


The Laplace Operator on High Tensor Power s of
Line Bundles

George Marinescu

INSTITUT FUR MATHEMATIK, HUMBOLDT UNIVERSITAT ZU BERLIN
E-mail address: george@mathematik._hu-berlin.de
URL: www.mathematik.hu-berlin.de/ george






Contents

[Chapter 1. _Introduction

l.1.Motivation and exampled

IChapter 5. _Covering manifoldd
- 2_. -
MWMW _ = et flacric ]
5.3, Weak | efschetz Theorems

[Bibliography
| I

6.2, Compactification of hyperconcave endd

10
17

18

23
23
29

33

34
34
44

52

53
53
61
70
74
77
82

85

87
87
93
96

99

100
102
108
116
119
122
125
126



iv CONTENTS

Bibliography

O o = T T
[7.1._The spectral gap of the Dirac and Bochner-1 apace operatord

[.2.__Asymptotic of the Bergman kernel

7.3, Applicationd
[Bibliographyl

|Appendix A. _Elliptic differential operatord

|A.1.__Functional spaced

|A.3.Hodge Decomposition
|Appendix B. _Elements of analytic and hermitian geometryl

[B.3. Differential forms and currents on complex spaces

IB.4._Pseudoconvex and pseudoconcave manifoldd
| : TR

138

141
141
149
155

167

169
169
172
177
179

183

184
184
188
191
192

196



CHAPTER 1

I ntroduction

Many important results in algebraic and complex geometry are derived by combining
a vanishing with an index theorem. The vanishing theorems we will encounter are in
turn obtained via harmonic theory and the Bochner technique. The key remark is that the
spectrum of the Laplace operator acting on (0,q)-forms, q > 1, with values in the tensor
powers of a positive line bundle shifts to the right linearly in the tensor power.

An important generalization which we will emphasize are the asymptotic Morse in-
equalities of Demailly. They give asymptotic bounds on the Morse sums of the Betti num-
bers of @ on high tensor powers of a holomorphic hermitian line bundle in terms of certain
integrals of the curvature form. The asymptotic Morse inequalities provide a useful tool
in complex geometry. They are again based on the asymptotic spectral behaviour of the
Laplace operator.

The applications of vanishing theorems and Morse inequalities are numerous. Let us
mention here only the Kodaira embedding theorem, the classical Lefschetz hyperplane the-
orem for projective manifolds, Donaldson’s version for symplectic ones, the computation
of the asymptotics of the Ray-Singer analytic torsion by Bismut and Vasserot, as well as
the solution of the Grauert-Riemenschneider conjecture by Siu and Demailly or the com-
pactification of complete Ké&hler manifolds of negative Ricci curvature by Nadel and Tsuiji.

The holomorphic Morse inequalities are global statements which can be deduced from
local informations such as the behaviour of the heat or Bergman kernels. In this refined
form they can be used for the study of the existence of K&hler-Einstein metrics in relation
to Mumford-Chow stability, convergence of the induced Fubini-Study metric, distribution
of zeroes of random and quantum polynomials or sections, Berezin-Toeplitz quantization
and sampling problems.

Our goal is to study the interplay between the spectral properties of the Laplacian on
high tensor powers of line bundles and the analytic and geometric properties of the under-
lying manifolds.

Some words are in order about the conception of these notes. We wished to follow a
thought in some of its proteic transformations, from Witten’s proof of the Morse inequal-
ities to the asymptotic expansion of the Bergman kernel. So we started from the basic
results and included many natural applications, alongside with our original contributions.
The result is sometimes baroque in form, but could serve as reference for me and hopefully
(if well rewritten!) also for others. We would be delighted if these notes could as well
achieve the aim of being a successful Habilitation Thesis.

The rest of the introduction consists of two parallel sections. Section [L.1] illustrates
the richness of the subject and presents well-known results, announcing the themes of the
present work. In Section [L.2 we highlight our contribution to these questions and in the
same time describe the contents of each chapter.
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1.1. Motivation and examples

Kodaira vanishing theorem. We begin with the famous Kodaira vanishing theorem
[88]. Let X be a compact complex manifold and L — X a positive line bundle. Then

HP(X,0(L%) =0, p>1, forlargek. (1.1)

By the Hirzebruch-Riemann-Roch formula (which for a general complex manifold is a
consequence of the index theorem of Atiyah-Singer [17])

n n
Z (=1)PdimHP(X, 0(L%)) = %VO'(X)—FPn_l(k), (1.2)
p=1 '
where n =dimX, Py_1(k) € Q[K] is a polynomial of degree n—1, and vol(X) is the volume
of X in the metric given by the curvature VZ—*_HlRL. By (1) all higher cohomology groups
in (L2) vanish, so

n

dimHO(X, (L)) = %vol(X)Jro(k”), K — o0, (1.3)

An important particular case had been considered by Poincaré. If X is a compact Riemann
surface of genus g > 2, the universal covering of X is the unit disc D  C. The Poincaré
metric on D, wp = 4(1— |z|2)72dz A dz, is invariant under automorphisms of D, and de-
scends to a metric on X, denoted with the same symbol. Moreover wp is a Kéhler-Einstein,
with Ricci curvature

RI = _cop. (1.4)

Let Ky be the canonical bundle of X (generated by holomorphic 1-forms). Equation (.4)
implies R*x = wp, so K is positive. By Kodaira’s theory there are a lot of sections in K)'é.
They correspond in fact to automorphic forms of degree k.

The analytic method of proving (1)) consists in applying the Dolbeault isomorphism
to identify the sheaf conomology HP(X, &'(LX)) to the Dolbeault cohomology H%P(X,L¥)
and then, via Hodge theory, to the space of harmonic space /#%P(X, Lk). Let us denote by

5E the d-operator acting on a holomorphic vector bundle E and by 9 its formal adjoint.
The Kodaira-Laplacian is then OF = (5E + 19'5)2. The Bochner technique delivers, due to

the positivity of the curvature RY, that (0-“u,u) > Ck||u||2 for u a (0, p)-form with values
in LK, p>1and k > 1. We see that the spectrum is contained in the set [Ck, +o0). This
is very similar to the spectral gap developed by the Witten Laplacian A; (see ([I7), for t
going to +oo. The spectral gap will be important also for more refined questions such as
the asymptotic expansion of the Bergman kernel.

L2 estimates for d. There are several wide-ranging and deep generalizations of the
Kodaira vanishing theorem. One of them is the L2 method for the d—equation. We briefly
state some of the results obtained by this method. Although we shall not use it directly,
it stays always in the background of our work, since it tackles the problem of finding
holomorphic sections.

The L2 estimates for d on complete manifolds and were introduced by Andreotti—
Vesentini [15], Hormander [80] and applied to a variety of problems by Nakano [97],
Skoda [118], Demailly [51]], Ohsawa [99]. The solution of the d-Neumann problem by
Kohn, Morrey, Hormander can be seen as an extension of the Kodaira technique for mani-
folds with boundary.
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Bombieri [34] and Skoda [118] introduced a new technique to deal with singular her-
mitian metrics. This was generalized by Nadel [95] and Demailly [54] which introduced
the so called Nadel multiplier sheaf. If (L,h%) is a line bundle with singular metric ht let
#(hb) be the ideal sheaf of holomorphic functions square integrable with respect to the
local weights of ht. The Nadel-Demailly vanishing theorem asserts that HI(X,L ® Kx ®
Z(ht)) =0 for g > 1, if vV—1R" > €w in the sense of currents. By using the liberty of
choosing local weights one can produce holomorphic sections with given jets at a finite
set of points. The Nadel-Demailly vanishing theorem implies the Kawamata—Viehweg
vanishing theorem, one of the cornerstones of modern algebraic geometry.

Returning to smooth complete metrics, the usual Bochner—Kodaira technique is not
sufficient to explain all vanishing theorems. For example, the fact that H(lz’)l(B) = 0 where
B is the unit disc in C endowed with the Bergman metric. Donnelly and Fefferman [63]
first found a method to get around this difficulty. This leads to important discoveries such
as the Oshawa-Takegoshi-Manivel extension theorem [102, 24, 92, 56] (which in turn has
many applications e.g. to the invariance of plurigenera of varieties of general type [[117] or
Fujita conjecture [116]) or the solution of the Cheeger—Goreski-McPherson conjecture for
isolated singularities by Ohsawa [100].

The vanishing theorem of Donnelly—Fefferman asserts that H(%)q(D) =0for p+qg#nif
D is a smoothly bounded strictly pseudoconvex domain in C" endowed with the Bergman
metric. The proof depends on the fact that the Bergman metric has a global potential whose
gradient is bounded (this follows from the asymptotic expansion of the Bergman kernel of
Fefferman and Boutet de Monvel-Sjostrand). Gromov [[74] generalized the Donnelly-
Fefferman condition and proved the vanishing theorem for complete K&hler manifolds
(X, w) with w = dn for some form n with bounded norm. This yields a solution of the
Hopf conjecture in the Kéhler case. Modified Bochner-Kodaira method which lead to a
simplified proof of the Donnelly-Fefferman vanishing theorem were found by Berndtsson
[23,124] and Siu [116]. We will apply related ideas to the compactification of hyperconcave
manifolds in Chapter &l

As references for the L2 method for 9 let us mention Hérmander [80, 87, 82] Vesentini
[122]], Demailly [57], Ohsawa [101].

Kodaira embedding and generalizations. The Kodaira vanishing theorem implies
the Kodaira embedding theorem, to the effect that for large k, the sections of LX give an
embedding of X in the projective space. It is worthwhile to mention that to get the result,
we need only use and refine the vanishing of the first cohomology group H?! (X, ﬁ(L")).
Let us define the Kodaira map

Dy X\ Bl — PHOX, LK), d(x) = {se HOX, LX) :s(x) =0},  (1.5)

which associates to each point x outside the base locus Bl (by definition, the set of points
where all sections of HO(X, LX) vanish) the hyperplane of sections vanishing at x. The
Kodaira’s embedding theorem gives an intrinsic characterization of projective manifolds:

1.1. KODAIRA EMBEDDING THEOREM. If L is positive the Kodaira map @y is defined
everywhere and is an embedding for k sufficiently large. Therefore, X projective if and only
if X possesses a positive line bundle.

The generalization of the Kodaira embedding theorem was proposed by Grauert and
Riemenschneider in connection to the characterization of Moishezon varieties. Moishezon
varieties are simply compact complex spaces such that the transcendence degree of the
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meromorphic function field equals their complex dimension. They are so important in
algebraic geometry because most of the natural modifications of algebraic varieties can
be performed in the category of Moishezon varieties but sometimes not in the category of
algebraic varieties.

Projective varieties are Moishezon. Moreover, a fundamental result of Moishezon [93]
asserts that a Moishezon manifold X can be transformed into a projective manifold X by
a finite number of blow ups along smooth centers. By taking the push-forward of the
positive line bundle on X we obtain in general a sheaf on X, which is free outside a proper
analytic set and has a smooth metric of positive curvature. Such sheaves are called quasi-
positive. The question is, whether this property characterizes Moishezon manifolds. Since
the Moishezon property is bimeromorphically invariant, we can blow up X in order to
obtain a manifold X’ possessing a line bundle with semi-positive curvature everywhere and
positive outside a proper analytic set. If we show that X’ is Moishezon, it follows that X is
Moishezon too.

1.2. GRAUERT-RIEMENSCHNEIDER CRITERION. If X possesses a smooth hermitian
line bundle which is semi—positive everywhere and positive on an open dense set, X is
Moishezon. Therefore, X is Moishezon if and only if X carries a quasi-positive sheaf.

The criterion was known as the Grauert-Riemenschneider conjecture until it was solved
by Siu [113, [114], who used an asymptotic vanishing theorem. He showed namely, that

dimHP (X, (L) =o(k") forp>1landk — oo. (1.6)

By Hirzebruch-Riemann-Roch (2), dimH? (X, (LX) = O(k"), which implies that L
is big and X is Moishezon. Recall that L is called big if its Kodaira—litaka dimension
K(L) = dimX. By definition k(L) := max{rank®y : k > 1}, where ®y are the Kodaira
maps (CH). If L is big, by taking quotients of sections of LK for k large, we obtain enough
meromorphic functions on X.

In this situation zero might be in the spectrum of oL on (0,1)—forms and is certainly
in the spectrum of DY on sections. Siu [113 p. 433] raised however the following con-
jecture and proved that it implies the Grauert-Riemenschneider conjecture. Let X be a
compact complex manifold and L a hermitian holomorphic line bundle over X whose cur-
vature form is positive semidefinite everywhere and positive definite at some point. Then
infe A7(X, LX) > 0, where A1(X, LX) is the smallest positive eigenvalue of the Laplacian oL*
on L2 sections of LX,

There are also generalizations of the Kodaira emebedding Theorem to the case of sin-
gular vareties, cf. Schumacher-Tsuji [[108]. We will also be concerned with algebraicity
criteria for singular spaces in Chapter [l

Demailly’s Holomorphic Morse Inequalities. Siu’s argument in the proof of the
Grauert-Riemenschneider conjecture used all the higher p-th cohomology groups, p > 1.
We see, however, that in the proof of Kodaira embedding theorem only the vanishing of the
first cohomology group H1(X, &(L¥)) matters. This can also be adapted for a new proof
of Grauert-Riemenschneider conjecture and this discovery was triggered by developments
in other areas.

In 1982, E. Witten [124] gave a new analytic proof of the Morse inequalities, by ana-
lyzing the spectrum of the Schrodinger operator

D =A+t2df12 41V, (1.7)
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where t > 0 is a real parameter, f is a Morse function and V is a 0-order operator. For
t — oo, the spectrum of A; approaches the spectrum of a sum of harmonic oscillators
attached to the critical points of f.

Using the same philosophy, Demailly [52] succeeded in proving asymptotic Morse
inequalities in the holomorphic setting. Heat equation proofs were subsequently given
by Bismut [27], Demailly [53] and Bouche [41]. Of particular importance are the strong
Morse inequalities, which involve partial sums of the Euler-Poincaré characteristic:

q n n
i V= n
j;)(_l)q IdimHI(X, 0(L%) < m/)((@)(_1)Q<2_H1RL> +o(k") (1.8)

as k — 0. Here X(< q) is the set of points where v/—1R" is non-degenerate and has
at most q negative eigenvalues. For g = n we have equality, so we obtain an asymptotic
Hirzebruch-Riemann-Roch formula, weaker than (L2). For g = 1 however, we get the very
precious

n

. 0 k R V=1pL n n N
dimHO(X, &/(L )>>n!/><(<1>< ERE) Fo(k), k. (L.9)

\We obtain therefore:

1.3. DEMAILLY CRITERION. If L satisfies

V1Rt S o 1.10
/X(gl)(z,T ) >0, (1.10)

relation (L.3) is satisfied and X is Moishezon.

This also solves the Grauert-Riemenschneider conjecture, for the integral (LI0) is certainly
positive if L is semi-positive and positive at one point.

This proof of the Grauert-Riemenschneider criterion deals with smooth hermitian line
bundles. However, smooth hermitian metrics with semi-positive curvature do not charac-
terize Moishezon manifolds, since there exists examples of Moishezon manifolds which do
not possess a line bundle satisfying (IT.I0) for a smooth metric [89]. Nevertheless, returning
to Moishezon’s theorem, it can easily be seen, that the push-forward of the curvature of a
positive line bundle on X (the projective blow-up of X) forms an integral Kahler current
on X. It implies the existence of a holomorphic line bundle on X, possessing a singular
hermitian metric with positive curvature (in the sense of currents). So arises the following.

1.4. SHIFFMAN-JI-BONAVERO CRITERION. X is Moishezon if and only if X possesses
a singular hermitian line bundle with positive curvature.

This was proved independently by Ji and Shiffman [86] and Bonavero [35] who pro-
posed a proof using Morse inequalities ([.8)) for singular hermitian metrics. The new el-
ement in Bonavero’s paper is the introduction of the Nadel multiplier sheaf in the Morse
inequalities. Namely, if T € cq(L) is a closed (1,1)-current with algebraic singularities,

(@9) becomes

dimHO(X, 6(LX) @ .7 (KT)) > k_n/

> T2 4+0o(k"), k— oo, 1.9Y
nt Jx(r <) ac T 0(K") © (1.9)

where Ty is the absolute continuous part of T, .#(kT) is the Nadel multiplier sheaf of
KT, and the index set X (T, < 1) is the set of points where Ty is non-degenerate and has at
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most one negative eigenvalue. It is an interesting problem to prove the singular Morse in-
equalities for transcendental currents T, that is, without the hypothesis that T has algebraic
singularities.

Takayama [120] presented a proof using a variant of ([I.8)) for non-compact manifolds
and the generalized Poincaré metric.

The Shiffman-Ji-Bonavero criterion has many applications. An important one is the
projectivity criterion for hyperkahler manifolds given by Huybrechts [83], 184]]. Let X be a
compact hyperkéhler manifold. Then X is projective if and only if there exists a line bundle
L on X such that gx(c1(L)) > 0, where qx is the Beauville-Bogomolov quadratic form on
the second cohomology of an connected symplectic manifold. Another notable application
of the strong Morse inequalities is to the proof of the effective Matsusaka theorem by Siu
[115, B5].

Recently, the Morse inequalities were used by Boucksom [42] to calculate the volume
of a pseudoeffective line bundle over a compact Kéhler manifold X and to prove a Fujita
theorem for big classes. Using the singular Morse inequalities of Bonavero, Boucksom
shows that for a pseudoeffective line bundle L and T € cq(L) we have

vol(L) : —Iansupk dimHO(X, (L)) / o
Therefore, one has a Grauert-Riemanschneider-type criterion: if L is pseudoeffective and
its Chern class c4(L) contains a current T with [, T.2 > 0, vol(L) > 0 and L is big. It
is shown then in [42, Th.4.7] (using techniques from the proof of the Nakai-Moishezon
criterion of Demailly-Paun [58]]) that the criterion extends to non-necesarily rational pseu-
doeffevctive classes.

Non-compact generalizations. The importance of inequality (L.9) lies in the fact that
it provides us with a substitute for the Riemann-Roch formula, which is particularly suit-
able to generalization to non-compact manifolds. The reason is that the usual Riemann-
Roch formula may break down, for example if the higher cohomology groups are infinite
dimensional.

The first use of [I.9) for non-compact manifolds are due to Nadel and Tsuji [96]. They
prove that, if (X, w) is a complete Ké&hler manifold of dimension n with Ricci curvature

Rdet < —w,
n

dimHO(X, 0(KK)) > %vol(x)nto(k”), K — o, (1.11)

where Ky is the canonical bundle of X. The proof is based on the fact that 0 on (0,1)-
forms has no spectrum in an interval (0,Ck). As a consequence, they obtain a generaliza-
tion with a new analytic proof of the compactification of arithmetic quotients:

1.5. THEOREM (Nadel-Tsuji [96]]). Let (X, w) be a complete Kéhler manifold of di-
mension n of negative Ricci curvature. Assume that X is uniformized by a Stein manifold
and that X is very strongly (n — 2)-pseudoconcave. Then, X is biholomorphic to a quasi-
projective variety.

Napier and Ramachandran applied (L I1) to generalize a theorem of Burns which states
that a quotient of the unit ball in C" (n > 3) by a discrete group of automorphisms which has
a strongly pseudoconvex boundary component has only finitely many ends. They proved
the following result.
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1.6. THEOREM (Napier—-Ramachandran [98]]). If a complete Hermitian manifold (X, w)
of complex dimension n > 3 has a strongly pseudoconvex end and its Ricci curvature satis-
fies R% < —Cw for some positive constant C, then, away from the strongly pseudoconvex
end, the manifold has finite volume.

Atiyah [16] initiated the index theory on covering manifolds. He shows that, if X is
a compact manifold and X is a covering with X = X /I and P is an elliptic operator on X
whose lifting to X is P, then the von Neumann index of P equals the index of P. Moreover,
the vanishing theorems from the compact case carry over to vanishing theorems for the L%—
cohomology with respect to invariant metrics on the covering (Kollar, Demailly—Campana,
Eyssidieux, Braverman).

A nice example of how these ideas combine is the non-vanishing theorem of Kollar,
which asserts that, if a projective manifold X has generically large fundamental group and
is of general type, dimHO(X, &(K)) > 1 for k > 2 and dimH%(X, 0(KY)) > 2 for k > 4.

The idea is that the von Neumann dimension dimr H(OZ)(X, K£) equals dimHO(X, 0/(K)),

where X is a Galois covering of X with Galois group I [90, 15.5]. The study of L2—sections
of bundles over coverings proves fruitful also for deriving Lefschetz—type theorems a la
Nori [98].

1.7. THEOREM (Napier—-Ramachandran). If X and Y are connected smooth projective
varieties of positive dimension and if f : Y — X is a holomorphic immersion with ample
normal bundle, the image of (Y ) in 5 (X) is of finite index.

The proof is done by looking at the covering X — X with Galois group associated to
the image of r(Y) in 7 (X). One then constructs holomorphic L?-sections of an appro-
priate line bundle using the L>~method of Skoda-Bombieri-Hormander and finds a bound
for the degree of the covering X.

Analysis of the Bergman Kernel. In 1907 Poincaré proved that the ball and ellipsoid
in C? are not biholomorphically equivalent. The problem was raised to classify domains
under biholomorphic maps. The start is the theorem of Fefferman which asserts that a
biholomorphic map ® : D; — D, between smoothly bounded strictly pseudoconvex do-
mains extends to a diffeomorphism ® : D; — D,. The main tool in Fefferman’s proof is
the asymptotic expansion of the Bergman kernel P(z,z) as z approaches dD. Recall that the
Bergman kernel of a domain D in C" is the smooth kernel of the projection on the space of
L2 (with respect to the Lebesgue metric) holomorphic functions on D. Boutet de Monvel
and Sjostrand [44] related the analysis of P(z,z) to the analysis of the Szegd projection
defined on L?(@D) with values in the space of boundary values of holomorphic functions
in D, or equivalently, functions on dD annihilated by the tangential Cauchy—-Riemann op-
erator dp.

