projective
manifold. Assume that we perform a small perturbation of the complex stucture of X such
that along a (not necessaraly compact) smooth divisor the structure remains unchanged.
Then the resulting manifold still has a maximal number of meromorphic functions. If
moreover the canonical bundle is positive, any small perturbation suffices for the result to
hold.

Let M be a compact complex manifold and A ⊂ M of dimension q. Then M r A is
(q+1)–concave. It is well known (see [1]) that for a q–concave manifold X (q 6 n−1) the
transcedence degree degtrK (X) of the meromorphic function field is at most the complex
dimension of X . In analogy to the corresponding notion for compact manifolds we say that
a q–concave manifold is Moishezon if degtrK (X) = dimC X .

Let us consider now a projective manifold M, a submanifold A ⊂ M and the concave
manifold X := M rA. Our aim is to study to what extent small deformations of the sublevel
sets Xc for small values of c > infϕ (i.e. for Xc close to X ) give rise to concave Moishezon
manifolds. As a matter of fact we may consider small neighbourhoods V of A, which
means that Xc ⊂ M rV for small c > infϕ . Then M rV is pseudoconcave in the sense of
Andreotti and the notion of Moishezon manifold still makes sense (see [1]).

6.64. STABILITY THEOREM. Let M be a compact projective manifold and let Z be
an ample smooth divisor. Let A ⊂ M be a complex submanifold of codimension at least
3. Then for any sufficiently small neighbourhood V of A and for any sufficiently small
deformation of the complex structure of M rV leaving T (Z) invariant, the manifold M rV
with the new structure is a pseudoconcave Moishezon manifold. If the canonical bundle
KM is positive, the statement holds for any small enough perturbation.

An immediate consequence is the following.
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6.65. COROLLARY. Let M be a compact projective manifold and let let Z be an ample
smooth divisor. Let A ⊂ M be a complex submanifold of codimension at least 3. Then
for any sufficiently small neighbourhood V of A and for any deformation of the complex
structure of M which is sufficiently small on M rV and leaves T (Z) invariant, the manifold
M with the new structure is Moishezon.

In this section we discuss the relation between the perturbation of the complex structure
of a line bundle and the perturbation of the complex structure on the base manifold. This
requires a glance to the corresponding section of Lempert’s article [44]. Let us consider a
compact complex manifold Y = (Y,I ) with boundary endowed with a complex structure
I . Let Z be a smooth divisor in Y . Denote as usual by [Z] the associated line bundle. We
are interested in the effect of a small perturbation of I on Y on the complex structure of
[Z] or of the canonical bundle KY over a compact set D b Y . This will suffice for the proof
of the Stability Theorem. Indeed, denote by L a positive line bundle on a concave manifold
Y and assume that for a small perturbation I ′ of I there exists a perturbation L′ of L such
that the curvature forms of L and L′ are close on a sublevel set D. Then the right hand–side
terms in (6.17) calculated for I and I ′ are also close. If one is positive so is the other and
both manifolds D and D′ (and therefore Y and Y ′) are Moishezon.

Let us remark that not every perturbation of the complex structure on Y lifts to a per-
turbation of [Z]. We need the hypothesis that the tangent space T (Z) is I ′ invariant. Then
Z is a divisor in the new manifold Y ′ = (Y,I ′) and we consider the associated bundle [Z]′.
Of course any perturbation of I lifts to a perturbation of the canonical line bundle.

The next Lemma is a “small perturbation” of Lemma 4.1 of Lempert [44]. In the latter
a compact divisor Z ⊂ IntY is considered whereas in our case we deal with a divisor which
may cut the boundary. However, since we are interested in the effect of the perturbation
just on a compact set the proof is the same. We use the C ∞ topology on the spaces of
tensors defined on Y and also on spaces of restrictions of tensors to compact subsets of Y .
We say that two tensors are close when they are close in the C ∞ topology.

6.66. LEMMA. Let (Y,I ) be a compact complex manifold, Z a smooth divisor in Y
and D b Y . There exists a finite covering U = {Uα}α∈A of D and a multiplicative cocycle
{gαβ ∈ OI (Uα ∩Uβ ) : α,β ∈ A} defining the bundle L = [Z] in the vicinity of D, with
the following property. If I ′ is another complex structure on Y close to I such that T (Z)
rests I ′ invariant, the bundle L′ determined by Z in the structure I ′ can be defined in the
vicinity of D by the cocycle {g′αβ ∈ OI ′(Uα ∩Uβ ) : α,β ∈ A} such that g′αβ will be as

close as we please to gα β on Uα ∩Uβ assuming I ′ and I are sufficiently close.

PROOF. We remind for the sake of completeness the construction of the cocycles. For
every point of Y ∩D there exists an open neighbourhood U in Y and a I –biholomorphism
ψU of some neighbourhood of U into Cn, n = dimY , such that ψU(U) is the unit polydisc
and ψU (Z) ⊂ {z ∈ Cn : z1 = 0}. Let {Uα}16α6m be a finite covering consisting of sets
U as above and for each α denote by ψα the corresponding biholomorphism. We select
further an open set U0 b Y r Z such that U = {Uα}06α6m is a covering of D. For every
1 6 α 6 m we select a smooth strictly pseudoconvex Stein domain U ∗

α ⊃Uα such that ψα
is biholomorphic in the neighbourhood of U ∗

α . Set moreover U∗
0 = U0. We construct a

cocycle defining L = [Z] in the open set ∪αU∗
α as follows. First define functions gα such

that g0 is identically 1 on U0 and gα = z1 ◦ψα for α > 1. The bundle L is defined in the
vicinity of D by the I holomorphic multiplicative cocycle {gαβ} where gαβ = gα/gβ .
Note that gαβ is holomorphic on a neighbourhood of U

∗
α ∩U

∗
β ⊃Uα ∩Uα .
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Let I ′ be a complex structure as in the statement. Then Z is a complex hypersurface
in the new structure and defines a line bundle L′. We describe next the cocycle of L′. The
hypothesis on the sets U ∗

α allows the use of a theorem of Hamilton [36] for U∗
α . The theorem

asserts that for a small perturbation I ′ of the complex structure on a neighbourhood of U
∗
α

there is a I ′ biholomorphism ψ ′
α of a neighbourhood of U

∗
α into Cn close to ψα . As shown

in [44] we can even assume ψ ′
α(Z) ⊂ {z ∈ Cn : z1 = 0}. Set g′0 to be identically 1 on U0

and g′α = z1 ◦ψ ′
α for α > 1. Then put g′αβ = g′α/g′β . Since ψα and ψ ′

α are close, g′α is I ′

holomorphic on a neighbourhood of U
∗
α and g′αβ is I ′ holomorphic on a neighbourhood

of U
∗
α ∩U

∗
β . The cocycle {g′αβ} defines L′ in the open set ∪αU∗

α .

The functions gα and g′α are close on Uα . We can now repeat the arguments from [44]
to show that gαβ and g′αβ are also close on Uα ∩Uβ . �

6.67. LEMMA. Let (Y,I ), Z and D b Y be as in the preceding Lemma. Assume that
[Z] is endowed with a hermitian metric h. If I ′ is another complex structure on Y close to
I , leaving T (Z) invariant, there exists a hermitian metric h′ on the line bundle [Z]′ near
D such that the curvature form R[Z]′ will be as close as we please to R[Z] on D assuming
I ′ and I are sufficiently close.

PROOF. We can define a smooth bundle isomorphism [Z] −→ [Z]′ in the vicinity of D
by resolving the smooth additive cocycle log(g′αβ /gαβ ) in order to find smooth functions

fα , close to 1 on a neighbourhood of U α such that g′αβ = fα gαβ f−1
β . Then the isomor-

phism between [Z] and [Z]′ is defined by f = { fα}. The metric h is given in terms of the
covering U by a collection h = {hα} of smooth strictly positive functions satisfying the
relation hβ = hα |gαβ |. We define a hermitian metric h′ = {h′α} on [Z]′ by h′α = hα | f−1

α |;
h′α is close to hα on D. The curvature form of [Z]′ has the form

√
−1

2π
R[Z]′ =

1
4π

d ◦I
′ ◦d (logh′α) .

Therefore, when I ′ is sufficiently close to I ,
√
−1

2π R[Z]′ is close to
√
−1

2π R[Z] on D. �

In the same vein we study the perturbation of the canonical bundle.

6.68. LEMMA. Let (Y,I ) and D b Y be as above. Assume KY is endowed with a
hermitian metric h. If I ′ is another complex structure on Y close to I , there exists a
hermitian metric h′ on KY ′ near D such that the curvature form RKY ′ will be as close as we
please to RKY on D assuming I ′ and I are sufficiently close.

PROOF. We find as before a finite covering U = {Uα}α∈A of D and biholomorphisms
ψα defined in a neighbourhood of Uα which map Uα onto the unit polydisc in Cn. For
every α ∈ A we select a smooth strictly pseudoconvex Stein domain U ∗

α ⊃ Uα such that
ψα is biholomorphic in the neighbourhood of U ∗

α . The canonical bundle KY is defined

in the vicinity of D by gαβ = det
(
∂ψα/∂ψβ

)
= det

(
∂
(

ψα ◦ψ−1
β

)
/∂w

)
which is I –

holomorphic on a neighbourhood of U
∗
α ∩U

∗
β ⊃ Uα ∩Uα . Here w are the canonical co-

ordinates on Cn. We apply as before Hamilton’s theorem and obtain I ′ biholomorphisms
ψ ′

α in a neighbourhood of U
∗
α into Cn close to ψα .

The cononical bundle KY ′ is defined in the vicinity of D by g′αβ = det
(

∂ψ ′
α/∂ψ ′

β

)
.

Since ψ ′
α is close to ψα we see that g′αβ is close to gαβ on Uα ∩Uα . By repeating the

arguments in the proof of Lemma 6.67 we conclude. �



136 6. COMPACTIFICATION THEOREMS

6.7.2. The Stability Theorem. In this section we prove the Stability Theorem. Let us
consider a compact manifold M, dimM = n, and a complex submanifold A of dimension
q. Then X = M r A is (q + 1)–concave. Let us remind the construction of an exhaustion
function. Select a finite covering Û = {Uα}α>1 of A with coordinate domains such that if
the coordinates in Uα are zα = (z1

α ,z2
α , · · · ,zn

α) we have A∩Uα = {z ∈ Uα : zq+1
α = · · · =

zn
α = 0}. Set ϕα(z) = ∑n

q+1 |z
j
α |2. Choose a relatively compact open set U0 b M r A such

that U = {U0}∪ Û = {Uα}α>0 is a covering of M and set ϕ0 ≡ 1 on U0. Let {ρα}α>0

be a partition of unity subordinated to U . Define ϕ = ϕA = ∑α>0 ραϕα . The function ϕ
enjoys the following properties:

(1) ϕ ∈ C ∞(M), A = {ϕ = 0} and ϕ > 0.
(2) For any c > 0 we have {ϕ > c} b M r A.

(3) ∂∂ ϕ = ∑α

(
ρα∂∂ ϕα +ϕα∂∂ ρα +∂ρα ∧∂ϕα +∂ϕα ∧∂ ρα

)
where

∂∂ ϕα = 2∑n
q+1 dz j

α ∧dz j
α .

For z ∈ A, ∂∂ ϕ(z) = ∑α ρα(z)∂∂ϕα(z) has n− q positive eigenvalues. Hence ∂∂ ϕ has
n−q positive eigenvalues in a neighbourhood of A. Moreover ∂∂ ϕ is positive semidefinite
on A. Let us construct a hermitian metric on M which is “small” in the normal direction
to A (near A) and “large” in the tangential direction to A. We can consider on each Uα
the metric δ−1 ∑q

1 dz j
α ∧ dz j

α + δ ∑n
q+1 dz j

α ∧ dz j
α , (δ > 0), and then patch these metrics

together with the partition of unity to obtain a metric ωδ on M. Let γδ
1 6 γδ

2 6 · · · 6 γδ
n

be the eigenvalues of
√
−1∂∂ ϕ with respect to ωδ . For δ sufficiently small there exists a

neighbourhood Uδ of A such that on Uδ , γδ
j > −O(δ ) for j = 1, . . . ,q and γδ

j > O(δ−1) for

j = q+1, . . . ,n. Therefore we can choose δ such that on Uδ , γδ
j > −1 for j = 1, . . . ,q and

γδ
j > 2n−3 for j = q+1, . . . ,n.

Let us consider now the domains Xc = {ϕ > c} for c > 0 sufficiently small. If codimA >
3 the domains Xc admit as definition function c−ϕ whose complex hessian has 3 nega-
tive eigenvalues in the vicinity of ∂Xc. If M possesses a positive line bundle we are in the
conditions of the Existence Criterion. Note that the metric ωδ satisfies Property 6.62 for
all Xc with c sufficiently small. For technical reasons we construct a metric ω as follows.
Consider the real part gδ of the hermitian metric ωδ . Thus gδ is a riemannian metric on
M. Take a hermitian metric ω whose real part g satisfies g(u,v) = gδ (u,v)+gδ (I u,I v)
(u,v ∈ C⊗T (M)) where I is the complex structure of M. If δ is sufficiently small ω still
satisfies Property 6.62. From now on we fix such a metric ω on M. The constants M ′

ω(L)
are calculated with respect to this metric.

6.69. LEMMA. Assume that M is a projective manifold and L is a positive line bundle
over M. Let A be a submanifold with codimA > 3. Then for sufficiently small regular
values c > 0 we have

∫

Xc

(√
−1

2π RL
)n

> C(c−ϕ,L)

∫

∂Xc

dSL

|dϕ|L
(6.46)

where C(c−ϕ,L) has been introduced in (6.18).

PROOF. Remark first that the constant C(c−ϕ,L) converges to 0 for c −→ 0. Indeed,
∂∂ (c−ϕ) = −∂∂ ϕ so the constants ML(c−ϕ), ML(ϕ − c) and M′

ω(L) are bounded for c
running in a compact interval since ∂∂ ϕ and L are defined over all M. We observe further
that dϕ(z) −→ 0 when z −→ A (in fact dϕ �A= 0). Hence ML(∂ (c−ϕ)∧ ∂ (c−ϕ),∂Xc)
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converges to 0 (and with it C(c−ϕ)) when c goes to 0. Examine now the term
∫

∂Xc

dSL

|dϕ|L
.

Although |dϕL| −→ 0 for z −→ A this integral goes to 0 too for c −→ 0. Indeed, since A
has codimension > 3 we have∫

∂Xc

dSL =
∫

{ϕ=c}
dSL = O(c5) , c −→ 0 .

On the other hand for a regular value c of ϕ ,
∣∣dϕ �∂Xc

∣∣= O(c) , c −→ 0 .

We infer ∫

∂Xc

dSL

|dϕ|L
= O(c4) , c −→ 0 .

for regular values c of ϕ . In conclusion the boundary integral in (6.46) goes to 0 as c −→ 0.
The domain integral in (6.46) being bounded from below by a positive constant the Lemma
follows. �

At this stage we can prove the Stability Theorem. Let us consider a smooth domain
Y := Xc for c small enough such that condition (6.46) holds. Let I ′ be a new complex
structure on Y which leaves T (Z) invariant, for an ample smooth divisor Z on M. We apply
Lemma 6.67 for the manifold Y and a smooth relatively compact set D where D := Xd,
d > c, such that (6.46) still holds on Xd. By hypothesis the bundle L carries a hermitian
metric with positive curvature. Lemma 6.67 shows that there exists a hermitian metric h′ on
the bundle L′ near D such that RL and RL′

are as close as we please in the C ∞ topology on D
if I and I ′ are sufficiently close. In particular RL′

is positive near D. Note that a defining
function for D′ is still d −ϕ and its complex hessian will have 3 negative eigenvalues in
the vicinity of ∂D′ for a small perturbation of the complex structure.

Thus we can apply the Existence Criterion for D′ and L′. In order to calculate the
constant C(d −ϕ,L′) we construct first a metric ω ′ on Y in the following way. The metric
ω determines a riemannian metric g on Y which was chosen such that g(u,v) = gδ (u,v)+
gδ (I u,I v) for u,v ∈ C⊗ T (M). We consider then a hermitian metric ω ′ on Y ′ with
real part g′ where g′(u,v) = gδ (u,v)+ gδ (I ′u,I ′v) for u,v ∈ C⊗T (M). The metric ω ′

satisfies the Property 6.62 with respect to the defining function d −ϕ of D′, provided I

and I ′ are sufficiently close. Therefore the constants ML′(d−ϕ), ML′(ϕ−d), Mω ′(L′) and
ML′(∂ (d−ϕ),∂D′) are close to the corresponding constants ML(d−ϕ), ML(ϕ−d), Mω(L)
and ML(∂ (d −ϕ),∂D) respectively. This entails that C(d−ϕ,L′) is close to C(d −ϕ,L).

It is also clear that
∫

D′

(√
−1

2π RL′
)n

and
∫

∂D′ dSL′/|dϕ|L′, are close to the corresponding

integrals on D and ∂D of
√
−1

2π
√
−1RL and dSL′/|dϕ|L′. Therefore

∫

D′

(√
−1

2π RL′)n
> C(d−ϕ,L′)

∫

∂D′

dSL′

|dϕ|L′
(6.46′)

By the Existence Criterion
dimH0(D′,L′k) & kn (6.47)

for large k and thus D′ and so Y ′ are Moishezon, provided I and I ′ are sufficiently close.
An entirely analogous argument takes care of the case of perturbation of the canonical
bundle KY . This proves the Stability Theorem.
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Équations aux D ériv ées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123–164.
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25. , Stability of embeddings for pseudoconcave surfaces and their boundaries, Acta Math. 185
(2000), no. 2, 161–237.

26. , Can a good manifold come to a bad end?, Tr. Mat. Inst. Steklova 235 (2001), no. Anal. i Geom.
Vopr. Kompleks. Analiza, 71–93.

27. E. Falbel, Nonembeddable CR-manifolds and surface singularities, Invent. Math. 108 (1992), no. 1,
49–65.

28. G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton Uni-
versity Press, Princeton, N.J., 1972, Annals of Mathematics Studies, No. 75.

29. H. Geiges, Normal contact structures on 3-manifolds, Tohoku Math. J. (2) 49 (1997), no. 3, 415–422.
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CHAPTER 7

Generalized Bergman kernels on symplectic manifolds

In this Chapter we wish to prove the asymptotic expansion of the generalized Bergman
kernels as stated in Theorems 1.21 and 1.22. The method is to first use the spectral gap of
the renormalized Bochner-Laplace operator and the finite propagation speed of solutions
of hyperbolic equations to localize the problem. Then we combine the Sobolev norm
estimates and a formal power series trick, and in this way, we compute the coefficients of
the expansion (cf. (7.78), (7.68)).

The asymptotic expansion of the Bergman kernel of the spinc Dirac operator was ob-
tained in [18]. We will adapt the method used there to our situation. One of the difficulties
of the analysis of the renormalized Bochner–Laplacian is that there are small eigenvalues
(cf. Corollary 7.2). In the case of the spinc Dirac operator the only small eigenvalue of
the operator is zero when k → ∞, which permits to obtain the full off-diagonal asymptotic
expansion (cf. [18, Theorem 3.18]). In the current situation, we have small eigenvalues
and we are interested to prove the near diagonal expansion of the generalized Bergman
kernels. This result is enough for most of applications.

Let us provide a short road-map of the chapter. The first section is devoted to the proof
of the existence of the spectral gap in Corollary 7.2. Then we shall sketch the ideas of the
proof of Theorems 1.21 and 1.22 in Section 7.2. The full details are available in the recent
preprint [?, 24]. In Section 7.3, we explain some applications of our results. Among others,
we give a symplectic version of the convergence of the induced Fubini-Study metric [33],
and we show how to handle the first-order pseudo-differential operator Db of Boutet de
Monvel and Guillemin [13], which was studied extensively by Shiffman and Zelditch [28],
and the operator ∂ + ∂ ∗

when X is Kähler but J 6= J. We include also generalizations for
non-compact or singular manifolds and as a consequence we obtain an unified treatment of
the convergence of the induced Fubini–Study metric, the holomorphic Morse inequalities
and the characterization of Moishezon spaces.

7.1. The spectral gap of the Dirac and Bochner-Lapace operators

Our first task is to define a generalization for the space of holomorphic sections from
the case of complex manifolds. For this purpose we shall exhibit the spectral gap of the
Bochner-Laplacian. The results of this section are taken from [?].

7.1.1. Statement of the results. Let (X ,ω) be a compact symplectic manifold of real
dimension 2n. Assume that there exists a Hermitian line bundle L over X endowed with a
Hermitian connection ∇L with the prequantization property:

√
−1

2π
RL = ω (7.1)

where RL = (∇L)2 is the curvature of (L,∇L). In different applications it is also necessary
to consider a Hermitian vector bundle (E,hE) on X with Hermitian connection ∇E and
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curvature RE . Let gTX be a Riemannian metric on X and J : T X −→ T X be the skew–
adjoint linear map which satisfies the relation

ω(u,v) = gTX(Ju,v) for u,v ∈ T X . (7.2)

Let J be an almost complex structure which is separately compatible with gTX and ω , i.e.
gTX(J·,J·) = gTX(·, ·), ω(J·,J·) = ω(·, ·) and ω(·,J·) defines a metric on T X (for example,
J(−J2)−

1
2 verifies these conditions; see [25, p.61]). Then J commutes with J.

We introduce the Levi-Civita connection ∇TX on (T X ,gTX) with its curvature RTX and
scalar curvature rX . Let ∇X J ∈ T ∗X ⊗End(TX) be the covariant derivative of J induced
by ∇TX . We introduce the induced Bochner-Laplacian acting on C ∞(X ,Lk ⊗E):

∆Lk⊗E = (∇Lk⊗E)∗∇Lk⊗E = −∑
i
[(∇Lp⊗E

ei
)2 −∇Lk⊗E

∇T X
ei

ei
] (7.3)

where {ei}i is an orthonormal frame of (T X ,gTX). The spectrum of ∆Lk⊗E drifts to the
right at linear rate in k as k → ∞. Thus we do not have any analog of the space of harmonic
forms. That’s why we renormalize in the following manner. We fix a smooth Hermitian
section Φ of End(E) on X . Set

τ(x) = −π Tr|TX [JJ] =

√
−1
2

RL(e j,Je j) > 0, (7.4)

µ0 = inf
u∈TxX ,x∈X

√
−1RL

x (u,Ju)/|u|2gTX > 0, (7.5)

and define the renormalized Bochner-Laplacian:

∆k,Φ = ∆Lk⊗E − kτ +Φ. (7.6)

In order to study this operator we construct canonically a spinc Dirac operator Dk

acting on Ω0,•(X ,Lk⊗E) =
⊕n

q=0 Ω0,q(X ,Lk⊗E), the direct sum of spaces of (0,q)–forms
with values in Lk ⊗E. We have the following vanishing theorem:

7.1. THEOREM. There exists C > 0 such that for k ∈ N, the spectrum of D2
k is contained

in the set {0}∪ (2kµ0 −C,+∞). Set D−
k = Dk �Ω0,odd , then for k large enough, we have

kerD−
k = {0}. (7.7)

As a simple corollary, kerD−
k = {0} for k large enough, where D−

k = Dk �Ω0,odd , which
is the vanishing result of [8, Theorem 2.3], [15, Theorem 3.2]. If A is any operator, we
denote by Spec(A) the spectrum of A.

7.2. COROLLARY. There exists a constant CL > 0 (which can be estimated precisely by
using the C 0-norms of RTX , RE , RL, ∇X J and Φ) such that the spectrum of the Schrödinger
operator ∆k,Φ is contained in the union [−CL,CL]∪ [2kµ0 −CL,+∞):

Spec ∆k,Φ ⊂ [−CL,CL]∪ [2kµ0 −CL,+∞[ . (7.8)

where CL is a positive constant independent of k. For k large enough, the number dk of
eigenvalues on the interval [−CL,CL] satisfies

dk = 〈ch(Lk ⊗E)Td(TX), [X ]〉. (7.9)

In particular dk ∼ kn(rankE)volω(X).
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In the case E is a trivial line bundle, Corollary 7.2 is the main result of Guillemin and
Uribe [21, Theorem 2]. In [21] it was established that dk ∼ kn volω(X). When J = J,
Borthwick and Uribe [8, p. 854] got the precise value dk, for large enough k, in this case.
The idea in [8, 15, 16, 21] is to first reduce the problem to a problem on the unitary circle
bundle of L∗, then apply Melin’s inequality [22, Theorem 22.3.2] to show that ∆k,Φ is
semi–bounded from below. In order to prove [21, Theorem 2], they apply the analysis of
Toeplitz structures of Boutet de Monvel-Guillemin [13]. We provide a simple proof based
on a direct application of Lichnerowicz formula.

For the interesting applications of [21, Theorem 2], we refer the reader to Borthwick
and Uribe [8, 10, 11]. For the related topic of geometric quantization see [26, 34].

This section is organized as follows. In Section 7.1.2, we recall the construction of the
spinc Dirac operator and prove our main technical result, Theorem 7.7. In Section 7.1.3,
we prove Theorem 7.1 and Corollary 7.2. In Section 7.1.4, we generalize our result to the
L2 case. In particular, we obtain a new proof of [16, Theorem 2.6].

7.1.2. The Lichnerowicz formula. Let T X c = T X ⊗R C denote the complexifica-
tion of the tangent bundle. The almost complex structure J induces a splitting T X c =
T (1,0)X⊕T (0,1)X , where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the
eigenvalues

√
−1 and −

√
−1 respectively. Let P0,1 = 1

2(1−
√
−1J), P0,1 = 1

2(1+
√
−1J)

be the natural projections from T X c onto T (1,0)X , respectively T (0,1)X .
Accordingly, we have a decomposition of the complexified cotangent bundle: T ∗X c =

T (1,0)∗X⊕T (0,1)∗X . The exterior algebra bundle decomposes as ΛT ∗X c =⊕p,qΛp,q, where
Λp,q := Λp,qT ∗X c = Λp(T (1,0)∗X)⊗Λq(T (0,1)∗X).