A tradition says that Stefan Bergman discovered the Bergman kernel as a freshman
student at a German university. Due to his poor German he misunderstood an exercise
(Ubungsaufgabe) about the unit interval in R and worked it out for the unit disc in C. A
similar “error” leads to a fertile point of view in the study of polarized projective manifolds.
Namely, consider a compact Kéhler manifold (X, w) and (L,h") a holomorphic hermitian

line bundle such that \/2;_711RL = w. The Bergman projection is the orthogonal projection

Pt L2(X, LK) — HO(X, LK) (1.12)
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from the space of L2 sections to the space of holomorphic sections of LX. The Bergman
kernel P(x,x") is now the smooth kernel the Bergman projection

/Pk 2,7)5(Z)dvx (), S eL?(X,L¥). (1.13)

We denote by By(z) = Px(z,z) the restriction on the diagonal. The Bergman kernel is linked
to the Kodaira embedding in the following way. Let @y : X — PHO(X, L¥)* be the Kodaira
map (C5) and let cwes be the Fubini-Study form on PHO(X, LK)*. Then

%CDfZCQ:s—a)— V=193 logBy(2) (1.14)
which shows that 94 logBy(x) measure how far is @, from being an isometry. For abelian
manifolds, Kempf [87] and then Ji [85] showed that the induced Fubini-Study %d)ﬁoq:s
metric converges to w. Tian [[121] extended the result to general projective manifolds and
showed the convergence is in the €2 topology, so that ®y is asymptotically an isometry.
Bouche [41] gave later a heat kernel proof. The main motivation was the general philoso-
phy of Yau that the stability of embeddings in the sense of Chow—Mumford is connected
to the existence of Kéhler—Einstein metrics. This was further substantiated in a ground-
breaking paper of by Donaldson [61]] who used a refinement of the results of Tian—Bouche.
This is the Tian-Yau-Zelditch asymptotic expansion [125, 49].

1.8. THEOREM (Zelditch, Catlin). Let L — X be a positive line bundle over a compact
manifold X and let By be the Bergmann kernel associated to L¥ by (I3). There exist
smooth functions bj on X such that

Bi(X) = k"(bg+ bik L4+ bok 2+ --). (1.15a)
More precisely, for any R,1 > 0 there exists a constant Cg such that
By — k" ERb,-ki |1 < Crik"™ R (1.15b)
j<

The proof of (L.I54) is based on some beautiful observations which permit the applica-
tion of the asymptotic expansion of Boutet—Sjostrand [44]]. Let us define the Grauert tube
T ={vel*:|v|,+ =1} (or generalized Hardy space) to be the associated circle bundle of
L*. Then T is the boundary of the strongly pseudoconvex domain {v € L* : |v|+ < 1} as
a consequence of the positivity of R'— Then sections of LX may be identified to equivariant

functions on T, and the family d can be identified with the tangential Cauchy—Riemann
operator dp, on T. We have actually

HOX, LK = {f:T - C:apf =0, eV Pw)=eV ¥ f(w), forweT, s eR}
(1.16)
Now, the Bergman kernels By are the Fourier coefficients of the Szego kernel on T and the
result of Boutet-Sjostrand applies. The identification (L.IG) was already used by Grauert
[72] to generalize the Kodaira embedding theorem to singular varieties.
An essential ingredient in Donaldson’s result is the calculation of the first coefficients

of the expansion ([([L.154).
1.9. THEOREM ([@1]). Assume that X is endowed with the metric w = VIRl The

- 2n
functions bj are polynomials in the curvature of w and its covariant derivatives (with
control over the number of differentiations required). Moreover bg =1, b1 = %Trx where

rX is the scalar curvature of (X, w).
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Assume now that the bundle L is not necessarily positive. Although it seems that the
asymptotic expansion (L.153) of By does not exists in general, Berndtsson [25] and Berman
[21] determined the expansion up to order o(k") and reproved in this way the Morse in-
equalities of Demailly.

Random and quantum chaotic sections, supersymmetric vacua. There isa growing
interest of physicists for the distribution of zeroes of eigenfunctions of quantum maps
[33, [77] and random polynomials or sections of positive line bundles are a good model
for them. In a series of papers Bleher, Shiffman and Zelditch [30, 32, 29, [31] studied
how the zeroes are disributed and correlated. In the simplest case let us consider sections
over X = IP" of powers LK of the hyperplane line bundle L = ¢'(1). As usual we identify
sections of LK with homogeneous polynomials of degree k over C™* and introduce an
SU (n+ 1)-invariant Gaussian probability measure on the space of such polynomials. It is
then proven in [109] that if a sequence { px} is chosen independently and randomly from the
spaces of homogeneous polynomials of degree k and L2 norm one, the zero sets {py = 0}
almost surely become uniformly distributed with respect to the Fubini-Study volume form.
The expansion of the Bergman kernel is again the main technical tool. These result have
interesting extensions in complex dynamics, see Dinh-Sibony [59].

In a very recent development Douglas, Shiffman and Zelditch [64, 65] studied the sta-
tistics of vacua in string/M theory. Vacua are critical points Us(z) = 0 of a holomorphic
section s of a line bundle L, where [J is the Chern connection. Physically, they model
extremal black holes in addition to vacua of string/M theory [46, 169].

Symplectic geometry. In an important work [60] (see also [112]), Donaldson found
a method of producing symplectic submanifolds of symplectic manifolds by extending to
the almost—complex case results linked to the existence of holomorphic sections of positive
line bundles. Let (X, w) be a compact Ké&hler manifold and assume that w = 2£711RL, where
(L,hb) is a holomorphic line bundle. Then the Poincaré dual of the cohomology class k[cw]
is represented by a divisor for large k. The divisor is given as the zero set of a generic
holomorphic section of L.

Now, if (X,w) is a general symplectic manifold, the bundle LX may have no holo-
morphic sections, so Donaldson proves the symplectic version of the above result by in-
troducing the notion of “asymptotically holomorphic sections” and eventually proves the
symplectic Lefschetz hyperplane section theorem. He constructs sections s, € HO(X, LX)
such that [dsy| < %|o"'s| on {s =0} and the method is reminiscent of the peak section con-

struction of Tian (although the L2 estimates for d are not available).

The work of Donaldson, Auroux [18] and others to find symplectic analogues of the
objects in complex geometry motivated the introduction of a microlocal point of view by
Borthwick-Uribe [39] and Shiffman-Zelditch [110]. They define “almost holomorphic
sections” by a method of Boutet de Monvel-Guillemin [43]. Remember the identification
(@.I8) of the holomorphic sections with equivariant functions on the Grauert tube which
are solutions of the system dpf = 0. In the non-integrable case Boutet-Guillemin [43]
define an analogue of the dp—operator, which is a first order pseudo—-differential operator
Dy on Y, with the same microlocal properties of d,. The “almost holomorphic sections”
are obtained as sections of LK corresponding to equivariant functions on Y annihilated
by Dp. Although Dy is not canonically defined, Shiffman—Zelditch show that they have
typically the same properties as the “asymptotically holomorphic sections” of Donaldson.
The proof is based on the near—diagonal asymptotic expansion of the Szegd kernel on the
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circle bundle Y, which generalizes Theorem The asymptotic expansion implies also a
symplectic version of the Tian’s theorem of convergence of the Fubini-Study metrics and
a “nearly holomorphic” and “nearly isometric” embedding theorem [39], [110].

We will explain below a new geometric approach based on another substitute for holo-
morphic sections proposed by Guillemin-Uribe [[76].

1.2. Contents and results

The previous examples illustrate how the spectrum of the Laplace operator on high
tensor powers of certain line bundles gives information about analytical and geometrical
properties of the manifold.

Our goal is to continue and complement this study. We shall consider

singular varieties,

manifolds satisfying complex convexity conditions,
covering manifolds and

symplectic manifolds.

o O O O

As a warm up, we include in Chapter [ Witten’s analytic proof of the usual Morse
inequalities. Witten’s approach is to deform the de Rham complex in a manner depending
on a Morse function, so that the low-energy eigenvectors of the corresponding Laplacians
(L0), called Witten Laplacians, become concentrated near the critical points. The Witten
Laplacians written in Morse coordinates in the neighbourhood of critical points are given
essentially by harmonic oscillators. Comparing their spectra with the help of the minimax
principle finishes the proof.

The first rigorous account of the analytic proof of the Morse inequalities appeared in
the paper by Helffer-Sjostrand [[78]], based on their results on Schrodinger operators and
in a paper by Bismut [26] where a proof by heat equation methods was presented (se also
[48]).

Chapter B is devoted to the proof of Demailly’s generalization of Weyl’s formula for
the asymptotic behaviour of the Kodaira—Laplacian oL acting on high tensor powers of
a hermitian holomorphic line bundle (L,h%) on a complex manifold. Later, Bismut and
Bouche proved local Morse inequalities, in the sense of index theory. Namely, the global
Morse inequalities are derived by integrating the local ones. This is the approach we follow
here.

In Chapter Awe prove the global holomorphic Morse inequalities. We start by proving
the Morse inequalities for the Dolbeault L2—cohomology spaces for a manifold satisfying
the fundamental estimate (Poincaré inequality) at infinity. It is straightforward to obtain
from here the holomorphic Morse inequalities of Demailly on compact manifolds. After
introducing the necessary apparatus of complex geometry (Siegel’s lemma, independence
of meromorphic functions and Moishezon spaces) we prove the Grauert-Riemenschneider
criterion.

Using the abstract formulation of the Morse inequalities we can find a lower bound
for the growth of holomorphic section space for uniformly positive line bundles (Theorem
K#.30). From this we deduce the Ji-Shiffman—-Bonavero criterion, by working on a Zariski
open set endowed with the generalized Poincaré metric. Using the same approach we can
obtain a sharper result in the case of isolated singularities, mamely a tale quale extension
of the Grauert-Riemenschneider criterion:
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1.10. THEOREM ([3]). Let X be a compact complex space of dimension n > 2 and with
isolated singularities. Suppose that we have one the following conditions.

(i) There exists a holomorphic hermitian line bundle L on X;eg Which is semi-positive
in a deleted neighbourhood of Xgng and satisfies condition (LI0) on X;eg.

(i) Assume that L is defined over all X, the hermitian metric may be singular at Xgng
but the cuvature current R- is dominated by the euclidian metric near Xsing and
moreover condition (LIQ) is fulfilled on Xeg.

Then X is Moishezon.

The result is linked to the interesting question of extending to singular varieties the
harmonic theory and its consequences. For example, Briining and Lesch [47] proved that
the L2-Kahler package holds on conformally conic Kéhler manifolds and Pardon and Stern
[104]] extended the Kodaira vanishing theorem to singular manifolds. In the case of com-
pact analytic surfaces in R" D. Grieser [[73] has given an L? Gauss-Bonnet theorem for the
regular part, endowed with a riemannian metric induced from the ambient space. For an
account of a differential geometric approach to stratified spaces endowed with a smooth
structure we refer to the monograph of M. Pflaum [[105].

We end the chapter with a study of a class of manifolds satisfying pseudoconvexity
conditions in the sense of Andreotti-Grauert, namely g-convex and weakly 1-complete
manifolds. Manifolds satisfying complex convexity conditions are very important in com-
plex geometry and analysis. The definition of pseudoconvexity or pseudoconcavity postu-
lates the existence of an exhaustion function whose complex hessian has certain positive
or negative eigenvalues so that, morally, the situation is similar to the usual Morse theory.
Technically, we use the representation of the Dolbeault cohomology by harmonic forms
satisfying d-Neumann conditions and reduce to the problem studied before of the distri-
bution of small eigenvalues of the Bochner-Laplacian.

In Chapter B we deal also with Morse inequalities on coverings in the framework of
Atiyah. Here the usual dimension is replaced by the von Neumann dimension. Our main
technical device comes from Shubin’s generalization [111] of the usual Morse inequalities,
the so—called Novikov-Shubin inequalities. Actually, we generalize the Weyl type formula
of Demailly by describing the asymptotic behaviour of the spectrum of a '—invariant lapla-
cian associated to high powers of a '—invariant line bundle. As a consequence we have the
following.

1.11. THEOREM ([B]). Let (X, w) be an n-dimensional complete hermitian manifold
and let (L,h") be a holomorphic hermitian line bundle. Let K € M and a constant C, > 0
such that /—1IRL > Cow on X ~ K. Let 71 : X — X be a Galois covering of Galois group
ML= (L) and let U be any open subset with smooth boundary such that K € U € X.
Then, for kK — oo,

~ kn n
. n,0 Ky < V-1pl n
dimr HG (X, 09 > — /U(<1,ht>< R) ok, (1.17)
where H&?()?,Ek) is the space of (n,0)—forms with values in LK which are L2 with respect

to any metric on X and the metric 7¢*(h-) on L.

Our result pertains also to the work of Gromov, Henkin and Shubin [[75] in which the
authors compute the von Neumann dimension of the space of L2 holomorphic functions
on coverings of strictly pseudoconvex domains. Their work was generalized for weakly
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pseudoconvex manifolds in [5]] by using a variant for incomplete metrics of Theorem [L.1T1
The case of the trivial covering was treated in [1, [120].

A nice application of theorem [L.TTare weak Lefschetz theorems a la Nori by extending
the method of Napier—-Ramachandran.

1.12. THEOREM ([I6]). Let (X, w) be an n—-dimensional complete hermitian manifold
and let (L,hb) be a holomorphic hermitian line bundle such that /—1IR- > Cw, C > 0,
outside a compact set. LetY — X be a holomorphic immersion with ample normal bundle
and assume that the image G of (Y ) in r(X) is @ normal subgroup. Then G has finite
index in @ (X).

As a consequence we derive weak Lefschetz theorems for Zariski open sets in Moishe-
zon manifolds (cf. Corollary B.19).

Chapter @ discusses the problem of compactifying complex manifolds. Satake [[L07],
Baily [19] and Baily—Borel [20] endowed the quotients of bounded symmetric domains
with a complex structure making them into Zariski—open sets of a projective algebraic
variety, called the Satake—Baily—Borel compactification. Their methods were algebraic.
We will be interested in the complex analytic and differential-geometric methods of com-
pactifying arithmetic quotients. Andreotti and Grauert [[13] verified that certain arithmetic
quotients of the Siegel upper half plane are pseudoconcave and it was proved later that all
irreducible arithmetic quotients of dimension > 2 are pseudoconcave (Spilker [[119], Borel
[37]). This is important since one hopes to apply a Kodaira type theorem for pseudocon-
cave manifolds (such as Andreotti—-Tomassini theorem [14]) and embed them as open sets
of projective manifolds and prove eventually quasi—projectivity.

In the line of thought of Andreotti-Grauert we introduce a type of pseudoconcavity
which models arithmetic quotients of rank one and more generally spaces with isolated
singularities. A manifold X is called a hyperconcave end if there exists ¢ : X — R,
proper, smooth which is strictly plurisubharmonic on a set of the form {¢ < a}, a € R.
The following four results have been proved in [[7].

1.13. THEOREM. Any hyperconcave end X can be compactified, i.e., there exist a com-
plex manifold X such that X is (biholomorphic to) an open setin X and X ~ X U{¢ < d}
is compact for any d < a. More specifically, if ¢ is strictly plurisubharmonic on the whole
X, X can be chosen a Stein space with at worst isolated singularities.

One of the main points of the proof is to produce non-constant holomorphic on X via
the finiteness of the L?-cohomology in bidegree (0,1) with respect to a complete Kahler
metric satisfying the Donnelly-Fefferman condition. One application is the embedding of
sasakian manifolds in the euclidian space (cf. Theorem and [8]). Theorem [L.I3 was
independently used by Ornea-Verbitsky [[103] to prove the embeddability into a sphere.

From the point of view of application it is desirable to find natural conditions for X to
be a Zariski open set in a compact manifold.

1.14. THEOREM. Let X be a hyperconcave end and let X be a smooth completion of
X. Assume that X can be covered by Zariski-open sets which are uniformized by Stein
manifolds. Then X ~. X is the union of a finite set D’ and an exceptional analytic set which
can be blown down to a finite set D. Each connected component of X, for sufficiently small
¢, can be analytically compactified by one point from D’ UD. If X itself has a Stein cover,
D’ = @ and D consists of the singular set of the Remmert reduction of X.
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As a consequence we have the following characterization which answers [94, Problem 1]
for the case g = 0.

1.15. THEOREM. Let X be a connected manifold of dimension n > 2. The following
conditions are necessary and sufficient for X to be a quasiprojective manifold which can
be compactified to a Moishezon space by adding finitely many points.

(i) X is hyper 1-concave.
(if) X admits a positive line bundle E.
(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

Our motivation was to give a complex analytic proof of Siu-Yau’s theorem, which general-
izes the compactification of arithmetic quotients of rank one. The analysis of the Busemann
function shows that such manifolds are hyper 1-concave, so we can deduce the following
slightly sharper form from Theorem

1.16. COROLLARY (Siu-Yau). Let X be a complete Kéhler manifold of finite volume
and bounded negative sectional curvature. If dimX > 2, X is biholomorphic to a quasipro-
jective manifold which can be compactified by adding finitely many points to a Moishezon
space.

We present further a version “with boundary” of the Siu-Yau theorem.

1.17. THEOREM ([8]). Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that X is endowed with
a complete Kahler metric with pinched negative curvature.

(i) The following assertions are equivalent

(1) dX is embeddable in some CN
(2) X has finite volume away from a neighbourhood of dX

(i) Assume that one of the equivalent assertions in (i) holds true. Then X can be compact-
ified to a strongly pseudoconvex domain in a projective variety by adding an exceptional
analytic set, that is, there exists a compact strongly pseudoconvex domain D in a smooth
projective variety and an embedding h : X — D which is a biholomorphism between IntX
and h(IntX), h(dX) = dD, and D ~.h(X) is an exceptional analytic set which can be blown
down to a finite set of singular points.

The implication (1) = (2) uses the holomorphic Morse inequalities as in Theorem
and is contained in Theorem [LB. For the reverse implication we show that with the ex-
ception of the end corresponding to the strongly pseudoconvex boundary, all the ends are
hyperconcave.

Nadel and Tsuji [96] generalized the compactification of arithmetic quotients of any
rank, by showing that certain pseudoconcave manifolds are quasiprojective. We will dis-
cuss the proof in Section Let us note that in dimension two their condition coin-
cides with hyperconcavity. Theorem [L.IH yields, in dimension two, a stronger version of
their theorem together with a completely complex-analytic proof of the compactification
of arithmetic quotients, cf. Remark .48

We consider then the problem of finding a Moishezon compactification for general g-
concave manifolds. Even the following innocent looking particular case is very interesting.
Consider a compact manifold Y and let X =Y ~. B the complement of a ball in some
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coordinate patch. Let L — Y be a line bundle which is positive on X. Is then X (and with
it Y) Moishezon? What is the growth of dimHC(X, LX) as k — c0?

The study of such questions was initiated in [2, 6] where some particular cases linked to
isolated singularities were settled. It was also conjectured that the Grauert—Riemenschneider—
Siu criterion holds in the case of 1-concave manifolds. We could verify the conjecture if,
roughly speaking, the volume of the manifold is more important than the volume of the
boundary. This follows from the following estimate.

1.18. THEOREM ([4]). Let D € X be a smooth domain in a complex manifold X such
that the Levi form of dD possesses at least 2 negative eigenvalues. Let (L,h") be a holo-
morphic line bundle on X which is assumed to be positive on a neighbourhood of D. Then

P K N=rous ds,
liminf k~"dim HO(D, &/(L ))>/D( R C(¢,L)/0D ol (1.18)

The constant C(¢, L) depends explicitely on the curvature R- and on the Levi form /=199 ¢.

The notations dS,. and |d¢|_. mean the boundary volume form and the norm of d¢
induced by the metric /—1RL.

The theorem was obtained first in collaboration with Prof. G. Henkin by using Siu’s
original method and the some result of Henkin-Leiterer on the solution of the d-equation
near the boundary points using integral representations [[79]. R. Berman [22] proved related
results by identifying more precisely the boundary integral. We apply Theorem [L.I8 to the
deformation theory of concave manifolds. This is a very lively research area, see Epstein—
Henkin [66, 167, 68] and the references therein. As a consequence we obtain the following
stability result.

1.19. COROLLARY. Let X be a projective manifold with positive canonical bundle xg €
X. There exists an ro > 0 such that for any r < rg and any sufficiently small perturbation
of the complex structure of X ~\. B(Xo,r), the new manifold compactifies to a Moishezon
manifold.

In Chapter [4 we take up the study of the Bergman kernel on symplectic manifolds.
The Bergman kernel for complex projective manifolds is the smooth kernel of the orthog-
onal projection from the space of smooth sections of a positive line bundle L on the space
of holomorphic sections of L, or, equivalently, on the kernel of the Kodaira-Laplacian
O — 33" +3-"8" on L. It is studied in Tian [21], Ruan [06], Zelditch [125], Catlin
[49], Bleher-Shiffman-Zelditch [30], Z. Lu [91] in various generalities, establishing the
asymptotic expansion for high powers of L. Moreover, the coefficients in the asymptotic
expansion encode geometric information about the underlying complex projective mani-
folds.

Since on a symplectic manifold there are in general no holomorphic sections, we have
to look for a replacement of the @ operator. One option is the spin® Dirac operator. In
[50], Dai, Liu and Ma studied the asymptotic expansion of the Bergman kernel of the spin©
Dirac operator associated to a positive line bundle on a compact symplectic manifold was
studied, in relation to that of the corresponding heat kernel. As a by product, a new proof of
the above results is obtained. The approach is inspired by Local Index Theory, especially
by Bismut-Lebeau [28, §11].

We wish to propose another natural generalization of the operator O% in symplectic
geometry, which was initiated by Guillemin and Uribe [76]. In this very interesting short
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paper, they introduce a renormalized Bochner—Laplacian (cf. (I9)) which is exactly 20"
in the Kéahler case. The asymptotic of the spectrum of the renormalized Bochner—Laplacian
on LX when k — oo is studied in various generalities in [38, 45, [76] by applying the analysis
of Toeplitz structures of Boutet de Monvel-Guillemin [43], and in [9] as a direct application
of Lichnerowicz formula.