Let ∇1,0 and ∇0,1 be the canonical hermitian connections on T (1,0)X and T (0,1)X re-
spectively:

∇1,0 = P1,0∇TX P1,0 ,

∇0,1 = P0,1∇TX P0,1 .

Set A2 = ∇TX −
(
∇1,0 ⊕∇0,1

)
∈ T ∗X ⊗End(T X) which satisfies J A2 = −A2 J.

Let us recall some basic facts about the spinc Dirac operator on an almost complex
manifold [23, Appendix D]. The fundamental Z2 spinor bundle induced by J is given
by Λ0,• = Λeven(T (0,1)∗X)⊕ Λodd(T (0,1)∗X). For any v ∈ T X with decomposition v =

v1,0 + v0,1 ∈ T (1,0)X ⊕T (0,1)X , let v∗1,0 ∈ T (0,1)∗X be the metric dual of v1,0. Then c(v) =√
2(v∗1,0 ∧−iv0,1) defines the Clifford action of v on Λ0,•, where ∧ and i denote the exterior

and interior product respectively.
Formally, we may think

Λ0,• = S (T X)⊗
(

detT (1,0)X
)1/2

,

where S (T X) is the spinor bundle of the possibly non–existent spin structure on T X , and(
detT (1,0)X

)1/2
is the possibly non–existent square root of detT (1,0)X .

Moreover, by [23, pp. 397–398], ∇TX induces canonically a Clifford connection on
Λ0,•. Formally, let ∇S(TX) be the Clifford connection on S(TX) induced by ∇TX , and let
∇det be the connection on (detT (1,0)X)1/2 induced by ∇1,0. Then

∇Cliff = ∇S(TX)⊗ Id+ Id⊗∇det .
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Let {w j}n
j=1 be a local orthonormal frame of T (1,0)X . Then

e2 j = 1√
2
(w j +w j) and e2 j−1 =

√
−1√
2

(w j −w j) , j = 1, . . . ,n , (7.10)

form an orthonormal frame of T X . Let {w j}n
j=1 be the dual frame of {w j}n

j=1. Let Γ be

the connection form of ∇1,0 ⊕∇0,1 in local coordinates. Then ∇TX = d + Γ + A2. By [23,
Theorem 4.14, p.110], the Clifford connection ∇Cliff on Λ0,• has the following local form:

∇Cliff = d + 1
4 ∑

i, j

〈
(Γ+A2)ei,e j

〉
c(ei)c(e j)

= d +∑
l,m

{〈
Γwl ,wm

〉
wl ∧ iwm+

1
2

〈
A2wl,wm

〉
iwl iwm + 1

2

〈
A2wl,wm

〉
wl ∧ wm ∧

}
.

(7.11)

Let ∇Lk⊗E be the connection on Lk ⊗E induced by ∇L,∇E . Let ∇Λ0,•⊗Lk⊗E be the
connection on Λ0,•⊗Lk ⊗E,

∇Λ0,•⊗Lk⊗E = ∇Cliff⊗ Id+ Id⊗∇Lk⊗E . (7.12)

Along the fibers of Λ0,•⊗Lk⊗E, we consider the pointwise scalar product 〈·, ·〉 induced
by gTX , hL and hE . Let dvX be the riemannian volume form of (T X ,gTX). The L2–scalar
product on Ω0,•(X ,Lk ⊗E), the space of smooth sections of Λ0,•⊗Lk ⊗E, is given by

(s1,s2) =
∫

X
〈s1(x),s2(x)〉dvX(x) . (7.13)

We denote the corresponding norm with ‖·‖.

7.3. DEFINITION. The spinc Dirac operator Dk is defined by

Dk =
2n

∑
j=1

c(e j)∇Λ0,•⊗Lk⊗E
e j

: Ω0,•(X ,Lk ⊗E) −→ Ω0,•(X ,Lk ⊗E) . (7.14)

Dk is a formally self–adjoint, first order elliptic differential operator on Ω0,•(X ,Lk ⊗E),
which interchanges Ω0,even(X ,Lk ⊗E) and Ω0,odd(X ,Lk ⊗E). We denote

D+
k = Dk �Ω0,even, D−

k = Dk �Ω0,odd . (7.15)

Let RT (1,0)X be the curvature of
(
T (1,0)X ,∇1,0

)
. Let

ωd = −∑
l,m

RL(wl,wm)wm ∧ iwl ,

τ(x) = ∑
j

RL(w j,w j) .
(7.16)

Remark that by (7.2), at x ∈ X , there exists {wi}n
i=1 an orthogonal basis of T (1,0)X , such

that J =
√
−1 diag(a1(x), · · · ,an(x)) ∈ End(T (1,0)X), and ai(x) > 0 for i ∈ {1, · · · ,n}. So

ωd = −2π ∑
l

al(x)wl ∧ iwl ,

τ(x) = 2π ∑
l

al(x) .
(7.17)

The following Lichnerowicz formula is crucial for us.
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7.4. THEOREM. The square of the Dirac operator satisfies the equation:

D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗
∇Λ0,•⊗Lk⊗E −2kωd − kτ + 1

4K + c(R), (7.18)

where K is the scalar curvature of (T X ,gTX), and

c(R) = ∑
l<m

(
RE + 1

2 Tr
[
RT (1,0)X

])
(el,em)c(el)c(em) .

PROOF. By Lichnerowicz formula [2, Theorem 3.52], we know that

D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗
∇Λ0,•⊗Lk⊗E + 1

4K + c(R)+ k ∑
l<m

RL(el,em)c(el)c(em) . (7.19)

Now, we identify RL with a purely imaginary antisymmetric matrix −2π
√
−1J ∈End(TX)

by (7.2). As J ∈ End(T (1,0)X), by [2, Lemma 3.29], we get (7.18). �

7.5. REMARK. Let E = E + ⊕ E − be a Clifford module. Then it was observed by
Braverman [15, §9] that, with the same proof of [2, Proposition 3.35], there exists a vector
bundle W on X such that E = Λ0,•⊗W as a Z2–graded Clifford module.

As a simple consequence of Theorem 7.4, we recover the statement on the drift of spec-
trum of the metric Laplacian first proved by Guillemin–Uribe [21, Theorem 1], (see also
[8, Theorem 2.1], [15, Theorem 4.4]), by passing to the circle bundle of L∗ and applying
Melin’s inequality [22, Theorems 22.3.2–3].

7.6. COROLLARY. There exists C > 0 such that for k ∈ N, the Bochner–Laplacian
∆Lk⊗E =

(
∇Lk⊗E

)∗∇Lk⊗E on C ∞(X ,Lk ⊗E) satisfies :

∆Lk⊗E − kτ > −C . (7.20)

PROOF. By (7.18), for s ∈ C ∞(X ,Lk ⊗E),

‖Dks‖2 = ‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s,s)+
((1

4 K + c(R)
)

s,s
)

. (7.21)

From (7.11), we infer that
∥∥∇Λ0,•⊗Lk⊗Es

∥∥2
=
∥∥∇Lk⊗Es

∥∥2
+
∥∥∥∑

l,m

〈
A2wl,wm

〉
wl ∧wm∧ s

∥∥∥
2
.

and therefore there exists a constant C > 0 not depending on k such that

0 6 ‖Dks‖2 6
∥∥∇Lk⊗Es

∥∥2 − k(τ(x)s,s)+C‖s‖2 =
(
(∆k − kτ(x))s,s

)
+C‖s‖2 .

�

7.7. THEOREM. There exists a constant C > 0 such that for any k ∈ N and any section
s ∈ Ω>0(X ,Lk ⊗E) =

⊕
q>1 Ω0,q(X ,Lk ⊗E),

‖Dks‖2 > (2kµ0 −C)‖s‖2 . (7.22)

PROOF. By (7.18), for s ∈ Ω0,•(X ,Lk ⊗E) ,

‖Dks‖2 = {‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s,s)}−2k(ωds,s)+
((

1
4K + c(R)

)
s,s
)

. (7.23)

We consider now s ∈ C ∞(X ,Lk ⊗E ′), where E ′ = E ⊗Λ0,•. Estimate (7.20) becomes
∥∥∇Lk⊗E ′

s
∥∥2 − k(τ(x)s,s) > −C‖s‖2 . (7.24)

If s∈Ω>0(X ,Lk⊗E), the second term of (7.23), −2k(ωds,s) is bounded below by 2kµ0‖s‖2.
While the third term of (7.23) is O(‖s‖2). The proof of (7.22) is completed. �
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7.1.3. Applications of Theorem 7.7. We give now the proofs of the result stated in
Section 7.1.1.

PROOF OF THEOREM 7.1. By (7.22), we get immediately (7.7). For the rest, we use
the trick of the proof of Mckean–Singer formula.

Let Hµ be the spectral space of D2
k corresponding to the interval (0,µ). Let H +

µ , H −
µ

be the intersections of Hµ with the spaces of forms of even and odd degree respectively.
Then Hµ = H +

µ ⊕H −
µ . Since D+

k commutes with the spectral projection, we have a
well defined operator D+

k : H +
µ −→H −

µ which is obviously injective. But estimate (7.22)
implies that H −

µ = 0 for every µ < 2kλ −C, hence also H +
µ = 0, for this range of µ .

Thus Hµ = 0, for 0 < µ < 2kµ −C. The proof of our theorem is completed. �

PROOF OF COROLLARY 7.2. Without loss of generality we may assume Φ = 0. Let
Pk : Ω0,•(X ,Lk ⊗E) −→ C ∞(X ,Lk ⊗E) be the orthogonal projection. For s ∈ Ω0,•(X ,Lk ⊗
E), we will denote s0 = Pks its 0 – degree component. We will estimate ∆k,0 on Pk(kerD+

k )

and (kerD+
k )⊥∩C ∞(X ,Lk ⊗E).

In the sequel we denote with C all positive constants independent of k, although there
may be different constants for different estimates. From (7.21), there exists C > 0 such that
for s ∈ C ∞(X ,Lk ⊗E), ∣∣‖Dks‖2 − (∆k,0s,s)

∣∣6 C‖s‖2 . (7.25)

Theorem 7.1 and (7.25) show that there exists b > 0 such that for k ∈ N,

(∆k,0s,s) > (2kλ −b)‖s‖2 , for s ∈ C
∞(X ,Lk ⊗E)∩ (kerD+

k )⊥. (7.26)

We focus now on elements from Pk(kerD+
k ), and assume s ∈ kerDk. Set s′ = s− s0 ∈

Ω>0(X ,Lk ⊗E). By (7.23), (7.24),

−2k(ωds,s) 6 C‖s‖2 . (7.27)

We obtain thus [8, Theorem 2.3] (see also [9], [15, Theorem 3.13]) for k � 1,

‖s′‖ 6 Ck−1/2‖s0‖ . (7.28)

(from (7.28), they got KerD−
k = 0 for k � 1, as s0 = 0 if s ∈ kerD−

k ). In view of (7.23) and
(7.28),

‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s0,s0) 6 C‖s0‖2 . (7.29)

By (7.11),

∇Λ0,•⊗Lk⊗Es = ∇Lk⊗Es0 +A′
2s2 +α , (7.30)

where s2 is the component of degree 2 of s, A′
2 is a contraction operator comming from the

middle term of (7.11), and α ∈ Ω>0(X ,Lk ⊗E). By (7.29), (7.30), we have
∥∥∇Lk⊗Es0 +A′

2s2
∥∥2 − k(τ(x)s0,s0) 6 C‖s0‖2 , (7.31)

and by (7.28), (7.31), ∥∥∇Lk⊗Es0
∥∥2

6 Ck‖s0‖2 , (7.32)

By (7.28) and (7.32), we get
∥∥∇Lk⊗Es0 +A′

2s2
∥∥2

>
∥∥∇Lk⊗Es0

∥∥2 −2
∥∥∇Lk⊗Es0

∥∥∥∥A′
2s2
∥∥

>
∥∥∇Lk⊗Es0

∥∥2 −C‖s0‖2.
(7.33)

Thus, (7.31) and (7.33) yield
∥∥∇Lk⊗Es0

∥∥2 − k(τ(x)s0,s0) 6 C‖s0‖2 . (7.34)
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By (7.20) and (7.34), there exists a constant a > 0 such that
∣∣(∆k,0s,s

)∣∣6 a‖s‖2 , s ∈ Pk(kerD+
k ) . (7.35)

By (7.28), we know that for k � 1, Pk : kerD+
k −→ Pk(kerD+

k ) is bijective, and

C
∞(X ,Lk ⊗E) = Pk(kerD+

k )⊕ (kerD+
k )⊥∩C

∞(X ,Lk ⊗E) . (7.36)

The proof is now reduced to a direct application of the minimax principle for the
operator ∆k,0. It is clear that (7.26) and (7.35) still hold for elements in the Sobolev

space W 1(X ,Lk ⊗E), which is the domain of the quadratic form Qk( f ) =
∥∥∇Lk⊗E f

∥∥2 −
k(τ(x) f , f ) associated to ∆k,0. Let λ k

1 6 λ k
2 6 · · · 6 λ k

j 6 · · · ( j ∈ N) be the eigenvalues of
∆k,0. Then, by the minimax principle A.30,

λ k
j = min

F⊂DomQk

max
f∈F ,‖ f‖=1

Qk( f ) . (7.37)

where F runs over the subspaces of dimension j of DomQk.
By (7.35) and (7.37), we know λ k

j 6 a, for j 6 dimkerD+
k . Moreover, any subspace

F ⊂ DomQk with dimF > dimkerD+
k +1 contains an element 0 6= f ∈ F ∩ (kerD+

k )⊥. By
(7.26), (7.37), we obtain λ k

j > 2kµ0 −b, for j > dimkerD+
k +1.

By Theorem 7.1 and Atiyah–Singer theorem [1],

dimkerD+
k = indexD+

k = 〈ch(Lk ⊗E)Td(T X), [X ]〉 (7.38)

where Td(T X) is the Todd class of an almost complex structure compatible with ω . The
index is a polynomial in k of degree n and of leading term kn(rankE)volω(X), where
volω(X) is the symplectic volume of X . �

7.8. REMARK. If (X ,ω) is Kähler and if L, E are holomorphic vector bundles, then

Dk =
√

2
(
∂ + ∂

∗)
where ∂ = ∂

Lk⊗E
. D2

k preserves the Z–grading of Ω0,•. By using the
Bochner–Kodaira–Nakano formula, Bismut and Vasserot [6, Theorem 1.1] proved The-
orem 7.7. As ∂ : (kerD+

k )⊥ ∩C ∞(X ,Lk ⊗E) −→ Ω0,1(X ,Lk ⊗E) is injective, we infer

2
∥∥∂ s
∥∥2

> (2kµ0 −CL)‖s‖2, for s ∈ (kerD+
k )⊥∩C

∞(X ,Lk ⊗E). (7.39)

By Lichnerowicz formula [6, (21)], 2∂ ∗∂ = ∆k,0 + 1
4 K +c(R) on C ∞(X ,Lk⊗E), and Corol-

lary 7.2 follows immediately.

7.9. REMARK. As in [7], we assume that (L,hL,∇L) is a positive Hermitian vector
bundle, i.e. the curvature RL is an End(L)–valued (1,1)–form, and for any u ∈ T (1,0)X r
{0}, s∈ Lr{0}, 〈RL(u,u)s,s〉> 0. Let Sk(L) be the kth symmetric tensor power of L. Then
if we replace Lk in Sections 7.1.2, 7.1.3 by Sk(L), or by the irreducible representations of
L, which are associated with the weight ka (where a is a given weight), when k tends to
+∞, the techniques used above still apply.

7.1.4. The spinc Dirac operator on a covering manifold. We extend in this section
our results to covering manifolds and refer to Chapter 5 for the necessary background about
elliptic operators on covering manifolds and Γ–dimension.

Let X̃ be a paracompact smooth manifold, such that there is a discrete group Γ acting
freely on X̃ with a compact quotient X = X̃/Γ. Let πΓ : X̃ −→ X be the projection. Assume
that there exists a Γ–invariant pre–quantum line bundle L̃ on X̃ and a Γ–invariant con-
nection ∇L̃ such that ω̃ =

√
−1

2π (∇L̃)2 is non–degenerate. We endow X̃ with a Γ–invariant

Riemannian metric gTX̃ . Let J̃ be an Γ-invariant almost complex structure on T X̃ which is
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separately compatible with ω̃ and gTX̃ . Then J̃, gTX̃ , ω̃ , J̃, L̃, Ẽ are the pull-back of the
corresponding objects in Section 7.1.2 by the projection πΓ : X̃ → X . Let Φ be a smooth
Hermitian section of End(E), and Φ̃ = Φ◦πΓ. Then the renormalized Bochner-Laplacian
∆̃k,Φ̃ is

∆̃k,Φ̃ = ∆L̃k⊗Ẽ − k (τ ◦πΓ)+ Φ̃ (7.40)

which is an essentially self–adjoint operator. Following Section 7.1.2, we introduce the
Γ–invariant spinc Dirac operator D̃k on Ω0,•(X̃ , L̃k ⊗ Ẽ) and the Γ–invariant Laplacian

∆L̃k⊗Ẽ =
(
∇L̃k⊗Ẽ

)∗ ∇L̃k⊗Ẽ on C ∞(X̃, L̃k ⊗ Ẽ). Let D̃+
k and D̃−

k be the restrictions of D̃k

to LLL0,even
2 (X̃ , L̃k ⊗ Ẽ) and LLL0,odd

2 (X̃ , L̃k ⊗ Ẽ), respectively.

7.10. PROPOSITION. There exists a constant C > 0 such that for k ∈ N, ∆̃k,Φ̃ > −C on

LLL2(X̃ , L̃k ⊗ Ẽ).

PROOF. By applying Lichnerowicz formula (7.18) for s ∈ C ∞
0 (X̃ , L̃k⊗ Ẽ), we obtain as

in the proof of Corollary 7.6, that there exists C > 0 such that
(
∆̃k,Φ̃s,s

)
> −C‖s‖2. Since

the metric gTX̃ is complete, this is valid for any s ∈ Dom(∆̃k,Φ̃). �

In the same vein, we can generalize Theorem 7.7.

7.11. THEOREM. There exists C > 0 such that for k ∈ N and any s ∈ Dom(D̃k) with
vanishing degree zero component,

‖D̃ks‖2 > (2kλ −C)‖s‖2 . (7.41)

As an immediate application of the estimate (7.41) for the Dirac operator and Remark
7.5, we get the following asymptotic vanishing theorem which is the main result in [16,
Theorem 2.6].

7.12. COROLLARY. ker D̃−
k = {0} for large enough k.

We have also an analogue of Theorem 7.1.

7.13. COROLLARY. There exists C > 0 such that for k ∈ N, the spectrum of D̃2
k is

contained in the set {0}∪ (2kλ −C,+∞).

PROOF. The proof of Theorem 7.1 does not use the fact that the spectrum is discrete.
Therefore it applies in this context, too. �

We study now the spectrum of the Γ–invariant Bochner-Laplacian ∆̃k,Φ̃.

7.14. COROLLARY. The spectrum of ∆̃k,Φ̃ is contained in the union (−CL,CL)∪(2kµ0−
CL,+∞) , where CL and µ0 are the same positive constants as in Corollary 7.2. For large
enough k, the Γ–dimension dk of the spectral space E

(
[−CL,CL], ∆̃k,Φ̃

)
corresponding to

(−CL,CL) satisfies dk = 〈ch(Lk ⊗E)Td(X), [X ]〉. In particular dk ∼ kn(rankE)volω(X).

PROOF. By repeating the proof of Corollary 7.2, we get estimates (7.26) and (7.35) for
smooth elements with compact support. Lemma 5.2 yields then

∣∣(∆̃k,Φ̃s,s
)∣∣6 a‖s0‖2 , s ∈ Dom(∆̃k,Φ̃)∩Pk(ker D̃+

k ) , (7.42a)

(∆̃k,Φ̃s,s) > (2kλ −b)‖s‖2 , s ∈ Dom(∆̃k,Φ̃)∩ (ker D̃+
k )⊥ . (7.42b)
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Recall that Pk represents the projection LLL0,•
2 (X̃ , L̃k ⊗ Ẽ) −→ LLL0,0

2 (X̃ , L̃k ⊗ Ẽ). Since
the curvatures of all our bundles are Γ–invariant, estimate (7.28) extends to the covering
context with the same proof. In particular, Pk : ker D̃+

k −→ Pk(ker D̃+
k ) is bijective, Pk �ker D̃+

k

and its inverse are bounded. So Pk(ker D̃+
k ) is closed. By Proposition 5.8, (4),

dimΓ ker D̃+
k = dimΓ Pk(ker D̃+

k ) . (7.43)

As in (7.36), we have

Dom(∆̃k,Φ̃) = Pk(ker D̃+
k )⊕ (kerD̃+

k )⊥∩Dom(∆̃k,Φ̃) . (7.44)

We use now a suitable form of the minimax principle from [29, Lemma 2.4] (cf. also (5.9)):

NΓ(µ, ∆̃k,Φ̃) = sup{dimΓ V : V ⊂ Dom ∆̃k,Φ̃ ;
(
∆̃k,Φ̃ f , f

)
6 µ‖ f‖2 ,∀ f ∈V} (7.45)

where V runs over the Γ–modules of L2(X̃ , L̃k ⊗ Ẽ).
By (7.41), (7.42a) and (7.45), we get

NΓ(CL, ∆̃k,Φ̃) > dimΓ ker D̃+
k . (7.46)

Let us consider µ < 2kµ0 −CL. We prove that

NΓ(µ, ∆̃k,Φ̃) 6 dimΓ ker D̃+
k . (7.47)

Let V ⊂ Dom(∆̃k,Φ̃) be an arbitrary Γ–module with
(
∆̃k,Φ̃u,u

)
6 µ‖u‖2. If dimΓV >

dimΓ ker D̃+
k , by Proposition 5.8, (4) and (7.44), there exists 0 6= v ∈V ∩ (kerD+

k )⊥, which
in view of (7.42b) is a contradiction. Therefore dimΓV 6 dimΓ ker D̃+

k . By (7.45), we get
(7.47).

Relations (7.46) and (7.47) entail that the function NΓ(µ, ∆̃k,Φ̃) is constant in the in-

terval µ ∈ [CL,2kµ0 −CL) and equal to dimΓ ker D̃+
k . Enlarging a bit CL if necessary, we

see that the spectrum of ∆̃k,Φ̃ is indeed contained in [−CL,CL]∪ [2kµ0 −CL,+∞), and the

Γ–dimension dk of the spectral space E
(
[−CL,CL], ∆̃k,Φ̃

)
equals dimΓ ker D̃+

k .

By Corollary 7.12, dimΓ ker D̃+
k = indexΓ D̃+

k . Moreover, Atiyah’s L2 index Theorem
(cf. [?, Theorem 3.8] or 5.2) shows that indexΓ D̃+

k = indexD+
k . By (7.38), the proof is

achieved. �

7.2. Asymptotic of the Bergman kernel

We use now the existence of the spectral gap of the renormalized Bochner-Laplacian
in order to define the Bergman kernels.

7.15. DEFINITION. Let us denote by Hk, the span of eigensections of ∆k,Φ = ∆Lk⊗E −
kτ + Φ corresponding to eigenvalues in [−CL,CL]. Let PHk

be the orthonormal projection
from C ∞(X ,Lk ⊗E) onto Hk. The smooth kernel of (∆k,Φ)qPHk

, q > 0 (where (∆k,Φ)0 =
1), with respect to dvX(x′) is denoted Pq,k(x,x′) and is called a generalized Bergman kernel
of ∆k,Φ .

The kernel Pq,k(x,x′) is a section of π∗
1 (Lk ⊗E)⊗π∗

2 (Lk ⊗E)∗ over X ×X , where π1

and π2 are the projections of X × X on the first and second factor. Let {Sk
i }

dk
i=1 be any
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orthonormal basis of Hk with respect to the inner product (7.13) such that ∆k,ΦSk
i = λi,kSk

i .
Using these notations we can write

Pq,k(x,x
′) =

dk

∑
i=1

λ q
i,kSk

i (x)⊗ (Sk
i (x

′))∗ ∈ (Lk ⊗E)x ⊗ (Lk ⊗E)∗x′ . (7.48)

Since Lk
x ⊗ (Lk

x)
∗ is canonically isomorphic to C, the restriction of Pq,k to the diagonal

{(x,x) : x ∈ X} can be identified to Bq,k ∈ C ∞(X ,E ⊗E∗) = C ∞(X ,End(E)).

7.2.1. Localization of the problem. We will first show how to localize the problem.
Let aX be the injectivity radius of (X ,gTX). We fix ε ∈ (0,aX/4). We denote by BX(x,ε)
and BTxX(0,ε) the open balls in X and TxX with center x and radius ε , respectively. Then
the map TxX 3 Z → expX

x (Z) ∈ X is a diffeomorphism from BTxX(0,ε) on BX(x,ε) for
ε 6 aX . From now on, we identify BTxX(0,ε) with BX(x,ε) for ε 6 aX .

Let f : R → [0,1] be a smooth even function such that f (v) = 1 for |v| 6 ε/2, and
f (v) = 0 for |v| > ε . Set

F(a) =
(∫ +∞

−∞
f (v)dv

)−1 ∫ +∞

−∞
eiva f (v)dv. (7.49)

Then F(a) is an even function and lies in the Schwartz space S (R) and F(0) = 1. Let F̃
be the holomorphic function on C such that F̃(a2) = F(a). The restriction of F̃ to R lies in
the Schwartz space S (R). Then there exists {c j}∞

j=1 such that for any p ∈ N, the function

Fp(a) = F̃(a)−
k

∑
j=1

c ja
jF̃(a), (7.50)

verifies

F(i)
p (0) = 0 for any 0 < i 6 p. (7.51)

7.16. PROPOSITION. For any l,m ∈ N, there exists Cl,m > 0 such that for k > 1
∣∣∣Fl
( 1√

k
∆k,Φ

)
(x,x′)−P0,k(x,x

′)
∣∣∣
C m(X×X)

6 Cl,mk−
l
2 +2(2m+2n+1). (7.52)

Here the C m norm is induced by ∇L and ∇E .