Of course, there exists also a replacement of the d—operator and of the notion of holo-
morphic section based on a construction of Boutet de Monvel-Guillemin [43] of a first
order pseudodifferential operator Dy, which mimic the @}, operator on the circle bundle as-
sociated to L. However, Dy, is neither canonically defined nor unique. This point of view
was adopted in a series of papers [39, 110, 32]. Bleher, Shiffman and Zelditch used it in
order to study the probabilistic behaviour of sequences of ‘almost—-holomorphic’ sections
of L.

Here we will study the asymptotic expansion of the generalized Bergman kernel of
the renormalized Bochner-Laplacian, namely the smooth kernel of the projection on its
bound states as k — . The advantage of this approach is that the renormalized Bochner-
Laplacian has geometric meaning and is canonically defined. Moreover, it does not require
the passage to the associated circle bundle as we can work directly on the base manifold.
Let’s explain our results in detail.

Let (X, w) be a compact symplectic manifold of real dimension 2n. Assume that there
exists a Hermitian line bundle L over X endowed with a Hermitian connection (" with
the property that \/2;_711RL = w, where R- = (0Y)? is the curvature of (L,0%). Let (E,hE)
be a Hermitian vector bundle on X with Hermitian connection OF and curvature RE. In-
troduce a Riemannian metric g"™* on X with Levi-Civita connection 07X, curvature RTX
and scalar curvature r*. If dvy denotes the Riemannian volume form of (TX,g™), the
scalar product on ¢*(X,LK® E), the space of smooth sections of LK ® E, is given by
(81,52) = Jx (81(X),52(X))LreE AV (X).

We introduce now the Bochner-Laplacian, defined by AL“9E = (OF9E)*OL“CE \where
O-“©E s the induced connection from O and OF. Let J: TX — TX be the skew—adjoint
linear map which satisfies the relation w(u,v) = g™ (Ju,v), for u,v € TX. There exists an
almost complex structure J which is (separately) compatible with g™* and w, especially,
w(-,J-) defines a metric on TX. Moreover J commutes also with J. We fix a smooth
hermitian section @ of End(E) on X Set 7(x) = —mTr;rx[JJ], and let

Do = A9 kT4 (1.19)
be the renormalized Bochner-Laplace operator. In Corollary [Z.2 we will prove:

1.20. THEOREM (]9, Cor. 1.2]). There exist tp, C. > 0 independent of p such that the
spectrum of Ay ¢ satisfies Spec Ao C [—Cy,Cp] U [2ppo —Cr,+oo[ . For k large enough,
the number dy of eigenvalues on the interval [—C_,C| | satisfies dx = (ch(LK®E) Td(T X), [X]).
In particular dg ~ k"(rank E ) vol,(X).

This means that A ¢ has di bound states whose energies are bounded uniformly inde-
pendent of k and the rest of the spectrum drifts to the right at linear rate, as k — . There-
fore, we can use the space .7 as a replacement of the space of holomorphic functions for
the symplectic manifolds. Let Py be the orthogonal projection from (€= (X,LX®E), (,))
onto the eigenspace of A ¢ With the eigenvalues in [-C,Ci]. We define Py k(x,x’), g >0
as the smooth kernels of the operators Py = (Ax o) 9Pok (we set (Ak@)o = 1) with respect
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to dvx (x). They are called the generalized Bergman kernels of the renormalized Bochner-
Laplacian Ay . We denote by Bq k(X) = Pqk(X,X). Let detJ be the determinant function of
Jy € End(TyX).

1.21. THEOREM ([10} I1]). There exist smooth coefficients by (x) € End(E)x which
are polynomials in R™X, RE (and RY, @) and their derivatives of order < 2(r+4q) —1
(resp. 2(r+q)) at x, and

boo = (detd)Y/?1dg, (1.20)
such that for any p,l € N, there exists Cp | > 0 such that forany x € X, k € N,

= Bq (X Z)bqr *f’ <Cp kP, (1.22)

Moreover, the expansion is uniform in the following sense: for any fixed k,| € N, assume
that the derivatives of g™*, ht, O, hE, OF, J and ® with order < 2n+4 2k +2q + | +2
run over a set bounded in the €'—norm taken with respect to the parameter x € X and,
moreover, g' X runs over a set bounded below. Then the constant Ck, is independent of
g"%: and the ¢'-norm in (CZ) includes also the derivatives on the parameters.

By derivatives with respect to the parameters we mean directional derivatives in the spaces
of all appropriate g™, ht, O, hE, OF, J and ® (on which Bg p and bg implicitly depend).
We calculate further the coefficients bg 1 and bgo,q > 1as foIIowsE.

1.22. THEOREM. IfJ=J,thenforq>1

1 1 o0

bo1 = g_{[rx + Z|DXJ| +2v _1RE(ejaJej)]a (1.22)
1 \/__1 q

beo = (ﬂ|DXJ|2+TRE(ej,Jej)+¢> . (1.23)

The formulas are compatible with the Atiyah-Singer formula. Theorem [L.Z1l for g = 0
and ([L.22) generalize the results of [49, 125, ©1]] and [123] to the symplectic case.

The term r* + 2| 0%J|2 in (CZ2) is called the Hermitian scalar curvature in the literature
[71, Chap. 10] and is a natural substitute for the Riemannian scalar curvature in the almost-
Kéhler case. It was used by Donaldson [62] to define the moment map on the space of
compatible almost-complex structures.

We can view ([.Z3) as an extension and refinement of the results of [40], [[76, §5] about
the density of states function of Ay o.

We apply the previous theorems to obtain a symplectic version of the convergence of
the induced Fubini-Study metric, cf. Theorem This generalizes the Theorems of Tian
[121] and Bouche [41] and also gives a symplectic version of the Kodaira embedding the-
orem. Our method extends also to non-compact manifolds in Section [Z3.3. For example,
by integrating the expansion of the Bergman kernel we can also derive Morse inequalities
and reprove some of the results obtained in the previous chapters. We see therefore that
the analysis of the Bergman metric yields a unified treatment of the convergence of the
induced Fubini-Study metric, the holomorphic Morse inequalities and the characterization
of Moishezon spaces.

THere D32 = 5;; (0% J)ej|? which is two times the corresponding |0*J|2 from [[10].
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CHAPTER 2

Witten’s proof of the Morse | nequalities

In this chapter we present, as a warm up, a short analytic proof of the Morse inequali-
ties, following Witten [14]]. The ideas emerging here are ubiquitvous in our paper. Morse
theory was developped by Martson Morse in the 30’s and received a new impetus in topol-
ogy in the 50’s through the work of Bott, Milnor and Smale. The standard references for
classical Morse theory are the books of Milnor [[10, 11]. Witten introduced a new approach
to Morse theory in 1982 (for a beautiful historical account, see [3]). The new approach
consists in viewing the manifold together with a Morse function as a phisycal system of
harmonic oscillators attached to the critical points. Along the way, Witten interprets from
this point of wiew the Thom—-Smale complex [9], a developement which inspired the intro-
duction of the Floer homology [6]]. The first rigorous account of Witten’s ideas appeared in
Helffer-Sjostrand [8] where the authors make use of the theory of Schridinger operators
(see also [B]). Later, Bismut [[I] gave a heat equation proof. Bismut and Zhang used the
Witten deformation to give a proof of the equality of Redemeister and Ray-Singer torsions.
In his book [15], Zhang presents a short proof based on [[2]. Our proof differs from his in
the use of the min-max principle in Section

2.1. Witten deformation

2.1.1. Morse functions. Let X be an n—dimensional compact manifold. Let f € € (X)
be a smooth function on X. A point p € X is called a critical point of f if df(p) =0. The
set of critical points of f is denoted by Crit(f). At a critical point p we can define sym-
metric bilinear form

d2f(p) : TpX x TpX — TpX
called the Hessian of f at p. Indeed, let v,w € TpX and set V,W arbitrary smooth extensions
of v,w to smooth vector fields on X. Since

V(W f)(p) —W(7f)(p) = df([V,W])(p) =0
it follows v(Wf)(p) = V(Wf)(p) =wW(Vf)(p) =w(Vf)(p). The map

d?f(p)(v,w) := v(Wf)(p) = w(7f)(p)
depends only on v,w and it is obviously bilinear symmetric. In local coordinates (x*,...,x"),
d2f(p) is represented by the matrix ( o1 (p)).

IxI gxk

A critical point is called nondegenerate if the Hessian d2f(p) is non-singular, that is,
the nullity vanishes. This condition means that, as submanifolds of T X, X (the zero cross—
section) and d f(X) are transversal at p. From here follows that p is isolated in the set
Crit(f) =XNdf(X).

The function f € ¥*(X) is called a Morse function if all its critical points are nonde-
generate. For a Morse function the set Crit( f) is therefore discrete, and since X is compact,
Crit(f) is finite. It is well known that the Morse functions on X are dense in the space of
all smooth functions on X.

Iale)
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From now on we fix a Morse function f on X. The index of the bilinear form d2f(p),
p € Crit(p), is called the index of f at x, denoted ind¢(x). We denote Crit(f;I) the set of
critical points with index |. The following lemma describes the local behavior of a Morse
function near a critical point. For a proof we refer to [10, p. 6].

2.1. MORSE LEMMA. For any critical point p of a Morse function f exists a coordinate
system (Up,x1, ..., x") such that
1 1
fxt,. XM =f(p)— =M= ... —Z(x)%+ E(x'+1)2+...+ E(x”>2
where | is the index of p.

Since we have a finite number of critical points we may assume that Up, p € Crit(f),
are pairwise disjoint. Let m; be the cardinal of Crit(f;1).

2.1.2. Betti numbers and Morse Inequalities. The Betti numbers of X are defined
by by = dim Hgng(X,R), the dimension of the I-th singular cohomology of X. The Betti

numbers can be calculated with the help of the de Rham complex (Q"(X),d):

0—Qox) -2 otxx) -4 ... 4. anx)—0
The cohomology of this complex is called the de Rham cohomology of X, denoted H(]R(X ,R).
By the de Rham theorem [[13]] there exist a canonical isomorphism H;ng(x ,R) 2 Hir(X,R).
Moreover, by a Mayer—Vietoris argument [4] , the de Rham cohomology is finite dimen-
sional. Thus b; = dim H('jR(X,R) is finite for | =0,1,....n.
Our purpose is to give an analytic proof of the following result known as the Morse
inequalities.

2.2. THEOREM. Let X be a compact differentiable manifold and let f : X — R be a
Morse function. Then the following relations hold for all 1 =0,1,....n:

(i) Weak Morse inequalities: by < my,
(if) Strong Morse inequalities:
| _ [ _
(-1 < Y (-1 m;,
2 2
with equality for | = n, that is,
(i) x(X) =3j_o(=1)'m;.
We refer to [10] for a topological proof of this result.
2.1.3. Witten’s complex. Given the Morse function f, Witten deformed the exterior
derivative by conjugating with etf, t > 0:
di =e tdelf (2.1)
Since d% =0, dZ = 0 and we obtain the deformed de Rahm complex (Q"(X), d;)

0—Qox) % olx) %, ... % onx)—o0 (22)

Set Ht:dR(X,R) for the cohomology of this complex. It is immediate that all the deformed
complexes are isomorphic and hence have the same cohomology.

2.3. THEOREM. The multiplication with e~*f: (Q"(X),d) — (Q"(X), d¢) induces an
isomorphism in cohomology Hgg(X) & Hy 4x(X). The inverse isomorphism is induced by
et 1 (Q'(X), dt) — (Q°(X),d).
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2.1.4. Some operators in riemannian geometry. Let g™ be a riemannian metric on
TX. Later we shall make a particular choice of g™%, but for the moment we keep g™*
arbitrary.

g™ induces riemannian metrics on T*X and A"T*X in a canonical way. The scalar
product of two forms a, 3 € A"TeX is denoted (a,B). In order to define a global scalar
product we introduce the canonical measure vy : €o(X) — R so that for a chart (U, x%, ..., x")

/¢dvxz /anb(xl,...,x”) det(gij) dxt...dx"

forall ¢ € €°(X), supp¢ C U. If X is orientable, vy is induced by the volume form of the
metric. We have then a global scalar product

(a,B):/X<a,B)dvx, a,B e Q(X). 2.3)

Let us now introduce some useful operators in riemannian geometry.

The metric g™ induces bundle isomorphism b : TX — T*X (flat) and its inverse 4 :
T*X — TX (sharp). Given a covector ¢ € T,’X we associate the exterior product with
E ENNTX — A'T}X. Given a vector e € TyX we associate the interior product with
e, ie: A T;X — AT, X. The adjoint of & A with respect to the induced scalar product on
N'TxX is given by ig;, that is, (§A)* =i, or explicitely

(Ena,B)=(a,igp), aeNTX,BeNTITIX.

We denote by DA T*X the Levi-Civita connection on X and the induced connection on
A'T*X. Let (e1,...,en) be a local frame of TX and (el,...,e") the dual frame. The
exterior differential may be expressed as

n

d= Y elamy T (2.4)
=1

The formal adjoint of d is a differential operator of degree —1 which satisfies
(da,B) = (a,3B), a€Q'(X),BeQ"(X). (2.5)
It is given explicitely by

n o n .
o=-% (eI T = Y ie:08, X (2.6)
=1 =1
Assume for a moment that the frame (e, ..., en) is orthonormal. Then (e})* = ej and we
have the formula 6 = — ZTzliej ;. Witten notes that the operators a! = ie; and al* = e/
are called in the physics literature “fermion annihilation and creation operators’.
The Laplace—Beltrami operator is a second-order, degree 0 differential operator

AQ(X)— Q' (X), A=dd+5d. 2.7)

2.1.5. Witten’s laplacian. We now define the Witten Laplacian. It is easily seen that
the formal adjoint of d; satisfies & := d; = e'"de~f. The Witten Laplace operator is then
Dy = di & + &k (2.8)

Since for a, 8 € Q'(X), (A&a,B) = (da,dB) + (&a,&B) we see that (Ma,B) =
(a,MB), i.e. A is symmetric. Moreover, (Aa,a) >0, a < Q'(X), thatis, A is positive.

2.4. PROPOSITION. A is an elliptic operator. Actually, it has the same symbol as A.
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PROOF. ltis clear that
d=d+tdfA, (2.9)

so d; is the sum of d and a O-order differential operator. Thus d; and d have the same
symbol. For a function ¢ € € (X), we define the gradient by grad ¢ := (d¢)".
It is then easily checked, that

o0(pa)=¢oa —igadg(a), acQ'(X),p c6(X). (2.10)
This yields
d:5+tigradf7 (2.11)

so & is the sum of & and a O-order differential operator and & has the same symbol as d.
By the formal calculation rules of symbols, A; has the same symbol as A and is elliptic. [

2.1.6. Hodge Theory for the deformed complex. We can apply now the standard
elliptic theory to A;. For a vector bundle E — X, endowed with a riemannian metric, we
can introduce a global scalar product as in @3). Let L?(X,E) be the completion of the
space of smooth sections Q(X, E) under this scalar product. In the case of E = Al T*X we
denote L2(X,A' T*X) by LL(X). Since 4 is elliptic, by Theorems A8 and [&33, it is an
essentialy selfadjoint operator with compact resolvent, which we still denote by A;. The
spectrum of the selfadjoint extension consists of a sequence 0 < Ag(t) < A1(t) <... — +
of eigenvalues of finite multiplicity. The eigenspace ker(A; — p 1d) has smooth elements
and we denote by &'(A,A) = © < ker(Ay — pId) the sum of eigenspaces corresponding
to the eigenvalues less or equal to A. We have

N'(A,A) ==dim& (A, 80) =#{j: Aj <A},

the number of eigenvalues less or equal than A. N'(A,2;) is called the spectral counting
function.

We introduce a subcomplex of the Witten deformed complex. First observe that diA; =
dtétdt = Atdt SO

de ker(Ay — pld) C ker(Ay — p1d) (2.12)
Let E(A,A) : Ly(X) — &°(A,A) be the orthogonal projections. By (Z12),

d& (A, L) € &N, By)
R(A)dy = diP(A)

2.5. PROPOSITION. (& (A, L), d;) is a subcomplex of (&°,d;) having the same coho-
mology.

PROOF. By the definition (A.45) of the Green operator G; of A;, and by (A.46))
ld—P(A) = (&G +P(0)) (1d—P(A)) = di [&G(1d P (A))] + [&Gt (1d —P(A))]
s0 &Gt (1d—P(A)) is a homotopy operator between Id and Py(A). O

By Theorem 23 we get
H (" (A, 8), dr) 2 Hgry (X) 22 Hgr(X)
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2.1.7. A Bochner-type formula for A;. We deduce a formula for A; which shows the
role of the Morse function. A; can be written as a Schrodinger operator with potential
t2|d f|, which outside Crit(f) is very large, for big t. This will permit to localize the
problem to a neighbourhood of Crit( f). By formulas 9), (1) we get for a € &(X),

Ao = (di & +0kd)a = Do +t2(df Aigra +ige(df Aa))
+t(d(igra) +df Ada +(df Aa)+igt(da))

The coefficient of t2 is easily calculated by the well known formula
ENiga+ig(éna)=EPa,a e N'T*X.
To calculate the coefficient of t, we denote
A(a) =d(igra)+df Ada +o(df Aa)+igi(da), a e A'T*X.

Upon using (ZI0) and the fact that d and i, are derivations on &°(X), we see that A(¢pa) =
dA(a), for a € &°(X), ¢ € €*(X). Thus A is defined by a bundle map, denoted still
AN T*X — A'T*X. To compute A it is sufficient to calculate A(dxt A ... AdxP) where
(x,...,x") is an arbitrary coordinate system.

We fix a point xg € X and consider normal geodesic coordinates around Xg. Then

gij(%0) = &j, dg'i(x0) =0,

M (x0) =0, (2.13)
o (dxEA L AdXP) (x0) =0, (2.14)
S(dxtA...AdXP)(x0) =0 (2.15)

(see (Z6) and (Z14)). We get then

0°f
1 I A : 1
A(dx=A ... AdxP) :Z rx'dxk(dx Nigg — igkdXPA)(dx*A L. AdXP)+

+2Wd(|dxk(dx A...AdxXP)) +ZW5(O|X A AXP).

At Xo, the second term vanishes since Xg is a critical point and the third term vanish by
(@I5). Moreover, the components of the Hessian form Hess; = 0T Xd f € &(T*X @ T*X)
satisfy

0 0°f of -
Hes.sf(o,.xJ axk) = S Tk ad by definition
9°f
— oxigxk’ by @L3).
We infer

A ;HeSSf —k 0—)[dX|/\,Ika] at Xo.



28 2. WITTEN’'S PROOF OF THE MORSE INEQUALITIES

Since this formula is coordinate—invariant, it holds in all coordinate systems. All in all,
we have proved the following Bochner formula:

J 0
Dy :A+t2‘df\2+t;Hessf  Ix k)[dx A, iguk] (2.16)
The formula shows that A; a Schrodinger operator whose dominant part of the potential is
t2|d f|2. When t — o0 the potential is huge on the set {d f # 0}. This is why the L2-norm
of the eigenforms will concentrate asymptotically in a neighbourhood of Crit ().

We study in the sequel what happens to A; in the neighbourhood of Crit(f).

2.1.8. The model operator. Let p € Crit(f;r) i.e. of index r. Let (Up,x...x") be a
neighbourhood of p as in sectionZ2 Therefore |d f|2 = |x|2onUp. If o € €5°(Up), |I| =

&I6) delivers

¢(adx?) Z‘{ =) )2a+txiPal (dx) +a Y & [dxIAiga] (dx7)
[ =1
where g = —1 for j <r & = +1 for j > r+1. We consider then the following model

operator on L;(R"):
n
D=3 Hi+ ) &K
=1 =1
where Hj = —(dixj)zjttz\xj |2 acts componentwise, and Kj = [dx/ A, ig,i] is @ bundle mor-
phism A'T*R" — A'T*R".
We want to compute the spectrum of Af . By [12} Vol. 1,p. 142], [[7, p. 12] we know that

the spectrum of the harmonic oscillator —((%)2+y2 on L?(R) consist of the eigenvalues
with multiplicity one {2N+1: N =0,1,2,...} with corresponding eigenfunctions

On(y) = (¥ N VRN Ve 2 (2N e (2.17)

We infer that the spectrum of — (% ¢)> 412 on LY(R") consists of the eigenvalues
{t2N+1): N=0,1,2,...} with multlpI|C|ty (q) The corresponding eigenforms are
CDN(\/fy)dva |‘J‘ =

On the other hand K; (dx’) = &]dx’, where &} = 1if jeJ, & =—1if j¢J. Since the
operators Hy an Hj commute, we find that Lg(R”) has the following ONB of eigenforms of
A,

{on, (VX - (VXM AXT D Np,. . Ny e NU{OY, 3] =4}

The corresponding eigenvalues are

n
{t S (@Nj+1+¢8g): Ni....Noe NU{0},|J| :q} (2.18)
=1

2.6. THEOREM. The spectrum of A{ ; on LJ(RM) is ZI8). Moreover

, 0 Jifr#£q
Ker (& [ g(n)) = { 12 (2.19)

Re "z dx*A...Adx | r=q

All other eigenvalues are O(t),t — co.
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PROOF. An eigenvalue tz’j\‘:l(ZNj +1+¢ st) vanishes if and only if all parenthesis
vanish (since they are all positive). This is the case if and only if Nj = 0 for g; st =—1and
all j=1,...,n. This means precisely J = {1,...,I}, after the definitions of &; and sf. The
corresponding eigenvalue is

tix

Po(vixh) - Do(vEXMdxI AL AdX =e 7 dxt AL AX.

2.2. Proof of the Morse Inequalities

2.2.1. Start of the proof. We need the following easy result of linear algebra.

2.7. LEMMA. Let

d° d!

V" —0

0—VoO vi
be a complex of finite—dimensional vector spaces, with dimV' =my, dimH' (V") =by. Then
we have the following inequalities for 0 <1 < n

(i) Weak Morse inequalities: by < my,
(if) Strong Morse inequalities:

| |
(—1)“Iby <y (~1)im;
& e

(iii) Equality of the Euler—Poincaré characteristics:

3 (=3 (Dim,

PROOF. Set z; = dimKerd', r; = dimImd'~Y. Thenm; =z +r and b =z —r_;.

Thus
. I .
Z}(—l)'—lmj =n+ Z}(—l)q‘lbj.
= =
Sincer_; =ry=0and rj > 0 forall j we obtain the inequalities. O

The Morse inequalities are a consequence of the following result of Witten, to be
proven in the section

We fix from now on a metric g"* such that we have g™* = d(x})24-... +d(x")?, in the
neighbourhood Uy with coordinates (x1,...,x") given by the Morse Lemma. Let p run in
Crit(f) and let Uy be a neighbourhood of p as in 2111

2.8. THEOREM. For A > 0 sufficiently large there exists t(A ) such that for allt > t(A),
N'(A,A) = my.

PROOF OF THE MORSE INEQUALITIES. By applying the algebraic Lemma to the com-
plex (& (A,4),d;) together with Theorem EZ8 we get Theorem O

2.9. REMARK. The teorem ([Z38) holds true without the hypothesis on the form of the
form of the metric and of the function. In the non—euclidian case the estimate of the
quadratic forms Q; in involves supplementary terms which are however O(t) fort —
oo, The theorem in the present form suffices for the proof of the Morse inequalities.
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2.2.2. The spectral gap of A;. One of the key remarks of Witten [[14, p. 666] is that
the eigenforms of the modified laplacian A; concentrate near the critical points of f as
t — co. We shall use in the proof of Theorem below, especially in §2.2.4

In this section we prove Theorem For this purpose we study the spectrum of A
comparing it with the spectrum of A{ by means of the min—max principle. The result is as
follows:

2.10. THEOREM. There exist constants C1,C» > 0 such that
Spec(&y) C [0,e" ] U[Cat, +00), t>> 1.

JAY: |L'2(X) has exactly m; eigenvalues (counted with multiplicity) in [0,e~C1!], that is, N' (e =1t ) =
m;.

It is obvious that Theorem implies theorem We prove Theorem in two
steps.

Step 1: We show that there at least m; eigenvalues in [0,e~“1!].

Step 2: We show that the (m; + 1)-th eigenvalue is an O(t),t — c. The proof shows
that Spec (At||_|2 ) approaches for large t the spectrum of the sum over all critical points of

index | of model operators Af .
Each critical point contributes with one ground state, in total m;, the other states corre-
spond to eigenvalues wich are O(t),t — co.

2.2.3. Proof of Step 1. Let n € 6°(R),suppn = [—2,2],n =1 on [-1,1]. Set
Ne(t) = n(et), for € > 0. We fix | € {0,1,...,n}. For the points of Crit(f;l) we con-
sider pairwise disjoint coordinate neighbourhoods (Up,x2,...,x"), p € Crit(f;1), on which
the metric g™* is euclidian and f is a quadratic form (see section 222). We fix € > 0
sufficiently small and we consider @pe : Up — R, Wpe(X) = Ne(X) - ... - ne(x") where
(xL,...,xM) are the coordinates of Up,.

Thensupppe = {x€Up: |X'| <2¢,i=1,...,n}. We set

1
ot — ﬁe_”X'zwp@(x)dxl/\.../\dx' onUp
| 0 on X \.supp Yp,e

where a; = [ e n2(y)dy.

The forms wy are obtained by transplanting to X the ground states (Z.19) ofA{’I \le (R"):
by identifying Up, to an open set in R". By definition ||y || = 1. Since supp wpt C Up, the
forms wy are linearly independent when p runs in Crit(f;1). We set

R = @{Rawp; : p € Crit(f;1)}.

2.11. LEMMA. There exists C1 > 0 such that for large t,

(Dtwpt, wWpt) < e C | p e Crit(f;1).
PROOF. We compute

(Dewpy, Wpt) = (Dywpt, Wpt) = aﬂt /R [—nZ(y)Ne(y) +2tyni(y)ne (y)le ¥ dy

Since the support of the function in brackets is [€,2€] we can estimate the integral by
Cet€°. Moreover a; > (T)Y/2 for large t. It follows that

(Ato.)p,t, (L)pl) < e—t£2/2 0> 1.
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Let us denote by Ay(t) < Az(t) < ... the spectrum of A; on LL(X).
We define the quadratic form associated to A;:

Qe(u) = [ldkul®+[|&ull?,  ueWi(X).
By the min—-max principle A&=30 we obtain
—Cqt
Am (1) < max Qi(u)<e
[Jull=1
since dimF/ = m,. The proof of Step 1 is finished. OJ

2.2.4. Proof of Step 2. By the min—max principle it is sufficient to prove that there
exists C > 0 such that

Qe(u) = Cotluf? ,ueW{(X),uLF. (2.20)

It follows from (Z20) that Ay 1-1(t) > Cot for large t, so this proves Step 2.

To prove (Z.20) we use a localisation procedure. We construct first a cover %7 of X as
follows. Let Ug =X ~U{Up: p € Crit(f)} and set ZZ = {Uo} U{Up : p € Crit(f)}. We
consider a partition of unity {¢y : U € % } subordinated to %/, with

S $5 =1, ¢u,="1onsuppap;. (2.21)
Remember that an explicit formula for Q; is
Qt(u):/ (Jdu[? -+ [Su[2+ t2(d f|2ul + t (Au, u))dvx (2.22)
X

where A € End(AIT*X) is a symmetric operator determined in (Z16).
By (ZZ1) we obtain 5 ¢yd¢y = 0 and

Y ld(¢uu)|® = [dul*+ Y |dgu Aul?
3 [5(4uu)2 = [8UP+ Y Jiap, ul?
Thus for u € W{ (X)
3 Qu(duu) = Z/x (Jdgu AU+ ligg, @[2)dV + Qi (u)
so there exist a constant C > 0 with
Quu) > ¥ Qu(guu) —Cllufl?,  ueWi(X). (2.23)

We examine Q; for each U € %. For U € % we consider the Sobolev space W1'70(U)
which is the closure of {u € Q'(X) : suppu C U} in W{ (X).

2.12. LEMMA. There exist C > 0 such that fort >> 1
Qi(u) = Ctlu|?, ueWjg(Uo).

PROOF. This follows immediately from (Z22) since [df| > ¢ > 0 on Ug and A is
bounded from below on X. O

2.13. LEMMA. For any p € Crit(f) \ Crit(f;1) there exists C > 0 such that
Qi(u) > Ctflulf?,  ueWo(Up).

PROOF. Let r be the index of p. Then Ay = A¢y on Up. Since r # | and Ay, acts on
|I-forms, Theorem entails the result. O
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2.14. LEMMA. For each p € Crit(f; 1) there exists C > 0 such that for t > 1,
Qt(u) 2CtHquv u EWJ.,O(UP)7UJ—Ftl'

PROOF. Let us identify U, with an open set of R" endowed with the euclidian metric.
We denote by U the form on R" which extend u with 0 outside Up. Then |ju|| = ||t]|. On U
we have A = A | . If we denote by Q; the quadratic form of A | we have Q;(U) = Qi(u).

Relation u L Ft' means u L Rwpt. From this follows that U is asymptotically orthogonal
to Ker\ | =Re t*/2dx A Adx!. Indeed

(@, e 2axE AL AdX)| = |(u,e X 2dxt AL AdX))|
= |(u, (1= e p)e */2dxE A AdX)| < CeE74ul| =Ce /4T (2.24)
by the Cauchy-Schwarz inequality and the fact that 1 — ¢ p vanishes on [—¢, ]". Let use
the orthogonal decomposition U = Uy + Up, U1 € KerA(’l, up L KerA(’l. We have actually
ug = (u, e t¥%2dxI AL adx)e tX*/2dxI AL AdX". From @22) we learn that
o) < Ce™*/4jay
From Theorem [Z1.8 we have moreover
(& T2, T2) > Ct|| 2|
Therefore
~ ~ ~ _te2 ~ ~
Qu(u) = Qf(T) = (&, T,0) = (&2, T2) > Ct(L—Ce*/*)||T)|* > Ct[|T|> = CtJu||?
for large t. OJ
It is now easy to prove @20). Letu € W/ (X),u L K. Then (nuu, wpt) = (U, wpt) =0,

by @2ZI). We can apply thus lemmataZ12 213 and 2T for nyu, forallU € % . Together

with [Z23) this implies (Z20).
This achieves the proof of Step 2 and of Theorem
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CHAPTER 3

L ocal asymptotic Morseinequalities

At the foundation of many of the results of our paper lies a Weyl type formula of
Demailly for the spectrum of the Kodaira-Laplacian %DFK acting on twisted tensor powers
F« = LX®F of a line bundle L. The analysis of Demailly is based on the the fact that in
the Bochner-Kodaira formula for %DFK on LX® F the metric of L formally plays the role
of the Morse function in the expresion of Witten’s laplacian (L.7). J.-P. Demailly [3] used
H. Weyl’s original localization procedure, which consists in dividing the manifold in small
pieces on which the spectrum of Dirichlet problem looks more and more as the spectrum of
a harmonic oscillator. The Weyl-type asymptotics holds actually for a Schrédinger operator
with magnetic field and is valid in the riemannian case.

Later, J.-M. Bismut [1] gave a heat equation proof based on his approach to the index
theorem. The inequalities obtained are pointwise in the sense of index theory, namely, they
yield through integration the global inequalities. We shall present here a related method
due to T. Bouche [4, 2]. One can also apply a similar method to that employed in Chapter
[

3.1. Asymptotic of the heat kernel

This section is organized as follows. In BT we introduce the Bochner Laplacians
and an associated Schrodinger operator Ay ; together with its heat kernels and the heat ker-
nels acting on LK and we state the asymptotics of the heat kernel as k — c0.The proof
starts in by proving that the problem can be localized on balls of radius r, where
krlf — 400, krlf — 0. InB.&l we compute the heat kernel of the tangent AE’T operator to
Ay ¢ at a point with the help of Mehler’s formula. Finally, we show in B.7 that the heat
kernel of Schrddinger operator is an infinite sum depending only on the tangent operator
A(k’r on a ball of radius ry. We can use then the explicit computation of B.&l and the lo-
calization of B2 to achieve the proof. As a corollary we obtain in B0 the asymptotic
distribution of the eigenvalues of the laplacians. We refine the result on the asymptotic
inB1.8 This estimate will be used to determine the asymptotic of the heat kernel of the
Kodaira Laplacian in the next section.

3.1.1. Statement of the result. Now, we introduce our notations: (X,g"*) is a com-
pact riemannian manifold of dimension m, with associated volume element dvx. The ma-
nifold X may have a non-empty boundary dX. We denote X = X U dX. Let (L,h%),(F,hF)
be two hermitian complex vector bundles endowed with hermitian connections O and OF
respectively. We assume rankL = 1 and rank F = r. Let us fix an isometric local trivialisa-
tion. The connection 0" has then the form O = d + A where 't is a 1-form. Since Ot
is hermitian, M- = —/—1AL with a real 1-form AL, Let R- = (O0%)2 be the curvature of
(L,hb). Inthe local trivialisation, R~ = dI'-. The curvature depends only on the connection
and not on the trivialisation. We set R = —/—1w, where w = /—1R! is a 2-form on X,
called the magnetic field of the connection. Fix a point xg € X. There exists a coordinate

5N
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system (U,x%,...,x™ such that dx*, ...,dx™is an orthonormal frame of Ty, X and such that

S(%o) _ .
w(xo) = Y wj(xo)dx! Adx)T* (3.1)

=1
where 2s = 2s(Xp) < m is the rank of the skew-symmetric 2-form cw at xp and wj(Xo) >
s =2 ws(Xo) > 0= wxsi1(Xo) = ... = wh(Xp) are its eigenvalues with respect to the metric
g™*. Along the fibers of A'T*X @ LK@ F, we consider the pointwise scalar product (-, -)
induced by g™, h and hF. The L?-scalar product on Q" (X, LK@ F), the space of smooth
sections of A'T*X @ LK@ F, is given by

(s1.52) = [ (51005200} v (). (3.2)

We denote the corresponding norm with ||-||.

We will be primarily concerned with the spectral distribution of a Schrodinger operator
constructed as follows. Let us consider a hermitian section T € &(X,End(F)), identified
to1d,x ®T € End(LK®F).

3.1. DEFINITION. Let O-“F be the connection on LK@ F induced by 0" and OF. The
Bochner Laplacian is the operator

ALKOF _ (DL"®F)* LA eF 4 ML*eF (DL"®F)* (3.3)

on Q" (X,LX®F). In the sequel we also use the notation F, = LK@ F. The Schrodinger
operator associated to T is
1

DNr = EAFk —T. (3.4)
The heat operator is given by
7}
I:)k = E - Ak,r- (3-5)

The selfadjoint extension of A ; which we consider is the operator Ay ; with Dirichlet
boundary conditions (see [AZ.3). In general, if U is an open set with smooth boundary we
denote the operator Ay ; with Dirichlet boundary conditions by Ay ;y. Butin case U = X
we omit the subscript and write simply Ay ; for this extension.

The quadratic form associated to Ay ; is

Qk,r(u):/ (O u2 = (tu,u))dvx, ueWig(X,LKaF). (3.6)
X

As A ¢ isellipticand X is compact, A ; has a discrete spectrum which can be recovered
from the heat kernel ey(t,x,y) which is the smooth kernel of the operator exp(—tAy ). If
we want to indicate the open set where Ay ; acts, we denote the heat kernel of exp(—tAx ¢ u)
by €ku (t7X7y)'

The heat kernel enjoys the following expansion: for j=0,1,---, let )\jk be the eigen-

values of Ay ; (counted with multiplicities), and (S'j‘)j be an orthonormal L basis of eigen-
forms associated to the eigenvalues /\}‘, then
ex(t,X,y) = Z}exp(—t)\}‘)s'j‘(x) ®SK(x)*, (3.7)

12
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and is characterized by the following properties:

ex € € ((0,00) x X x X,End (A\®9T*X @ LK@ F)), (3.82)
Pkek = 0 on X, where Ay ; acts on the first variable, (3.8b)
ex(t,x,y) — Oy (Dirac d-function at pointy) ift — 0, (3.8¢)
ek(t,X,y) = ex(t,x.y). (3.8d)
ex(t,0X,y) = {0}, (3.8¢)

Our aim is to prove the following result from [2]. Let cw(x) be the magnetic field at a
point x € X written as in (3I). We denote
s(x)

exp(tT(x)) I_L _ wj (X) € End(Ey). (3.9)

(41m)™/ 2t M/ 2-5(x) j—1 sinh oy (x)t

o (t,X) =

3.2. THEOREM (Bouche). There exists € € (0,1), not depending on k, such that the
heat kernel k—™2g(t,x,X) converges t0 e« (t,x), as k — oo, uniformly with respect to
x e X andt € [to,t1] C (0,+00).

The rest of the section is devoted to the proof of Theorem

3.1.2. Localization. Let us fix a point xg € X and local coordinates around this point.
Let B, be the ball of center xg and radius r. Set

Tr = sup [|T(x)]|

XeBy

We prove now that the problem is local by comparing the heat kernel ey(t,Xo,Xo) to the
heat kernel ey g, (t,Xo,Xo) over the ball B.

3.3. PrROPOSITION (Localization). There exist positive constants C1 and &; such that
for any t € (0, min(keg, kr?/2m)) we have

k2 kr2
|lex(t, X0, X0) — €k g, (t,X0,X0)| < Clt_% exp (_E -+ 2trr) . (3.10)
As preparation we need the following.

3.4. LEMMA. Letd(-,-) the geodesic distance associated to the metric g™*. Then for
allt € (0,kez) and all x,y € X we have

Iek(t,x,y)|<cllt<—m2exp (—kd();ty) +trr) : (3.11)
2

PROOF. Let us denote by eqg(w,X,y) the heat kernel associated to Ag and €, (w, X,y) the
heat kernel associated to kAy ; = A — k1. Kato’s inequality for A reads

(AU, u) > |ulAglu|, forue Q(Br,LX®F), (3.12)
and hence
(kD ru,u) > |ul ((Ag—KTr)|ul) (3.13)
By [5, Theorem 3.1], (3.13) entails
|€k(w, X,y)| < rank F exp(KTy) eg(W, X, y) . (3.14)

Since eg(w, x,y) admits the asymptotic expansion in a neighbourhood of w = 0,

2
eg(W,X,y) ~ u0(471W)J’2n exp <—%) (3.15)
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we infer the existence of constants uq, € > 0 such that

d?(x,y)

f <E€. 3.16
ar ), orw< &€ ( )

eg(W, X,y) < Uz (47IW) "2 exp (—

The statement of the lemma is now a consequence of ([BI4) and (316) by setting w =
t/k. O

PROOF OF ProPOSITION B3 Let ¢ be a smooth function supported in B;. We set
W(tx) = [ (exe, —eddux

which, by @380), 3:8d) has the properties

Py =20 4 B =0 on (0, +9) xB,. (3.172)

Y —0 ast—0. (3.17b)

By Kato’s inequality, exp(—tT,)|y| satisfies the maximum principle for the heat operator
P«. Indeed,

(Gw.w) = 331wP =gy (3.18)
and (B.12) entail
(Pt ) > (@] (5 + kDo —Tr) ¢ (3.19)
hence
(t%+§Ag—fr) Y| <0 (3.20)
that is
(& +L0g)exp(—tT)| | < 0. (3.21)

Thus the function exp(—tT;)|y| takes its maximum on {0} x B, U[0,t] x dB;. Therefore

|W(t,x0)| < exp(tTr) sup{[¢| : (r,x) € [0,t] x 9B}

m

< Cllt(—r; exp (—%dz(suptp,dBr) +2tTr) lolla (3.22)

if t < 2kd?(supp ¢, dBy)/2 where ||¢||1 is the Sobolev norm of ¢. We let now ¢ — &,
in (322) and we obtain (310). O

3.5. REMARK. We first remark that we may choose C; and &1 uniform in x € X. In
order to have uniformity with respect to t of (3.10) we need to apply the estimate on balls
of radius ry such that

lim krg = 4.
k— o0

If we choose ry = k~ T2 then kr2 = ké so @I0) holds fort € (O,k%) and k > ko, where ko
isuniforminx € X.



38 3. LOCAL ASYMPTOTIC MORSE INEQUALITIES

3.1.3. The heat kernel of the tangent operator. We consider now the operator AET
on R_m which is the tangent operator to Ay ; at xo. We endow R™ with the metric gg =
3 dx! Adx) and the trivial line bundle Lo = R™ x C with the connection

S . . S .
O =d—+v~1 Z wx xS, AR = S aopxldx)*e (3.23)
=1
having curvature w = 35_; wjdx) AdxI*S. We take OF flat and T constant, (Tu,u) =
Sicacr aup 2 foru=s4_ uy @e;.
3.6. PROPOSITION. With this choices the heat kernel of A? _ has the form:

exp(tT) SO
(4mm)m/2tm/2-s Dl sinhajt’

e(to, X, x) = k™2 (3.24)

ProoF. By ([3.8) and (.2Z3) the quadratic form of AEJ is given by:

B 1 auy |2 ouy i 2 du, 2
Qk(u) = /Rmk[,g (’ axi ’ + 0Xj+s_|k(AJJXJUA’ >+ j;s dxi }
s 1<AKT
- 5 alul®
1I<AKr

In this situation, Qy is a direct sum of quadratic form acting on each component u, and
the computation of exp(—tAy ¢) is reduced to the following simple cases (825) and (Z286).

The first case is:
- [l
-~ Jrldx

Then, it is well known that the heat kernel is given by

, associated to the operator —d?f /dx? (3.25)

1 2
e(t,x,y) = ———e X V/4
XY=
The second case is: ,
Q(f):/RZ dxl) +)dx2 x| (3.26)

A partial Fourier transform in the x? variable gives

df 2 2,2
QU = [ [ 550063 +a?(x - ) ot €92

and the change variables (x1)’ = x* — x?/a, (x?)! = &2 leads to the so called “harmonic
oscillator” energy functional

g 2,2
5 +a2x2.

du 2 _ ]
:/’_’ +a%?|u|?, associatedto [=——s
R I dX o

The heat kernel of this operator is given by Mehler’s formula:

e(t,x,y)_,/izminhZalt xp (— (coth2at)( y)° —a(tanhat)xy).

To see this we can use the form of the eigenvalues of the harmonic oscillator [J as given in

(ID):
(2Ppty/m/a) M2 Dp(vax), p=0,1,2,...,
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with associated eigenvalues (2p + 1)a, where (®p) is the sequence of functions associated
to Hermite polynomials:

x2/2 dP e
Pp(x) =&/ (e 7).
Therefore we have

e—(2p+1) 4P dP
B x2+y2 —axz _ 7ay2
e(t,x,y) = \/:T Z 2PplaP ax® >dyp<e )

and the summation ¥ (x,y) can be computed from its Fourier transform

S(En) —eTexp(— e 2en). = o-(624n%)/4
Z(E?”) =e eXp( 2ae 5'7) \/ﬁe

The heat kernel operator of Q from ([3.28) is thus given by

€108, 8) = [ et -2yt 2)fiyt, )ay

which by inverse Fourier transform reads:

a a
e(tx 2yt y?) = ———exp (— 2 (cothat) (¢ —yH) 2+ (¢ ~y)?) )

X exp (%a(xl +yhH(x%—y?).