Using (7.49), (7.50) and the finite propagation speed [17, §7.8], [32, §4.4], it is clear that
for x,x′ ∈ X , Fl

( 1√
k
∆k,Φ

)
(x, ·) only depends on the restriction of ∆k,Φ to BX(x,εk−

1
4 ), and

Fl
( 1√

k
∆k,Φ

)
(x,x′) = 0, if d(x,x′) > εk−

1
4 . This means that the asymptotic of ∆q

k,ΦPHk
(x, ·)

when k → +∞, modulo O(k−∞) (i.e. terms whose C m norm is O(k−l) for any l,m ∈ N),
only depends on the restriction of ∆k,Φ to BX(x,εk−

1
4 ). In particular, the asymptotic of

Pq,k(x0,x′) as k → ∞ is localized on a neighborhood of x0.

7.2.2. Rescaling and Taylor expansion of the rescaled operator. Thus we can trans-
late our analysis from X to the manifold R2n ' Tx0X =: X0. For Z ∈ BTx0X(0,ε) we identify
LZ,EZ and (Lk⊗E)Z to Lx0 ,Ex0 and (Lk⊗E)x0 by parallel transport with respect to the con-

nections ∇L, ∇E and ∇Lk⊗E along the curve γZ : [0,1] 3 u → expX
x0

(uZ). Let {ei}i be an
oriented orthonormal basis of Tx0X , and let {ei}i be its dual basis.

For ε > 0 small enough, we will extend the geometric objects from BTx0X(0,ε) to R2n '
Tx0X (here we identify (Z1, · · · ,Z2n)∈R2n to ∑i Ziei ∈ Tx0X ) such that ∆k,Φ is the restriction
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of a renormalized Bochner-Laplacian on R2n associated to a Hermitian line bundle with
positive curvature. In this way, we replace X by R2n.

At first, we denote by L0, E0 the trivial bundles with fiber Lx0 ,Ex0 on X0 = R2n. We still
denote by ∇L,∇E , hL etc. the connections and metrics on L0, E0 on BTxi X(0,4ε) induced
by the above identification. Then hL, hE is identified to the constant metrics hL0 = hLx0 ,
hE0 = hEx0 .

Let ρ : R → [0,1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4. (7.53)

Let ϕε : R2n → R2n is the map defined by ϕε(Z) = ρ(|Z|/ε)Z. Then Φ0 = Φ ◦ ϕε is
a smooth self-adjoint section of End(E0) on X0. Let gTX0(Z) = gTX(ϕε(Z)), J0(Z) =
J(ϕε(Z)) be the metric and complex structure on X0. Set ∇E0 = ϕ∗

ε ∇E . Then ∇E0 is the
extension of ∇E on BTx0X(0,ε). If R = ∑i Ziei = Z denotes radial vector field on R2n, we
define the Hermitian connection ∇L0 on (L0,hL0) by

∇L0|Z = ϕ∗
ε ∇L +

1
2
(1−ρ2(|Z|/ε))RL

x0
(R, ·). (7.54)

Then we calculate easily that its curvature RL0 = (∇L0)2 is

RL0(Z) = ϕ∗
ε RL +

1
2

d
(
(1−ρ2(|Z|/ε))RL

x0
(R, ·)

)

=
(

1−ρ2(|Z|/ε)
)

RL
x0

+ρ2(|Z|/ε)RL
ϕε(Z)

− (ρρ ′)(|Z|/ε)
Ziei

ε|Z| ∧
[
RL

x0
(R, ·)−RL

ϕε(Z)(R, ·)
]
.

(7.55)

Thus RL0 is positive in the sense of (7.4) for ε small enough, and the corresponding constant
µ0 for RL0 is bigger than 1

2 µ0. From now on, we fix ε as above.

Let ∆X0
k,Φ0

be the renormalized Bochner-Laplacian on X0 associated to the above data

by (7.6). Observe that RL0 is uniformly positive on R2n, so by the argument in the proof
of Corollary 7.2, we know that (7.8) still holds for ∆X0

k,Φ0
. Especially, there exists CL0 > 0

such that

Spec∆X0
k,Φ0

⊂ [−CL0,CL0]∪ [kµ0 −CL0,+∞[. (7.56)

Let SL be an unit vector of Lx0 . Using SL and the above discussion, we get an isometric
E0 ⊗Lk

0 ' Ex0 .

7.17. DEFINITION. Let P0,Hk be the spectral projection of ∆X0
k,Φ0

from C ∞(X0,Lk
0 ⊗

E0)'C ∞(X0,Ex0) corresponding to the interval [−CL0,CL0], and let P0
0,q,k(x,x

′)∈End(Ex0),

(x,x′ ∈ X0) (q > 0) be the smooth kernels of P0,q,k = (∆X0
k,Φ0

)qP0,Hk
(we set (∆X0

k,Φ0
)0 = 1)

with respect to the volume form dvX0(x
′).

7.18. PROPOSITION. For any l,m∈N, there exists Cl,m > 0 such that for x,x′ ∈BTx0X(0,ε),
∣∣(P0,q,k −Pq,k)(x,x

′)
∣∣
C m 6 Cl,mk−l. (7.57)

PROOF. Using (7.49) and (7.56), we know that for x,x′ ∈ BTx0X(0,ε),
∣∣∣Fk
(

1√
k
∆k,Φ

)
(x,x′)−P0,0,k(x,x

′)
∣∣∣
C m

6 Ck,mk−
k
2 +2(m+n+1). (7.58)
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Thus from (7.52) and (7.58) for k big enough, we infer (7.57) for q = 0; Now from the
definition of P0,q,k and Pq,k, we get (7.57) from the relation ∇Lk⊗E

e j
= ∇e j +kΓL(e j)+ΓE(e j)

and (7.57) for q = 0. �

Let dvTX be the Riemannian volume form of (Tx0X ,gTx0X). Let κ(Z) be the smooth
positive function defined by the equation

dvX0(Z) = κ(Z)dvTX(Z). (7.59)

with κ(0) = 1. Denote by ∇U the ordinary differentiation operator on Tx0X in the direction
U , and set ∂i = ∇ei . If α = (α1, · · · ,α2n) is a multi-index, set Zα = Zα1

1 · · ·Zα2n
2n . We also

denote by (∂ α RL)x0 the tensor (∂ α RL)x0(ei,e j) = ∂ α(RL(ei,e j))x0 . Denote by t = 1√
k
. For

s ∈ C ∞(R2n,Ex0) and Z ∈ R2n, set

(Sts)(Z) = s(Z/t), ∇t = tS−1
t κ

1
2 ∇Lk

0⊗E0κ− 1
2 St ,

Lt = S−1
t

1
k κ

1
2 ∆X0

k,Φ0
κ− 1

2 St .
(7.60)

7.19. THEOREM. There exist polynomials Ai, j,r ( resp. Bi,r, Cr) (r ∈N, i, j∈{1, · · · ,2n})
in Z with the following properties:

– their coefficients are polynomials in RTX (resp. RTX , RL, RE , Φ) and their derivatives
at x0 up to order r−2 (resp. r−1, r, r−1, r) ,

– Ai, j,r is a monomial in Z of degree r, the degree in Z of Bi,r (resp. Cr) has the same
parity with r−1 (resp. r) ,

– if we denote by

Or = Ai, j,r∇ei∇e j +Bi,r∇ei +Cr, (7.61)

then

Lt = L0 +
m

∑
r=1

tr
Or +O(tm+1). (7.62)

and there exists m′ ∈ N such that for any k ∈ N, t 6 1 the derivatives of order 6 k of the
coefficients of the operator O(tm+1) are dominated by Ctm+1(1+ |Z|)m′

. Moreover

L0 = −∑
j
(∇e j +

1
2

RL
x0

(Z,e j))
2− τx0 , (7.63)

O1(Z) = −2
3
(∂ jR

L)x0(R,ei)Z j

(
∇ei +

1
2

RL
x0

(R,ei)
)
− 1

3
(∂iR

L)x0(R,ei)− (∇Rτ)x0,

O2(Z) =
1
3

〈
RTX

x0
(R,ei)R,e j

〉
x0

(
∇ei +

1
2

RL
x0

(R,ei)
)(

∇e j +
1
2

RL
x0

(R,e j)
)

+
[2

3

〈
RTX

x0
(R,e j)e j,ei

〉
x0
−
(1

2 ∑
|α|=2

(∂ αRL)x0

Zα

α!
+RE

x0

)
(R,ei)

](
∇ei +

1
2

RL
x0

(R,ei)
)

− 1
4

∇ei

(
∑

|α|=2

(∂ α RL)x0

Zα

α!
(R,ei)

)
− 1

9
[(∂ jR

L)x0(R,ei)Z j]
2

− 1
12

[
L0,

〈
RTX

x0
(R,ei)R,ei

〉
x0

]
− ∑

|α|=2

(∂ α τ)x0

Zα

α!
+Φx0.

{Lt} is a family of self-adjoint differential operators with coefficients in End(E)x0 .
We denote by P0,t : (C ∞(X0,Ex0),‖ ‖0) → (C ∞(X0,Ex0),‖ ‖0) the spectral projec-
tion of Lt corresponding to the interval [−CL0t

2,CL0t
2]. Let Pq,t(Z,Z′) = Pq,t,x0(Z,Z′),
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(Z,Z′ ∈ X0, q > 0) be the smooth kernel of Pq,t = (Lt)
q P0,t with respect to dvTX(Z′).

We can view Pq,t,x(Z,Z′) as a smooth section of π∗ End(E) over T X ×X T X , where
π : T X ×X T X → X , by identifying a section S ∈ Γ(T X ×X T X ,π∗End(E)) with the family
(Sx)x∈X , where Sx = S|π−1(x). Given a trivialization ϕ : T X |U → U ×R2n and v,v′ ∈ R2n,

x 7→ Sx(ϕ−1(v),ϕ−1(v′)) is a section of End(E) over U , so we can define the C s-norm
|S(ϕ−1(v),ϕ−1(v′))|C s(X ,End(E)) of this section.

Let δ be the counterclockwise oriented circle in C of center 0 and radius µ0/4. By
(7.8),

Pq,t =
1

2πi

∫

δ
λ q(λ −Lt)

−1dλ . (7.64)

From (7.8), we can apply the techniques in [18] which is inspired from [5, §11] to get the
following key estimate.

7.20. THEOREM. There exist smooth sections Fq,r of End(Ex0) such that for k,m,m′ ∈
N, σ > 0, there exists C > 0 such that if t ∈]0,1], Z,Z ′ ∈ Tx0X, |Z|, |Z′| 6 σ ,

sup
|α|,|α ′|6m

∣∣∣ ∂ |α|+|α ′|

∂Zα ∂Z′α ′

(
Pq,t −

k

∑
r=0

Fq,rt
r
)
(Z,Z′)

∣∣∣
C m′

(X ,End(E))
6 Ctk. (7.65)

Recall that P0,q,k(x,x′) was defined in Definition 7.17. By (7.60), for Z,Z′ ∈ R2n,

P0,q, p(Z,Z′) = t−2n−2q κ− 1
2 (Z)Pq,t(Z/t,Z′/t)κ− 1

2 (Z′). (7.66)

By (7.57), (7.66), Proposition 7.18, Theorems 7.20, we get the following near diagonal
expansion of the Bergman kernel:

7.21. THEOREM. For l,m,m′ ∈ N, l > 2q, σ > 0, there exists C > 0 such that if k > 1,
Z,Z′ ∈ Tx0X, |Z|, |Z′| ≤ σ/

√
k,

sup
|α|+|α ′|6m

∣∣∣ ∂ |α|+|α ′|

∂Zα ∂Z′α ′

( 1
kn Pq,k(Z,Z′)

−
l

∑
r=2q

Fq,r(
√

kZ,
√

kZ′)κ− 1
2 (Z)κ− 1

2 (Z′)k−
r
2 +q
)∣∣∣

C m′
(X)

6 Ck−
l−m

2 +q. (7.67)

To complete the proof the Theorem 7.2, we finally prove Fq,r = 0 for r < 2q. Moreover,
(7.65) and (7.66) yield

bq,r(x0) = Fq,2r+2q(0,0). (7.68)

Let us check our formulas with the help of the Atiyah-Singer formula. For k large
enough we have from (7.9)

dimHk = dk =
∫

X
ch(Lk ⊗E)Td(T X) (7.69)

= rank(E)
∫

X

c1(L)n

n!
kn +

∫

X

(
c1(E)+

rk(E)

2
c1(T X)

)c1(L)n−1

(n−1)!
kn−1 +O(kn−2),

where ch(·),c1(·),Td(·) are the Chern character, the first Chern class and the Todd class of
the corresponding complex vector bundles (T X is a complex vector bundle with complex
structure J). Let P1,0 = 1

2(1−
√
−1J) be the natural projection from T X ⊗R C onto T (1,0)X .
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Then ∇1,0 = P1,0∇TX P1,0 is a Hermitian connection on T (1,0)X , and the Chern-Weil repre-
sentative of c1(T X) is c1(T (1,0)X ,∇1,0) =

√
−1

2π Tr|T (1,0)X(∇1,0)2. Then

(∇1,0)2 = P1,0
[
RTX − 1

4
(∇X J)∧ (∇XJ)

]
P1,0. (7.70)

Thus if J = J, then by (7.70),
〈

c1(T
(1,0)X ,∇1,0),ω

〉
=

1
4π

(
rX +

1
2
|∇XJ|2

)
. (7.71)

Therefore, by integrating over X the expansion (1.21) for k = 1 we obtain (7.69), so (1.22)
is compatible with (7.69).

7.2.3. Evaluation of Fq,r. The almost complex structure J induces a splitting TRX ⊗R

C = T (1,0)X ⊕T (0,1)X , where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding
to the eigenvalues

√
−1 and −

√
−1 respectively. We choose {wi}n

i=1 an orthonormal basis

of T (1,0)
x0 X , such that

−2π
√
−1Jx0 = diag(a1, · · · ,an) ∈ End(T (1,0)

x0 X). (7.72)

We use the orthonormal basis e2 j−1 = 1√
2
(w j +w j) and e2 j =

√
−1√
2

(w j −w j) , j = 1, . . . ,n
of Tx0X to introduce the normal coordinates as in Section 7.1.3. In what follows we will
use the complex coordinates z = (z1, · · · ,zn), thus Z = z+ z, and wi =

√
2 ∂

∂ zi
, wi =

√
2 ∂

∂ zi
.

It is very useful to introduce the creation and annihilation operators bi, b+
i ,

bi = −2 ∂
∂ zi

+
1
2

aizi , b+
i = 2 ∂

∂ zi
+

1
2

aizi , b = (b1, · · · ,bn) . (7.73)

Now there are second order differential operators Or whose coefficients are polynomi-
als in Z with coefficients as polynomials in RTX , Rdet, RE , RL and their derivatives at x0,
such that

Lt = L
0

2 +
∞

∑
r=1

Ort
r, with L

0
2 = ∑

i
bib

+
i . (7.74)

By proceeding as in [31], we obtain

7.22. THEOREM. The spectrum of the restriction of L 0
2 on L2(R2n) is given by

{
2∑n

i=1 αiai :

αi ∈ R
}

and an orthogonal basis of the eigenspace of 2 ∑n
i=1 αiai is given by

bα(zβ exp
(
−1

4 ∑
i

ai|zi|2
))

, with β ∈ Rn . (7.75)

Let N⊥ be the orthogonal space of N = kerL 0
2 in (L2(R2n,Ex0),‖ ‖0). Let PN , PN⊥

be the orthogonal projections from L2(R2n,Ex0) onto N, N⊥, respectively. Let PN(Z,Z′)
be the smooth kernel of the operator PN with respect to dvTX(Z). From (7.75), we get

PN(Z,Z′) =
1

(2π)n

n

∏
i=1

ai exp
(
− 1

4 ∑
i

ai
(
|zi|2 + |z′i|2 −2ziz

′
i

))
. (7.76)

Now for λ ∈ δ , we solve the following formal power series on t, with gr(λ )∈End(L2(R2n,Ex0),N),
f⊥r (λ ) ∈ End(L2(R2n,Ex0),N

⊥),

(λ −Lt)
∞

∑
r=0

(
gr(λ )+ f⊥r (λ )

)
tr = IdL2(R2n,Ex0) . (7.77)
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From (7.64), (7.77), we claim that

Fq,r =
1

2πi

∫

δ
λ qgr(λ )dλ +

1
2πi

∫

δ
λ q f⊥r (λ )dλ . (7.78)

From Theorem 7.22, (7.78), the key observation PNO1PN = 0, and the residue formula, we
can get Fq,r by using the operators (L 0

2 )−1, PN , PN⊥
, Oi(i 6 r). This gives us a way to

compute bq,r in view of Theorem 7.22 and (7.68). Especially, for q > 0,r < 2q,

F0,0 = PN, Fq,r = 0, (7.79)

Fq,2q = (PN
O2PN −PN

O1(L
0
2 )−1PN⊥

O1PN)qPN ,

F0,2 = (L 0
2 )−1PN⊥

O1(L
0

2 )−1PN⊥
O1PN − (L 0

2 )−1PN⊥
O2PN

+PN
O1(L

0
2 )−1PN⊥

O1(L
0

2 )−1PN⊥ −PN
O2(L

0
2 )−1PN⊥

.

In fact, L 0
2 and Or are formal adjoints with respect to ‖ ‖0, thus in F0,2, we only need

to compute the first two terms, as the last two terms are their adjoint. This simplifies the
computation in Theorem 1.22.

7.3. Applications

In this Section, we discuss various applications of our results. In Section 7.3.1, we
study the density of states function of ∆k,Φ. In Section 7.3.2, we explain how to handle
the first-order pseudo-differential operator Db of Boutet de Monvel and Guillemin [13]
which was studied extensively by Shiffman and Zelditch [28]. In Section 7.3.3, we prove a
symplectic version of the convergence of the Fubini-Study metric of an ample line bundle
[33]. In Section 7.3.4, we show how to handle the operator ∂ + ∂ ∗

when X is Kähler but
J 6= J. Finally, in Sections 7.3.5, 7.3.6, we establish some generalizations for non-compact
or singular manifolds.

7.3.1. Density of states function. Let (X ,ω) be a compact symplectic manifold of
real dimension 2n and (L,∇L,hL) is a pre-quatum line bundle as in Section 7.1.1. Assume
that E is the trivial bundle C, Φ = 0 and J = J. The latter means, by (7.2), that gTX is the
Riemannian metric associated to ω and J. We denote by vol(X) =

∫
X

ωn

n! the Riemannian
volume of (X ,gTX). Recall that dk is defined in (7.9) (see also (7.69)).

Our aim is to describe the asymptotic distribution of the energies of the bound states
as k tends to infinity. We define the spectrum counting function of ∆k := ∆k,0 by Nk(λ ) =
#
{

i : λi,k 6 λ
}

and the spectral density measure on [−CL,CL] by

νk =
1
dk

d
dλ

Nk(λ ) , λ ∈ [−CL,CL] . (7.80)

Clearly, νk is a sum of Dirac measures supported on Spec∆k ∩ [−CL,CL]. Set

ρ : X −→ R , ρ(x) =
1

24
|∇XJ|2 . (7.81)

7.23. THEOREM. The weak limit of the sequence {νk}k>1 is the direct image measure

ρ∗
( 1

vol(X)

ωn

n!

)
, that is, for any continuous function f ∈ C ([−CL,CL]), we have

lim
k→∞

∫ CL

−CL

f dνk =
1

vol(X)

∫

X
( f ◦ρ)

ωn

n!
. (7.82)
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PROOF. By (7.48), we have for q > 1 (now E is trivial): Bq,k(x) = ∑dk
i=1 λ q

i,k |Sk
i (x)|2,

which yields by integration over X ,

1
dk

∫

X
Bq,k dvX =

1
dk

dk

∑
i=1

λ q
i,k =

∫ CL

−CL

λ q dνk(λ ) , (7.83)

since Sk
i have unit L2 norm. On the other hand, (7.69), (1.21) entail for k → ∞,

1
dk

∫

X
Bq,k dvX =

kn

dk

∫

X
bq,0 dvX +

O(kn−1)

dk
(7.84)

=
1

vol(X)

∫

X
ρq dvX +O(k−1).

We infer from (7.83)-(7.84) that (7.82) holds for f (λ ) = λ q, q > 1. Since this is obviously
true for f (λ ) ≡ 1, too, we deduce it holds for all polynomials. Upon invoking the Weier-
strass approximation theorem, we get (7.82) for all continuous functions on [−CL,CL]. This
achieves the proof. �

7.24. REMARK. A function ρ satisfying (7.82) is called spectral density function. Its
existence and uniqueness were demonstrated by Guillemin-Uribe [21]. As for the explicit
formula of ρ , the paper [11] is dedicated to its computation. Our formula (7.81) is different
from [11, Theorem 1.2]. 1

An interesting corollary of (7.81) and (7.82) is the following result which was first
stated in [11, Cor. 1.3].

7.25. COROLLARY. The spectral density function is identically zero iff (X ,ω,J) is
Kähler.

7.26. REMARK. Theorem 7.23 can be slightly generalized. Assume namely that J = J
and E is a Hermitian vector bundle as in Section 7.1.1 such that RE = η ⊗ IdE , Φ = ϕ IdE ,
where η is a 2-form and ϕ a real function on X . Then there exists a spectrum density
function satisfying (7.82) given by

ρ : X −→ R , ρ(x) =
1

12
|∇XJ|2 +

√
−1
2

η(e j,Je j)+ϕ . (7.85)

The proof is similar to the previous one, as TrEx Bq,k(x) = ∑dk
i=1 λ q

i,k |Sk
i (x)|2.

7.3.2. Almost-holomorphic Szegö kernels. We use the notations and assumptions
from Section 7.3.1, especially, we assume J = J.

Let Y = {u ∈ L∗, |u|hL∗ = 1} be the unit circle bundle in L∗. Then the smooth sections
of Lk can be identified to the smooth functions

C
∞(Y )k = { f ∈ C

∞(Y,C); f (ye
√
−1θ ) = e

√
−1kθ f (y) for e

√
−1θ ∈ S1,y ∈ Y},

where ye
√
−1θ is the S1 action on Y .

The connection ∇L on L induces a connection on the S1-principal bundle π : Y → X ,
and let T HY ⊂ TY be the corresponding horizontal bundle. Let gTY = π∗gTX ⊕dθ 2 be the
metric on TY = T HY ⊕T S1, with dθ 2 the standard metric on S1 = R/2πZ. Let ∆Y be the

1In [11, (3.7)], the leading term of G0 j should be κ−1/2b(1)
j which was missed therein, as the principal

terms of ∂
∂ s , ∂

∂ y j are ∂0, T l
j ∂l by [11, equation after (3.11)]. Now, from [11, (3.5)], b(1)

j is 1
2 〈Jz,T l

j ∂l〉. Thus

L0 in [11, (3.8)] is incorrect.
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Bochner-Laplacian on (Y,gTY ), then by construction, it commutes with the generator ∂θ of
the circle action, and so it commutes with the horizontal Laplacian

∆h = ∆Y +∂ 2
θ , (7.86)

then ∆h on C ∞(Y )k is identical with ∆Lk
on C ∞(X ,Lk) (cf. [10, §2.1]).

In [13, Lemma 14.11, Theorem A 5.9], [14], [21, (3.13)], they construct a self-adjoint
second-order pseudodifferential operator Q on Y such that

V = ∆h +
√
−1τ∂θ −Q (7.87)

is a self-adjoint pseudodifferential operator of order zero on Y , and V,Q commute with the
S1-action. The orthogonal projection Π onto the kernel of Q is called the Szegö projec-
tor associated with the almost CR manifold Y . In fact, the Szegö projector is not unique
or canonically defined, but the above construction defines a canonical choice of Π mod-
ulo smoothing operators. In the complex case, the construction produces the usual Szegö
projector Π.

We denote the operators on C ∞(X ,Lk) corresponding to Q, V , Π by Qk,Vk, Πk, espe-
cially, Vk(x,y) = 1

2π
∫ 2π

0 e−
√
−1pθV (xe

√
−1θ ,y)dθ . Then by (7.87),

Qk = ∆Lk − kτ −Vk. (7.88)

By [21, §4], there exists µ1 > 0 such that for k large,

SpecQk ⊂ {0}∩ [µ1k,+∞[. (7.89)

Since the operator Vk is uniformly bounded in k, naturally, from (7.8), (7.69), we get

dimkerQk = dk =
∫

X
Td(T X)ch(Lk). (7.90)

Now we explain how to study the Szegö projector Πk
2. This can be done from our

point of view. Recall F̃ is the function defined after (7.49). Let Πk(x,x′), F̃(Qk)(x,x′) be
the smooth kernels of Πk, F̃(Qk) with respect to the volume form dvX(x′).

Note that Vk is a 0-order pseudodifferential operator on X induced from a 0-order pseu-
dodifferential operator on Y . Thus from (7.88), (7.89), we have the analogue of [18, Propo-
sition 3.1]: for any l,m ∈ N, there exists Cl,m > 0 such that for k > 1,

|F̃(Qk)(x,x
′)−Πk(x,x

′)|C m(X×X) 6 Cl,mk−l. (7.91)

By finite propagation speed [32, §4.4], we know that F̃(Qk)(x,x′) only depends on the
restriction of Qk to BX(x,ε), and is zero if d(x,x′) > ε . It transpires that the asymptotic of
Πk(x,x′) as k → ∞ is localized on a neighborhood of x. Thus we can translate our analysis
from X to the manifold R2n ' Tx0X =: X0 as in Section 7.2.2, especially, we extend ∇L to a
Hermitian connection ∇L0 on (L0,hL0) = (X0×Lx0 ,h

Lx0) on Tx0X in such a way so that we
still have positive curvature RL0; in addition RL0 = RL

x0
outside a compact set.