The heat kernel associated to a sum of (pairwise commuting) operators [s,...,00y acting
on disjoint sets of variables is the product of all heat kernels exp(—tJj). Let e’ (t,x,y)
be the heat kernel of Qg acting on a single component u,. The factor in the heat kernel
corresponding to the pair of variables (x/,x/*%), 1 < j <'s is obtained when substituting
kwj toaandt/k to t. Thus

—kow _ j V2 j+s__ i+s\2
ed(t,x,y) = rl4rrsmhw, ( 2 cothajt((x! —y))=+ (X1 —y1™)%)

+ YTk (0 4y 75y 79))
k \ "2 i
x exp(tT)( — exp( —k S (X! —yhHe/4t) (3.27)
() " ow (k3 )
Restricting to the diagonal we obtain (3.24). O

3.1.4. Heat asymptotic of the localized operator. Using a chart we identify now a
neighbourhood of xo with R™. We define a new operator Zki on R™ which coincides with
Ay ¢ on a small ball. Let B, = By, with r, = k~%12. We construct the operator Ay ; wich
coincides with Ay ; on By and with A . on RM~ 2By. We achieve this in the following
manner. Let ¢ a smooth function Wlth support in 2By which equals 1 on Bx. We consider
on R™the metric §= ¢gT™* + (1 — ¢)g°, on Lo = RM x C the connection 0" = ¢ + (1 —
¢)O" and on F the flat connection. We define AY“SF as the laplacian associated to this
connection. We set T= @1+ (1 — ¢)1(Xo) and we get as in (3:4) the operator Zk,r.
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If we denote by A = /—1I'" we know that

APy = g''\/d V=1 k A I
u \/det 0x( detg )+ 9
jl AUNEA
+V- \/ﬁax (Ajg’"+/detgu) +k=|A|

This entails the estimate

Ber—n0 — { O (292 + (F+ jx—x02) 0+ [x —x0| +Kix—xol?)

. (3.28)
0 outside 2Bk

where [ is the trivial connection on R™and A is chosen such that |A(x) — A(Xo)| < Ca|x —
Xo|?. There is possible since |w(x) — w(Xg)| = O(|x — Xo|) and by the homotopy formula
on a ball, used to construct the potential A. Let €(t,X,y) be the heat kernel of Ek,r.

Our purpose is to express the heat kernel €x(t, x,y) as an infinite sum depending only on

AE’T on a ball of radius ry = k1. Using Lemma 3.3 and properties (3.6a — d) we obtain

B(t,x,y) —eR(t,x,y) = /R eR(0,2,y)8k(t,x,2)dz — / &(0,%,2)eR(t,2,y)dz

1 a R
:/ dw— /ngk(W»XJ)eE(t—W,Z,y)dz
== w [ (B swxd fit-wzy)
— B(t, X ) et —w.z,y) }dz
=— /O dw Rmé“k(w,x,z)(ﬁk,r—Aﬁ’o)zeg(t—w,z,y)dz

t ~
= _/ dw ’evk(w,x,z)(AkJ—Af’o)zeﬁ(t—W,z,y)dz
0 2By

Set fi(t,x,y) = (Bt — Ai’o)eﬁ(t,x,y) and denote the previous equality by & — e =
exfi fk. We obtain the formal Levi sum

= of + et fict -+ eRafid -2t = Y eRafP (3:29)
p>0

3.7. LEMMA. The sum (3.29) converges to €.

PROOF. In the sequel C stands for possibly different constants. By (8.27) we have
k
06R(t,2,y)| < C(Tlz=y1) +k(lzl +Iy) eQ(t.2)|
k
o, 29) <0 (K- Sy~ 2yl + )

Ky —allyl +12)) etz
hence by (3.28)

<k\2—y\3+ lz—y|+k|z—y|?

fie(t <C
| k(?zvy)| t2 t

i+ 2) etz )l
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Since r, = k=512 and the function (0, +) — xPexp(—ax) is bounded for all p > 0,
a > 0 we find ag > 0 such that for k sufficiently large

k3-1 _m —agk|x —y/?
< —= 7 :
i(t,2.)] < = exp(tTiy)t P exp(——-) (3.30)
hence
et x.y)| < CkZ~Fexp(tTy,)
t _mp1 _m z—y2  |z—x? (3.31)
-/OdW/RmW 2 (t—w) 2exp<—aok< w + t—w> dz
Since
_ma1 _m iz—y|? |z—x[?
w2 (t—w) 2exp(—aok( + ))dz:
Rm w t—w
2\ 3 (k)2 K y2 (832
y _
(Go) v oe(-aok=5—)
Therefore
02 f(t y)] < C2k3- Texp(try,) 3t "8 exp( %y
(3.33)

e £f(t )] < CPKE—expltTy ) At Pexp o j—y2)

By B33) the series (8:29) and its derivatives converges on any compact of (0,0) x R™.
Therefore for any section S € Q((0,) x R™ End(E)) we get

G(es) =5 and  figS = (Bur — 9, (€Q1S)
Hence
S(e+eQf+-o) = —A9 6 — (B — A el — (Bir — A0 el fi+ -+
— Ay o(ed +elifi+---)
By eR(0,x,y) = &(y) and B.33),

m m-1
2

t~ 2z exp(tTy,) (exp(Ctk‘l/“) —1)exp(— a%k|x —yP%),
(3.34)

|§k(t7X7y) _e(k)(t7xvy)| < k

where the second term converges to 0 in L(0, «) fort — 0.
Since the heat kernel is unique this achieves the proof of Lemma B.7 O

PRoOOF oF THEOREM 3.2l Proposition B3 and LemmaB.7 imply Theorem 3.2 due to

estimate (3.34). O

3.1.5. Asymptotic distribution of eigenvalues. Theorem[3.2 permits to determine the
asymptotic behaviour of the eigenvalue distribution of the operator Ay ; = %AFk — 1 for

k — oo,

3.8. PROPOSITION. For j=0,1,..., let )\J!‘ be the eigenvalues of Ay ; counted with
multiplicities. The following relation holds for allt > 0 :

lim k™2 Z)exp(—t/\jk) _ / Tre €o(t, X) vy . (3.35)
p— X

k—o0 .

Jf
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PROOF. The definition of the heat kernel 82) implies

Tre ex(t,x,X) = Z}exp —tAK)|S42,
j

and by integration

[ee]

Treec(t.x.x) =S exp(—tAK).
/X Fk(??) ];)p( j)

The uniform convergence for x € X and t fixed of k-™2Trg gy(t,x,X) to Trg ew(t,X) as
k — oo implies then the statement. O

We define the spectrum counting function of Ay ; by

N(A,Ar) = dimImE, (A ;) = card {j L AK<A } , (3.37)
and by
1 d

the spectral density measure, where (A }‘) is the Dirac measure at /\}‘, so that, py is a sum
of Dirac measures on R supported on Spec Ay ;.

3.9. PROPOSITION. The sequence of measures L converges weakly to a measure u
whose Laplace transform is [y Trr €« (t,X)dvx .

Indeed, ([3.:35) can be written limy_. [z exp(—tA)dpx = [y €w(t,X) dvx .
Let us intoduce the function vy (A) on X x R given by

Zs—mn-—m/z [ }m,s
= —m T ay W Ws A=5S2pj+lwi|? 7, (3.39)
M(Z-s+1) <p1,...,zps>eNS "

Vw(A) =

with the convention [A ]9 =0 for A <0, [A]2 =1 for A > 0. It is an increasing function,
left-continuous in A and lower semicontinuous on X. We also consider the function

Vo(A)=li A : 4

Vo(A) = 1im Ve(A +é) (3.40)
which is increasing and right-continuous in A and upper semicontinuous on X. It has the
form

2S—Mp—m/2

N F s

(p1,-..,ps)ENS
with the convention {A }2 =0forA <0, {A}2 =1forA >0.

Since Vy(A) < Vp(A) < )\m/2 the functions v (A + 17(x)) and V(A 4 11(X)) are
bounded on compact sets of the form R x X.
Let r :=rankF. By taking the inverse Laplace transformation of [y e«(t,X)dvx we obtain:
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3.10. COROLLARY. We have the following estimates:

liminfk™ W2IN(A, Dy 1) > /xlz Ve (A + T (X)) dvx, (3.42a)
Ilrknsupk M2N(A, Dy r) \/ va (A +1(x))dvx, (3.42b)

There exists an at most countable set 2 C R such thatfor A e R\ 2
lim k2N (A, Byr) = p((—e0,A]) = /X ;vw@ (A +1(x)) dvx, (3.43)

Indeed, the Lebesgue dominated convergence theorem shows that the function

g:R R gm:/xli Vg (A + 11 () dvx
=1

is left-continuous and increasing. Moreover

Ilmg)\+e /va (A +T1(x))dvx .
X|=

£—0+

The set Z is the set of discontinuities of g.

3.1.6. A more refined estimate. For further use we need a more precise version of
Theorem B2

3.11. THEOREM (Bouche). There exists € € (0,1) such that on the set

{ i X) Ide < 0}

]
we have

enltxx) KM en(t )] | <C(14 o )k bS (3.44)

uniformly with respect tot € [to, k] for any tg > 0.

PROOF. We want to obtain a better order of convergence for € as in (8.33). The proof
of (3:30) shows in fact that

k33 2s /o5 exp(—agkwj coth wjt]yl —z1|2)
fk(t,z,y)| <C exp(tT -
exp(— %y —21]?)

g jl:ls \/f

We make in the sequel the convention wj = wj_s for j € {s+1,...,2s}. We obtain

(3.45)

1 —
ekt fic(t, X0, X0)| < K™ 4 exp(tTy,)-

/t dw/ 2 exp(—aokwj(cothij+cothwj(t—W))|zj—x(j)|2)
RM [ V/sinhwywsinhw; (t —w) (3.46)

exp(aok(L + L )|zl —xJ 2
L P(aok(y + w1z’ —%ol%)

\/V_V jl:ls W(t - W)
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For j > 2s we already know that

/ exp (aok(‘™)P ) ;2w (3.47)
R w(t—w) kapt l

and for j € {1,...,2s} we have

/ wj exp (— aokwj (coth wjw + coth wj (t —w)) |2/ —xé|2)dzj _[2no,
R v/sinhw;wsinh wj (t —w) aok (3.48)
X ———
/sinhwjt
By (.46),
( _m
m 1 _ W tS 2+1
|e(|2ﬁfk(t7X07XO)| < Ckz 4exp(tTrk) |_|J$:1 S|nh]a)1t ’ 2
(3.49)
, s—F+p
0y k3 Sexptr s . L2
\ et - fk(t, X0, 0) | < CPk2 “eXp(tTrk)lelsinhwjt (p+1)!
We obtain finally the following estimate
S .
& _ a0| < (gCt/KY4 1y, D = s T wWj
& —ep| < (e 1)k2 exp(tTp )t 2 Dlsinh or
m_ 1cm e Wj . 3.50)
< Ck2-ats 3+ exp(t L ift <kY/4 S
exXp(tTr) Dl sinh wjt !

< Ck3texp (Ctrio)|e2(t, X0, Xo)|

Since re = k—%/12 and since &€ = 1/6 is the critical value for the validity of Proposition
B3, Theorem BITlis a consequence of (350) with € < 1/6, since k™2 Tre ex(t,Xo,Xo) is
bounded as function of t and k as long as 7(xp) — Z?:l wj (Xo) Idr < 0. O

3.2. Pointwise Morse inequalities

Let us consider the compact manifold X with boundary and the vector bundles L and F
as inB 1Tl Now we assume moreover that X is a connected complex manifold of complex
dimension n and real dimension m = 2n. Assume also that g™ is compatible with the
complex structure J. We denote by n the Kahler form associated to the hermitian metric
induced by g™*. Let L, F be holomorphic vector bundles on X, and let O, OF be the
canonical connections, compatible with the complex structure and with the hermitian met-
rics. For the curvature forms we use the notation R- = (%2, so that with the previous
notation w = \/—_1RL) is a 2-form on X, called the magnetic field of the connection.

3.2.1. Statement of the result. Let us denote F := LX®@ F. Our goal is to study the
Laplace-Beltrami operator

O =3 %9+ 93" onLkaF. (3.51)
We introduce a scalar product on Q%*(X,L*® F) as in 2):

(s1,52) i/)((sl(x),sz(x))hkdvx(x), dvx =n"/nt. (3.52)
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O acting on Q%9(X,LX® F) is elliptic and has discrete spectrum. We denote for j =
0,1,... by )\}"q, the eigenvalues and by S'j"OI an orthonormal basis of LY9(X, L@ F) such

that DRs!9 = 29519,
The operator exp ( — %DFk) has a Schwartz kernel whose restriction to the diagonal
has the expression:

0t = 5 exp (= RAF)S[ 100 9 87H00" € End(ReoAMTX), - (359)
>

J

In order to determine the asymptotics of el00 (t,x,X) as k — oo we intoduce the eigenvalues
a1(X), ..., an(x) of v/—1Rb with respect to n at x. For a multiindex J € {1,2,...,n} we
set
aJinaj, CJ=1{1,2,....,n}\J. (3.54)
JE

In accordance to (3.9) let us denote by
_ Yp=geXpt(agy—ay) = [aj(x)]

(0.0) =
o (t,X) (4mntn-—s JI_llginh|aj(x)|t

(3.55)

3.12. THEOREM. Let ef(o’q) (t,x,x) be the heat kernel associated to exp(—20) in
bidigree (0,q). Then there exists € € (0,1) such that the following asymptotic holds:

| Trpoarex ef(o’Q) (t.%,x) — k"L (t,x)| o =0(k"), k-— o (3.56)
uniformly with respect tot € [to, k] for any tg > 0.
The next two sections are devoted to the proof of Theorem

3.2.2. O as a Schrodinger operator. In order to apply Theorem BT we have to
express the laplacian 20 as a Schrédinger operator Ay ; = Ak — T as defined in (B2).

For this purpose we shall consider a holomorphic hermitian vector bundle G over a
complex manifold X and derive the relation between the Kodaira-Laplace operator 0OC
acting on sections of G and the Bochner-Laplace operator on A%9T*X ® G.

Consider the holomorphic vector bundle G = G®A"TX. We denote by ~: A%AT*X ®
G — AMIT*X ® G, u— U the natural isometry.

3.13. PROPOSITION. Let G be a holomorphic hermitian vector bundle over the hermit-
ian manifold (X, w) with torsion operator T. There exists a bundle morphism

VAYIT*X G — AMT*X @ AP9T*X © G, (3.57)
depending only on the metric w such that for u € Qg’q(G),
2(0%u,u) = DN TXECy 4 vy 4 ([V—1R®,AJu,u)
+(IV=IR®, AT, ) + (Su,u) + (ST, 1),
where S is the operator given by (B.22).

(3.58)

PROOF. Let us assume first that cw is Kahler. Let u € QF*4(G) be a smooth (p,q)-form
with compact support and values in G. The Bochner—Kodaira—Nakano formula (B20)
yields by integration by parts

(0%,u) = [ (08)'u]|*+ [/ (0%)"ul|*+ ([V=1R®, AJu u). (3.59)
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Let now u € Qg%(G). Since (006)*u = 0 (the type of (0¢)"* is (—1,0)) @5I) gives
(B%u,u) = | (08)'u]* + ([V=1R®,AJu,u). (3.60)

The natural isometry ~: G — G, U — U extends to isometries ~: A%9T*X @ G —
A™T*X ® G. We have the following commutative diagrams:

G\//
Qvag) 2L qoari(g)
~l l~ (3.61a)
~ (Dé)" 1=
Q™M(G) —— QMIHG)
and
(DG)”*

QO,q+l(G) Sl N Qo’q(G>
~l l~ (3.61b)

( G)//* -

anari(G) 2L gna(g)

which are consequences of the fact that A"T X is a holomorphic bundle.
Combining this two diagrams of (8.61a) and (B:6Ih) we obtain

DG

Q%4(G) —— Q%9(G)
~l l~ (3.61c)

QMA(G) —— QM(G)
By applying 8.61d) and (3.60) for U we obtain for u € Qg’q(G):
(0%u,u) = (0%0,0)
s, 2 < (3.62)
= [(0%)"0ll + ([v—1R®,AJ0,0)

Let us recall the construction of OA™T™X®G The pundle A%OT*X is holomorphic
and has a Chern connection which induces on the conjugate bundle A%9T*X a connex-
ion O\*"T"™X whose (1,0) component coincides with 4.

The connection ‘TG js obtained from 0AT*X and the Chern connection 0 on
G. Since (ON“T™X) = 3 we obtain

(ONTTX96) — (08 QPONOIT*X © G) — QOHAIT*X ® G) (3.63)

Let us define the map

Wo: AOIT*X ©G —— AMT*X G —— A" L0T*X 0G
and
W = Idyoqrex @(—vV—1) "Wy : QOLALIT*X © G) —s Q" 19(G)
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We have then the commutation relation

(DAO-qT*X®G)”
QOO(AOIT*X ® G) QOINOLT*X ® G)

Nl l‘“ (3.64)

Q"4(G) — Q"14(G)
By B&3) and (3:64) we have
| (DG)’u’2 =| (D/\OHT*X@@G)/u’z
| (Dé)/*u|2 — | (D/\quT*X®G)”u|2
By 329) and (3.62) we obtain
2(RCu,u) = | 07T X8y 2 1 ([ =IR®, AJu,u) + (|v~1IRC,AJT,0)

which proves (B.58) in the Kahler case.

If w is not Kéhler, we apply the Bochner-Kodaira-Nakano formula as given in (BZ1).
We replace thus in @&0) (0°)'u by (0°)'u+Tu and add the term (Su,u). Accordingly
we replace (0%)*T by (O%)"U+ T*Uand add (SU, 0) to @E62). We define

V AYIT*X © G — AT X @ AIT*X © G, (3.65a)
V" AMIT*X @ G — NPT *X @ AMIT*X © G. (3.65b)
where V' =T = [A,dw| and V" is obtained by composing with ~ and W the morphism
T* = [(0w)",wA] : AMIT*X @G — A" MT*X @ G
By 3.63) and [B.64) we have
((0°)'+T)uf? = (0T X8 u 4 vuf?
[(O8)" 4 T%)u]? =|(OA"TX€C) "y vy

and we finally define V =V’ @®V”. Using these relations as in the Kahler case we get

@E.59). ]

3.2.3. Proof of Theorem The proof consists in applying Theorem 317 together
with Proposition BI3 for G = LK@ F. Let us examine the term

—~

(IV=TRY*F AJu,u) + ([V—=IR“F) AJG,0)
=k ([v'=1R",AJu,u) +k([v—1R", AJ0.0) (3.66)
+ ([V=1R", AJu,u) + ([V=1R", A0, ).

We examine the term corresponding to v/—1R". Let x be a fixed point of X. We can find
complex coordinates (z1,...,zn) centered at x such that both n and v/—1R" are diagonal at
x and n(x) is euclidian:

n=Y1Y dzi Adzj,

_ (3.67)
V=IRE =YY aj(x)dz) Adz,
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where ay(x),...,an(X) are the eigenvalues of /—1R" with respect to n at x. Let (f,) an
orthonormal frame of LK ® Fy. For a (p,q)—-form with values in LK@ F, we write at x

u= % up g fr @dzi Adzy,  |uf= z up g2 (3.68)
l=p,[J|=a,A [1|=p,]J|=0.A

Let us define the hermitian endomorphism 1 € End(A%9T *X) by
T( ; UJdZ]) = Z (CICJ —aj)uydzy  atx.
Nl=q NE

We shall also denote with T the endomorphism T ® Id, k. Which satisfies

T( Z ufy ®dzy) = ;(GCJ—GJ)quA ®dzy atx. (3.69)
19/=g,A N=q
By [3, (3.9)] we have
([V=1R" Au,u) = % (a1 — agy)|u g, (3.70)
1l=p.[J]=0,A

where the multiindex notation of (354) was used. Let u € Q%9(X,LX® F) written as in

@GED) (I = o). After G70)
<[\/__1RL7/\]U7U> = Z aUJ|uJ,)\ |2
<[\/__1RL7/\]U?U> :ZGJ|UJ,)\ 2

Therefore

(tu,u) = —((V=1R" AJu,u) = ((V=IRE AT D) = (agy—au)|ugal® (371)

[J[=0a,A

Let = € End(A%9T*X @ F) be the hermitian endomorphism given by

(Zu,u) = ([V—=IRF,AJu,u) + ([v—IRF, AJT,0)

_ (3.72)
+ (Su,u) + (SU,U).
Let Qk be the quadratic form
1 k 0,91 * 1 —
u)= [ (=0 ENTTXERY L vul? — (tu,u) + = (Zu,u) )dvy,
W=/ (¢ 2~ (u.u) + ¢ (Zu.0) vy 519
ueWyo(X, LK@ A2IT*X @ F).
By (358) we have

Qu(u) = <§DF‘<U,U>, U €Wy o(X,APIT*X @ Lk@ F). (3.74)

Let us compare Qx with Qf defined as in @B), where 7 is given by @89). Since V and
= are bounded operators acting only on the component A®9T*X @ F, we infer that there
exists a constant C > 0 such that for all £ > 0, there exists k(&) with

(1—&)Qf(u) —Ce|lul|? < Qx(u) < (1+&)QF(u) +Cel|ul|?, ueWro(X, LK@ AXIT*X @ F)

forall k>k(e).
(3.75)

The heat kernel of the quadratic form Q is denoted by eq, (t,x,y) and the heat kernel of
Qf is denoted by ex(t,x,y). From @Z5) we deduce that

eq, (t,X,X) ~ ex(t,x,x) ask — oo. (3.76)
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But by @Z4), Qx is the quadratic form associated to £, We obtain therefore from (ZZ6)

Trpoat«x el(( )(t X, X) = Trpoat+x €Q, (t,X,X) > Trpoar«x €k(t,X,X), K— .