Now, by using a micro-local partition of unity, one can still construct the operator QX0

as in [13, Lemma 14.11, Theorem A 5.9], [14], [21, (3.13)], such that V X0 differs from V by
a smooth operator in a neighborhood of 0. On X0, and QX0 still verifies (7.89). Thus we can
work on C ∞(X0,C) as in Section 7.2. We rescale then the coordinates as in (7.60). The V X0

k
is a 0-order pseudodifferential operator on X0 induced from a 0-order pseudodifferential

2As Professor Sj östrand pointed out to us, in general, Πk −P0,k is not O(k−∞) as k → ∞, where P0,k

is the smooth kernel of the operator ∆0,k (Definition7.15). This can also be seen from the presence of a
contribution coming from Φ in the expression (1.21) of the coefficient b0,2.
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operator on Y0. This guarantees that the operator rescaled from V X0
k will have the similar

expansion as (7.74) with leading term t2R2 in the sense of pseudo-differential operators.
From (7.90) and [18, (3.89)], similar to the argument in [18, Theorem 3.18], we can

also get the full off diagonal expansion for Πk, which is an extension of [28, Theorem 1],
where the authors obtain (7.92) for |Z|, |Z′| 6 C/

√
k with C > 0 fixed. More precisely,

recalling that PN is the Bergman kernel of L0 as in
(7.76) we have:

7.27. THEOREM. There exist polynomials jr(Z,Z′) (r > 0) of Z,Z′ with the same parity
with r, and j0 = 1, C′′ > 0 such that for any k,m,m′ ∈ N, there exist N ∈ N,C > 0 such that
for α,α ′ ∈ Z2n, |α|+ |α ′| 6 m, Z,Z′ ∈ Tx0X, |Z|, |Z′| 6 ε , x0 ∈ X, k > 1,
∣∣∣∣∣

∂ |α|+|α ′|

∂Zα ∂Z′α ′

(
1
pn Πk(Z,Z′)−

k

∑
r=0

(jrP
N)(

√
kZ,

√
kZ′)κ− 1

2 (Z)κ− 1
2 (Z′)k−r/2

)∣∣∣∣∣
C m′

(X)

6 Ck−(k+1−m)/2(1+ |
√

kZ|+ |
√

kZ′|)N exp(−
√

C′′µ1

√
k|Z−Z′|). (7.92)

The term κ− 1
2 in (7.92) comes from the conjugation of the operators as in (7.67),

C m′
(X) is the C m′

-norm for the parameter x0 ∈ X , and we use the trivializations from
Section 7.2. We leave the details to the interested reader.

7.3.3. Symplectic version of Kodaira Embedding Theorem. Let (X ,ω) be a com-
pact symplectic manifold of real dimension 2n and let (L,∇L,hL) be a pre-quantum line
bundle and let gTX be a Riemannian metric on X as in Section 7.1.1.

Recall that Hk ⊂ C ∞(X ,Lk) is the span of those eigensections of ∆k = ∆Lk − τk cor-
responding to eigenvalues from [−CL,CL]. We denote by PH ∗

k the projective space asso-
ciated to the dual of Hk and we identify PH ∗

k with the Grassmannian of hyperplanes in
Hk. The base locus of Hk is the set Bl(Hk) = {x ∈ X : s(x) = 0 for alls ∈ Hk }. As in
algebraic geometry, we define the Kodaira map

Φk : X r Bl(Hk) −→ PH
∗

k

Φk(x) = {s ∈ Hk : s(x) = 0} (7.93)

which sends x ∈ X r Bl(Hk) to the hyperplane of sections vanishing at x. Note that Hk

is endowed with the induced L2 product (7.13) so there is a well–defined Fubini–Study
metric gFS on PH ∗

k with the associated form ωFS.

7.28. THEOREM. Let (L,∇L) be a pre–quantum line bundle over a compact symplectic
manifold (X ,ω). The following assertions hold true:

(i) For large k, the Kodaira maps Φk : X −→ PH ∗
k are well defined.

(ii) The induced Fubini–Study metric 1
k Φ∗

k(ωFS) converges in the C ∞ topology to ω ;
for any l > 0 there exists Cl > 0 such that

∣∣∣1
k

Φ∗
k(ωFS)−ω

∣∣∣
C l

6
Cl

k
. (7.94)

(iii) For large k the Kodaira maps Φk are embeddings.

7.29. REMARK. 1) Assume that X is Kähler and L is a holomorphic bundle. Then ∆k

is the twice the Kodaira-Laplacian and Hk coincides with the space H0(X ,Lk) of holo-
morphic sections of Lk. Then (i) and (iii) are simply the Kodaira embedding theorem.
Assertion (ii) is due to Tian [33, Theorem A] as an answer to a conjecture of Yau. In [33]
the case l = 2 is considered and the left–hand side of (7.94) is estimated by Cl/

√
k. Ruan
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[27] proved the C ∞ convergence and improved the bound to Cl/k. Both papers use the
peak section method, based on L2–estimates for ∂ . A proof for l = 0 using the heat kernel
appeared in Bouche [12]. Finally, Zelditch deduced (ii) from the asymptotic expansion of
the Szegö kernel [35].

2) Borthwick and Uribe [10, Theorem 1.1], Shiffman and Zelditch [28, Theorems 2,
3] prove a different symplectic version of [33, Theorem A]. Instead of Hk, they use the
space H0

J (X ,Lk) (cf. [10, p.601], [28, §2.3]) of ‘almost holomorphic sections’ proposed by
Boutet de Monvel and Guillemin [13], [14].

PROOF. Let us first give an alternate description of the map Φk which relates it to the
Bergman kernel. Let {Sk

i }
dk
i=1 be any orthonormal basis of Hk with respect to the inner

product (7.13). Once we have fixed a basis, we obtain an identification Hk
∼= H ∗

k
∼= Cdk

and PH ∗
k
∼= CPdk−1. Consider the commutative diagram.

X r Bl(Hk)
Φk−−−→ PH ∗

kyId

y∼=

X r Bl(Hk)
Φ̃k−−−→ CPdk−1

(7.95)

Then

Φ∗
k(ωFS) = Φ̃∗

k

(√−1
2π

∂∂ log
dk

∑
j=1

|w j|2
)
, (7.96)

where [w1, . . . ,wdk ] are homogeneous coordinates in CPdk−1. To describe Φ̃k in a neigh-
borhood of a point x0 ∈ X rBl(Hk), we choose a local frame eL of L and write Sk

i = f k
i e⊗k

L
for some smooth functions f k

i . Then

Φ̃k(x) = [ f k
1 (x); . . . ; f k

dk
(x)], (7.97)

and this does not depend on the choice of the frame eL.
(i) Let us choose an unit frame eL of L. Then |Sk

i |2 = | f k
i |2|eL|2k = | f k

i |2, hence

B0,k =
dk

∑
i=1

|Sk
i |2 =

dk

∑
i=1

| f k
i |2.

Since b0,0 > 0, the asymptotic expansion (1.21) shows that B0,k does not vanish on X for

k large enough, so the sections {Sk
i }

dk
i=1 have no common zeroes. Therefore Φk and Φ̃k are

defined on all X .
(ii) Let us fix x0 ∈ X . We identify a small geodesic ball BX(x0,ε) to BTx0X(0,ε) by

means of the exponential map and consider a trivialization of L as in Section 7.2.2, i.e.
we trivialize L by using an unit frame eL(Z) which is parallel with respect to ∇L along
[0,1] 3 u → uZ for Z ∈ BTx0X(0,ε). We can express the Fubini–Study metric as

√
−1

2π
∂∂ log

( dk

∑
j=1

|w j|2
)

=

√
−1

2π

[
1

|w|2
dk

∑
j=1

dw j ∧dw j −
1

|w|4
dk

∑
j,k=1

w jwk dw j ∧dwk

]
,
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and therefore, from (7.97),

Φ∗
k(ωFS)(x0) =

√
−1

2π

[
1

| f k|2
dk

∑
j=1

d f k
j ∧d f k

j −
1

| f k|4
dk

∑
j,k=1

f k
j f k

k d f k
j ∧d f k

k

]
(x0)

=

√
−1

2π
[

f k(x0,x0)
−1dxdy f k(x,y)− f k(x0,x0)

−2dx f k(x,y)∧dy f k(x,y)
]
|x=y=x0 , (7.98)

where f k(x,y) = ∑dk
i=1 f k

i (x) f k
i (y) and | f k(x)|2 = f k(x,x). Since

P0,k(x,y) = f k(x,y)ek
L(x)⊗ ek

L(y)
∗,

thus P0,k(x,y) is f k(x,y) under our trivialization of L. By (7.67), we obtain

1
k

Φ∗
k(ωFS)(x0) =

√
−1

2π
[ 1

F0,0
dxdyF0,0 −

1

F2
0,0

dxF0,0 ∧dyF0,0
]
(0,0)

−
√
−1

2π
1√
k

[ 1

F2
0,0

(dxF0,1 ∧dyF0,0 +dxF0,0 ∧dyF0,1)
]
(0,0)+O

(
1/k
)
.

Using again (7.76), (7.79), we obtain

1
k

Φ∗
k(ωFS)(x0) =

√
−1

4π

n

∑
j=1

a jdz j ∧dz j|x0 +O
(
k−1)= ω(x0)+O

(
1/k
)
,

and the convergence takes place in the C ∞ topology with respect to x0 ∈ X .
(iii) Since X is compact, we have to prove two things for k sufficiently large: (a) Φk are

immersions and (b) Φk are injective. We note that (a) follows immediately from (7.94).
To prove (b) let us assume the contrary, namely that there exists a sequence of distinct

points xk 6= yk such that Φk(xk) = Φk(yk). Relation (7.95) implies that Φ̃k(xk) = φ̃k(yk),
where Φ̃k is defined by any particular choice of basis.

The key observation is that Theorem 7.21 ensures the existence of a sequence of peak
sections at each point of X . The construction goes like follows. Let x0 ∈ X be fixed. Since
Φk is point base free for large k, we can consider the hyperplane Φk(x0) of all sections of
Hk vanishing at x0. We construct then an orthonormal basis {Sk

i }
dk
i=1 of Hk such that the

first dk −1 elements belong to Φk(x0). Then Sk
dk

is a unit norm generator of the orthogonal

complement of Φk(x0), and will be denoted by Sk
x0

. This is a peak section at x0. We note
first that |Sk

x0
(x0)|2 = B0,k(x0) and P0,k(x,x0) = Sk

x0
(x)⊗Sk

x0
(x0)

∗ and therefore

Sk
x0

(x) =
1

B0,k(x0)
P0,k(x,x0) ·Sk

x0
(x0). (7.99)

From (7.67) we deduce that for a sequence {rk} with rk → 0 and rk
√

k → ∞,
∫

B(x0,rk)
|Sk

x0
(x)|2 dvX(x) = 1−O(1/k) , for k → ∞. (7.100)

Relation (7.100) explains the term ‘peak section’: when k grows, the mass of Sk
x0

concen-
trates near x0. Since Φk(xk) = Φk(yk) we can construct as before the peak section Sk

xk
= Sk

yk

as the unit norm generator of the orthogonal complement of Φk(xk) = Φk(yk). We fix in
the sequel such a section which peaks at both xk and yk.

We consider the distance d(xk,yk) between the two points xk and yk. By passing to a
subsequence we have two possibilities: either

√
kd(xk,yk) → ∞ as k → ∞ or there exists a

constant C > 0 such that d(xk,yk) 6 C/
√

k for all k.



7.3. APPLICATIONS 161

Assume that the first possibility is true. For large k, we learn from relation (7.100)
that the mass of Sk

xk
= Sk

yk
(which is 1) concentrates both in neighborhoods B(xk,rk) and

B(yk,rk) with rp = d(xk,yk)/2 and approaches therefore 2 if k → ∞. This is a contradiction
which rules out the first possibility.

To exclude the second possibility we follow [28]. We identify as usual BX(xk,ε) to
BTxkX(0,ε) so the point yk gets identified to Zk/

√
k where Zk ∈ BTxk X(0,C). We define then

fk : [0,1] −→ R , fk(t) =
|Sk

xk
(tZk/

√
k)|2

B0,k(tZk/
√

k)
. (7.101)

We have fk(0) = fk(1) = 1 (again because Sk
xk

= Sk
yk

) and fk(t) 6 1 by the definition of
the generalized Bergman kernel. We deduce the existence of a point tk ∈ (0,1) such that
f ′′k (tk) = 0. Equations (7.67), (7.99), (7.101) imply the estimate

fk(t) = e−
t2
4 ∑ j a j|zk, j|2(1+gk(tZk)/

√
k
)

(7.102)

and the C 2 norm of gk over BTxk X(0,C) is uniformly bounded in k. From (7.102), we
infer that |Zk|20 := 1

4 ∑ j a j|zk, j|2 = O(1/
√

k). Using a limited expansion ex = 1 + x +

x2ϕ(x) for x = t2|Zk|20 in (7.102) and taking derivatives, we obtain f ′′k (t) = −2|Zk|20 +

O(|Zk|40)+ O(|Zk|20/
√

k) = (−2 + O(1/
√

k))|Zk|20. Evaluating at tk we get 0 = f ′′k (tk) =

(−2+O(1/
√

k))|Zk|20, which is a contradiction since by assumption Zk 6= 0. This finishes
the proof of (iii). �

7.30. REMARK. Let us point out complementary results which are analogues of [10,
(1.3)–(1.5)] for the spaces Hk. Computing as in (7.98) the pull-back Φ∗

khFS of the Hermit-
ian metric hFS = gFS −

√
−1ωFS on PH ∗

k , we get the similar inequality to (7.94) for gFS

and ω(·,J·). Thus, Φk are asymptotically symplectic and isometric. Moreover, arguing as
in [10, Proposition 4.4] we can show that Φk are ‘nearly holomorphic’ :

1
k
‖∂Φk‖ = 1+O(1/k) ,

1
k
‖∂Φk‖ = O(1/k) , (7.103)

uniformly on X , where ‖ · ‖ is the operator norm.

7.3.4. Holomorphic case revisited. In this Section, we assume that (X ,ω,J) is Kähler
and the vector bundles E,L are holomorphic on X , and ∇E ,∇L are the holomorphic Her-
mitian connections on (E,hE), (L,hL), moreover,

√
−1

2π RL = ω . Let gTX be any Riemannian
metric on T X compatible with J. But we assume that J 6= J in (7.2). Set

Θ(X ,Y) = gTX(JX ,Y ). (7.104)

Then the 2-form Θ need not to be closed (the convention here is
different to [3, (2.1)] by a factor −1). We denote by T (1,0)X ,
T (0,1)X the holomorphic and anti-holomorphic tangent bundles
as in Section 7.2. Let {ei} be an orthonormal frame of (T X ,gTX).

Let ∂ Ek∗ be the formal adjoint of the Cauchy-Riemann operator ∂ Ek on the Dolbeault
complex Ω0,•(X ,Lk ⊗ E) with the scalar product induced by gTX , hL, hE as in (7.13).

Set Dk =
√

2(∂ Ek
+ ∂ Ek∗

). Then D2
k = 2(∂ Ek∂ Ek∗

+ ∂ Ek∗∂ Ek
) preserves the Z-grading of

Ω0,•(X ,Lk ⊗E). Then for k big enough,

kerDk = kerD2
k = H0(X ,Lk ⊗E). (7.105)
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Here Dk is not a spinc Dirac operator on Ω0,•(X ,Lk ⊗E), and D2
p is not a renormalized

Bochner–Laplacian as in (7.6). Now we explain how to put it in the frame of our work.

7.31. THEOREM. The smooth kernel of the orthogonal projection from C ∞(X ,Lk ⊗E)
on kerD2

k , has a full off–diagonal asymptotic expansion analogous to (7.92) with j0 =
detC J as k → ∞ .

PROOF. As pointed out in 7.8, by [6, Theorem 1], there exist µ0,CL > 0 such that for
any k ∈ N and any s ∈ Ω>0(X ,Lk ⊗E) :=

⊕
q>1 Ω0,q(X ,Lk ⊗E),

‖Dks‖2
L2 > (2kµ0 −CL)‖s‖2

L2. (7.106)

Moreover SpecD2
k ⊂ {0}∪ [2kµ0 −CL,+∞[.

Let S−B denote the 1-form with values in antisymmetric elements of End(T X) which
is such that if U,V,W ∈ T X ,

〈S−B(U)V,W〉 = −
√
−1
2

(
(∂ −∂ )Θ

)
(U,V,W). (7.107)

The Bismut connection ∇−B on T X is defined by

∇−B = ∇TX +S−B. (7.108)

Then by [4, Prop. 2.5], ∇−B preserves the metric gTX and the complex structure of T X .
Let ∇det be the holomorphic Hermitian connection on det(T (1,0)X) with its curvature Rdet.
Then these two connections induce naturally an unique connection on Λ(T ∗(0,1)X), and
with the connections ∇L,∇E , we get a connection ∇−B,Ek on Λ(T ∗(0,1)X)⊗ Lk ⊗E. Let
∆−B,Ek be the Laplacian on Λ(T ∗(0,1)X)⊗Lk⊗E induced by ∇−B,Ep as in (7.3). For any v∈
T X with decomposition v = v1,0 +v0,1 ∈ T (1,0)X ⊕T (0,1)X , let v∗1,0 ∈ T ∗(0,1)X be the metric

dual of v1,0. Then c(v) =
√

2(v∗1,0 ∧−iv0,1) defines the Clifford action of v on Λ(T ∗(0,1)X),
where ∧ and i denote the exterior and interior product respectively. We define a map
c : Λ(T ∗X)→C(T X), the Clifford bundle of T X , by sending ei1 ∧·· ·∧ei j to c(ei1) · · ·c(ei j)
for i1 < · · · < i j. Then we can formulate [4, Theorem 2.3] as following,

D2
k = ∆−B,Ek +

rX

4
+ c(RE + kRL +

1
2

Rdet)+

√
−1
2

c(∂∂Θ)− 1
8
|(∂ −∂ )Θ|2. (7.109)

We use now the connection ∇−B,Ek instead of ∇Ek in [18, §2]. Then by (7.106), (7.109),
everything goes through perfectly well and as in [18, Theorem 3.18], so we can directly
apply the result in [18] to get the full off-diagonal asymptotic expansion of the Bergman
kernel. As the above construction preserves the Z-grading on Ω0,•(X ,Lk⊗E), we can also
directly work on C ∞(X ,Lk ⊗E). �

7.3.5. Generalizations to non-compact manifolds. Let (X ,Θ) be a Kähler mani-
fold and (L,hL) be a holomorphic Hermitian line bundle over X . As in Section 7.3.4,
let RL,Rdet be the curvatures of the holomorphic Hermitian connections ∇L,∇det on L,
det(T (1,0)X), and let JL ∈ End(T X) such that

√
−1

2π RL(·, ·) = Θ(JL·, ·). The space of holo-
morphic sections of Lk which are L2 with respect to the norm given by (7.13) is denoted by
H0

(2)(X ,Lk). Choose an orthonormal basis (Sk
i )i>1 of H0

(2)(X ,Lk). For each local holomor-

phic frame eL we have Sk
i = f k

i e⊗k
L for some local holomorphic functions f k

i . As shown in
[33, Lemma 4.1] the series ∑i>1 | f k

i (x)|2 converges uniformly on compact sets (together
with all its derivatives) to a smooth function. It follows that Bk(x) = ∑i>1 |Sk

i (x)|2 =
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∑i>1 | f k
i (x)|2|e⊗k

L |2 is also a well defined smooth function. We have the following gen-
eralization of Theorem 1.21.

7.32. THEOREM. Assume that (X ,Θ) is a complete Kähler manifold. Suppose that
there exist ε > 0 , C > 0 such that one of the following assumptions holds true :

√
−1RL > εΘ ,

√
−1Rdet > −CΘ. (7.110)

L = det(T ∗(1,0)X), hL is induced by Θ and
√
−1Rdet < −εΘ. (7.111)

Then there exist coefficients br ∈ C ∞(X) , r ∈ N, with b0 = (detJL)1/2 such that for any
compact set K ⊂ X, any m, l ∈ N, there exists Ck,l,K > 0 such that for k ∈ N,

∣∣∣ 1
kn Bk(x)−

k

∑
r=0

br(x)k
−r
∣∣∣
C l(K)

6 Cm,l,K k−m−1. (7.112)

PROOF. By the argument in Section 7.2, if the Kodaira–Laplacian 2
Lk

= 1
2∆k := 1

2 ∆k,0

acting on sections of Lk has a spectral gap as in (7.8), then we can localize the problem, and
we get directly (7.112). Observe that D2

k|Ω0,• = ∆k. In general, on a non-compact manifold,
we define a self-adjoint extension of D2

k by

Dom D2
k =

{
u ∈ Dom∂ Lk

∩ Dom ∂ Lk∗
: ∂ Lk

u ∈ Dom ∂ Lk∗
, ∂ Lk∗

u ∈ Dom∂ Lk}
,

D2
k u = 2(∂

Lk

∂
Lk∗

+∂
Lk∗

∂
Lk

)u , for u ∈ DomD2
p .

The quadratic form associated to D2
k is the form Qk given by

Dom Qk := Dom ∂
Lk

∩ Dom ∂
Lk∗

Qk(u,v) =2
〈
∂ Lk

u ,∂ Lk

v
〉
+2
〈
∂ Lk∗

u ,∂ Lk∗
v
〉
, u,v ∈ Dom Qk .

(7.113)

In the previous formulas ∂ Lk

is the weak maximal extension of ∂ Lk

to L2 forms and ∂ Lk∗

is its Hilbert space adjoint. We denote by Ω0,•
0 (X ,Lk) the space of smooth compactly

supported forms and by L0,•
2 (X ,Lk) the corresponding L2-completion.

Under one of the hypotheses (7.110) or (7.111) there exists µ > 0 such that for k large
enough

Qk(u) > µk‖u‖2 , u ∈ DomQk ∩L0,q
2 (X ,Lk) for q > 0. (7.114)

Indeed, the estimate holds for u ∈ Ω0,q
0 (X ,Lk) since the Bochner-Kodaira formula [2,

Prop. 3.71] reduces to Qk(u) > 2
〈
(kRL + Rdet)(wi,w j)w j ∧ iwiu ,u

〉
, for u ∈ Ω0,q

0 (X ,Lk),
where {wi} is an orthonormal frame of T (1,0)X . But this implies (7.114) in general, since
Ω0,•

0 (X ,Lk) is dense in DomQk with respect to the graph norm, as the metric is complete.

Next, consider f ∈ Dom ∆k ∩L0,0
2 (X ,Lk) and set u = ∂ Lk

f . It follows from the defini-
tion of the Laplacian and (7.114) that

‖∆k f‖2 = 2
〈

∂
Lk∗

u ,∂
Lk∗

u
〉

= Qk(u) > µk‖u‖2 = µk
〈

∆k f , f
〉
. (7.115)

This clearly implies Spec(∆k) ⊂ {0}∪ [kµ,∞[ for large k. �

Theorem 7.32 permits an immediate generalization of Tian’s convergence theorem.
Tian [33, Theorem 4.1] already proved a non–compact version for convergence in the C 2

topology and convergence rate 1/
√

k . Another easy consequence are holomorphic Morse
inequalities for the space H0

(2)(X ,Lk).



164 7. GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS

Observe that the quantity ∑i>1 | f k
i (x)|2 is not globally defined, but the current

ωk =

√
−1

2π
∂∂ log

(
∑
i>1

| f k
i (x)|2

)
(7.116)

is well defined globally on X . Indeed, since RL = −∂∂ log |eL|2hL we have

1
k

ωk −
√
−1

2π
RL =

√
−1

2πk
∂∂ logBk . (7.117)

If dimH0
(2)(X ,Lk) < ∞ we have by (7.93) that ωk = Φ∗

k(ωFS) where Φk is defined as in

(7.93) with Hk replaced by H0
(2)(X ,Lk).

7.33. COROLLARY. Assume one of the hypotheses (7.110) or (7.111) holds. Then :
(a) for any compact set K ⊂ X the restriction ωk|K is a smooth (1,1)-form for suffi-

ciently large k; moreover, for any l ∈ N there exists a constant Cl,K such that

∣∣∣1
k

ωk −
√
−1

2π
RL
∣∣∣
C l(K)

6
Cl,K

k
;

(b) the Morse inequalities hold in bidegree (0,0) :

liminf
k−→∞

k−n dimH0
(2)(X ,Lk) >

1
n!

∫

X

(√−1
2π

RL
)n

. (7.118)

In particular, if dimH0
(2)(X ,Lk) < ∞, the manifold (X ,Θ) has finite volume.

PROOF. Due to (7.112), Bk doesn’t vanish on any given compact set K for k sufficiently
large. Thus, (a) is a consequence of (7.112) and (7.117).

Part (b) follows from Fatou’s lemma, applied on X with the measure
Θn/n! to the sequence k−nBk which converges pointwise to (detJL)1/2 =

(√−1
2π RL

)n
/Θn

on X . �

The inequality (7.118) was also obtained in (4.39). Under hypothesis (7.111) it repre-
sents Theorem 4.31.

Another generalization is a version of Theorem 1.21 for covering manifolds. We retain
the notaitons from 7.1.4. It is shown in Corollary 7.14 that the spectrum of the renormalized
Bochner-Laplacian satisfies

Spec ∆̃k,Φ̃ ⊂ [−CL,CL]∪ [2kµ0 −CL,+∞[ , (7.119)

where CL is the same constant as in Section 7.1.1 and µ0 is introduced in (7.5). Let H̃k be
the eigenspace of ∆̃k,Φ̃ with the eigenvalues in [−CL,CL]:

H̃k = RangeE
(
[−CL,CL], ∆̃k,Φ̃

)
, (7.120)

where E( · , ∆̃k,Φ̃) is the spectral measure of ∆̃k,Φ̃. From Corollary 7.14, the von Neumann

dimension of H̃k equals dk = dimHk. Finally, we define the generalized Bergman kernel
P̃q,k of ∆̃k,Φ̃ as in Definition 7.15. Unlike most of the objects on X̃ , P̃q,k is not Γ–invariant.

By (7.119) and the proof of Proposition 7.16, the analogue of (7.52) still holds on any
compact set K ⊂ X̃ . By the finite propagation speed as the end of Section 7.2.1, we have:
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7.34. THEOREM. We fix 0 < ε0 < infx∈X{injectivity radius of x}. For any compact set
K ⊂ X̃ and m, l ∈ N, there exists Cm, l,K > 0 such that for x,x′ ∈ K, p ∈ N,
∣∣∣ 1
kn P̃q,k(x,x

′)−Pq,k(πΓ(x),πΓ(x′))
∣∣∣
C l(K×K)

6 Cm, l,K k−m−1 , if d(x,x′) < ε0,

∣∣∣ 1
kn P̃q,k(x,x

′)
∣∣∣
C l(K×K)

6 Cm, l,K k−m−1 , if d(x,x′) > ε0.

(7.121)

Especially, P̃q,k(x,x) has the same asymptotic expansion as Bq,k(πΓ(x)) in Theorem 1.21
on any compact set K ⊂ X̃ .

7.35. REMARK. Theorem 7.34 works well for coverings of non-compact manifolds.
Let (X , Θ̃) be a complete Kähler manifold, (L̃, h̃L) be a holomorphic line bundle on X and

let πΓ : X̃ → X be a Galois covering of X = X̃/Γ. Let Θ̃ and (L̃,hL̃) be the inverse images
of Θ and (L,hL) through πΓ. If (X ,Θ) and (L,hL) satisfy one of the conditions (7.110) or

(7.111), (X̃,Θ̃) and (L̃,hL̃) have the same properties. We obtain therefore as in (7.118) (by
integrating over a fundamental domain):

7.36. COROLLARY. Assume one of the hypotheses 7.110 or 7.111 holds. Then

liminf
k−→∞

k−n dimΓ H0
(2)(X̃ , L̃k) >

1
n!

∫

X

(√−1
2π

RL
)n

. (7.122)

where dimΓ is the von Neumann dimension of the Γ–module H0
(2)(X ,Lk).

Note that in Theorem 5.16 we obtain Morse inequalities on covering manifolds for
(n,0)–forms.

7.3.6. Singular polarizations. Let X be a compact complex manifold. A singular
Kähler metric on X is a closed, strictly positive (1,1)-current ω .

If the cohomology class of ω in H2(X ,R) is integral, there exists a holomorphic line

bundle (L,hL), endowed with a singular Hermitian metric, such that
√
−1

2π RL = ω in the
sense of currents. We call (L,hL) a singular polarization of ω . If we change the metric hL,
the curvature of the new metric will be in the same cohomology class as ω . In this case we
speak of a polarization of [ω] ∈ H2(X ,R). Our purpose is to define an appropriate notion
of polarized section of Lk, possibly by changing the metric of L, and study the associated
Bergman kernel.

First recall that a Hermitian metric hL is called singular if it is given in local trivial-
ization by functions e−ϕ with ϕ ∈ L1

loc. The curvature current RL of hL is well defined and
given locally by the currents ∂∂ ϕ .

By the approximation theorem of Demailly [20, Theorem 1.1], we can assume that
hL is smooth outside a proper analytic set Σ ⊂ X . Let π : X̃ −→ X be a resolution of
singularities such that π : X̃ r π−1(Σ) −→ X r Σ is biholomorphic and π−1(Σ) is a divisor

with only simple normal crossings. Let gTX̃
0 be an arbitrary smooth J-invariant metric on

X̃ and Θ′(·, ·) = gTX̃
0 (J·, ·) the corresponding (1,1)-from. The generalized Poincaré metric

on X r Σ = X̃ r π−1(Σ) is defined in (4.55) by

Θε0 = Θ′− ε0
√
−1∑

i
∂∂ log(− log‖σi‖2

i )
2 , 0 < ε0 � 1 fixed, (7.123)

where π−1(Σ) = ∪iΣi is the decomposition into irreducible components Σi of π−1(Σ) and
each Σi is non-singular; σi are sections of the associated holomorphic line bundle [Σi] which
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vanish to first order on Σi, and ‖σi‖i is the norm for a smooth Hermitian metric on [Σi] such
that ‖σi‖i < 1.

We can construct as in the proof of Theorem 4.40 (cf. [30, §4]) a singular Hermitian line
bundle (L̃,hL̃) on X̃ which is strictly positive and L̃|X̃rπ−1(Σ)

∼= π∗(Lk0), for some k0 ∈ N.

We introduce on L|XrΣ the metric (hL̃)1/k0 whose curvature extends to a strictly positive
(1,1)–current on X̃ . Set

hL
ε = (hL̃)1/k0 ∏

i
(− log‖σi‖2

i ))
ε , 0 < ε � 1 , (7.124)

H0
(2)(X r Σ,Lk) =

{
u ∈ L0,0

2 (X r Σ,Lk , Θε0 ,hL
ε ) : ∂ Lk

u = 0
}
. (7.125)

The space H0
(2)(X r Σ,Lk) is the space of L2-holomorphic sections relative to the met-

rics Θε0 on X r Σ and hL
ε on L|XrΣ. Since (hL̃)1/k0 is bounded away from zero (having

plurisubharmonic weights), the L2 condition with respect to the Poincaré metric imply that
the elements of H0

(2)(X r Σ,Lk) extend holomorphically to sections of Lk over X . The

subspace H0
(2)(X r Σ,Lk) ⊂ H0(X ,Lk) is the space of polarized sections of Lk.

7.37. COROLLARY. Let (X ,ω) be a compact complex manifold with a singular Kähler
metric with integral cohomology class. Let (L,hL) be a singular polarization of [ω] with
strictly positive curvature current having singular support along a proper analytic set Σ .
Then the Bergman kernel of the space of polarized sections (7.125) has the asymptotic
expansion (7.112).

PROOF. We first remark that by the localization argument in Section 7.2.1, Theorem
7.31 has a noncompact version analogous to Theorem 7.32, provided we can prove the ex-
istence of the spectral gap of the Kodaira-Laplacian 2

Lk
. We will show that this is the case

for the non–Kähler Hermitian manifold (X r Σ,Θε0) equipped with the Hermitian bundle
(L|XrΣ,hL

ε ). By applying the generalized Bochner-Kodaira-Nakano formula of Demailly
[19, Theorem 0.3] as in [6, Theorem 1], we see that the existence of the spectral gap follows
if we show that there exists constants η > 0, C > 0 such that

√
−1R(L|XrΣ,hL

ε ) > ηΘε0 ,
√
−1Rdet > −CΘε0 , |Tε0| < C . (7.126)

where Tε0 = [Θε0,∂Θε0] is the torsion operator of Θε0 and |Tε0| is its norm with respect to
Θε0 . But (7.126) follows from Proposition 4.38. �

7.38. REMARK. (a) Corollary 7.37 gives an alternative proof of the characterization
of Moishezon manifolds given by the Shiffman-Ji-Bonavero Criterion (cf. also Takayama
[30]), discussed in detail in Section 4.5. Indeed, any Moishezon manifold possesses a
strictly positive singular polarization (L,hL). Conversely, Corollary 7.37 entails a weaker
form of Theorem 4.39 where we suppose that the curvature

√
−1RL is positive on the whole

manifold X . As in Section 4.5 this implies Corollarry 4.43.
(b) The results of this section hold also for reduced compact complex spaces X pos-

sessing a holomorphic line bundle L with singular Hermitian metric hL having positive
curvature current. This is just a matter of desingularizing X . As space of polarized sections
we obtain H0

(2)(X r Σ,Lk) where Σ is an analytic set containing the singular set of X . We
obtain thus a new proof of of a particular case of Theorem 4.40.
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14. L. Boutet de Monvel and J. Sj östrand, Sur la singularit́e des noyaux de Bergman et de Szegö, Journ ées:
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APPENDIX A

Elliptic differential operators

The purpose of this Appendix is to collect some basic facts about the theory of differential
operators on manifolds in the form they are used in the text. General references for the subject are
H örmander [6, 8], Narasimhan [10] and Taylor [13, 14].

A.1. Functional spaces

A.1.1. Basic notations. Let M be a differentiable manifold and E be a vector bundle over M.
Let U be an open set of M. We denote by Ω(U,E) the space of smooth sections of E over U . The
correspondence U −→ Ω(U,E) defines a sheaf denoted Ω(E). If E = ΛlT ∗M and F is a vector
bundle over M we set Ω(U,ΛlT ∗M⊗F) = Ωl(U,F). If F is trivial we omit it from the notation.
The space of smooth sections with compact support in U is denoted by Ω0(U,F). Accordingly we
have the notation Ωl

0(U,F). We keep the traditional Ω0(U,C) = C ∞(U) and Ω0
0(U) = C ∞

0 (U).

A.1.2. The canonical measure on a riemannian manifold. Let M be a riemannian mani-
fold, endowed with a riemannian metric g = gTM . There exists a unique positive measure on M
determined by g, vM : C0(M) −→ R so that for any chart (U,x1, . . . ,xn)

∫
ϕ dvM =

∫

Rn
ϕ(x1, . . . ,xn)

√
|det(gi j)|dx1 . . .dxn (A.1)

for all ϕ ∈ C0(M), suppϕ ⊂ U . The assertion is proved as follows. For any chart (U,x1, . . . ,xn)

we define VU,M : C0(U) −→ R by the formula (A.1). The change of variable formula shows that
for another chart (W,y1, . . . ,yn) the functionals vU,M and vW,M are equal on C0(U ∩W). By using a
partition of unity we show the existence of a functional vM on C0(M), whose restriction to C0(U)

is vU,M for any chart (U,x1, . . . ,xn). The uniqueness is clear.
If M is orientable, the canonical measure is given by integration against the volume form

determined by g. This is the unique n-form ω on M such that for any positively oriented chart
(U,x1, . . . ,xn), ω�U=

√
det(gi j)dx1 ∧ . . .∧dxn . In this case we denote ω = dvM .

A.1.3. The L2 spaces. Let E −→ M be a vector bundle, endowed with a hermitian metric. We
introduce a global scalar product by

(α ,β ) =

∫

M
〈α ,β 〉dvM , α ,β ∈ Ω0(M,E). (A.2)

Let L2(M,E) be the completion of Ω0(M,E) under this scalar product. In the case of E =∧∧∧l T ∗M
we denote L2(M,∧∧∧l T ∗M) by Ll

2(M). We also introduce the space L2(M,E, loc) of locally L2-
integrable sections. It is a Fr échet space, with seminorms given by integration on compact sets.

A.1.4. The topology of Ω(M,E) and Ω0(M,E). There exists a unique Frechet space topology
on Ω(M,E) such that the linear one–to–one map Ω(M,E)→∏x∈M Ex is continuous. Moreover, the
functionals f 7→ ‖ f‖K,ν := ∑|α |6ν sup |Dα f |, K compact set in a coordinate chart (U,x1, . . . ,xn), ν ∈
N, form a fundamental system of continuous seminorms.

For a compact set K ⊂M we denote by ΩK(M,E) the subspace of sections with compact support
in K. We endow Ω0(M,E) with the inductive limit topology of the spaces ΩKν (M,E), ν ∈N where
{Kν}ν is an exhaustion with compact sets of M.

169
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A.1.5. Currents on manifolds. Let M be a manifold and E → M a vector bundle. The space
of continuous linear functionals on Ω0(M,E) is denoted by Ω′

0(M,E) and the space of continuous
linear functionals on Ω(M,E) is denoted by Ω′(M,E). Of course, if M is compact, Ω′(M,E) =

Ω′
0(M,E). If M is endowed with a riemannian metric g and E is hermitian, L2(M,E, loc) is embed-

ded in Ω′
0(M,E) by

ϕ 7→ (α ,ϕ) =
∫
〈α ,ϕ〉dvM , ϕ ∈ Ω0(M,E), α ∈ L2(M,E, loc)

If T ∈ Ω′
0(M,E) we can define its restriction T |U ∈ Ω′

0(U,E) to an open set, as well as the multi-
plication with a smooth function. Ω′

0(M,E) is a sheaf of C ∞–modules, where C∞ is the sheaf of
smooth functions on M.

Let (U,x1, . . . ,xn) be a coordinate system such that E|U is trivial. Let (e1, . . . ,er) be a frame in
E|U . If T ∈ Ω′

0(M,E), T |U has a unique representation

T |U = T1e1 + . . .+Trer (A.3)

with distributions Tj ∈ Ω′
0(U). Thus, there exists a sheaf isomorphism

Ω′
0(M,E) ∼= Ω(E)⊗C ∞ Ω′

0(M) ,

where Ω(E) is the sheaf of smooth sections in E . If we denote by Û the image of U in Rn we
define the distributions Tj(x1, . . . ,xn) on Û ⊂ Rn by composing with the chart diffeomorphism. We
identify in this way T |U with a vector of r distributions on Û .

A.1.6. Sobolev spaces. More generally, we need to introduce Sobolev norms on sections of E .
A current T ∈ Ω′

0(M,E) is said to be in the Sobolev space Ws(M,E; loc) if for any coordinate
system (U,x1, . . . ,xn) such that E|U is trivial, the distributions T j(x1, . . . ,xn) ∈Ws(Û , loc), where Tj

are defined by (A.3). The topology on Ws(M,E; loc) is defined by the seminorms

T −→
r

∑
i=1

‖ϕTj(x
1, . . . ,xn)‖s, ϕ ∈ C

∞
0 (M), supp ⊂U

The definition is correct, due to the diffeomorphism invariance of Sobolev spaces, [6, Theorem
2.6.1]. We have then the following result on the regularity properties of Sobolev spaces. Let
Ωk(M,E) represent the space of sections of E of class C k.

A.1. THEOREM (Sobolev embedding). For s > n/2, n = dimM, we have a continuous injection
Ws+k(M,E; loc) ⊂ Ωk(M,E).

We need also the following Sobolev spaces. Let K be a compact set in M. Assume that E is
hermitian. We set

Ws(K,E) = {T ∈Ws(M,E; loc) : supp T ⊂ K}.
If M is a compact manifold, Ws(M,E; loc) = Ws(M,E). The induced topology on Ws(K,E) can
be defined by a hermitian scalar product which makes it a Hilbert space. Let {Uν} be a finite
open covering of K and {ϕν} be a subordinated smooth partition of unity. We assume that Uν are
coordinate charts and E|Uν are trivial. On each Uν we choose an orthonormal frame (eν

1 , . . . ,eν
r ).

We have the representation T |Uν = T ν
1 eν

1 + . . .+T ν
r eν

r , where T ν
j can be thought as distributions on

Ûν ⊂ Rn. We set

‖T‖s =
(
∑
ν

r

∑
j=1

‖ϕνT ν
j ‖2

s

)1/2
.

A.2. RELLICH’S LEMMA ([13, Proposition 4.4]). The inclusion Ws(K,E) ↪→Wt(K,E) is com-
pact for s > t > 0.

Let us define
Ws,0(K,E) = the closure ofΩ0(K,E) inWs(K,E)

If s ∈ Z+, Ws,0(K,E) = Ws(K,E) [13, p. 291]. As before, we set W l
m(M) = Wm(M,∧∧∧l T ∗M).
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A.1.7. Differential operators. We refer to Narasimhan [10] for elementary properties of dif-
ferential operators P : Ω(M,E)−→ Ω(M,F) acting between the (sheaves of) sections of two vector
bundles E , F on M.

Let P : Ω(M,E) −→ Ω(M,F) be a differential operator acting between sections of two hermit-
ian vector bundles. The formal adjoint Pt of P is a differential operator Pt : Ω(M,F) −→ Ω(M,E)

of the same order as P, satisfying

(Pα ,β ) = (α ,Pt β ) , α ∈ Ω0(M,E),β ∈ Ω(M,F).

We use the notation Pt in order to distinguish the formal adjoint Pt from the Hilbert space adjoint
P∗. Note that P is symmetric if and only if P = Pt .

We extend the operator P to an operator

P : Ω′
0(M,E) −→ Ω′

0(M,F)

by setting
Pα(β ) = α(Ptβ ) , α ∈ Ω′

0(M,E),β ∈ Ω(M,F)

If α ∈ L2(M,E), β ∈ L2(M,F), the relation Pα = β in distribution sense means

(β ,ϕ) = (α ,tPϕ) , ϕ ∈ Ω0(M,F).

Let P : Ω(M,E) −→ Ω(M,F) a m–order differential operator. If (e1, . . . ,er) and ( f1, . . . , fq)

are local frames of E|U and F|U over an open set U ⊂ M, any section s ∈ Ω(U,E) can be written
s = ∑sν eν and P has the form

Ps = ∑(Pµ
ν sν) fµ

where Pµ
ν are scalar differential operators. The symbol of P is a form on T ∗

x M whith values in
Hom(Ex,Fx), for each x ∈ M. Let ξ ∈ T ∗M, η ∈ E . If f ∈ C ∞(M), s ∈ Ω(M,E) satisfy d f (x) =

ξ , f (x) = 0, s(x) = η .
We set σP(x,ξ ) : Ex −→Fx, σP(x,ξ )η = 1

m! P( f ms)(x). We have σP◦Q(x,ξ )= σP(x,ξ )◦σQ(x,ξ )

for two operators P an Q.

A.3. DEFINITION. A differential operator P is said to be elliptic if σP(x,ξ ) is injective for all
ξ ∈ T ∗

x M r{0} and x ∈ M.

We introduce the more general notion of elliptic complex. Let M be a riemannian manifold and
E

•
= ⊕n

i=0E i be a graded hermitian vector bundle. Let D : Ω(M,E
•
) −→ Ω(M,E

•
) be a graded

differential operator of order 1 and degree 1 i.e. D : Ω(M,E i) −→ Ω(M,E i+1). We assume that
D2 = 0, that is, we have a complex

0 −→ Ω(M,E0) −→ Ω(M,E1) −→ . . . −→ Ω(M,En) −→ 0 (A.4)

We say that the complex (A.4) is elliptic if

∆ = ∆D = DDt +DtD (A.5)

is an elliptic operator.

A.4. EXAMPLE: THE DE RHAM COMPLEX. Let d : Ωl(M) −→ Ωl+1(M) be the the exterior
derivative (de Rham operator). In this case E

•
= Λ•

T ∗M, D = d. Then σd(x,ξ ) = ξ∧. The formal
adjoint dt is traditionally denoted δ . We have δ : Ωl+1(M) −→ Ωl(M) and σδ (x,ξ ) = iξ . Define
∆ = dδ + δd the Laplace–Beltrami operator. Therefore σ∆(x,ξ ) = |ξ |2 and ∆ is elliptic. It is also
easy to see that the Witten deformation D = dt defined in (2.1) has the same symbol as d and the
Witten laplacian ∆t defined in (2.8) is elliptic.

A.5. EXAMPLE: THE CAUCHY-RIEMANN COMPLEX. Assume M is a complex hermitian ma-
nifold and F is a holomorphic hermitian vector bundle on M. Let ∂ : Ω p,qT ∗M⊗F −→Ωp,q+1T ∗M⊗
F be the Cauchy-Riemann operator so that E

•
= Λp,•T ∗M ⊗F , D = ∂ . Then σ∂ (x,ξ ) = ξ0,1∧

where ξ0,1 is the (0,1)–part of ξ . Let ϑ : Ωp,q(M)−→ Ωp,q−1(M) be the formal adjoint of ∂ . Then
σϑ (x,ξ ) = iξ0,1

.
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We set ∆′′ = ∂ϑ +ϑ∂ . This is the ∂–Laplacian. Its symbol is σ∆′′(x,ξ ) = |ξ0,1|2. Thus ∆′′ are
elliptic.

A.1.8. Regularity.

A.6. GÅRDING’S INEQUALITY ([15, II ,Theorem 8.1]). Let P be an elliptic second order dif-
ferential operator acting on sections of a vector bundle E over a manifold M. For any compact
K ⊂ M there exists a constant C > 0 such that for all u ∈ Ω0(K,E) we have

‖u‖2
1 6 C((Pu,u)+‖u‖2

0). (A.6)

We quote now the regularity theorem [15, III, Corollary 1.5], [12, Corollary 7.1, p.54].

A.7. REGULARITY THEOREM. Let P be an elliptic second order differential operator act-
ing on sections of a vector bundle E over a manifold M. Assume u ∈ Ω′

0(M,E) satisfies Pu ∈
Wm(M,E; loc). Then u ∈ Wm+2(M,E; loc). In particular, P is hypoelliptic, that is Pu ∈ Ω(M,E)

implies u ∈ Ω(M,E).

This is a consequence of the fact that P admits a parametrix (i. e. an inverse modulo smoothing
operators) a pseudodifferential operator of order −2. The same argument leads to the following
variant of the Gårding inequality. For any compact K ⊂ M there exists a constant C > 0 such that
for any u ∈W0(K,E) we have

‖u‖m+2 6 Cm(‖Pu‖m +‖u‖0) . (A.7)

A.2. Selfadjointness

Our aim is to study the L2-cohomology on non-compact spaces by using harmonic and spectral
theory. For this purpose we need to understand the self-adjoint extensions of the Laplace operators.
We encounter two situations:

(i ) M is endowed with a complete metric, e.g. M is compact. Then the Laplace operator is
essentially self-adjoint and there exists only one self-adjoint extension.

(ii ) the metric of M is incomplete, e.g. M has a non-empty boundary. Then there are in general
more then one self-adjoint extension. We will use in this case the Friedrichs extension.

We present the basic definitions and introduce the quadratic forms inA.2.1. The essential self-
adjointness on complete manifolds is proved in A.2.2. In A.2.3 we define the Friedrichs extension
and as particular case we disccuss the Dirichlet and Neumann boundary conditions. For the purpose
of Hodge theory we introduce also a self-adjoint extension called the Gaffney extension in A.2.4.

A.2.1. Basic definitions. Let M be a riemannian manifold and E be a hermitian vector bundle.
Assume now that P : Ω(M,E) −→ Ω(M,E) is an elliptic symmetric differential operator.

In general, at least two possibilities present themselves to extend P as a closed densely defined
operator on L2(M,E). The first choice is to consider the closure P whose graph is the closure of
the graph of P : Ω0(M,E) −→ L2(M,E). This is the minimal extension of P denoted also Pmin. The
second is to consider the maximal extension

Dom(Pmax) = {α ∈ L2(M,E) : Pα ∈ L2(M,E)}
and for α ∈ Dom(Pmax) set Pmaxα = Pα (where Pα is computed in the sense of distributions).
Clearly, Dom(Pmin) ⊂ Dom(Pmax) and Pmax is an extension of Pmin. Let us denote by P∗ the Hilbert
space adjoint of P : Ω0(M,E) −→ L2(M,E). It is easy to see that P∗ = Pmax. If P′ is a self–adjoint
extension of P, we have Pmin ⊂ P′ ⊂ Pmax. P is called essentialy self-adjoint if P = P∗ (equivallently
Pmin = Pmax). We can already prove that elliptic operators are essentially self-adjoint on compact
manifolds.

A.8. THEOREM. Let P : Ω(M,E)−→ Ω(M,E) be an elliptic symmetric operator on a compact
manifold M. Then Pmin = Pmax and P is essentially selfadjoint.
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PROOF. If α ∈Dom(Pmax), the regularity theorem A.7 implies α ∈W2(M,E). Since W2(M,E)⊂
Dom(Pmin), we get Pmin = Pmax. Moreover, it is easy to see that P∗ = Pmax, where P∗ is the Hilbert
space adjoint of P. Thus P = P∗, so P is essentially selfadjoint. �

Therefore P has a unique selfadjoint extension, namely its closure, denoted P : W2(M,E) −→
L2(M,E). If P : Ω(M,E) −→ Ω(M,E) is positive, like ∆, its closure is also positive.

We shall work in general with the quadratic form associated to an operator rather than with the
operator directly. We intoduce here this useful tool. For an exhaustive study of quadratic forms see
[9, Chapter 6], [11, VIII.6] (and historical notes at p. 307), [2, Chapter 4].

Let H be a complex Hilbert space. A quadratic form is a sesquilineare map Q : Dom(Q)×
Dom(Q) −→ C where Dom(Q) is a dense linear subset of H . Q is said semibounded if Q(u,u) >
C‖u‖2 for u ∈ Dom(Q) and positive if Q(u,u) > 0 for u ∈Dom(Q). A semibounded quadratic form
Q : Dom(Q)×Dom(Q)−→C, Dom(Q)⊂H , is called closed if (Dom(Q),‖·‖Q) is complete, where
‖ f‖Q = (Q( f )+‖ f‖2)1/2, f ∈Dom(Q). There exist a basic correspondence between semibounded
closed quadratic forms and semibounded self-adjoint operators which is described as follows. For
the sake of simplicity we may assume that the lower bound is c = 0.

A.9. PROPOSITION. To a positive self-adjoint operator F we associate the quadratic form Q
given by

Dom(QF) = Dom(F1/2)and QF(u,v) = (F1/2u,F1/2v) , u,v ∈ Dom(QF). (A.8)

Then

Dom(F) = {u ∈ Dom(Q) : there exists v ∈ H with

Q(u,w) = (v,w) for allw ∈ Dom(Q)} (A.9)

Conversely, given a positive closed quadratic form Q there exists a positive self–adjoint operator F
such that (A.8) holds i. e. Q = QF . In particular, the domain of F is described by (A.9).

For the proofs we refer to [2, Lemma 4.4.1] and [2, Theorem 4.4.2].

A.2.2. Selfadjointness on complete manifolds. Let D : E (M,E
•
)−→ E (M,E

•
) be an elliptic

complex (A.4). We consider the weak maximal extension

D = Dmax : L2(M,E
•
) −→ L2(M,E

•
) . (A.10)

Dom(D) consists of elements u such that Du calculated in distributional sense is in L2. We obtain
in this way a complex of closed, densely defined operators, i.e. Im(Dmax) ⊂ Ker(Dmax). Since we
mainly work with the operator Dmax, we will drop the subscript and write simply D instead of Dmax.
Let Dt = Dt

max be the maximal extension of the formal adjoint of D and D∗ be the Hilbert-space
adjoint of D.

In order to study the domain of our operators we use the following fundamental lemma of
Andreotti–Vesentini [1, Lemma 4,p. 92–3]. For an operator P the graph-norm is defined by Dom(P)3
u 7−→ ‖u‖+‖Pu‖.

A.10. ANDREOTTI–VESENTINI LEMMA. Assume (M,gT M) is complete. Then Ω0(M,E
•
) is

dense in Dom(D), Dom(Dt), Dom(D)∩Dom(Dt) in the graph norms of D, Dt and D+Dt , respec-
tively.