We apply now Theorem 317] to compute the asymptotic of ey(t,X,x). In Theorem B.IT we
replace F with F @ A®9T*X and take w = +/—1R" and 7 given by 869). By (51 we
have

w=+v—1R" = Zajdx‘/\dy‘ ifz) =x + /=1yl (3.77)

Let 2s = 2s(x) < 2n be the rank of the skew-symmetric 2—form w(x). We order the eigen-
values (by a linear change of coordinates) such that

la1(X)] = |a2(X)| = ... = |ds(X)| > 0= 0s11(X) = ... = dn(X). (3.78)
By a new linear change of coordinates we can put w in the form (B1):

Z wj(x)dx) AdxI TS, (3.79a)
w,()_|O{J(x)|,1:1,2,...,n. (3.79b)
By (3.89) we have 7(x) — Z?zl wj(x) Idp < 0 for all x € X. By (B.44) we obtain

exp(tT(X)) > |aJ (X>| _ 0(kn> k s 00

7n _ —
k ek(tv)(?x) (47T>ntn—s ]I:|l Sinh|aj(x>|t

uniformly on (t,x) € [to,k?] x X, to > 0. By taking the trace Trpoq7-x Of the left-hand side
and using
Trroarx @XP(tT(X)) = 3 (agy(x) —au(x)) by @&
Nl=q
we get [3586). The proof of Theorem is achieved.

3.2.4. Asymptotic distribution of eigenvalues. Let X be a complex compact mani-
fold with boundary. In Corollary we determined the asymptotic behaviour of the
eigenvalue distribution of the operator Ay ; = kAFk — T for kK — oo. We specialize here the
general results to the holomorphic case.

In the sequel 07 = 0% is the Kodaira—Laplacian operator with Dirichlet boundary
conditions. In Chapter E, we’ll aplly to good effect the result for for a relatively compact
domain U and the Dirichlet Laplacian %DE“.

For j=0,1,..., let /\jk’q be the eigenvalues (counted with multiplicities) of 0 acting
on (0,q)-forms with values in LK@ F.

3.14. PROPOSITION. The following relation holds for allt > 0 :

limk ™ exp(—2tA K9 = / Tre 609 t, x) dvx . (3.80)
X

k—oo =

where e{>% (t,x) is given by (3.55). The sequence of measures

1 d
q__ 2 Fk kq
B = s N EO k” Z 5(2)! (3.81)

converges weakly to a measure u9 whose Laplace transformiis [y Trr el20 (t,x)dvx
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PROOF. The first statement follows immediately from Theorem by taking Trg in
(356) and the second is the analog of Proposition 3.9 O

According to B.1), @77), B.78), and the definition 39) of the function vy, (A) on
X x R transfoms to

2572nnn ns
VRL(X) (/\) = m |al(X) - Gs(X)| (pl’m’zps)eNS [)\ — Z(ij + 1)|C¥j (X)H Lo

(3.82)
with the convention [A ]2 =0for A <0and[A]2 =1for A > 0. We define V. as in (B40),
by replacing in @82) the symbol [A 12 with {A }2, where {A }2 =0forA <0,{A}% =1
forA > 0.

Set

NI(A, £0F) = card {j : Af9< A} = dimImFy (207 | (3.83)

0,
Lz'q(X,Lk®F)>

3.15. THEOREM. We have the following estimates:

Iikrii()?fk—n/ZN()\,%DFk) > (rankF)/ |; VRL(x) (2A +agy(X) —ag(x))dvx . (3.84a)
JI=q

Iimsupk*”/ZN()\,%DFk) < (rankF)/ Z VRL(x) (2A +ag(x) —ag(x))dvx . (3.84b)
e X i=a

There exists at most countable sets 29 C R such that for A € R~ 29,

l!Lrgok_”Nq(A,%DFk) =19(X,A), (3.85)
19(X,A) = (rankF)/X Z VRL () (22 + agy(x) — ag(x)) dvx.. (3.86)
Nl=q
Moreover,
1 n
im 19 —d = _1)a( ¥=1Rt
lim 19X, A) = 19(X,0) = n!(rankF)/x(q)( 1) ( IR ) . (3.87)

PROOF. The proof is parallel to Corollary B.I0 Formulas (3.84d), (3.840) and (3.88)
follow from Proposition B.14l and are obtained by taking the inverse Laplace transform of

S Tre e (t,x)dvy . We use here N(A, 10F) = N(4, 20) and the form BEJ) of the
endomorphism 1.
We compute the bahaviour of 19(X,A) for A — 0. First it is clear that

lim Iq(X,)\):Iq(X,O):(rankF)/ Ve (01gy — a13) dv
A——+40 X|J:q

Since ap; —aj— Y (2pj+1)|a;j| <0 forall p e NS, itis clear that for a given p € N5,

{agy—as—3(2p;+1)|ajl}

vanishes unless s = n (i.e. v/—1RY(x) is non-degenerate) and ag; — a3 — 5 (2pj +1)|aj| =
0. The last equality holds if and only if py =--- = pn =0, aj < 0for j€ Jand a; > 0 for
j € CJ. In particular, if v (ag; — a3) # 0, v/—1Rb is non—degenerate and has exactly q
negative eigenvalues.
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Let X(q) be the set of points x of X such that v/—1R(x) is non-degenerate and has
exactly g negative eigenvalues. For x € X(q), set J(x) = {j : aj(x) < 0}. For J|=qit
follows

Vi (agy — a3) = (27) ey -+ an| = (—1)%(2m) "y - a, (3.88)
for J = J(x) and
Vre(aopy—ajy) =0 forJ #J(x). (3.89)
By (3.88), (3.89) and the relation
ai---andvy = (\/—_1RL)n

we get (3.87). O
To shorten the notation we set
VgL (A,x) = z VRL(X)(Z)\ +ap;(x) —ay(x)) (3.90)
NI=q
so that
19(X,A) = (rankF)/ngL(/\ ,X) dvy . (3.91)

3.16. REMARK. We can determine in the same way the asymptotic behavior of the
spectrum of %DFK acting on (p,q)—-forms with values in LX® F. For this purpose we identify
APIT*X @ LK@ F to APIT*X @ LK@ (A%PT*X @ F), that is, we replace F by A®PT*X @ F.
Therefore Theorem remains true by replacing rank F with (B) rank F. Set

NPI(A, 0 = dimImF, (0% LB9(x ko)) (3.92)

Then there exists at most countable sets P9 C R such that for A € R~ 29,
klim kK"NPA(A, EOF) = 1PA(X,A), (3.93)
IPAX,)) = (S)W(x,)\). (3.94)

Moreover,

im 1P _ e _1m _paf+=1ge)"
lim 1P(X,A) = 1P9(X,0) = = <p)(rankF)/x(q)( DI(RY). 399)
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CHAPTER 4

Global asymptotic M orseinequalities

In this chapter we pass from local Morse inequalities to global ones, that is, we find
bounds for the cohomology of complex manifolds.

In Section BT we prove Morse inequalities for the L2>~cohomology in a quite general
contex, namely, when the fundamental estimate (£.1I) holds. Almost all global Morse in-
equalities treated here can be reduced to this situation (with the exception of the covering
manifolds in Chapter B but there we can analyse a fundamental domain).

The main idea, going back to Witten and used by Nadel-Tsuji and Bouche, is to show
that the spectral spaces of the Laplacian, corresponding to small eigenvalues, inject in the
spectral spaces of the Laplacian with Dirichlet boundary conditions on a smooth relatively
domain containing the spectrum for the Dirichlet-Laplacian were calculated in Theorem

The first particular case we treat is of course the case of compact manifolds. We obtain
then Demailly’s original Morse inequalities and as a corollary the solution of the Grauert—
Riemenschneider conjecture in Section .2 In this section we collected background mate-
rial about vanishing theorems, the Kodaira embedding and Moishezon manifolds.

In Section we specialize the abstract Morse inequalities to a geometric situation
and we assume that we have a line bundle which is uniformly positive on a complete
hermitian manifold. An immediate consequence is the Nadel-Tsuji cohomology estimate
on complete K&hler manifolds with negative Ricci curvature.

The Morse inequalities for uniformly positive line bundles are applied in Sections 4.3.2]
and .41 to extend Demailly’s criterion for compact complex spaces with isolated singular-
ities and prove Theorem [L.10 from the Introduction.

We turn next to Zariski open sets in compact complex spaces possesing a singular
hermitian line bundle in the sense of currents. Following Takayama we work on the regular
part of the space and of the curvature current and introduce the generalized Poincaré metric
and change the hermitian metric on the bundle, which implies the fundamental estimate.
We obtain in this way a proof of the Shiffman-Ji-Bonavero criterion.

Finally, Section treats the g—convex and weakly 1-complete manifolds. We will
revisit some of these topics in Chapter [1and treat then from the point of view of Bergman
kernels.

4.1. Abstract Morse inequalities for the L—cohomology

We shall examine a general situation which permits to prove asymptotic Morse inequal-
ities for the L2>~Dolbeault cohomology groups. Let (X, w) be a hermitian manifold, (L,h")
and (F,hF) holomorphic hermitian vector bundles of rankL = 1, rankF = r. We postu-
late a general estimate for the quadratic form of the d—laplacian O« acting on the bundle
Fc:= LK@ F, which implies estimates from above of the spectral function @2). Using the
estimate from below of lemma 4 we prove in Theorems .8 and 7] the abstract Morse
inequalities.

o)
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4.1.1. The Fundamental Estimate. We consider the weak maximal extension 9 * :
L29(X, L@ F) — L9 (X, LX® F), which is a closed densely defined operator with

domain Dom(EFk) (consisting of elements u such that @ *u calculated in distributional
sense is in L2). We denote by @ © the Hilbert-space adjoint of 3 *.

4.1. FUNDAMENTAL ESTIMATE. We say that the fundamental estimate holds in bidi-
gree (p,q) for forms with values in LK@ F if there exists a compact K ¢ X and C > 0 such
that for sufficiently large k we have

C,  =F —hFex
Jul < (18™ w2+ 137 ul?) +C [ ufdux
- K (4.2)
u € Dom(3 )N Dom(@ ) NLYIX, Lk F).
K is called the exceptional compact of the estimate.

The estimate (Z.1) is of course a variant with parameters of the fundamental estimate
(A33). It affords to compare the spectral spaces of the laplacian on X and the spectral
spaces of the Dirichlet laplacian DE“ on a relatively compact domain U containing K.

First, we introduce the functional spaces and operators. We consider the self-adjoint
extension of the d-laplacian given by the Gaffney extension (cf. (B&.24)):

Dom(0F) := {u € Dom(d )NDom(d ) : 3 *u € Dom(D*), 3 “u e Dom(5Fk)} :

Ofku=13"d “u+d “a “u foru e Dom(0F).
(4.2)

The use of the Gaffney extension permits to treat at the same time the case of a com-
plete manifold and the case of a manifold with boundary. In the first case the d-laplacian
is essentially self-adjoint by Corollary [A.14] and the Gaffney extension coincides with its
unique self-adjoint extension. If the manifold has non-empty boundary, the Gaffney exten-
sion coincides with the d-Neumann laplacian by Proposition B&22.

We normalize the operator (£.2) by %DFK. According to Proposition [A. 18 the quadratic
form associated to 0% is

S

1/ =F —Fex —Fx
Qk(uu) = & (& I+ 3 ul?) . DomQc=Dom(@™)NDom(@™).  (43)

Let {EA(%DFK)})\ be the spectral resolution of %DFK and by éa(/\,%lj':k) = Im E)\(%DFK)
the corresponding spectral spaces (compare definition [A.Z8)). All these objects decompose
in a direct sum according to the decomposition of forms after bidegree.

Let us fix an open, relatively compact neighbourhood U of K with smooth boundary.
We consider the laplacian with Dirichlet boundary conditions on U (see Example [A16)
associated to 8“9 + 9FdbF, denoted o0 Let {E, (£0.F)}, be its spectral resolution
and set:

£(,£00)) = ImE, (:55)
N**(A, £07%) = dimé&**(A, £0%) (4.9)
N**(A, £00F) = dim&™* (A, £0)

One of the tools fo the proof of the Morse inequalities is to estimate N**(A, %DFK)

from above and from below. We do this by a localization procedure as in Section
thanks to a remark of Witten (see [47, p. 666]): the L2 norm of the eigenforms of O
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on (p,q)-forms concentrates asymptotically for k — oo on the critical set X(q). In the
original setting of classical Morse theory the role of the curvature is played by the hessian
of a Morse function f and the eigenforms of the modified laplacian A; = (di + dt*)2 where
dy = e~ tfde!™ and t > 0, concentrate near the critical points of f ast — co. This idea
was introduced in the complex geometry setting by Demailly [12], Nadel-Tsuji [31] and
Bouche [8].

We show now that if the fundamental estimate holds, the essential spectrum of %DFK
does not contain the open interval [0, Cio]. Moreover, we can compare the counting function
on this interval with the counting function of the same operator considered with Dirich-
let boundary conditions on U. For the following compare [31, Proposition 2.1] and [8,
Théoréeme 2.1].

Consider a smooth function p on X, 0 < p <1lsuchthat p=1o0on K and p =0 on
X\ U. SetCy = sup|dp|?

4.2. THEOREM. Assume the fundamental estimate (4.1) holds in bidegree (p,q). Then

(1) 0% on LY(X,L*®F), has discrete spectrum in [0,1/Cq] for large k.
(2) There exists a constant C, depending only on Co and Cq such that for A < 1/(2Cy)
the maps

EPA(A, E0%) — &PI(3CoA +Cok L, EOf)
F
U — Eacpa k-1 (k00 (PY)
are injective for k sufficiently large. In particular
NPA(A, 20M) <NPO(3CoA +Cok 2, 200(), A <1/(2Co) k> 1 (4.6)

(4.5)

PROOF. (1) By the decomposition principle %DFK has the same essential spec-

trum as the Dirichlet laplacian %Df(k\u, where U is a compact manifold with boundary
containing K. Let Qy vy be the associated Dirichlet form.
The fundamental estimate (.T]) shows then that Qi x..u (u) > Ci0||u||2, u € Dom(Qym-u ),

since Dom(Qxm-u) C Dom(Qy). It follows that %DE“ has no essential spectrum in [0, Cio]

and %DFK has the same property.
(2) We need the following elementary estimate.

4.3. LEMMA. Let 0 < p < 1 be a smooth function with bounded gradient. Then
—=F —Fiex 3 —=F —hFex
10" (pu) |2+ 0™ (pu)||* < 59 “U[[%+ 10 ul|?) +6sup|dp|*- [Jul|® (4.7)

for all u € Dom(@ *) N Dom(3 ).

PROOF. By Leibniz formula
—=h —Fx =h = —Fx .
107 (PW)|I>+ 1107 (pu)[|* = [P0 “u+dp AUl +[|pd  u+i(dp)ul]®
Using the inequality (x +y)? < %xz + 3y? together with the triangle inequality we obtain

@D 0

Let u € £PI(A, 10F), A < 1/(2Co). Then [[@ “ul[2+ [[@ “"ul|2 < Ak|Ju||2. Plugging
this in the relation (1) we get

lull? < 2Co /K ul2dvx 4.8)
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Moreover by ([@1) we have

6C1
k
3. 6C1, . .o
5)‘+T)IIUII
§ 6C4

_ . 2
2)\+ > ) ZCO/K|u| dvx

12CoC
3CoA + ko 1)/ |u|?dvy.
u

We set C = 12CoCy. The inequality @3) shows that pu € &P9(3CoA +Cok 1, %DLFJK and
if E3c0A+c2k—1(%DEk)(PU) = 0 implies pu = 0. Since p =1 on K, it follows u =0 on K
and by @.8) we infer u = 0. Thus (@.3) is injective. O

2
ul

N W

Qku (pu, pu) < 5Qx(u) +

~X

(4.9)
<

~—~~ o~

<

As for a lower bound of the counting function NP9(A | %DFK) we have a general result
which does not depend on the fundamental estimate.

4.4. LEMMA. The following estimate from below holds:
NPA(A, tafk) > NP, EOf) . (4.10)

PROOF. This is an immediate consequence of the Glazman’s lemma [A29. Let P be
a self-adjoint positive operator on a Hilbert space . Then the spectrum distribution
function N(A,P) :=dimImE, (P) satisfies:

N(A,P) =sup{dimV |V closed < Dom(Q), Q(f,f) <A|If|2vfev] — (411)

where Q is the quadratic form of P. The Lemma follows by the variational principle and
the simple remark that Dom(Qx) D Dom(Qyu). Indeed, let us denote by Ag < A1 < ...
the spectrum of %DLF,'( acting on (p,q)-forms. Let {e;}; be an orthonormal basis which
consists of eigenforms corresponding to the eigenvalues {A;};; if we let & =0 on X \ U
and & =ej on U, & € Dom(Qy) and Qk(&i,€j) = & jAi. Let CDg be the subspace spanned
by {ei: Aj<A}in sz’q(U,L"® F) and ®, the closed subspace spanned by {& : Aj <A}
in LY9(X,LX® F). Then dim®, = dim®? = N(A,i0(). If f is a linear combination
of {& : A <A}, Qu(f, ) <A f]|?and, as Dom(Q) is complete in the graph norm, we
obtain @,  Dom(Qy) and Qi(f, f) < A[|f||?, f € ®,. The variational principle implies
now the Lemma. d

4.1.2. Estimate of the cohomology in bidigree (0,0) and (n,0). In the sequel we
study the L? cohomology in bidegree (p,0) where p =0 and p = n = dimX. In the next
subsection we will study the general Morse inequalities, but given their importance we
prefer to treat this case separately. Our assumption is that the fundamental estimate holds
in bidigree (p,1). We set

0 ,0 . Afx
HE (X,L*©F) = {ue Ly (X, L“¢F) : 9 'u=0}, (4.12)
is the space of (p,0)—forms with values in LX ® F which are L? with respect to w, ht and
hE,

We start with a lemma which gives a lower bound of dim H(‘;)O(M LK@ F).



4.1. ABSTRACT MORSE INEQUALITIES FOR THE L>~COHOMOLOGY 57

4.5. LEMMA. Asssume that the fundamental estimate holds in bidigree (p,1). For
A < 1/(2Cp) and sufficiently large k we have

dimH2 (X, L@ F) > NPO(A, 10f) —NPL(A, tOR). (4.13)

2

PROOF. Since O commutes with 5Fk it follows that the spectral projections of %DFK
commute with 9 * too, showing thus EFké”P’O(/\,%DFk) c &PH(A,10) and therefore
we have the bounded operator )y : EPO(A, 10 — &PL(A, £0) where a7 denotes
the restriction of @ (by the definition of #PO(A, 10%), 95 is bounded by v/kA). Thus
NPO(A, £0F) = dim kerdy +dimImay’. By Theorem B2, NPL(A, £0f) is finite dimen-
sional. Obviously dimImay* < N(A,£0%) and Kerdy = H22(M, LK@ F ) whereby the

(2
desired inequality. O

Note that both sides of @I3) may be infinite. This happens if dimHPO(X, LK@ F) = .

4.6. THEOREM. Let (X, w) be an n—dimensional complete hermitian manifold such
that the fundamental estimate holds in bidigree (p,1). Let U be any open set with smooth
boundary, K €U & X. Then, for kK — oo,

k" n
H p,0 k \/flRL n 114
d||||H(2) (X,L QF ) > —n! /U(thL) ( Vin ) O<k )7 ( 1 )

where U (< 1,h) is the subset of U where v/—1R") is non—degenerate and has at most one
negative eigenvalue.

PROOF. Let us consider A < 1/(2Cp) and & > 0. For k > C,/d we have
NPL(3CoA +Cok 2, £0) <NPL(3CoA + 3, E00(F) (4.15)
The asymptotic of the left-hand side is computed in Theorem BI8 By (#8), #I5) and
(B820)

limsupk "NPL(A, 20f) < limsupk "NP(3CoA + 3, 00.F)

k—— 00 k——>00

(4.16)
< (rankF) / v1(3CoA + &) dvx
U

Since V7, is right—continuous in A and bounded on U, we can use the Lebesgue dominated
convergence theorem to let 8 — 0 Hence

limsupk "N(A, 10M) < (rankF)/ V1 (3CoA)dvx = 11(U,3CoA) (4.17)
U

k— o0

On the other hand, by @I0) and Z85) we obtain for A ¢ 2°
liminfk "NPO(A, 10fk) > liminfk "NPO(A, tO7F) = 19U, A) (4.18)

k—— 00 k—— 00

The estimates (£.18), €.18) and @.I13) imply

||i(minfk—”dimH(F;)°(x,L"® F) > 19U,A) = 11(U,3Co).

for A ¢ 2°. By passing to the limit A — 0 through values A ¢ 2° we obtain I4) invoking
@8D0). O
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4.1.3. Estimates for the cohomology in arbitrary degree. We study now the general
Morse inequalities for conomology groups in arbitrary bidegree.

4.7. THEOREM. Let X be an n-dimensional hermitian manifold and (L,h%), (F,h") be
holomorphic hermitian bundles over X of rank1 and r, respectively.

(i) Assume that there exists an integer 0 < m < n such that the fundamental esti-
mate holds for (p,q)-forms with g > m. Let U be a relatively compact open set
with smooth boundary such that K € U. As k — oo, the following strong Morse
inequalities hold for every g > m:

n kn n
J q p,J k e _1\q —1plL n
JZ dimHp) (X, L0 F) < (p)n!/LJ(>q)( DI(GRY) ok (419)
In particular, we get the weak Morse inequalities:
g k n k_n/ V=ipL)" n
dimHg, (X, L ®F)<r(p)m " (—Z,T R) +o(kM). (4.20)

(i) Assume that there exists an integer 0 < m < n such that the fundamental esti-
mate holds for (p,q)—forms with g < m. Let U be a relatively compact open set
with smooth boundary such that K € U. As k — oo, the following strong Morse
inequalities hold for every g < m:

q i . kn n
_Z)(—l)qldimHg;(x,Lk@@ F) < r(g)m/u(<q)(—1)q(é—_,ﬁRL) +o(k")  (4.21)
1= ) =

In particular, we get the weak Morse inequalities:

imHY (X LK n k_/ VIRLY " okn
dimHg, (X, L ®F)<r(p)n! U(q)( 1R ) +o(k"). (4.22)

For the proof we use the same steps as for compact manifolds.
Hodge theory for the L~Dolbeault complex. Let (Dom(EFk) ALY (X, F),EF“)

be the d—complex of densely defined closed operators, shortly (LY*(X,LX® F),EF“). Let
&P*(A, 0% = ImE, (:07) NL2(X, ko F).
Since @ * commutes to £0Of, it commutes to the spectral projections i.e.
I EA(F07) = EA (}0797 ™,
We obtain therefore a subcomplex
(£P+(2,#0%),9") < (Dom(@*) NLE* (X, LK & F),3™) (4.23)
The cohomology of this complex is denoted by H” (é”p* (A, 0 ,5':").