PROOF. We first reduce the proof to the case of a compactly supported form u. The complete-
ness of the metric ω implies the existence of a sequence {aµ}µ ⊂ C ∞

c (M), such that 0 6 aµ 6 1,
aµ+1 = 1 on supp aµ , |daµ | 6 1/µ for every µ > 1 and {supp aµ}µ exhaust M. To construct this
sequence we first construct an exhaustive function a : M −→ R with |da| < 1. This is done by
smoothing the distance to a point (we can assume that M is connected). Next, consider a smooth
function ρ : R−→ [0,1] such that ρ = 0 on a neighbourhood of (−∞,−2], ρ = 1 on a neighbourhood
of [−1,∞) and 0 6 ρ ′ 6 2. Then aµ = ρ(a/2µ+1) satisfies the conditions above.
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Let u ∈ Dom(D)∩Dom(Dt). Then aµ u ∈ Dom(D)∩Dom(Dt) and

‖D(aµ u)−aµDu‖ = O(1/µ)‖u‖ ,

‖Dt(aµ u)−aµDtu‖ = O(1/µ)‖u‖ .

Hence {aµ u} converges to u in the graph norm. So to prove the assertion we can start with a form
u having compact support in M. But then the approximation in the graph norm follows from the
Friedrichs theorem on the identity of weak and strong derivatives [7, Proposition 1.2.4]:

A.11. FRIEDRICH’S LEMMA. Let P f = ∑ak∂ f/∂xk +b f be a differential operator of order 1
on an open set Ω ⊂ Rn, with coefficients ak ∈ C 1(Ω), b ∈ C 0(Ω). Then for any v ∈ L2(Rn) with
compact support in Ω we have

lim
ε−→0

‖P(v∗ρε)− (Pv)∗ρε‖L2 = 0.

The proof of the Andreotti-Vesentini lemma is achieved. �

As a by-product of Friedrichs lemma we obtain also:

A.12. COROLLARY (Integration by parts). Assume that u ∈ L2(X ,Eq, loc), v ∈ L2(X ,Eq+1, loc)
and Du∈L2(X ,Eq+1, loc), Dtv∈L2(X ,Eq−1, loc). Suppose also that u and v have compact support.
Then (Du,v) = (u,Dt v).

PROOF. We may assume that u,v have support in a trivialization patch diffeomorphic to Rm.
We denote wε = w∗ρε . We have by Friedrichs lemma:

(Du,v) = lim
ε−→0

((Du)ε ,vε) = lim
ε−→0

(Duε ,vε) = lim
ε−→0

(uε ,D
tvε )

= lim
ε−→0

(uε ,(D
t v)ε) = (u,Dt v).

(A.11)

�

A.13. COROLLARY. If M is complete, D∗ = Dt , (Dt)∗ = D.

PROOF. It is clear that from definitions D∗ ⊂ Dt . Conversely if u ∈ Dom(Dt) there exist uµ ∈
Ω0(M,E•) with uµ −→ u , Dtuµ −→ Dtu. Then

(Dw,uµ ) = (w,Dtuµ) , w ∈ Dom(D)

by the definition of D. The limit of this equalities for µ −→ ∞ gives

(Dw,u) = (w,Dtu) , w ∈ Dom(D)

i.e. u ∈ Dom(D∗) and D∗u = Dtu. �

Of utmost importance is the self–adjointness of the laplacian (A.5). For simplicity we denote
∆ = ∆D.

A.14. COROLLARY. ∆ is essentially self–adjoint. The quadratic form associated to its unique
selfadjoint extension is the form Q given by Dom(Q)

.
= Dom(D)∩Dom(D∗) and

Q(u,v)
.
= (Du,Dv)+(D∗u,D∗v) , u,v ∈ Dom(Q) (A.12)

In particular,
Ker∆max = KerD∩KerD∗ (A.13)

PROOF. We will show that ∆max is selfadjoint. Since ∆max = ∆∗ this implies

∆ = ∆∗∗ = (∆max)
∗ = ∆max = ∆∗ ,

which means that ∆ is essentially self-adjoint.
Let u ∈ Dom(∆max). Since ∆ is elliptic we have u ∈ W2(M,E

•
, loc) by Gårding’s inequality.

Thus Dtu,Du ∈ L2(M,E
•
, loc) and by Corollary A.12 we can integrate by parts if u is multiplied
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with a smooth compactly supported function. Let aµ be the family of functions defined in the proof
of the Andreotti-Vesentini lemma A.10. By following [3] we obtain:

‖aµ Du‖2 +‖aµ Dtu‖ = (a2
µ Du,Du)+(u,D(a2

µ Dtu))

= (D(a2
µ)u,Du)+(u,a2

µ DDtu)−2(aµ daµ ∧u,Du)+2(u,aµ daµ ∧Dtu)

= (a2
µ u,∆u)−2(daµ ∧u,aµ Du)+2(u,daµ ∧ (aµDtu))

6 (a2
µ u,∆maxu)+2−µ(2‖aµ Du‖‖u‖+2‖aµ Dtu‖‖u‖)

6 (a2
µ u,∆maxu)+2−µ(‖aµ Du‖2 +‖aµ Dtu‖2 +2‖u‖2).

We get therefore

‖aµ Du‖2 +‖aµ Dtu‖2 6
1

1−2−µ ((a2
µ u,∆maxu)+21−µ‖u‖2).

By letting µ −→∞, we obtain ‖Du‖2 +‖Dtu‖2 6 (u,∆maxu), in particular Du, Dtu are in L2(M,E
•
).

This implies
(u,∆maxv) = (Du,Dv)+(Dtu,Dt v) u,v ∈ Dom∆max, (A.14)

because the equality holds for aµ u and v, and because we have aµ u −→ u, D(aµ u) −→ Du and
Dt(aµ u) −→ Dtu in L2. An analogous calculations show that the right-hand side of (A.14) equals
(∆maxu,v). Thus

(u,∆maxv) = (∆maxu,v) , u,v ∈ Dom(∆max) (A.15)

which means that ∆max ⊂ (∆max)
∗. But ∆max is the maximal extension of ∆ so that ∆max = (∆max)

∗.
�

A.2.3. Friedrichs extension. In general, if M is not complete, the symmetric elliptic operator
P : Ω0(M,E) −→ L2(M,E) is not essentially self–adjoint. In this case, we have to choose one
self–adjoint extension and a particulary useful one is the Friedrichs extension [2, p. 86]. In order to
exhibit the Friedrichs extension we use quadratic forms.

Let P : Dom(P) ⊂ H1 −→ H2 be a positive linear operator, where H1 and H2 are Hilbert spaces.
(A positive operator is also symmetric due to the polarization formula.) The associated quadratic
form QP is defined by

Dom(QP) = Dom(P), QP(u,v) := (Pu,v) , u,v ∈ Dom(QP).

By [2, Theorem 4.4.5] QP is closable, i. e. there exists a positive closed form Q extending QP . Let
us take the smallest closed positive form QP with this property. Note that

Dom(QP) is the completion of Dom(QP) = Dom(P) for the norm‖·‖QP . (A.16)

that is, u ∈Dom(QP) if and only if there exists (uν )⊂ Dom(QP) so that ‖uν −u‖→ 0 and QP(uν −
uµ) → 0 for ν ,µ → ∞. In this case QP(u) = limQP(uν).

A.15. DEFINITION. The positive self-adjoint operator F with QF = QP as defined in (A.9) is
an extension of P, called the Friedrichs extension.

Due to the one–to–one correspondence between closed quadratic forms and self–adjoint oper-
ators, we will practically work only with the the closure QP.

A.16. EXAMPLE: THE DIRICHLET PROBLEM. Assume M is a compact manifold with bound-
ary. Let P : Ω0(M,E) −→ L2(M,E) be a positive elliptic operator. The Friedrichs extension of P is
called the operator P with Dirichlet boundary conditions. If P = ∆ is given by (A.5), its quadratic
form is

Q∆(u,v) = (Du,Dv)+(D∗u,D∗v) , u,v ∈ Ω0(M,E) (A.17)

Arguing as in Proposition A.19 we obtain

DomQ∆ = W1,0(M,E) . (A.18)
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A.17. EXAMPLE: THE ∂ -NEUMANN PROBLEM. Let M be a relatively compact smooth domain
in a complex manifold X and F −→ X be a holomorphic vector bundle. Let M = {x ∈ X : r(x) < 0}
where r is a smooth function on X which has non–vanishing gradient on ∂M. We denote

B0,q(M,F) = {u ∈ Ω0,q(M,F) : ∂ r∧∗u = 0 on ∂M} . (A.19)

Integration by parts ([4, Propositions 1.3.1–2]) shows that

(∂ u,v) = (u,ϑv) for u ∈ Ω0,q(M,F), v ∈ B0,q(M,F) (A.20)

We consider the operator

Dom(P)
.
=
{

u ∈ B0,q(M,F) : ∂u ∈ B0,q+1(M,F)
}

Pu = ∂ϑu+ϑ∂ u , for u ∈ Dom(P) .
(A.21)

which by (A.20) is positive. An extension of the associated form QP is

Dom(Q)
.
= B0,q(M,F) , Q(u,v)

.
= (∂ u,∂v)+(ϑu,ϑv) . (A.22)

It is easy to see that Q is closable and its closure is the form Q with

Dom(Q) =
{

u ∈ L0,q
2 (M,F) : ∃(uµ) ⊂ B0,q(M,F) so that limuµ = u

and (‖∂ uµ‖), (‖ϑuµ‖) are Cauchy sequences
}

Qu = lim
(
‖∂uµ‖2 +‖ϑuµ‖2) , for u ∈ Dom(Q) .

(A.23)

The self-adjoint extension of P given by the Friedrichs method is called the ∂ -Neumann laplacian.

A.2.4. The Gaffney extension. We return to the complex of weak maximal extensions (A.10).
We describe a self-adjoint extension of the D-laplacian which is very convenient for the formulation
of the Hodge decomposition. It was introduced by Gaffney in [5] and it coincides, of course, with
the unique self-adjoint extension in the case of a complete metric and also with the Friedrichs
extension in the case of the ∂ -Neumann problem.

Let D∗ be the Hilbert-space adjoint of D.

A.18. PROPOSITION. Let (M,gT M) be a riemannian manifold and (Ω•
(M),D) be an elliptic

complex. The operator defined by

Dom(∆) := {u ∈ Dom(D)∩Dom(D∗) : Du ∈ Dom(D∗) , D∗u ∈ Dom(D)} ,

∆u = DD∗u+D∗Du for u ∈ Dom(∆) .
(A.24)

is a self-adjoint extension of the D-laplacian, called the Gaffney extension. The quadratic form
associated to ∆ is the form Q given by

Dom(Q) := DomD∩DomD∗

Q(u,v) =(Du,Dv)+(D∗u,D∗v) , u,v ∈ Dom(Q)
(A.25)

PROOF. For a proof of the self-adjointness of ∆ we refer to [5], [4, Proposition 1.3.8]. We
determine now the quadratic form of ∆. First remark that Q is a closed form. Indeed, if {uµ}
is a Cauchy sequence in the norm ‖·‖Q, there exist elements u, α , β aus L2 such that uµ → u,
∂uµ → α , ϑuµ → β . Since ∂uµ → ∂u in distribution sense, α = ∂u and hence ∂ u ∈ L2. Since
uµ ∈ Dom(D∗) we have (Dw,uµ) = (w,D∗uµ) for any w ∈ Dom(D). By passing to the limit we get
(Dw,u) = (w,β ), thus u ∈ Dom(D∗) and D∗u = β .

Let F be the unique self-adjoint, positive operator associated to Q. The domain of F is given
by (A.9). For u ∈ Dom(∆) it is clear that u ∈ Dom(Q) and u satisfies (A.9) with w = ∆u. Therefore
∆ ⊂ F and, since both operators are self-adjoint, F = ∆. �
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Note that by the definition of the Gaffney extension

Ker∆ .
= {u ∈ Dom∆ : ∆u = 0} = KerD∩KerD∗ (A.26)

and call it the space of harmonic elements of L2(M,E
•
).

It is useful to formulate an interior regularity result for elements of the domain of the quadratic
form of an elliptic operator.

A.19. PROPOSITION. The domain of the quadratic form (A.25) satisfies Dom(QP)⊂W1(M,E, loc).

PROOF. Let K ⊂ M be a compact set, ξ ∈ C ∞
0 with ξ = 1 on K. Let u ∈ Dom(Q). It easy

to see that ξ u ∈ Dom(D) and ξ u ∈ Dom(D∗). Without loss of generality, we can replace u by
ξ u and assume thus that u has compact support in M. Let L be a compact which contains supp u
in its interior. By Friedrichs lemma, there exists a sequence (uµ) ⊂ Ω0(M,E) such that uµ −→
u , Duµ −→ Du , D∗uµ −→ D∗u in L2. By Garding’s ineguality A.6 applied to uµ − uν we obtain
that (uµ) is a Cauchy sequence in W1,0(L,E

•
) and therefore u ∈W1,0(L,E

•
). �

A.20. EXAMPLE: THE ∂ -NEUMANN PROBLEM. We describe now the Gaffney extension in
the case of the ∂ -Neumann problem. Let D = ∂ be the weak maximal extension of the Cauchy-
Riemann operator and let ∂ ∗

be its Hilbert-space adjoint. Integration by parts ([4, Propositions
1.3.1–2]) shows that

B0,q(M,F) = Ω0,q(M,F)∩Dom(∂ ∗
) , ∂ ∗

= ϑ on B0,q(M,F) . (A.27)

From (A.27) follows that the restriction to Ω0,q(M,F) of the Gaffney extension (A.24) for D = ∂
is exactly the operator (A.21). Moreover, we have an analogon to the Andreotti-Vesentini lemma
A.10.

A.21. LEMMA ([7, Proposition 1.2.4]). Ω(M,F) is dense in Dom(∂ ) in the graph-norm of ∂
and B0,q(M,F) is dense in Dom(∂ ∗

) and in Dom(∂ )∩Dom(∂ ∗
) in the graph-norms of ∂ ∗

and
∂ +∂

∗
, respectively.

The proof is again based on the Friedrichs lemma A.11, but a more delicate convolution process
in the tangential direction is required.

A.22. PROPOSITION. The ∂ -Neumann laplacian i.e. the Friedrichs extension of (A.21) coin-
cides with the Gaffney extension (A.24) of the ∂ -laplacian.

PROOF. By Proposition A.9, Definition A.15 and Proposition A.18, it suffices to show that
the quadratic forms (A.23) and (A.25) are the same. But this results immediately from Lemma
A.21. �

A.3. Hodge Decomposition

Let (M,gTM) be a riemannian manifold and E
•
= ⊕n

i=0E i be a graded hermitian vector bundle.
Let D : E (M,E

•
) −→ E (M,E

•
) be an elliptic complex and consider the complex of closed, densely

defined, weakly maximal extensions (A.10).
The ordinary L2 cohomology of (A.10) is defined to be

Hq
(2)(M,E)

.
= KerD∩L2(M,Eq)

/
RangeD∩L2(M,Eq) (A.28)

The cohomology H
•
(2)(M,E) is denoted in case of the de Rham complex Example A.4 by

H
•
(2)(M) = H

•
dR,(2)(M), called the L2 de Rham cohomology of M. In case of Example A.5 it is

denoted H p,•
(2) (M,F) and called the L2 Dolbeault cohomology of (M,F).

If we are want the cohomology group to inherit the Hilber-space stucture, we introduce the
reduced L2 cohomology of (A.10), defined to be

H
q
(2)(M,E)

.
= KerD∩L2(M,Eq)

/
[Range D∩L2(M,Eq)] (A.29)
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where [V ] denotes the closure of the space V . We take the closure in order to make sure that
H

q
(2)(M,E) is a Hilbert space.

We link the L2 cohomology to the theory of elliptic operators via the Hodge decomposition for
the Gaffney extension ∆ (A.24) of the Laplace–Beltrami operator. We denote by

H
•
(M,E)

.
= Ker∆ = KerD∩KerD∗ (A.30)

and call it the space of harmonic elements of L2(M,E
•
).

A.23. WEAK HODGE DECOMPOSITION. The following weak Hodge decomposition holds:

L2(M,E
•
) = H

•
(M,E)⊕ [ImD ]⊕ [ImD∗] ,

KerD = H
•
(M,E)⊕ [ImD ] .

In particular we have an isomorphism:

H
q
(2)(M,E) ∼= H

q(M,E) . (A.31)

A general condition for the range of D to be closed and for the finiteness of the L2 cohomology
is as follows.

A.24. PROPOSITION ([7, Theorem 1.1.1-3]). (i) A necessary and sufficient condition for Im (D)∩
L2(M,Eq) and Im(D∗)∩L2(M,Eq) to be closed is that there exists a positive constant C such that

‖u‖2 6 C(‖Du‖2 +‖D∗u‖2), u ∈ DomD∩DomD∗∩L2(M,Eq) , u ⊥ H
q(M,E) (A.32)

(ii)Assume that from every sequence uk ∈ Dom(D)∩Dom(D∗)∩ L2(M,Eq) with ‖uk‖ bounded
and Duk −→ 0 in L2(M,Eq+1), D∗uk −→ 0 in Lq

2(M,Eq−1) one can select a strongly convergent
subsequence. Then both Im(D)∩L2(M,Eq), Im(D∗)∩L2(M,Eq) are closed. Moreover, H q(M,E)

is finite dimensional and Hq
(2)(M,E) ∼= H q(M,E).

Practically we deal with an estimate which will imply the strong Hodge decomposition.

A.25. DEFINITION. We say that the fundamental estimate holds in degree q if there exist a
compact set K ⊂ M and C > 0 such that

‖u‖2 6 C

(
‖Du‖2 +‖D∗u‖2 +

∫

K
|u|2 dvM

)
, u ∈ Dom(D)∩Dom(D∗)∩L2(M,Eq) . (A.33)

If M is hermitian and Eq = Ωp,qT ∗M⊗F, we say that the fundamental estimate holds in bidegree
(p,q).

A.26. THEOREM. Assume that the fundamental estimate holds in degree q.

(i) The operators D on L2(M,Eq−1) and ∆ on L2(M,Eq) have closed range and we have the
strong Hodge decomposition:

L2(M,Eq) = H
q(M,E)⊕ ImDD∗⊕ ImD∗D , (A.34)

KerD∩L2(M,Eq) = H
q(M,E)⊕ ImD∩L2(M,Eq) . (A.35)

(ii) There exists a bounded operator G on L2(M,Eq), called the Green operator, such that
∆G = G∆ = Id−PH , PH G = GPH = 0, where PH is the orthogonal projection on H q.

(iii) If f ∈ Im(D)∩L2(M,Eq), the unique solution u ⊥ KerT ∩L2(M,Eq−1) of the equation
Du = f is given by u = D∗G f .

(iv) The operator G maps L2(M,Eq)∩Ω(M,Eq) into itself.

PROOF. Consider a sequence {uk} ⊂ DomD∩DomD∗∩L2(M,Eq) with {‖uk‖} bounded and
‖D∗uk‖+‖Duk‖ −→ 0, for k −→ ∞.

Let ξ be a smooth, compactly supported function on IntM, such that ξ = 1 on K. Hence

Q(ξ uk,ξ uk)+‖ξ uk‖2 = ‖D(ξ uk)‖2 +‖D∗(ξ uk)‖2 +‖ξ uk‖2 (A.36)
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is also bounded. Let L = supp ξ and consider the Sobolev space W1,0(L,Eq) with norm ‖·‖1. By
A.19, ξ uk ∈W1,0(L,Eq). Gårding’s inequality (A.6) shows that (‖ξ uk‖1) is bounded.

By the Rellich’s Lemma A.2, the inclusion
(
W1,0(L,Eq),‖·‖1

)
↪→
(
L2(M,Eq), ‖·‖

)
is compact.

We can select therefore a convergent subsequence in L2(M,Eq), denoted also {ξ uk}. Since ξ = 1
on K, it follows that {uk|K} converges in ‖·‖. By estimate (A.33), this entails that {uk} converges
in L2(M,Eq).

Proposition A.24 implies that (A.32) holds and H q is finite dimensional. From (A.32) we infer
that

‖ f‖ 6 C‖∆ f‖ , f ∈ Dom∆, f ⊥ Ker∆ . (A.37)

Therefore ∆ has closed range. Since ∆ is self-adjoint we have

L2(M,Eq) = Im∆⊕Ker∆ = Im(DD∗)⊕ Im(D∗D)⊕H
q(M,E) .

By (A.37) there exists a bounded inverse G of ∆ on Im∆. We extend G to L2(M,Eq) by setting
G = 0 on H q(M,E). We obtain thus a bounded operator G on L2(M,Eq), bounded by the constant
C from (A.37), satisfying Ker(G) = H q(M,E) and Im(G) = Im(∆). It is now easy to check that
(i), (ii) and (iii) hold true.

Finally, assertion (iv) follows from Proposition A.7 (the interior regularity for the elliptic oper-
ator ∆). �

Let us say what the previous theory gives if the manifold M is supposed to be compact. Then ∆
is essentially self–adjoint by A.8 or A.14, and the unique self–adjoint extension may be described
as the Gaffney extension. The fundamental estimate (A.33) holds in all degrees (just take K = M).
Theorem A.26 implies that the strong Hodge decomposition holds in all degrees. Since Ω(M,E

•
)⊂

L2(M,E
•
) we can restrict the strong Hodge decomposition to Ω(M,E

•
) we obtain:

Ω(M,E
•
) = H

•
(M,E)⊕DΩ(M,E

•
)⊕DtΩ(M,E

•
)

u = DDtGu+DtDGu+PH u
(A.38)

Note that G and PH map smooth forms to smooth forms.
The cohomology of the complex (A.4) is denoted by H

•
(M,E). From (A.38) it folows that the

map.

H
•
(M,E) −→ H

•
(M,E)

[u] −→ PH u
(A.39)

is an isomorphism. The classical formulation of (A.39) is that each cohomology class contains a
unique harmonic form. We deduce also

H
•
(M,E) ∼= H

•
(M,E) ∼= H

•
(2)(M,E) . (A.40)

We call H
•
(M,E) the de Rham cohomology in the case of the de Rham complex A.4 and the

Dolbeault cohomology in the case of the Cauchy-Riemann complex A.5.

A.4. Spectral properties

The point of extending a differential operator to a selfadjoint one is to study its spectral prop-
erties. Let A be a closed operator on a Hilbert space H . We say that a complex number λ lies in
the resolvent set of A if λ −A is a bijection of Dom(A) onto H with a bounded inverse. Note that
by the closed–graph theorem if λ −A : Dom(A) −→ H is a bijection, the inverse is automatically
bounded.

The spectrum of A, denoted σ(A), is the complement in C of the resolvent set. We shall
study only self–adjoint operators, whose spectrum is always a non–empty set of the real line. Let
E : Bor(R)−→L (H) be a spectral measure, where Bor(R) is the family of Borel sets in R (for the
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definition of a spectral measure, see [11, Vol I, p.263]). If f : R −→ C is a bounded Borel function
we can define the integral ∫

R
f (t)dE(t) ∈ L (H)

using the usual pattern of defining the integral for step–functions first and then writling the integral
of a general bounded Borel function f as the limit of the integrals of a sequence of step–functions,
which converge uniformly to f . If E : Bor(R) −→ L (H) is a spectral measure we can define the
associated scalar measures on R, by setting Bor(R) 3 B −→ (E(B)u,v), for each (u,v) ∈ H ×H .
For any bounded Borel function f : R −→ C we have then

((∫

R
f (t)dE(t)

)
u,v
)

=
∫

R
f (t)d(E(t)u,v)

We have the following fundamental result [11, Theorem VIII.6], [2, Theorem 2.5.5].

A.27. SPECTRAL THEOREM. Each self–adjoint operator A has a unique spectral measure E
such that

Dom(A) =
{

u ∈ H :
∫

R
t2 d(E(t)u,u) < ∞

}

and

Au = lim
k−→∞

(∫

R
χ[−k,k](t)t dE(t)

)
u =:

(∫

R
t dE(t)

)
u , u ∈ Dom(A).

We can actually define the integral of a general Borel function with respect to E and obtain a
Borel functional calculus. Namely, we set

∫

R
f (t)dE(t) := lim

k−→∞

∫

R
χ[−k,k](t) f (t)dE(t)

and define the closed, densely defined operator f (A) by

Dom f (A) =
{

u ∈ H :
∫

| f (t)|2 d(E(t)u,u) < ∞
}

f (A)u = lim
k−→∞

(∫

R
χ[−k,k](t) f (t)dE(t)

)
u

In particular

( f (A)u,v) =
∫

R
f (t)d(E(t)u,v).

Let Q be the quadratic form associated to A. We deduce that

Dom(Q) =
{

u ∈ H :
∫

R
|t|d(E(t)u,u) < ∞

}
,

Q(u,v) =

∫

R
t d(E(t)u,v) , u,v ∈ Dom(Q).

(A.41)

A.28. DEFINITION. Let us define the spectral resolution associated to A by (Eλ )λ∈R where
Eλ = E((−∞,λ ]). When we want to stress the dependence on A we note Eλ (A). We set E (λ ) =

E (λ ,A) := ImEλ (A). The spectrum counting function of A is defined as

N(λ ) := dimImEλ = dimE (λ )

The most important tool for estimating and for comparing the eigenvalues of different operators
is the variational principle or minmax principle. The simplest but very useful form of the variational
principle is the following

A.29. GLAZMAN’S LEMMA. The spectrum conting function of a semibounded self–adjoint
operator A satisfies the variational formula

N(λ ) = sup{dimF : F closed ⊂ Dom(Q) , Q(u,u) 6 λ‖u‖2, ∀u ∈ F} (A.42)

where Q is the quadratic form of A.
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PROOF. Assume that u ∈ ImEλ . For any B ∈ Bor(R)

(E(B)u,u) = (E(B)E((−∞,λ ])u,u) = (E(B∩ (−∞,λ ])u,u)

so formula (A.41) entails

Q(u,u) =
∫ λ

−∞
t d(E(t)u,u) 6 λ (E((−∞,λ ])u,u) = λ‖u‖2

Hence Q(u,u) 6 λ‖u‖2 for all u ∈ ImEλ and N(λ ) does not exceed the right–hand side of (A.42).
Consider a closed linear space F ⊂ Dom(Q) such that Q(u,u) 6 λ‖u‖2 for all u ∈ L. We show that
Eλ : F −→ ImEλ is injective. If u ∈ KerEλ = ImE((λ ,+∞)) we have

Q(u,u) =

∫

(λ ,+∞)
t d(E(t)u,u) > λ (E((λ ,+∞))u,u) = λ‖u‖2

if u 6= 0. Thus any u ∈ F ∩KerEλ must vanish. We infer that dimF 6 dimImEλ = N(λ ). Formula
(A.42) is established. �

Let A be a semibounded self–adjoint operator and let QA be the associated closed quadratic
form. We consider the sequence λ1 6 λ2 6 . . . 6 λ j 6 . . . according to the formula

λ j = inf
F⊂Dom(QA)

sup
f∈F,‖ f ‖=1

QA( f , f ) (A.43)

where F runs through the j–dimensional subspaces of Dom(QA).

A.30. VARIATIONAL PRINCIPLE (compact resolvent case). Assume that the injection (Dom(QA),‖·‖QA) ↪→
(H,‖·‖) is a compact operator. Then A has a discrete spectrum and the numbers λ j satisfy lim j−→∞ λ j =

∞, and coincide with the eigenvalues of A written in increasing order and repeated according to
multiplicity.

In the presence of the essential spectrum the situation is more complicated.

A.31. VARIATIONAL PRINCIPLE. Let us define the bottom of the essential spectrum as infσess(A)

if σess(A) 6= ∅ and +∞ if σess(A) = ∅. Then for each fixed j, either a) there are at least j eigenval-
ues (counted according to multiplicity) below the bottom of the essential spectrum and λ j is the j–th
eigenvalue or b) λ j is the bottom of the essential spectrum, in which case λ j = λ j+1 = λ j+2 = . . .

and there are at most j−1 eigenvalues (countig multiplicity) below λ j.

For the proofs we refer to [11, Vol IV, p.76-78], [2, Cap. 4.5]. Let us mention other alternative
definitions of λj:

λ j = sup
F⊂Dom(QA)

inf
f∈F,‖ f ‖=1

QA( f ) (A.44)

where F runs over the ‖·‖QA –closed ( j− 1)–codimensional subspaces of Dom(QA). Moreover, in
(A.43) we can let F run through j-dimensional subspaces of a care form for QA or through subspaces
of Dom(A) and the value of λ j does not change.

We wish to prove the well-known fact that the essential spectrum is stable under compact per-
turbations. Consider an elliptic complex (A.4) and the corresponding Laplace operator ∆ defined
on a manifold M. Let K ⊂ M be a compact set. We denote also by ∆ and ∆MrK the Friedrichs
extensions of ∆ restricted to Ω0(M,E) and Ω0(M r K,E), respectively.

A.32. PROPOSITION (decomposition principle). In the notation as above, the Laplace–Beltrami
operators ∆ and ∆M\K have the same essential spectrum.

PROOF. If A is a densely defined self–adjoint operator on a Hilbert space, then the essential
spectrum σess(A) may be defined as the set λ ∈ R for which there exists a noncompact sequence
{ fn}n∈N in the domain of A with

‖ fn‖ = 1 for each n ∈ N and lim
n−→∞

‖(A−λ Id) fn‖ = 0.
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Any part of such a sequence, from which it is impossible to extract a convergent subsequence,
is called a characteristic sequence for (A,λ ). Let ϕ be a smooth compactly supported nonnega-
tive function on M which is equal to one on a neighborhood of K. If { fn}n∈N is an orthonormal
characteristic sequence for (∆,λ ) for some λ > 0, then we set gn = f2n − f2n−1 (n > 1). We see
that {gn}n∈N is noncompact and that limn−→∞‖(∆−λ Id)gn‖ = 0. The Rellich lemma implies that
{ϕgn}n∈N is compact, since ϕ is compactly supported. Moreover, by passing to a subsequence of
{ fn}n∈N, if necessary, we may assume that gn −→ 0 in the E–valued first Sobolev space W1(U,E),
where U is a relatively compact neighborhood of the support of ϕ . Then limn−→∞‖(∆M\K −
λ Id)(1−ϕ)gn‖ = 0, and consequently

{g̃n}n∈N with g̃n :=
(1−ϕ)gn

‖(1−ϕ)gn‖M

is a characteristic sequence for (∆M\K ,λ ). So σess(∆)⊂σess(∆M\K). We trivially have σess(∆M\K)⊂
σess(∆). �

We end with some words about elliptic operators on compact manifolds. Let P : W2(M,E) −→
L2(M,E) be a self–adjoint, positive elliptic operator on a compact manifold M.

Consider the operator P + I : W2(M,E) −→ L2(M,E). It is also a selfadjoint operator. Since
‖(P + I)α‖ > ‖α‖ we can easily verify that P + I is injective, has closed and dense range. Thus,
P+ I : W2(M,E)−→ L2(M,E) is a bijective map so there exists (P+ I)−1 : L2(M,E)−→W2(M,E).
Consider i : W2(M,E) −→ L2(M,E) the inclusion. The Rellich theorem says that i is a compact
operator. It follows that

T : i◦ (P+ I)−1 : L2(M,E) −→ L2(M,E)

if a compact operator with ‖T‖ 6 1. Moreover, T = T ∗ since P+ I is selfadjoint. From the spec-
tral theory of selfadjoint compact operators we infer that L2(M,E) has an orthonormal basis {u j}
consisting of eigen functions of T :

Tu j = µ ju j , u j ∈W2(M,E).

such that each µ j appears only finitely many times in the sequence (µj) j . Moreover 0 < µ j 6 1 and
we can order µ j so that µ j ↘ 0 as j → ∞.

We deduce that {u j} is an ONB of eigen vectors for P it self:

Pu j = λ ju j

with λ j = 1
µ j
−1, so λ j > 0, λ j ↗ ∞ as j → ∞. By A.1.8 u j ∈W2(M,E) and the regularity theorem,

we see u j ∈ W4(M,E). Proceeding by induction we get u j ∈ W m
2 (M,E) for all m ∈ N. By the

Sobolev embedding theorem u j ∈ Ω(M,E).

A.33. THEOREM. Let P : W2(M,E) −→ L2(M,E) be a selfadjoint positive elliptic operator of
order 2.

: a) We can find an ONB {uj} j>0 for L2(M,E) of eigenvectors, Pu j = λ ju j

: b) The eigenvectors u j are smooth and lim j→∞ λ j = ∞.

A.34. COROLLARY. P : W2(M,E) −→ L2(M,E) is Fredholm and KerP ⊂ Ω(M,E).

PROOF. We have KerP = E(0) so dimKerP < ∞ and KerP ⊂ Ω(M,E). Moreover R(P) =⊕
λ j>0 E(λ j) is closed and R(P)⊥ = KerP so codimR(P) < ∞. �

We define finally the Green operator. Set G : L2(M,E) −→ L2(M,E) where

Gu j =

{
0 λ j = 0,
1
λ j

λ j > 0
(A.45)

G is bounded and ‖G‖ 6 1/min{λ j|λ j > 0}. We denote H = KerP and PH the orthogonal pro-
jection on H . Thus

PG = I−PH . (A.46)
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APPENDIX B

Elements of analytic and hermitian geometry

B.1. Hermitian geometry

B.1.1. Hermitian metrics on manifolds. Let X be a complex manifold. A hermitian metric
on X is a smooth family hT X = {hT X

x }x∈X , where hT X
x is a hermitian metric on the fiber TxX for each

x ∈ X . Let (z1, . . . ,zn) local coordinates on X . Then hT X has the form

h = ∑h jkdz j ⊗dzk, (hi j) ∈ Mn(C), h jk = h(∂/∂x j ,∂/∂xk) (B.1)

where h jk are smooth functions on the chart domain. The real part gTX = RehT X is therefore a
riemannian metric on X , compatible to the complex structure. The K ähler form ω = − ImhT X is a
real (1,1)-form on X , given in local coordinates by

ω =

√
−1
2 ∑h jkdz j ∧dzk (B.2)

Moreover, the volume form of the riemannian metric gT X satisfies

dvX =
ωn

n!
. (B.3)

B.1. DEFINITION. The metric hT X (or sometimes even gT X ) is called Kähler metric if ω is
d-closed, dω = 0.

Let F → X be a complex vector bundle on X . On each fiber there exists a complex structure, so
we can define, as for TX , a hermitian metric on F as a smooth family hF = {hF

x }x∈X , where hF
x is a

hermitian metric on the fiber Fx for each x ∈ X . For two sections v, w of F over an open set U we
have a function on U defined by the pointwise scalar product:

〈v,w〉(x) := 〈v,w〉hF (x) := 〈v(x),w(x)〉hF
x

= hF
x (v(x),w(x)) . (B.4)

If we (E,hE), (F,hF ) are two hermitian vector bundles, then we define a hermitian metric on E⊗F ,
by hE⊗F := hE ⊗ hF . We are particulary interested in the following particular case. Suppose X is
endowed with a hermitian metric hT X (with real part gT X = RehT X ) and that (F,hF) is a hermitian
vector bundle on X . The bundle Λp,qT ∗X has a hermitian metric hΛp,qT ∗X . The metric on Λp,qT ∗X ⊗
F is then hΛp,qT ∗X ⊗hF .

B.2. NOTATION. The space of smooth sections of Λp,qT ∗X ⊗F over an open set U is denoted
Ωp,q(U,F). An element of this space is called an E-valued (p,q)-form. The sheaf U 7−→Ω p,q(U,F)

is denoted Ωp,q(F). The space of smooth sections of Λp,qT ∗X ⊗F with compact support in open
set U is denoted Ωp,q

0 (U,F).

Let us introduce a global scalar product on Ωp,q
0 (X ,F) by setting

(v,w) =

∫

X
〈v,w〉dVX v,w ∈ Ωp,q

0 (X ,F) . (B.5)

where for simplicity 〈v,w〉= 〈v,w〉hΛp,qT∗X⊗hF and dVX is given by (B.3). The completion of Ωp,q
0 (X ,F)

with respect to (B.5) is denoted Lp,q
2 (X ,F).

We can restate (B.5) in terms of the star operator which we introduce now. First, let us view hF

as an element of HomC(F,F
∗
). Then

〈v,w〉hF = hF(v)(w) = hF(w)(v) . (B.6)

184



B.1. HERMITIAN GEOMETRY 185

We define

#E : Λp,qT ∗X ⊗F −→ Λn−p,n−qT ∗X ⊗F∗

#E(α ⊗ f ) = ∗α ⊗hF( f )
(B.7)

Now, there is a natural duality, denoted ∧, between Λp,qT ∗X ⊗F and Λs,t T ∗X ⊗F∗ given by com-
bining the wedge product with the natural duality F ×F ∗ −→ C:

Λp,qT ∗X ⊗F ×Λs,tT ∗X ⊗F∗ −→ Λp+s,q+t T ∗X

(α ⊗ f ,β ⊗ξ ) 7−→ (α ⊗ f )∧ (β ⊗ξ ) := α ∧β ⊗ξ ( f )
(B.8)

Using (B.8) we obtain

v∧#Ew = 〈v,w〉dVX , v,w ∈ Λp,qT ∗X ⊗F . (B.9)

B.1.2. Local potentials of Kähler metrics and the ∂∂– Lemma. Let (X ,hTX) be a hermitian
manifold, ω = RehTX .

B.3. DEFINITION. A real valued function ϕ : U −→ R, U open set in X , is called an local
potential of the metric hT X , if

√
−1∂∂ ϕ = ω on U .

B.4. LEMMA (∂∂ –Lemma). Let ω be a smooth d–closed (1,1)–form on a manifold X. Then
for each point there exist a neighbourhood U of x and a smooth function ϕ : U −→ R such that√
−1∂∂ϕ = ω on U.

PROOF. (compare [22]). Choose U a ball in a local coordinate system. By the Poincare lemma
we can construct a real 1–form α with dα = ω in U . We decompose α = β +β , with β of bidegree
(1,0). Comparing bi–degrees, we get ∂β = 0, ∂β = 0 and ∂β + ∂β = ω . By Dolbeault lemma,
there exists a smooth function ψ with ∂ψ = β . Hence ∂ψ = β and

ω = ∂β +∂β = ∂∂ψ +∂∂ψ = ∂∂ (ψ −ψ) =
√
−1∂∂ (2Imψ)

We choose ϕ = 2Imψ . �

B.5. COROLLARY. A hermitian metric GTX is Kähler if and only if GTX admits local potentials
in the neighbourhood of each point.

B.1.3. The Current associated to a plurisubharmonic function. Let X be a complex mani-
fold and ϕ ∈ L1(X , loc) be a plurisubharmonic function. Then T =

√
−1∂∂ϕ is a d–closed positive

current on X . If ϕ is strictly plurisubharmonic, T is a strictly positive current.

B.6. LEMMA (∂∂ –Lemma for currents). Let T be a closed positive (1,1)–current. Then for ev-
ery point of X there exists a neighbourhood U of x and a plurisubharmonic function ϕ ∈ L1(U, loc)
such that T =

√
−1∂∂ϕ .

PROOF. We follow the proof of the ∂∂ –lemma for smooth forms. Since the Poincare and Dol-
beault lemmata hold for currents too, we get as before a distribution u on U such that

√
−1∂∂ u = T .

Since T is positive, it follows that u is represented by a function ϕ ∈ L1(U, loc), which is obviously
plurisubharmonic. �

B.7. NOTE. We can replace T with a strictly positive current in the previous statement. The
solution ϕ will be then strictly plurisubharmonic.
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B.1.4. Curvature form. Let F → X be a hermitian holomorphic vector bundle endowed with
the hermitian metric h = hF . There exists a unique connection ∇F compatible with the complex
structure and the hermitian metric, [10, p. 75] [5, p. 304], called the Chern connection .

The curvature operator (∇F)2 is a bundle morphism F −→ Λ1,1T ∗X ⊗F given by the mul-
tiplication with the curvature matrix RF ∈ Ω1,1(End(F)). Since we are concerned only with the
positivity of line bundles we describe the curvature matrix only for this case. If rank F = 1, End(F)

is trivial and RF is canonically identified to a (1,1)–form on X , such that
√
−1RF is real.

Let ϑ : F|U −→ U ×C be a trivialisation of F and let e(x) = ϑ−1(x,1), x ∈ U , be the corre-
sponding holomorphic frame.

The hermitian metric is represented by the smooth function h : U −→ R+, h(x) = |e(x)|2h. It is
useful to denote h = e−ϕ , where ϕ ∈ C ∞(U,R) is called a weight of h.

The curvature has the form

RF = −∂∂ logh = ∂∂ ϕ on U .

This is a global form. If (Uν) is a covering of X such that F |Uν is trivial and eν ∈ Γ(Uν ,F) are
holomorphic frames, we have a cocycle cµν ∈ O∗(Uµ ∩Uν) such that eν = cµνeµ on Uµ ∩Uν .
There fore hν = |cµν |2hµ and since cµν is holomorphic, ∂∂ log hµ = ∂∂ loghν on Uµ ∩Uν .

B.1.5. Bochner-Kodaira-Nakano formula. Let (X ,hT X) be a hermitian manifold and let ω =

RehT X be its K ähler form. Let F → X be a hermitian holomorphic vector bundle endowed with the
hermitian metric h = hL. We define the Lefschetz operator,

ω∧ : Λp,qT ∗X ⊗F −→ Λp+1,q+1T ∗X ⊗F , (B.10)

which is the exterior multiplication with ω , acting trivially on the F-component. It is a bundle
morphism having as adjoint with respect to the fiberwise scalar product the map

Λ : Λp,qT ∗X ⊗F −→ Λp−1,q−1T ∗X ⊗F , Λu = (−1)deg u ∗ω ∧∗u (B.11)

that is, 〈ω ∧ v,w〉 = 〈v,Λw〉 for any elements v ∈ Λp,qT ∗X ⊗F, w ∈ Λp+1,q+1T ∗X ⊗F. Of course,
ω∧ and Λ are also formal adjoints for the integrated scalar product (B.5).

Let ∇F be the Chern connection of F . It can be extended to the sheaf Ω•
(F) by forcing the

Leibniz rule:

∇F : Ω
•
(F) −→ Ω

•+1
(F) , ∇F(α ⊗ s) = dα ⊗ s+(−1)degα α ∧∇Fs (B.12)

for α a form and s a section of F over some open set U of X .
We have a decomposition after bi-degree

∇F = (∇F)′ +(∇F)′′ ,

(∇F)′ : Ω
• ,•

(F) −→Ω
•+1 ,•

(F) , (∇F)′′ : Ω
• ,•

(F) −→ Ω
• ,•+1

(F) .
(B.13)

The fact that F is holomorphic implies that there exist operators

∂ : Ω
• ,•

(F) −→ Ω
•+1 ,•

(F) ∂ : Ω
• ,•

(F) −→ Ω
• ,•+1

(F) .

The Chern connection is characterized by the properties

(∇F)′′ = ∂ , (∇F)′ = (hF)−1 ∂ hF (B.14)

where hF is considered as an element of Hom(F,F
∗
).

We introduce the operators

(∇F)′′∗ = −#F∗ ∂ #F , (∇F)′′∗ : Ω
• ,•

(F) −→ Ω
• ,•−1

(F)

(∇F)′∗ = −∗∂ ∗ , (∇F)′∗ : Ω
• ,•

(F) −→ Ω
•−1,•

(F)
(B.15)
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which are the formal adjoints of (∇F)′′ and (∇F)′:
(
(∇F)′′u,v

)
=(u,(∇F)′′∗v) , u ∈ Ωp,q

0 (F), v ∈ Ωp,q+1
0 (F)

(
(∇F)′u,v

)
=(u,(∇F)′∗v) , u ∈ Ωp,q

0 (F), v ∈ Ωp−1,q
0 (F)

For two graded operators A, B acting on Ω•
(F) we define the graded commutator (or graded

Lie bracket) as
[A,B] = AB+(−1)degA·degBBA . (B.16)

Let us introduce the laplacians

∆′ =[(∇F)′,(∇F)′∗] (B.17a)

∆′′ =[(∇F)′′,(∇F)′′∗] (B.17b)

and the torsion operator
T = [Λ,∂ω ] (B.18)

We have the following generalization of the usual K ähler identities in the presence of torsion. For
the proof we refer to [19], [3] or [5, Ch. VII].

B.8. KÄHLER IDENTITIES. We have the commutation relations

[Λ,(∇F)′′] =−
√
−1
(
(∇F)′∗ +T ∗) (B.19a)

[Λ,(∇F)′] =
√
−1
(
(∇F)′′∗ +T

∗)
(B.19b)

The identities (B.19a), (B.19b) and the Jacobi identity yield:

B.9. BOCHNER-KODAIRA-NAKANO IDENTITY.

∆′′
F = ∆′ +[

√
−1RF ,Λ]+ [(∇F)′,T ∗]− [(∇F)′′,T

∗
] (B.20)

By using repeatedly the Jacobi identity Demailly obtains the following useful reformulation:

B.10. COROLLARY ([3]). The operator ∆′
F,tor := [(∇F)′ + T,(∇F)′∗ + T

∗
] is a positive and

formally selfadjoint operator with the same principal symbol as ∆′
F . Moreover,

∆′′
F = ∆′

F,tor +[
√
−1RF ,Λ]+S (B.21)

where S is an 0-th order operator depending only on the torsion of the metric ω . Namely,

S =

[
Λ,

[
Λ,

√
−1
2

∂∂ω
]]

− [∂ω ,(∂ω)∗] . (B.22)

Combining (B.20) with the inequality of the geometric and arithmetic means and the fact that
(∆′u,u) > 0 we obtain:

B.11. THEOREM (Nakano’s Inequality). For any u ∈ Ωp,q
0 (X ,F),

3
2
(∆′′u,u) >

(
[
√
−1RF ,Λ]u,u

)
− 1

2
(‖Tu‖2 +‖T ∗u‖2 +‖Tu‖2 +‖T

∗
u‖2) (B.23)

Next let us use a form of the Bochner–Kodaira formula introduced by Andreotti–Vesentini
[2] and Griffiths [11]. Let M be a smooth, relatively compact domain in a complex manifold.
Let us assume that there exists hermitian metric on X , K ähler near ∂M, written in local coordi-
nates zα as a smooth positive definite matrix (gαβ ). Let us consider a holomorphic kermitiam
vector bundle (G,hG) in a neighbourhood of M and let RG = ∑θαβ dzα ∧ d z̄β be its curvature,
where θαβ = −∂zα ∂ z̄β log hG. Let θ µ

β be the curvature tensor with the first index raised. Let

u = 1
q ! ∑uλ1 ...λq

d z̄λ1 ∧ ·· · ∧ d z̄λq ⊗ f be a G–valued (0,q)–form on X . We define the (0,q)–form

RGu = 1
q ! ∑θ µ

λ1
uµ λ2 ...λq

d z̄λ1 ∧ ·· ·∧d z̄λq ⊗ f .
We define next the Levi operator (see [11, p.418]). First let us remark that we can choose a Γ–

invariant defining function r for M such that |∂ r| = 1 in a neighbourhood of ∂M, with respect to the
hermitian metric on X . Let us pick, near a boundary point of M, an orthonormal frame ω 1, . . . ,ωn
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for the bundle of (1,0)–forms, such that ωn = ∂ r. We have ∂∂ r =−∂ωn = ∑ lαβ ω α ∧ω β , (1 6
α ,β 6 n) .

B.12. DEFINITION. The Levi form of ∂M is the restriction of ∂∂ r to the holomorphic tangent
bundle of ∂M; it is given in the dual frame of ω 1, . . . ,ωn−1 by the matrix (lαβ )16α ,β6n−1. M is
pseudoconvex if the Levi form is everywhere positive semi–definite.

For a (0,q)–form written locally u = 1
q ! ∑uα1 ...βq

ω α1 ∧·· ·∧ω αq ⊗ f where f is an orthonormal
frame in G, we set

L (u,u) = 1
(q−1)! ∑ lαβ uα β1 ...βq−1

uβ β1 ...βq−1
(1 6 α ,β 6 n) .

The form u∈B0,q(M,G) if and only if uα1 ...αq = 0 for n∈{α1, . . . ,αq}. Therefore for u∈B0,q(M,G)

the summation restricts over 1 6 α ,β 6 n−1 and

L (u,u) = 1
(q−1)! ∑ lαβ uα β1 ...βq−1

uβ β1 ...βq−1
> 0 . (B.24)

Finally, let ∇ denote the covariant derivative in the (0,1)–direction.

B.13. LEMMA. Assume that the Γ–invariant metric on X is Kähler in a Γ–invariant neighbour-
hood U of ∂M. Then for any u ∈ B0,q(M,G) with support in U we have

Q(u,u) =
∥∥∇u

∥∥2
+
(
RGu,u

)
+
(

Ricu,u
)
+

∫

∂M
L (u,u)dS (B.25)

PROOF. This formula was given by Griffiths [11, p. 429, (7.14)]. � �

B.2. Positivity concepts

B.2.1. Plurisubharmonic functions.

B.14. DEFINITION. A function ϕ : U −→ R on a complex manifold is called strictly plurisub-
harmonic if

∂∂ϕ(u,u) > 0, u ∈ T 1,0X r{0}. (B.26)

ϕ is called plurisubharmonic if we have just > in (B.26).

B.2.2. Positive forms. We define here the notion of positivity for (1,1)–forms. For a thorough
discussion see [5, III.1].

B.15. DEFINITION AND THEOREM (Strictly positive form). Let α be a real (1,1)–form on the
complex manifold U . Then the following assertions are equivalent:

(i ) For all u ∈ T 1,0U r{0} we have α(u,u) > 0 ,
(ii ) If α has the local form α =

√
−1∑αµν(z)dzµ ∧ dzν , the hermitian matrix (αµν(z)) is

positive definite for all z.
(iii ) α is the K ähler form of a hermitian metric on TU .

If they are satisfied, α is called strictly positive.

Let ϕ : U −→ R is smooth. Then ϕ is strictly plurisubharmonic if and only if
√
−1∂∂ ϕ is

strictly positive.

B.16. DEFINITION AND THEOREM (Positive form). Let α be a real (1,1)–form on the complex
manifold U . Then the following assertions are equivalent:

(i ) For all u ∈ T 1,0U r{0} we have α(u,u) > 0 ,
(ii ) If α has the local form α =

√
−1∑αµν(z)dzµ ∧ dzν , the hermitian matrix (αµν(z)) is

positive semi-definite for all z.

If they are satisfied, α is called positive.
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B.2.3. Positive line bundles. We introduce the important notion of positive line bundles. Some
observations are in order. We use a differential-geometric notion of positivity, which goes back to
Kodaira. Thus one could speak about Kodaira-positivity. Since this is our primary definition we say
simply “positive line bundle” instead of “positive line bundle in the sense of Kodaira”.

There are many notions of positivity. On the differential-geometric side we have the Nakano
and Griffiths positivity. On the function-theoretical side, we have the approach of Grauert, which
we’ll describe below. And we have also the algebraic-geometric concept of ampleness of Grothen-
dieck and Hartshorne. We refer the reader to [22, 5, 12]. All this notions are equivalent for line
bundles over complex manifolds.

B.17. DEFINITION (Positive line bundle). The hermitian line bundle L is called positive if the
real (1,1)–form

√
−1Θ(L,h) is strictly positive. This is equivalent to saying that the local weights ϕ

of the curvature form
√
−1Θ(L,h) are strictly plurisubharmonic. We say that L is semi–positive, if√

−1Θ(L,h) is a positive form. This is equivalent to saying that the local weights ϕ of the curvature
form

√
−1Θ(L,h) plurisubharmonic.

B.18. THEOREM (Kodaira). A line bundle is positive if only if the image of its Chern class
c1(L) ∈ H2(X ,Z) in H2(X ,R) is represented by a positive (1,1)– form.