4.8. PROPOSITION. Let A > 0. If the fundamental estimate holds for g > m (resp.
g<m),
,o 1k ~ X k ~ ,q k
HQ(gp (A.io k)) = A PIX, L0 F) 2 HEYX, LK F)

for g > m (resp. g < m).
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PROOF. By Theorem [A.Z6 the strong Hodge decomposition holds in bidigrees (p,q),
q > m. Let us restrict the Hodge decomposition to the complex (£23):

&PA(A, L0R) = #PAX Ko F) @ (|m(5Fk) NEPAA, o))
& (Im(3 ) NEPI(A, L)),
Due to the commutation of 5':“ to the spectral projections we see that
Im(3*)N&PA(A, L0F) = Im(3* | £P9(A, LOF)).
On the other hand EF"* commutes to the spectral projections too, so we easily obtain
Im(EFk*)méapvq()\,%DFk) —Im@* | &P9(A, 10)). Therefore
£PA(A,20R) = sPAX, LK@ F) @ Im (3% | £P9(A, 20F))
sIm (3 [ £PI(A, 20R)
and
Ker(@™ | £P9(A, 10F)) = #P9(X LK@ F) @ Im (3 € | £P9(), 20F))
It follows that HY (éop"(/\ , %DFK)) >~ #P9(X,LX® F). By Theorem we have also

APYX, LK@ F) = HE(

which finishes the proof. OJ

X, L& F).

Algebraic Morse Inequalities. We also need a variant of the algebraic lemma 27

4.9. LEMMA. Let

dO

1 n—1
0—VOo = vyl d d

vh—0
be a complex of vector spaces. Set dimD9 = c% and h9 = dimH9(V?).

(i) Ifc% < o for g > m, we have

S (1))l <
=9

=]

(—=1)179%J  forq > m.

M

j
(i) If c¥ < oo for g < m, we have

g 9 o
(=) < § (=19 ! forg < m.
2 2

PROOF. Set zl = dimKerd!, r} = dimImd/. Then ¢/ =2} +rl hi =2/ —ri=1 and
zrj‘:q(_l)l—QhJ —ra- 1+Z o~ 1)i-9%J and Z o(— 1)a-hi = rq+z o(—1)% I
Now the proof follows in the same way as the proof of LemmalZ1l O

PROOF OF THE THEOREM .7l We prove only part (i) since (ii) is similar. LemmaZ.9
applied to the complex #Z3) delivers

i(—l)j_qdimHj@ap’ 1ka) i 1)I79NI (A, 207
1=q 1=q
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Proposition 4.8, TheoremZ. 2 and @.10) show then
n . - n . .
j;q(—lw—qmmng)(x,Lk@ F)< 3 0N —a). 0
where A (1) = A for | even, A(I) = 3CoA +Cok~1 for all | odd. By proceeding as in the
proof of Theorem .6/ to obtain
n

. . n
S (=17 9dimHp, (X, L@ F) <K' (=1))" (U, 0) +o(k")
1=q 1=q

where 11(U,0) is given in Z817). O
Let us note that if X is compact, the hypothesis of Theorem .1 (ii) are trivially satisfied

for m =n, so that the following original holomorphic Morse inequalities is a special case of
Theorem 7l Indeed, the L2~cohomology is in this case isomorphic to the usual Dolbeault

cohomology by (AZ0).

4.10. THEOREM (Demailly). Let X be a compact manifold and L, F holomorphic line
bundles, rankL = 1, rankF =r. As k — oo, the following strong Morse inequalities hold
foreveryq=0,1,...,n

,i< 1) I dimHI (X, L*® F) < i::/(gq)(—l)q(gRL>n+o(k”). (4.24)

with equality for g = n (asymptotic Riemann-Roch formula).
In particular, we get the weak Morse inequalities

n
dimHY(X,L*o F) < EI/(q) (%RL)nJro(k”). (4.25)

4.11. REMARK. In the compact case we can give a direct proof using the asymptotic
of the heat kernel, following [5, 13]. Set h} = dimHY(X, Lk® F). Then for every t >0

hd—hd qh°<% ‘“‘ik".

where /\]!‘", j=0,1,... is the spectrum of O™ acting on QOJ (X). The left hand side is the
contribution of the 0 eigenvalues in the right hand side. All we have to check is that the
contribution of the other eigenvalues is > 0. The contribution of the eigenvalues such that
A =2>0is

q
et Z}(_m—' dim&® (A, 107, (4.26)
|7

As &9°(A, %DFk) has trivial cohomology if A > 0, one easily sees that the sum (£28) is
equal to the dimension of d&%9(A, t0%) c £09t1(A, £0), hence > 0. By Theorem
B.12 we have
q
hd—hI . (—1)%h0 < rk” %(—1)(4' ;
1= NES

|_|j<5|aj‘ -etlagy—ay=3 [aj])

+o(k").
X22nfsnntnfsl—|j<5(1_e72t|011'\) (k™)

as k — oo, uniformly with respect to t € [to,k?], for any to > 0. We let t = k® tend to +co.
It is clear that ag; — ay — 5 |aj| is always < 0, thus the integrand tends to O at every point
where s < n. When s = n, we have ag;(x) — a3(x) — 3 |aj(x)| =0 if and only if aj(x) >0
for every j € CJ and aj(x) < O for every j € J. This implies x € X (I, E); in this case there
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is only one multi—index J satisfying the above conditions and the limitis (2r7) "|a1 - - - ap|.
By the monotone convergence theorem, our sum of integrals converges to
q

1
1 q—I/ 2 Na---anld :_/ —1)9 (=R
PGl LR TIES Y BN

4.12. COROLLARY. In the same situation
n

0 k 5 K V=ipL\" n
dimH(X, L' F) > /X(@( ERE) +o(K"). (4.27)
It follows that if (L,h") satisfies
IR S 0 4.28
/X(<1)<2" ) >o. (4.28)
there exists C > 0 and kg such that we have
dimHO(X, L@ F) > Ck", k> ko. (4.29)

4.2. The Grauert-Riemenschneider Criterion

In this section we will prove the Kodaira embedding theorem in order to explain the
context and the terminology of the Grauert—-Riemenschneider criterion. Then we show the
connection between existence of meromorphic functions and the growth of the dimension
of the space of holomorphic sections of a line bundle.

For the basic definitions of positivity and complex projective spaces we refer to Ap-
pendix B.4.

4.2.1. Some vanishing theorems. We start by recalling three important vanishing the-
orems.

4.13. KODAIRA VANISHING THEOREM. Let X be a compact manifold and let (L,h%)
be a holomorphic hermitian line bundle of positive curvature. Then

(i) (coarse vanishing) For any (E,hE) holomorphic hermitian vector bundle
(E,hE) over X, HP(X, 0(LX® E)) = 0 for p > 1 and k sufficiently large.

(ii) (precise vanishing) HP(X,0(L®Kx)) =0for p > 1.

PrROOF. (i) By applying the Bochner—-Kodaira—Nakano formula as in (3.62)) (or (B:25)
with void boundary) we have

(0“Fu,u) > k([v~IR", AJG,0) + ([V—L(R%™ +RE), A0, 0)
forany u € QOP(X,LX®E), p > 1, where
“AOPTX @LKQE — AMPT*X @ (LK@ E @ AMTX)

is the natural isometry. We have to pass to the (n, p)-form U since the curvature term in the
Bochner—Kodaira—Nakano formula (3.70) does not permit to exploit directly the positivity
of the curvature for (0, p)-forms. We choose now the metric w = /—1R" and then, from
G0,

([vV=1R",AJ,0) > kpl|a|2 = kp|Ju] >. (4.30)
Therefore (O-Eu,u) > (kp — C)||u||2, for some C > 0 depending on the Ricci curvature
of w and RE on X. As a consequence any harmonic form u € s#%P(X, LX) vanishes for
k > C/p. By Hodge theory we obtain HP(X, ¢(LX® E)) = 0 for p > 1 and k large enough.

(i) is straightforward since we apply the Bochner-Kodaira-Nakano formula directly for
(n, p)-forms and we obtain (Z30). O
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We quote now Grauert’s generalization of Kodaira’s theorem. It is remarkable not only
for the fact that it treats the singular case, but also for the beautiful method. It reduces a
problem about the cohomology of the base manifold to a problem about the disc bundle of
L*, the so called Grauert tube. For all definitions we refer to Appendix B.

4.14. GRAUERT VANISHING THEOREM. Let X be a compact complex space and
let L be a Grauert—positive line bundle. Then for any coherent analytic sheaf .# on
X, HI(X,0(L% ®.%) = 0 for q > 1 and k sufficiently large.

PROOF. The proof uses Grauert’s solution of the Levi problem for the Grauert tube
T C L* (see (BZ8)), more precisely the finiteness property dimHY(T,.%) < e, q > 1, for
all coherent analytic sheaves ZonT.
Let .# be a coherent analytic sheaf on X and denote 77: T — X the natural projection.
We have then an injective map
PHIX, Z 2 0(L%) — HYT, " F) (4.31)
k>0
It s is a section of LK, we obtain a function on T by setting o (v) = v®(s(x)), where
veL® mv)=x
The restriction of o to the fiber L} is a homogeneous function of order k on Ly. This
construction carried at cohomology level gives rise to (£.31)). It follows that HY(X,.% ®
O(L*)) =0 for g > 1 and k large. O

We recall now the standard L2 existence theorem of Hérmander—Andreotti—Vesentini.

4.15. THEOREM (HOrmander-Andreotti-Vesentini). Let (X, w) be a complete K&hler
manifold of dimension n and let (L,h%) be a positive line bundle. Let y3 < ... < y, be
the eigenvalues of v/—1R" with respect to w. Then for any form f Lg’q(X,L) satisfying

d"f=0and Jx (Y14 -+ Y)Y F|2dvx < e there exists u € LY9 (X, L) such that du=f
and

/X|u]2dvx</X(y1+...+yq)‘1|f\2dvx.

In the seminal works of Bombieri [6] and Skoda [42] it has been observed that the
above theorem still applies if h' is singular. We recall first the terminology abourt currents
and singular hermitian metrics [14, [17]. Let X be a complex manifold. we denote by
QPA(X) the space of (p,q)-forms, endowed with the ¥’ “—topology. A (1, 1)—current on X
is a continous linear functional T : Q"~1"=1(X) — C. The current T is called:

o closed, if T (da) = 0, for any smooth form a with da € Q"~1."=-1(X).
oreal,ifT=T,ie,T(¢)=T(9), forany a € Q" 11(X).

o positive, if (\/—_1)(n*1)2T(B AB) >0, forany B € Q" 1O(X).

o strictly positive, if there exists a hermitian metric on X whose associated (1,1)-
form w has the property that T — w is positive.

o Kabhler, if it is closed and strictly positive.

o integral, i it is closed and its cohomology class {T} € H2(X,R) lies in the image
of H2(X,Z), under the natural map.

Let X be compact complex manifold and let L be a holomorphic line bundle over X. A
singular hermitian metric h' on L is a choice of a sesquilinear, hermitian-symmetric form
ht on each fiber Ly, such that, in any trivialization 9 : L [y — U x C, we have hk(v,v) =
|3 (v)|2 exp(—¢s (X)), V € Ly, x €U, with pg € L1(U, loc). If g5 € €*(U), we obtain the
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usual definition of a hermitian metric. Another way to define a singular hermitian metric
ht is to give a smooth hermitian metric h5 and a function ¢ € L (X,R) and then set
ht =h5e=?.

As in the smooth case, the local (1,1)-currents /—1dd¢g patch together to give a
global (1,1)- current v/—IR(LN), called the curvature current of (L,ht). v/—IRLH) js
obviously a closed and integral, representing the Chern class of L. If ht = h5e=? the
curvature current is RN = R(LIS) 1 98¢ (and it does not depend on the choice of ht and
¢ such that h- = h5e=?).

4.16. THEOREM (Hormander-Bombieri-Skoda). Let (X, w) be a complete K&hler ma-
nifold, dimX = n, and let (L,h'—) be a singular hermitian line bundle such that /—1R" >
gw In the sense of currents, for some constant € > 0. Then for any form f € Lg’q(X,L)

satisfying @ f = 0 there exists u € L}9(X, L) such that - f = 0 and

1
/X|u|ﬁL<$/X|f|ﬁLdvx.

The multiplier ideal sheaf .7 (h‘) of a singular metric ht = h5e~=? is defined by
(W) (U) = {f € Ox(U):|f|%? € L (U;loc)}

A basic result of Nadel [30] says that .# (h') is a coherent analytic sheaf if the curvature
current /—1R% is positive.

4.17. NADEL VANISHING THEOREM ([30], [16]). Let (X,w) be a compact Kahler
manifold and let (L, h") be a singular hermitian line bundle such that /—1IR" > ew in the
sense of currents, for some constant € > 0.

Then HI(X, O(L®Kx) ® #(ht)) =0forq > 1.

4.2.2. The Kodaira embedding theorem. Let us introduce some piece of terminol-
ogy. Let X be a complex manifold and L be a holomorphic line bundle. We consider the
graded ring

o (X,L) = Bs0HO(X, 0(LY)) (4.32)

of a holomorphic sections of the tensor powers of L (here LC is the trivial line bundle).

(a) We say that o7 (X, L) separates two points x # y in X, there exists k(x,y) =k > 0 and
sections s,t € HO(X, &(LX)) such that s(x) = 0, s(y) # 0 and t(y) = 0, t(x) # 0. &/(X,L)
separates points on a set W if it separates all pairs (x,y) with x # y. This means that the
meromorphic function s/t takes different values at x and y.

(b) We say that .7 (X, L) gives local coordinates at a point x € X, if there exists k =
k(x) > 0and sections s, ..., sn € HO(X, &/(L¥)) such that so(x) # 0 and d(2)A...Ad(D) #
0 at x. In other words, the meromorphic functions 2,...,3 are holomorphic at x and
provide local coordinates.

Let us interpret these notions with the help of the Kodaira map ([LY). Let {s1,...,Sq}
be a basis of HO(X, &(LK)) which induces an identification

HO(X, o(L%) =2 HO(X, 0(L¥)* = C% and PHO(X,o(L¥)* =CP% 1,
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The base locus Bl of HO(X ,ﬁ(L")) is the set of points of X where all sections of
HO(X, &(L¥)) vanish. We define ®, by means of the following commutative diagramm.

X < Bly —2 PHO(X, #(LK))*

I I

X~ Bl -2,  Ccpk-?
Let us choose a local holomorphic frame e_ of L in the neighbourhood of x and set s; =
fief_@k, for some (local) holomorphic functions f;. We check then that

aJk(X) = [f1(X);...; fdk(x>]

and this does not depend on the choice of e_. We can also write ®y(x) = [s1(X); ... S (X)]
keeping in mind that the quotient of two sections is a meromorphic function.

Now, (a) is equivalent to the existence of k =k(x,y) > 0 such that ®y(x) # Pk (y) and (b)
to the existence of k = k(x) > 0 such that ®y is an immersion at x i.e. rank Py (x) =dimX =
n. (Note that a set of sections satisfying (b) are linearly independent and can be completed
to a basis of HO(X, &/(L¥)).) We say that a bundle L is very ample if HO(X, &(L)) is base
point free and the Kodaira map @1 is an embedding. The bundle L is called ample if there
exists kg such that LX is very ample for k > ko.

We want to find a sufficient conditions for <7 (X, L) to separate points and to give local
coordinates. We say that .7 (X, L) spans m-jets on a finite set {xs,...,xn} if there exists k
such that the map

HO(X,0(LY)) — L, ® Ox x /40 (4.33)

which sends a section to its m-jet at {x1,...,xn} is onto. Of course, if <7 (X, L) spans m-jets
(m > 1) on finite sets of X, 7 (X, L) separates points and gives local coordinates on X. On
the other hand, a sufficient condition for (£.33) to hold is the vanishing of the cohomology
group

HYX, 0(LY® AT . @ A4, (4.34)

where ﬂ)qml is the ideal sheaf of holomorphic functions vanishing up to order m+ 1 at x;.

4.18. KODAIRA EMBEDDING THEOREM. Let X be a compact complex manifold and
L be a holomorphic line bundle. Then L is ample if and only if L admits a hermitian metric
of positive curvature.

PROOF. The approach of Kodaira is to use the harmonic theory in order to obtain the
vanishing of the sheaf conomology group (&34). For this purpose we blow-up the sheaves
and transform them into free sheaves of sections in a holomorphic vector bundle. Let
X £y € X. We blow up the points x and y and denote by 71: X — X the blow up and D
the exceptional divisor. Let 7 : HO(X, &(L¥)) — HO(D, & (m*L¥) be the pull-back map,
which is surjective by the Hartogs extension theorem. We notice that rr*LK is trivial on
the exeptional divisor and 77 : HO(D, Op(1*L¥)) — L¥® LY. We have the commutative

diagramm
k

HOX, 6(LK) —2%  LkeLk
| |

HOR. G(rLK)) —2, HO(D, o (LK)
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and the exact sheaf sequence
0— o(mL*e DY) — (LX) — Op (LK) — 0
whose associated exact cohomology sequence shows that the map fy, (and thus r)'zy) IS

surjective if HL(X, &(m*LX ® [D] 1)) vanishes. From Theorem I3 we know that this is
the case for k > k(x,y). Here k(x,y) depends on the curvature of the exceptional divisor
[D] and the Ricci curvature of X. Note that Kg = m'Kx ® [D]"1. We can see therefore
that we can choose k(x',y") = k(x,y) for (x',y") in the neighbourhood of (x,y). Taking into
account the compactness of X we can choose kg such that r)'zy is surjective for all x £y if
k > ko. It follows that @ is well defined on X and injective for k > kq. In a similar manner
we show that there exists k; such that the restriction map HO(X, &(LX)) — LK® Ox x/.#?
is surjective for all k > kq and all x € X. Therefore ®y is regular on X for k > k1. This
implies that L¥ is very ample for all k > max{ko,k1}.

Using the Nadel vanishing theorem we obtain directly the vanishing of the sheaf co-
homology @34). Namely consider the singular metric he=?, where ¢ is smooth on X ~
{x,y} (resp. on X . {x}) and equals nlog |z —x|? and nlog |z —y|? (resp. (n+1)log|z—x|?)
in a neighbourhood of x and y (resp. x). Then .# (hte=9) = Hxy (resp. I2). U

4.19. REMARK. By using the curvature definition of the positivity we were able to
show that the bounds k(x,y) and k(x) are uniform in some neighbourhood of (x,y) and
X. So we obtain that all the maps @y are embeddings for k > ko. If we use the Grauert
approach we obtain the following

(i) the ring <7 (X,L) of a positive line bundle gives local coordinates and separates
points.

From this we infer that

(if) Dy is an embedding for some k. We have thus:

4.20. GRAUERT EMBEDDING THEOREM ([19] Satz 2]). Let X be a compact complex
space and L — X a Grauert positive line bundle. Then X is projective algebraic.

Let us also note that the results of this section can be easily generalized by twisting the
powers of L with an arbitrary holomorphic vector bundle E over X. We then consider the
graded vector space @y=oHO(X,LK®E). If L is positive,

HO(X, 0(L*®E)) — el ®E ® Oxx /A" (4.35)

is surjective for large k. We denote dx = dimH%(X,LX® E). Then the Kodaira map ® :
X — G(dk, dx — rank(E)) which associates to each point x the dx — rank(E) dimensional
of sections from HO(X LK@ E) which vanish at x, is well defined and an embedding for k
sufficiently large.

4.2.3. Algebraic dependence and Moishezon spaces. Let X be a complex space and
f1,..., fk meromorphic functions on X. We say that these functions are algebraically de-
pendent, if there exists a non-trivial polynomial P € C[z3,...,z] such that P(fy,..., fy) =0
wherever it is defined.

Let us denote by a(X) the transcendence degree of .# (X) over C and call it the alge-
braic dimension of X. We have the following fundamental result of Siegel:

4.21. SIEGEL-THIMM-REMMERT THEOREM. Let X be a compact complex space.
Then the field of meromorphic functions .# (X) is an algebraic field of transcendence de-
gree a(X) < dimg X.
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This theorem has a long and rich history, detailed in [39] and [34]. In the case of com-
plex tori the result was communicated in 1860 by Riemman to Hermite and it was stated
by Weierstrass in 1869. There were many attempts to generalize the result to the case of
several variables which failed due to the incomplete understanding of the indeterminacies
of meromorphic functions. The first complete proofs were given by Thimm [46] and Siegel
[38]] in some special cases. Thimm follows Weierstrass original idea and gives a proof in
the case of a complex space X with dimX independent meromorphic functions. Siegel
uses an ansatz of Poincaré and considers quotients of holomorphy domains in C". In the
case of manifolds he gives an elementary proof based on the Schwarz lemma. The general
theorem, without any hypotesis on the number of independent meromorphic functions was
stated by Chow and proved by Remmert [34]. Finally, Andreotti extends Siegel’s method
to pseudoconcave complex spaces [1]. A generalization for CR manifolds has recently
been given by C. Denson-Hill and M. Nacinovich [22]. It is course hard to assign names
to this theorem whitout exceeding four or five authors. In [18] it is called theorem of
Weierstrass—Siegel-Thimm.

PROOF OF SIEGEL-THIMM—-REMMERT THEOREM. For the proof we refer to the pa-
pers cited above. It is based on the fact that on a compact complex space analytic depen-
dence and algebraic dependece of meromorphic functions coincide. We want here only to
justify that a(X) < n, where n = dimX. Since X is bimeromorphic to a smooth manifold
by the desingularization theorem of Hironaka, we are entitled to assume X smooth.