One direction is simple, since
√
−1

2π RL represents in H2(X ,R) the de Rham class of the image of
c1(L) trough the inclusion Z→R. For the other direction, one has to construct the hermitian metric
hL, see [5, p. 308], [10, p. 148], [17]

B.2.4. Projective algebraic spaces. We call a compact complex space X projective algebraic,
if there exists a holomorphic embedding ψ : X −→ PN . This means that X is biholomorphic to
a compact analytic subset A ⊂ PN . By a theorem of Chow, A is an algebraic variety so X has a
natural algebraic structure. Let X be a projective compact manifold, ψ : X −→ PN . Then the pull–
back ψ∗O(1) of hyperplane is positive. Kodaira established that this property characterises the
projective manifolds.

B.19. THEOREM. Let X be a compact manifold and L → X be a positive line bundle. Then for
large k the maps Φk : X −→ PH0(X ,Lk)∗ are embeddings. Thus, X is projective if and only if it
admits a positive line bundle.

B.2.5. Positive bundles on complex spaces. We define now the positivity notion for complex
spaces. There exists a classical definition of Grauert, which will be decribed below. However, since
we use methods of potential theory, we formulate our definitions in terms of curvature. We need
first to extend the notions of line bundle, hermitian metric to complex spaces.

B.20. DEFINITION. Let X be a complex space. A function ϕ : X −→ R is said to be strictly
plurisubharmonic if for any point x ∈ X there exists a local chart τ : U −→ Û ⊂ CN of X , x ∈ U ,
and a strictly plurisubharmonic function ϕ̂ ∈ C ∞(Û ,R) such that ϕ |U = ϕ̂ ◦ τ .

In a similar manner we define the notion of function of class Ck. These definitions do not
depend on the choice of local chart [9, p. 335].

B.21. DEFINITION. A line bundle L over a complex space X is a complex space together with
a holomorphic map π : L −→ X which satisfy the local triviality axiom: for any point x ∈ X there
exists an open set U 3 x and a biholomorphic map ϕU : L|U −→U ×C which is linear on the fibers.

Let τ : U ↪→ Û ⊂ CN be a local chart of X such that L|U is trivial.We obtain then a local chart
on L by setting

τL : L|U −→U ×C −→ Û ×C (B.27)

B.22. DEFINITION. Let L → X be a line bundle. A hermitian metric h on L is a system of
hermitian products {hx}x∈X on the fibers of L which varies smoothly with x ∈ X . This means that
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there exists a covering of L with local charts τ : L|U −→ Û ×C as in (B.27), and smooth hermitian
metrics on Û ×C such that h|L|U = ĥ◦ τ .

As before, the definition is independent on the choice of local charts. We can describe the
hermitian metric in terms of a cocycle.

Exactly as in the case of line bundles over manifolds, a line bundle can be defined by a cocycle.
Let {Uν} be a covering such that L|Uν is trivial and let eν : Uν −→ L be holomorphic frames. Then
there exist holomorphic functions cµν : Uµ ∩Uν −→ C∗ such that cµ = cµνeν . The system (cµν)

forms a cocycle which defines L.
In this language, a hermitian metric is a system hν : Uν −→ R∗

+ of positive smooth functions
such that hµ = |cµν |2hν . This follows by setting hµ := |eµ |2h

B.23. DEFINITION. The hermitian holomorphic line bundle (L,hL) is called positive if − loghν
is a strictly plurisubharmonic function on Uν for all ν .

By the observation after Definition B.17 this is equivalent to the definition we gave if X were
a manifold. Note that the locally defined (1,1)–forms −

√
−1∂∂ loghν patch together and give a

globally defined smooth (1,1)–form
√
−1RL on Xreg.

For the moment we want to make the connection with the definition of Grauert. Let (L,hL) be a
hermitian holomorphic line bundle over the complex space X . The dual line bundle L∗ is described
by the cocycle (g−1

µν), where (gµν), gµν ∈ O∗(Uµ ∩Uν) is the cocycle of L. The hermitian metric
hL induces a hermitian metric hL∗

on L∗, given locally by the system (h−1
ν ), if hL is represented by

(hν). We define ρ : L∗ −→ C, ρ(v) = |v|2
hL∗ . Then ρ : L∗|Uν −→ C has the form ρ(v) = |we∗ν |h∗ =

|w|2h−1
ν , for v = we∗ν , with e∗ν the dual of eν . It follows logρ(v) = log |w|2 − loghν . Since the

function C 3 w → log |w| is strictly plurisubharmonic if follows that logρ is smooth and strictly
plurisubharmonic on L∗ r{zero section} if L is positive. Let us denote by

T = {v ∈ L∗ : |v|hL∗ < 1} (B.28)

T is called the Grauert tube of L∗. We introduce now the notion of pseudoconvexity adapted to the
general situation of complex spaces. In the case of manifolds see Definition B.34.

B.24. DEFINITION. Let G be an open set in a copmplex space. G is called strictly pseudocon-
vex, if for any boundary point x ∈ ∂G we can find a neighbourhood U an a strictly plurisubharmonic
ϕ : U −→ R such that U ∩G = {x ∈U : ϕ(x) < 0}.

We deduce the following

B.25. PROPOSITION. If (L,hL) is positive, the Grauert tube T ⊂ L∗ is strongly pseudoconvex.

PROOF. Indeed, we write T = {v ∈ L∗ : logρ(v) < 0} and use that logρ is strictly plurisubhar-
monic on L∗ r{zero section}. �

If X is a manifold, the converse is also true as shown in [9, Satz. 62,p. 341]

B.26. DEFINITION. A line bundle E over a complex space X is called Grauert– negative if
the zero section of E has a strongly pseudoconvex neighbourhood V ⊂ E . The bundle E is called
Grauert–positive if E∗ is Grauert–negative.

We used here [9, Def 1,p. 342], where general vector bundles are considered. The terminology
of Grauert is ”weakly negative (positive)”. We can therefore reformulate the Proposition B.25.

B.27. COROLLARY. If (L,h) is positive, L is Grauert–positive.

We quote now Grauert’s generalization of Kodaira’s embedding theorem.

B.28. THEOREM (Grauert). A compact complex space X is projective algebraic if and only if it
carries a Grauert–positive bundle.
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B.3. Differential forms and currents on complex spaces

In this paragraph, we let X be an n–dimensional paracompact complex space.
We follow the definition of smooth differential forms and currents by Fujiki [7]. The sheaf Ωr

(resp. Ωp,q) of germs of C ∞–r–forms (resp. C∞–(p,q)– forms) with direct sum decomposition
Ωr =⊕p+q=rΩp,q and the differentials d : Ωr −→ Ωr+1 (resp. ∂ : Ωp,q −→ Ωp+1,q and ∂ : Ωp,q −→
Ωp,q+1) with d = ∂ +∂ is locally defined as follows and globally defined by gluing them.

When X is a subspace of a domain V in Cl = Cl(z1, . . . ,zl) with the ideal sheaf I = IX . We
define Ω = E0

X by Ω = EV /(I +I )EV , where I = { f ; f ∈I }, f being the complex conjugate of
f . Next define the EV –submodule Ω̃X of E 1

V by

Ω̃X = ∑I EV dzα +∑I EV dzβ +EV dI +EV dI ,

where EV dI = {∑hν dgν ;hν ∈ EV andgν ∈ I } and similary for EV dI . Then put

Ωr = E
r

V /(Ω̃X ∧Ωr−1)

for r > 1. These naturally form as Ω–graded algebra E
•

Y . Further, define the EV –submodules
Ωp,q(p+q = r) of Ωr by E

p,q
X ,x = {ψ ∈ E r

X ,x; there exists a ψ̃ ∈ E
p,q

V,x inducing ψ}. Then is immediate
to see that we have a direct sum decomposition Ωr = ⊕p+q=rΩp,q. Moreover, the usual differential
d (resp. ∂ and ∂ ) on E r

V (resp. E
p,q

V ) induces the one on Ωr (resp. Ωp,q) with d = ∂ +∂ . On the other
hand, the natural complex conjugation on E r

V induces a C–antilinear involution on Ωr. In particular,
we can define the real form on X as those left fixed by this involution. Morphisms of complex
spaces f : X −→ Y and g : Y −→ Z induce a natural pull–back homomorphism f ∗ : E

•
Y −→ E

•
X and

satisfy f ∗ ◦g∗ = (g◦ f )∗.
We let Ωr

0(X) denote the space of smooth r–forms on X with compact support endowed with
C ∞–topology.

We define the space Ωr(X)′ of r–currents on X as the vector space of complex–valued contiuous
linear functionals on Ω2n−r

0 (X) with the C ∞–topology. The differential d : Ωr(X)′ −→ Ωr+1(X)′

is defined by dT (ϕ) = (−1)r+1T (dϕ) for T ∈ Ωr(X)′ and ϕ ∈ Ω2n−r−1
0 (X). By gluing them,

we can define the sheaf Ωr′ of germs of r–currents on X and d : Ωr′ −→ Ωr+1′. We also denote
by Ωp,q

0 (X) the space of smooth (p,q)–forms on X with compact support. The C ∞–topology of
Ωp,q

0 (X), the space Ωp,q(X)′ of (p,q)–currents, the sheaves Ωp,q′ and ∂ : Ωp,q(X)′ −→ Ωp+1,q(X)′,
∂ : Ωp,q′ −→ Ωp+1,q′, ∂ : Ωp,q(X)′ −→ Ωp,q+1(X)′, ∂ : Ωp,q′ −→ Ωp,q+1′ with d = ∂ + ∂ are also
defined as above and as in the case of usual complex manifolds.

By the discussion above we get complexes of sheaves on X :

(Ω•,d) : Ω0 −→ Ω1 −→ Ω2 −→ ·· ·
and

(Ω•′,d) : Ω0′ −→ Ω1′ −→ Ω2′ −→ ·· ·
Note that the sheaves Ωr and Ωr ′, (r > 0) are fine, but in general, (Ω•,d) and (Ω•′,d) are not
resolutions of C (or R) on X . There are natural homomorphismus of complexes of sheaves

Z −→ R −→ C −→ (Ω•,d) −→ (Ω•′,d)

which induce homomorphisms of hypercohomology groups

H∗(X ,Z) −→ H∗(X ,R) −→ H∗(X ,Ω•) −→ H∗(X ,Ω•′). (B.29)

By the fineness of Ωr and Ωr ′ (r > 0), the canonical edge homomorphisms H ∗(Γ(X ,Ω•)) −→
H∗(X ,Ω•) and H∗(Γ(X ,Ω•′)) −→ H∗(X ,Ω•′) are isomorphisms.

The singular support of a current T ∈ Ωp,q′ is defined as the smallest subset S of X such that T
is a smooth form on X r S.

A real C ∞–(p, p)–form ξ on X is strictly positive (resp. semipositive) if there exists an open
covering U = {Uα} of X with, for each α , an embedding jα : Uα −→Vα of Uα into a subdomain
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Vα in Clα and a C ∞ strictly positive (resp. semipositive) (p, p)–form ξα on Vα in the usual sense
such that j∗α ξα = ξ |Uα .

A (p, p)–current T is real if T = T in the sense that T (ϕ) = T (ϕ) for all ϕ ∈ Ωn−p,n−p
0 (X), and

a real current T is positive when (
√
−1)p2

T (ψ ∧ψ) > 0 for all ψ ∈ Ωn−p,0
0 (X).

A real (p, p)–current T on X is strictly positive if there exists a strictly positive C ∞–(p, p)–form
ω p on X such that T −ω p is a positive current on X . T is said to be strictly positive at a point x ∈ X
if there exists a neighbourhood U of x such that T |U ia a strictly positive current on U .

A real (1,1)–current ω on X is said to be a Kähler current (cf. [16]) if it is d–closed and strictly
positive on X . A d–closed (1,1)–current or a d–closed C∞–(1,1)–form is said to be integral if its
hypercohomology class is in the image of H 2(X ,Z) under the map in (B.29).

Let π : L −→ X be a holomorphic line bundle over X . A singular Hermitian metric hL on L
is a map hL : L −→ [−∞,+∞] which is given in any local trivialization τ : π−1(U) −→ U ×C by
hL(v) = |τ(v)|e−ψU (π(v)) for v∈ π−1(U), where ψU ∈ L1(U, loc). The curvature current of (L,hL) is
the d–closed (1,1)–current

√
−1RL) given by

√
−1RL) =

√
−1∂∂ ψU on U , which is independent

of the choice of the local trivialisation.

B.4. Pseudoconvex and pseudoconcave manifolds

Manifolds satisfying convexity conditions are very important in complex analysis. This point
will be made clear in the sequel. Let us just mention at the outset that domains of holomorphy in Cn

(natural domains of existence of holomorphic functions) are characterized by the pseudoconvexity
property. Convexity in complex analysis is introduced imposing conditions on the complex hessian
of an exhaustion function. These functions can be viewed as Morse functions in the complex setting.
They permit the use of the powerful methods of cohomology theory and the main applications are:
finiteness, vanishing and isomorphism theorems, extension of analytic objects, algebraicity of the
meromorphic function field, filling of holes of complex manifolds and many others.

B.4.1. Basic notions. We review first the basic facts about analytic convexity. Let U be an
open subset of Cn and ϕ : U −→ R be a smooth function. Assume for simplicity that 0 ∈ U and
consider the Taylor expansion of ϕ at 0:

ϕ(z) = ϕ(0)+2Re
[ n

∑
j=1

∂ϕ
∂ z j

(0)z j +
n

∑
j,k=1

∂ 2ϕ
∂ z j∂ zk

(0)z jzk
]
+

n

∑
j,k=1

∂ 2ϕ
∂ z j∂ zk

(0)z jzk +O(|z|3)

The quadratic form

L
(0)

ϕ (v,v) = ∂∂ϕ(0)(v,v) =
n

∑
j,k=1

∂ 2ϕ
∂ z j∂ zk

(0)v jvk

is called the Levi form of ϕ at 0. A biholomorphic change of variables near 0 acts on Lϕ(0) by
a linear change of variables given by the Jacobi metrix of the transformation. This implies that
the numbers of positive and negative eigenvalues of the Levi form at a point do not depend on the
choice of local coordinates.

Let us introduce the notion of convexity due to Andreotti–Grauert [1].

B.29. DEFINITION. (i) A manifold X of complex dimension n is called q–convex (1 6 q 6 n)

if there exists a smooth function ϕ : X −→ [a,b) , a ∈R , b ∈R∪{+∞} such that Xc = {ϕ < c} b X
for all c ∈ [a,b) and the Levi form ∂∂ϕ has at least n−q+1 positive eigenvalues outside a compact
set K.

(ii) A manifold X is called q–complete if it is q–convex with K = ∅.
(iii) A manifold X of complex dimension n is called q–concave (1 6 q 6 n) if there exists

a smooth functions ϕ : X −→ (a,b] , a ∈ R∪ {−∞} , b ∈ R such that Xc = {ϕ > c} b X for all
c ∈ (a,b] and ∂∂ ϕ has at least n−q+1 positive eigenvalues outside a compact set.

B.30. EXAMPLE. A manifold is 1–complete if it admits a strictly plurisubharmonic exhaustion
function. Recall the following.
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B.31. DEFINITION. A complex manifold is called Stein, if the the global holomorphic functions
(α) separate points, (β ) give local holomorphic coordinates everywhere and (γ) blow up on any
disctrete sequence (holomorphic convexity).

It is easy to see that a Stein manifold is 1–complete. The problem whether the converse is true
was known as the Levi problem on complex manifolds. It was solved affirmatively by Hans Grauert
[8].

B.32. THEOREM. A manifold is Stein if and only if it admits a strictly plurisubharmonic ex-
haustion function.

Grauert’s proof uses the so called bumping lemma. Further proofs are based on existence
theorems for the ∂–equations are due to H örmander [15], Kohn [6], Demailly [4]

The analytic convexity of a manifold is determined by the behaviour of the Levi form of an
exhaustion function on the analytic tangent space of sublevel sets. Let D be a relatively compact
domain with smooth boundary in a complex manifold X . Let ρ ∈ C ∞(U) defined on an open
neighbourhood U of D such that D = {x ∈ X : ρ(x) < 0} and dρ 6= 0 on ∂D. We say that ρ is a
defining function of D. The analytic tangent space to ∂D at x ∈ ∂D is given by T1,0(∂D) = {v ∈
T 1,0(X) : ∂ρ(n) = 0}. The definition does not depend on the choice of ρ .

B.33. LEMMA. The number of positive and negative eigenvalues of the Levi form restricted to
the analytic tangent plane is independent of the chice of local holomorphic coordinates and defining
function at a point x.

For the proof we refer to [21].

B.34. DEFINITION. The domain D is called strongly pseudoconvex if the Levi form restricted
to the analytic tangent space is positive definite. D is called (weakly) pseudoconvex if the Levi form
restricted to the analytic tangent space is positive semi-definite.

B.35. EXAMPLE. Let X be a compact manifold and let (L,hL) −→ X be a positive line bundle.
We consider the Grauert tube (B.28) T = {v ∈ L∗ : |v|hL∗ < 1} . If we denote by ρ = |v|2

hL∗ −1 then

∂∂ρ |T 1,0(∂T ) = π∗(RL)|T 1,0(∂T ) where π : T −→ X is the projection. Thus ∂∂ ρ is positive definite
on the analytic tangential space. Then T is a strictly pseudoconvex domain called the Grauert tube.

Assume that D is strongly pseudoconvex. By replacing ρ with eAp−1 for A� 1, we can achieve
that the defining function has positive Levi form on the whole tangent space T1,0

x (X) , x ∈ ∂D and
therefore we can assume that ρ is strictly plurisubharmonic in a neigbourhood of ∂D. It follows that
D is a 1–convex manifold. Indeed, the function ϕ : D −→ R , ϕ = 1

ρ2 is strictly plurisubharmonic
exhaustion function. Conversely, the smooth sublevel sets of a 1-convex manifold are strongly
pseudoconvex.

An important related notion which is also very natural is the following.

B.36. DEFINITION. A manifold X is called weakly 1-complete or weakly pseudoconvex if there
exist a plurisubharmonic exhaustion function.

The notion was introduced by S. Nakano [18] in order to solve the problem of the inverse of the
monoidal transformation. Any 1-convex (and therefore any compact or Stein) manifold is weakly
1-complete. A proper modifications of a weakly 1-complete manifold is again weakly 1-complete.
In particular a holomorphically complete manifold is weakly 1-complete.

It follows immediately from definitions that if X is q–convex (q–concave), Xc is q–convex (q–
concave) for c such that the exceptional set is contained in Xc. If X is q–convex, we can choose
b = +∞ and ϕ to be an exhaustion function. This is achieved by composing ϕ with a convex rapidly
function λ : [a,b) −→ R, for example λ (t) = 1

(t−b)2 , and use Remark(*). This is not true for the
q–concave case, that us we cannot always choose ϕ to be an exhaustion function from below. The
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complex manifold P1 rS1, where S1 is the unit circle in C canonically embedded, is 1–concave but
we cannot take Q = −∞ in the definition. If this were the case, the function ϕ would be strictly
plurisubharmonic in a neighbourhood of S1 and S1 = {ϕ = −∞} i.e. S1 would be pluripolar. But
this is a contradiction. 1–concave manifolds for which a = −∞ are called hyperconcave and will be
studied in the sequel.

B.37. EXAMPLE. Let X be a compact complex space with isolated singularities. Then Xreg

is 1–concave and actually hyperconcave. If p ∈ Xsing we consider a local chart τ : U ↪→ CN , p ∈
U , τ(p) = 0. Let ϕp : U r{p} −→ R , ϕp(x) = log |τ(x)|2 which is the pullback of the s plurisub-
harmonic function log |z|2 to U r {p}. Note that ϕp(x) −→ −∞ as x −→ p. By patching togheter
the functions ϕp with the help of a partition of unity we obtain a function ϕ : Xreg −→ (−∞,b] such
that {ϕ > c} b Xreg for all c 6 b and ϕ is strictly plurisubharmonic outside a compact set of Xreg.

B.38. EXAMPLE. More generally, let X be a compact complex space and let Z be a an analytic
subset containing Xsing. If dimZ = q, then X r Z is (q+1)–concave [20].

B.39. EXAMPLE. Let (E,hE) be a holomorphic hermitian vector bundle of rank r over a com-
pact manifold X of dimension n. Assume that Θ(E,hE) has signature (s, t) i.e. for any e ∈ E , e 6= 0
the hermitian form 〈

√
−1(E,hE)e,e〉 on T 1,0 has s positive and t negative eigenvalues. Let us define

consider the function ϕ : E −→ R , ϕ(v) = |v|2hE . The Levi form ∂∂ϕ restricted to the analytic tan-
gent space T 1,0(∂Ec), where Ec = {v ∈ E : ϕ(v) < c} (c > 0), has t + r−1 positive and s negative
eigenvalues. ([1, 23], [10, p .426]). Replacing ϕ with eAϕ , A � 1, we can gain one more positive
eigenvalue in the exterior normal direction to the sublevel sets on any compact set. It follows that
Ec is (n− t +1)–convex. In particular, if E is negative in the sense of Griffiths i.e. t = n then Ec is
1–convex for c > 0. If, on the contrary E is Griffiths positive i.e. s = n , t = 0, Ec is (r+1)–concave.

B.40. EXAMPLE. Let Z be a hypersurface of a compact manifold X and let NZ be the normal
bundle of Z in X . Assume that NZ is endowed with a hermitian metric such that

√
−1Θ(NZ) has

signature (s, t), where s + t = dimZ = n. By the previous example, for each c > 0, the subset
(NZ)c = {v ∈ NZ : |v|hNZ < c} is (n− t + 1)–convex and (n− s + 2)– concave. Let ψ : NZ −→ R
such that ψ is a defining function of (NZ)c and ∂∂ψ has (t +1) positive and s negative eigenvalues
in a neighbourhood of ∂ (NZ)c. One can extend ψ to a function on L = [Z]. Moreover, by considering
the canonical section σ ∈ H0(X , [Z]) we can define the function η = ψ ◦σ . By [11, Proposition
8.3], the Levi form ∂∂η of η has (t + 1) positive and s negative eigenvalues on a neighbourhood
of W = {x ∈ X : η(x) < c}. Assume for example that NZ is positive i.e. s = n , t = 0. Then Z has a
1-concave neighbourhood in X .

We recall now some basic facts of the Andreotti–Grauert theory [1], [13] complemented with
similar results for weakly 1–complete manifolds.

B.41. THEOREM (Finiteness theorem). Let X be an n–dimensional complex manifold and
E −→ X be a holomorphic vector bundle.

(i) If X is q–convex (resp. q–concave), dimHj(X ,E) < ∞ for j > q (resp. j 6 n−q−1)
(ii) If X is weakly 1–complete and L −→ X is a line bundle which is positive outside a compact

set then dimH j(X ,Lk ⊗E) < ∞ for j > 1 and k sufficiently large.

The proof of Andreotti and Grauert is sheaf–theoretic and makes use of the “bumping lemma”.
It works on complex spaces too. On the analytic side the approach is to represent the sheaf coho-
mology

H j(X ,O(E)) ∼= H0, j
(2)(X ,E, loc) :=

{u ∈ L0, j
2 (X ,E, loc) : ∂

E
u = 0}

{u ∈ L0, j
2 (X ,E, loc) : u = ∂ E

v , v ∈ L0, j−1
2 (X ,E, loc)}

(B.30)

Indeed, let us consider the fine sheaf

U −→W 0, j(U,E) = {u ∈ L0, j
2 (U,E, loc) : ∂

E
u ∈ L0, j+1(U,E, loc)} .
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By the Dolbeault–Grothendieck lemma we have a resolution of sheaves

0 −→ O(E) −→W 0,0(E)
∂

E

−−−−→ W 0,1(E)
∂

E

−−−−→ . . .
∂

E

−−−−→ W 0,n(E) −→ 0

and (B.30) follows from the abstract de Rham theorem. There are now two points of view. One is
due to Andreotti–Vesentini and consists in introducing a complete hermitian metric on a sublevel
set Xc of X and on the fibers of the bundles which represents the cohomology of Xc: i.e. such that
the natural morphism

H0, j
(2)(Xc,E) −→ H0, j

(2)(Xc,E, loc) (B.31)

or
H0, j

(2)(Xd,L
k ⊗E) −→ H0, j(Xd ,L

k ⊗E) , j > 1 , k > 1 (B.32)

are isomorphism. The fundamental estimate, which implies the finiteness of the L2–cohomology, is
derived using the modified metrics. By the L2 Hodge theory A.26 each class of cohomology is rep-
resented by a harmonic form with respect to the complete metric. In order to study the cohomology
of X , consider the restriction morphisms for c > d and K ⊂ Xd:

Using the representation (B.31), (B.32) and a Runge type approximation theorem one has the
following:

B.42. THEOREM (Isomorphism theorem). The morphisms (B.32) are isomorphisms for j > q
(resp. j 6 n−q−1) if X is q–convex (resp. q–concave). The morphisms (B.32) are isomorphisms
for j > 1 and k � 1 under the hypotheses of Theorem B.41(ii).

The proofs of Theorems B.41 and B.42 using the method described above and technical ele-
ments from [14] can be found in [19].

Another point of view, due to Kohn and H örmander is to represent the cohomology of Xc by
smooth forms up to the boundary. First, by the Dolbeault isomorphism

H j(Xc,Ω0(E)) ∼= {u ∈ Ω0, j(Xc,E) : ∂
E

u = 0}
∂

E
Ω0, j−1(Xc,E)

=: H0, j(Xc,E)

Introduce also the space of harmonic forms of the ∂–Neumann problem:

H
0, j(Xc,E) = {u ∈ Ω0, j(Xc) : u ∈ Dom(∂ E

)∩Dom(∂ E∗
) , ∂ E

u = 0 , ∂ E∗
u = 0}

By definition, such harmonic forms satisfy boundary conditions on ∂Xc since they belong to Dom(∂ E∗
).

We have then:

B.43. THEOREM (Representation theorem). (i) If X is q–convex (resp. q–concave) then the
canonical morphism H 0, j(Xc,E) −→ H0, j(Xc,E) , u → [u] is an isomorphism for j > q (resp. j 6
n−q−1).

(ii) If X is weakly 1–complete and L is positive outside a compact set, the canonical morphism
H 0, j(Xc,Lk ⊗E) −→ H0, j(Xc,Lk ⊗E) is an isomorphism for j > 1 and k � 1.

For the proof of (i) see [6, Theorem 4.3.1] and for (ii) [23, Theorem 6.2].
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