The proof exploits the relations between the existence of independent meromorphic
functions and the growth of the spaces of holomorphic sections in holomorphic line bun-
dles.

Let L be a holomorphic line bundle over a compact complex manifold X of dimension
n. For the proof of Siegel’s theorem we need only to show that there exists C > 0 such
that dim HO(X,Lk) < CkM, for all k > 0. For other applications we shall prove a sharper
statement. Let us denote by py the maximal rank of ®y on X. If dimHO9(X, LX) = 0 we set
px = —o. The following lemma is crucial.

4.22. LEMMA (Siegel’s lemma). Let X be a compact complex manifold and L — X be
a holomorphic line bundle. Then there exists C > 0 such that

dimHO(X, LX) <CkP, k > 0.

Let fq,..., fm € .#(X) algebraically independent. We denote by D the divisor of poles
of all f; and by [D] the associated line bundle [20, p. 134]. By a basic correspondence in
algebraic geometry [20, p. 136], the space HO(X, [D]¥) is identified to the space of mero-
morphic functions f satisfying div(f) -+ [D] > 0.

If P e Clzy,...,zm|, degP < k, the meromorphic function P(fq,..., fm) has the former
property. By hypothesis, the linear map which associates to a polynomial P of degree < k
the function P(fy,..., fm) is injective. Therefore dimHO(X, [D]¥) > (™¥) for all k. For
k — oo this dimension grows like k™. But by Siegel’s lemma dimH9(X, [D]) < Ck™ for all
k. Therefore m < n. We have thus showed that the transcendence degree of .Z (X) is less
than or equal to n = dim¢ X. O

PROOF OF LEMMA [£.22]. For a point x € X we denote by P(a, r) the polydisc {y e U :
lyi| < r} where (U,y1,...,yn) is a coordinate system centered at x.

The set of points where ®y has rank less than py is a proper analytic set of X, so
{x € X :ranky Py = py} is dense in X.
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Letas,...,am € X such that
X c UM P(a,re )

and rq,...,rm € Ry and ®y has rank py at each a;.

Since @y is a subimmersion at a; there exists a submanifold M; in the neighbourhood
of aj which is transversal in a; to the fibre @, *(®y(aj)) and dimM; = px. Assume that the
line bundle L is given by the transition functions

cij : P(aj,rie"t) NP(aj,rie”t) — C*

Set
IL|| = sup{|cij(X)| : x € P(ai,rie"Y) NP(aj,rie ) for alli, j} = e*.

Since ¢jj = cj‘il, > 0. Consider a section s € I'(X, ¢'(L¥)) which vanishes up to order
h=k([u]+1) at each aj along M; ([u] is the integral part of 11). But s vanishes on the fibre
which passes form aj, hence s vanishes up to order h at aj on X. Assume that s is given on
P(ai,ri) by si : P(aj, ri) — C. Set ||s|| = sup{|sj(x)| : x € P(aj, rie~ 1) for alli}.

There exists q € {1,2,...,m} such that for some w € S(P(aq,rg)), [Sq(W)| = |Is||. We
can find j # q such that w € P(aj,rj). Hence sq(w) = cqj(w)sj(w) so that

I8l = [sq(w)| = |cqj (W)sj (W)| < [[LN[||s;(w)).
By applying the Schwarz inequality to sj in P(aj,r;j) we get [sj(w)| < ||s|| ]w]hrj*h where
lw| =sup|pj(w)—pj(aj)| <rje~L. Consequently, ||s|| <||s||||L¥|le~". If sis not identically
zero this leads to a contradiction, by our choice of h. Consider the map
(X ﬁ("k - I_l ﬁM],aJ/%M] aj
1<j<m
where %,Cla is the maximal ideal of the ring Owm, a;, Which sends every section in his
Taylor developpment of order h at aj along M;. By the preceding argument this map is

injective. Since the dimension of the target space satisfies the desired estimate we are
done. O

4.2.4. Moishezon spaces. Let X be an irreducible compact complex space of dimen-
sion n. X is called Moishezon space if it possesses n independent meromorphic functions,
i.e. if a(x) =n. Assume that X is projective. Then X can be realized as finite cover of
P" and we can pull-back n algebraically independent meromorphic functions on P". Thus,
every reduced compact projective space is Moishezon. Let X’ be a projective space and
¢ : X’ — X be a proper modification. We know then that X is Moishezon.

The spaces with the property a(X ) = dim X were named by Artin after B. G. Moishezon
(also transliterated MoiSezon) who proved in [28] the following fundamental result.

4.23. THEOREM (Moishezon). Let X be an irreducible compact complex space. Then
there exist a proper modification 77: X’ — X, obtained by a finite number of blowings-up,
such that X' is a projective algebraic variety.

Actually, Moishezon proves more. Let us introduce four classes of manifolds. The
first, AL, is the class of complex manifolds obtained from algebraic varieties by a se-
quence of elementary contractions (that is to say, transformations which are the inverses
of monoidal transformations with non-singular centers). The second class, A(@), consists
of those manifolds satisfying the Chow lemma: namely, X is in A if and only if there is
a regular modification f: X’ — X, where X’ is a projective algebraic variety. A(® is the
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class of compact complex manifolds connected with algebraic varieties by bimeromorphic
maps. A is the class of n-dimensional compact complex manifolds with n algebraically
independent meromorphic functions (called today Moishezon manifolds). It turns out in
the course of his three part work [27, 29, 29] that A = A@ = ABG) = A4,

From the theorem we infer easily that a a smooth surface is Moishezon if and only if
it is projective. Indeed, we can blow up only points in dimension two and the blow up of
a manifold at a point is projective if and anly if the manifold is. It has been previously
proved by Kodaira and Chow that any two dimensional Moishezon manifold is projective
algebraic.

Moishezon gives moreover two criteria for an n-dimensional manifold possessing n al-
gebraically independent meromorphic functions to be projective algebraic. One of them
[27] is given in terms of K&hler metrics. If X is an irreducible compact complex n-
dimensional manifold with n algebraically independent meromorphic functions, then it
is projective algebraic if and only if it has a K&hler metric. The case n = 2 was previously
settled by Chow and Kodaira [[10].

Let us remark that not all Moishezon spaces are projective. It seems that the first exam-
ple appeared as folklore in Russia during the 50’s and was named in Princeton the "alge-
braic Sputnik”. Grauert constructed an example of a two-dimensional normal Moishezon
space in [19, §4]. As we saw, smooth Moishezon surfaces are always projective. So we
should look for a smooth example starting with dimension three. This was realized first
by Hironaka and we refer to the books of Hartshorne [21, Example 3.4.2] and Shafarevich
[36l Ch. 8, §3].

We wish to give a simple characterization of Moishezon manifolds in terms of order of
growth of spaces of sections of line bundles.

Let us define the Kodaira—litaka dimension of a line bundle L — X as

K(L) = max{px =rank®y : k > 0}

The bundle L is said to be big if k(L) =n=dimX. It is clear that L is big if and only if
o/ (X, L) gives local coordinates at a point.

4.24. PROPOSITION. X is Moishezon if and only if it carries a big line bundle.

PROOF. If X is Moishezon there exist n = dim X algebraically independent meromor-
phic functions. We can find a line bundle L such that these functions have the form
$1/50, - .- ,Sn/So Where so,...,sn € HO(X, @(L)). (see []). Since the algebraic indepen-
dence implies the analytic independence it follows that d(S1/S0) A ... Ad(Sn/So) # 0 on
the set where the left-hand side is defined. By completing {So,...,Sn} to a basis of
HO(X, (L)), we see that the Kodaira map ®; : X . Bl; — PHO(H, &(L))* has maxi-
mal rank i.e. p; =nand hence k(L) = n.

Conversely, if L is big, there exists k > 0 such that px = n. Then the image ®y(L) is
an algebraic variety of dimension n. By pulling back n independent rational functions on
Py (X) to X via Py we obtain n independent meromorphic functions. O

4.2.5. Proof of the Grauert-Riemenschneider Criterion. Let X be a compact com-
plex manifold and L — X be a hermitian holomorphic line bundle (L,h‘) which satisfies

Demailly’s condition
IR " S 0 4.36
/X(<1)< 21 > ’ (4.36)
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By Corollary EE121 (especially @2Z9)) and Siegel’s Lemma B2 there exists C1,C, > 0 and
ko such that

CikP< > dimHO(X, LX) > Cok™,  fork > ko. (4.37)

Therefore px = n for k > ko so k(L) =n and L is big. By Proposition Z.24 we conclude
that X is Moishezon. This proves the Demailly’s Criterion .3 which of course implies the
Grauert-Riemenschneider Criterion since a semipositive line bundle which is positive
at one point abviously satisfies (£.38).

Let us close by saying that we cannot prove the Grauert-Riemenschneider Criterion
by using the L2 method for the @ operator. This is due to the non-Kahler character of the
manifold X. There were a lot of attempts to prove the theorem until the paper of Siu [40]
(where some of the history is presented). That’s why the Morse inequaltities can be seen
as a quantitative version of the standard L2 estimates for 8 of Hérmander-Bombieri-Skoda

4.2.6. Generalization to pseudococave manifolds.

4.25. DEFINITION. We will call a connected manifold X Andreotti pseudoconcave if
there exists a smooth non-empty D € X such that the Levi form of D restricted to the
analytic tangent plane T1%(dD) has at least one negative eigenvalue at each point of dD.

The notion of Andreotti—pseudoconcavity is more general, see [1]], [2], but for our
purposes this definition is sufficient. Immediate examples are g—concave manifolds, g <
n—1. Indeed, let X be a g—concave manifold as in definition The definition function
of Xc = {¢ >c} € X is c— ¢ and for c sufficiently close to a, the Levi form of ¢ — ¢ has
at least n — g+ 1 negative eigenvalues in a neighbourhood of dX.. Thus, the restriction
of the Levi form on the analytic tangent space T1%(9X.) has at least n —q > 1 negative
eigenvalues.

4.26. LEMMA. For each point x € D we can choose holomorphic coordinates (U,y) and
a coordinate polydisc P(x,r) C U centred at x such that the Silov boundary S(P(x,r)) =
{yeU:lyil=r}cD.

PROOF. Let p be the defining function of D near x = 0. We know that .Z, (0) restricted

to Tol’o(dD) has one negative eigenvalue.
After a suitable change of coordinates we can assume that

n n
p(z) =2Rez1+ Y ajzaz—|z2|*+ ZZBj|zj|2+O(|z|3)
=1 =

Geometrically this means that the tangent space at 0 to dD is {Rez; = 0} and the Levi

form is negative definite on the plane {z; = 0,23 = ... =z, = 0}. For r sufficiently small
we have
r
{2120’5 <lzz|<rzz3=...=2,=0}CD.
The lemma follows now easily by a continuity argument. O

4.27. THEOREM. If X be an Andreotti—pseudoconcave manifold, Siegel’s Lemma B.22
holds on X. The field of meromorphic functions .# (X) is an algebraic field of transcen-
dence degree a(X) < dim¢ X.
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PROOF. The proof of Siegel’s lemma in the pseudoconcave case follows the proof
in the compact case. First we choose a set D € X as in Definition and coordinate
polydiscs P(aj,ri),i=1,...,msuch that D Cc U™,P(aj, rie~1), L is trivial on P(aj, r;) and
the Silov boundary S(P(aj,ri)) C D, fori =1,...,m. Then the proof goes through as in
the compact case by observing that when choosing w with |sq(w)| = |[s||, we can assume
that w € S(P(aq,rq)). This is true since the maximum of the modules of a holomorphic
function on the closure of a polydisc is attained on its Silov boundary. Thus we may take
we D.

The proof of the second statement is completely analogous to that of Theorem .21 [

4.28. REMARK. We observe that Siegel’s lemma holds for the adjoint bundles,
that is dimHO(X, LK@ Kx ) < CkPx, where py = rank .

Theorem E.2Z7 allows to extend the notion of Moishezon manifold for the case of
Andreotti-pseudoconcave manifolds. Thus, an Andreotti-pseudoconcave manifold is called
Moishezon if a(X) = dim¢ X.

4.29. COROLLARY. Let X be an Andreotti—pseudoconcave manifold and L be a holo-
morphic line bundle over X. If rank®, = dimX, where @ is the Kodaira map asociated
to HO(X, LX) or HO(X, LK@ Kx), X is Moishezon.

4.3. Uniformly positive line bundles

In this section we apply the results from the previous one to the study of the L2 coho-
mology of complex manifolds satisfying certain curvature conditions. If X is a complete
Kahler manifold and L a positive line bundle on X the L2 estimates of Andreotti-Vesentini—
Hormander allow to find a lot of sections of LK@ Ky. We prove now a “compact perturba-
tion” of this result. In this case the underlying complete metric is no more assumed to be
Kéhler, but we assume instead the existence of a uniformly positive line bundle outside a
compact set. As application we prove the Nadel-Tsuji theorem in Corollary E.37 and the
Morse inequalities for hyperconcave manifolds.

4.3.1. A general cohomology estimate.

4.30. THEOREM. Let (X, w) be an n—dimensional complete hermitian manifold and let
(L,h%) be a holomorphic hermitian line bundle. Let K € X and a constant C, > 0 such that
vV—1IRt > Cowon X ~ K.

(i) Then, for k — oo,

n

L N0y g ky < K V=iply)" n
dimHE (L) > /x<<1,ht>< ERY) oK), (4.38)
where H (”z’?(X,L") is the space of (n,0)—forms with values in L¥ which are L, with respect

to any metric on L and the metric h* on L.
(ii) Assume moreover that the torsion of w is bounded and the Ricci curvature R% is
bounded from below with respect to w. Then, for kK — oo

n V=1
dimHZ2(X, LK) > —/ VIRN ok 4.39
'm (2)( L) n! x(gl)( o ) +o(k") (4.39)
where H%2(X, LK) is the space of holomorphic sections in L which are L2 with respect to

2
the metrics w on X and h- on L.
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As usual, U(< 1,hb) is the subset of U where v/—1R") is non-degenerate and has at
most one negative eigenvalue. We can state the theorem without reference to the auxiliary
metric c, by saying that (L, hb) is positive outside a compact set and the curvature /—1R-
defines a complete metric on X (by extending it to a metric over X).

PROOF. (i) Let us endow X with a metric wy such that y. = /—1R" outside K, which
is complete, for w_ > Cow on X ~ K. The Bochner—Kodaira—Nakano formula (B20) gives

(@“u,u) > (V-1 RS, Alu, u), ueQpt(X~K,LY
since ay is Kahler outside K. By (B70) we know that
(V=1RY AJu,u) > kay(x)|u]2

where a1 < ... < ap are the eigenvalues of /—1 1R with respect to wy. In our case a; =
..= ap =1 outside K. Hence

1 Lk <LK
Jull?< (10" ulP 410" ul?). ue Qgt(X K, LK) (4.40)

Let U be any open set with smooth boundary, K € U € X. Choose p € €’ (X) such that
p =1 on a neighbourhood of K and suppp C U. Applying (£.40) for (1 — p)u and using
@) we obtain the fundamental estimate (d.1)) (with a sllghtly larger K). in bidigree (n,1)

for all u € Q' (X, LK). Since Q)™ (X, L¥) is dense in Dom(d )ﬂDom(dL ) ALD(X, LX)
by [AI0 we infer that (1) holds true in bidigree (n,1). We conclude by Theorem .7 that
-1 L\N
—R
(LR

dimH™2(X, LX) > k”/ +o(k"), k—o

Here H(”Z’S(X,Lk)o is the L?~cohomology group with respect to the metric ca. on M. But
the L? condition for (n,0)~forms does not depend on the metric on M, so H(”z’g)(X,Lk)o =

H(”Z’?(X, LK) where in the latter group the L condition is with respect to an arbitrary metric
on X.

(ii) Letu € Qg’l(x K, L¥). In order to apply the Bochner-Kodaira—Nakano formula
it is necessary to consider (0, p)-forms with values in LK as (n, p)-forms with values in
Lk Kx. The reason are formulas (3794, (G.790). If we work directly with (0, p)-forms
and use the curvature term ([v/—1O(L),AJu,u), then BZ3a) shows that we cannot ex-
ploit the positivity of the eigenvalues of the curvature of L. Let ~: A%9T*X @ Lk —
AMIT*X @ (LX® K$), u— O be the natural isometry, where K& = A"T X is the anti-
canonical bundle. Set LX = LX® Ky. By proceeding as in 322 we deduce from E5I0),
E50)

(@“u,u) = (0T, 0)
and by Bochner—Kodaira—Nakano (B.20)
(O%8,0) = (O50,0) + ([V=1RY, Aul0.T) + ([(O%), 775, m) — ([(OY)", T )5, 0)
By using the Nakano’s inequality (B:Z3) we obtain
3(0Mu,u) = 2k ([VEIRY, AR)T, 0) + 2([V=IRM, A0, T) — (|| Tul|2+ | T *ul|2+ [ Tul|?

+[T"ul?) an
441
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The Ricci curvature is by definition R% = RKx. The hypothesis R%! is bounded means that
its eigenvalues with respect to w are bounded, so (3.790) implies

(IV=IR AGJ,0) > ~Cy|0]|? = ~CafJu® (4.42)
for some constant C1 > 0. Since the torsion operators are also bounded, there exists C> > 0
with
ITUll?+ [T *ull?+ [ Tull?+ [T ul|* < Cal| ]| = CJu|> (4.43)
Moreover ([B.790) entails
([V—=1R",Aw]0,T) > Co| [T = Collul|*. (4.44)
Combining (.41)-(.44) we get
3(0u,u) > (2kCo— 2C; — Cy) [[ul|? = k|Ju] 2

where the last inequality holds for k sufficiently large. We can thus proceed as in the proof
of (i). O

The following important special case is due to Nadel-Tsuji [31, Theorem 1.1]

4.31. COROLLARY (Nadel-Tsuji). Let (X,w) be a complete Kéhler manifold with
RYt < — . Then we have the following estimate:

dimH(OZ)(X,Kﬁi) > Ir(TT/X (%RKX)”+0(k”)

where RKx = —RY%! js the curvature of the canonical bundle Ky equipped with the metric
induced from .

4.3.2. Hyperconcave manifolds.

4.32. DEFINITION. A complex manifold X is called hyperconcave or hyper 1-concave
if there exists a smooth function ¢ : X — (—oo,b] where b € R, such that X; := {¢ >
c} € X forall c € (—e,b] and ¢ is strictly plurisubharmonic outside a compact set.

Let us describe some examples.

4.33. EXAMPLE. (i) LetY be a compact complex manifold, S a complete pluripolar set.
By definition, S is complete pluripolar, if there exists a neighbourhood W of S and a strictly
plurisubharmonic function ¢y : W — [~ o) such that S = (y~1(—o0). Then X =Y ~Sis
hyperconcave. Conversely, we will show in Chapter [l that any hyperconcave manifold M
is biholomorphic to a complement of a pluripolar set in a compact manifold. If dimX > 3
this is a consequence of Rossi’s compactification theorem.

(if) Let X be a compact complex space with isolated singularities. Then the regu-
lar locus Xreg is hyperconcave. Indeed, let {Uq} be pairwise disjoint neighbourhoods of
the singular points {py} and let 14 : Ug — CNe be holomorphic embeddings. We may
assume that that the singular points are mapped to the origin, 14(pg) = 0. The func-
tion z — log |z|? is strictly plurisubharmonic on CNe. By taking its pullback to each Uy
through 14 we obtain a strictly plurisubharmonic function on Xeg N (UUq) which tends to
—oo at the singular points. By extending this function to X by means of a partition of
unity, we get a function as in the definition.

(iii) If X is a complete K&hler manifold of finite volume and bounded negative sectional
curvature, M is hyperconcave as shown by Siu-Yau in [41] (see also [31]). Actually, this
example falls in the previous case since by Corollary E55, X can be compactified to an
algebraic space by adding finitely many points.
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4.34. THEOREM. Let X be a hyperconcave manifold carrying a line bundle (L, h) which
IS semi-positive outside a compact set. Then, for kK — o

kn n
. n,0 k v—1pL n
dimH{'(X, L) > - /X(gl,h) (—Zn R ) +o(kM), (4.45)

where the L2 condition is with respect to h and any metric on X.

PROOF. Let us consider a proper function ¢ : X — (—o0,0) which is strictly plurisub-
harmonic outside a compact set K € X. The fact that ¢ goes to —oo to the ideal boundary
of X allows to construct a complete hermitian metric on X. Denote

X = —log(—9), (4.46)
which is a smooth function on X. Note that
— 0"'5¢ 2¢ /\5¢
00y = +
X= " T g
and
A0 NI _
¢¢2 ¢ =0xXNOX.

We can now patch 89 x and an arbitrary hermitian metric on X by using a smooth partition
of unity to get a metric w on X such that

w=+/—199x = —/—133dlog(—¢). (4.47)
on X \ K. B
Since v/—109¢ /(—¢) represents a metric on X \ K, we get
|dX|w < C. (4.48)

Since x : X — R is proper, ([£48) ensures that w is complete. Indeed, (£.48) entails
that x is Lipschitz with respect to the geodesic distance induced by w, so any geodesic ball
must be relatively compact.

Note that  is obviously Kahler on X ~ K. Let us assume v/—1R- > 0 on X ~ K (we
stretch K if necessary). We equip L with the metric ht = htexp(—&x) and the curvature
relative to the new metric satisfies /—1R(LME) > g0 on X ~ K. We are therefore in the
conditions of Theoremd.30. Since h, = h there is an injective morphism

H3y (X, L @,he) — HE(X, LY ,h).

By this relation and Theorem EZ30 for the space H(”Z’?(X, Lk, e, he),

el N g N0y | K 1 V=IpLhe)\"

Ilmklnfk dlmH(z) (X,L%, w,h) > o /U(gl,hg)< =R L) (4.49)
We let now £ — 0 in ([£.49); since h, converges uniformly together with its derivatives to h
on compact sets we see that we can replace h, with h in the right-hand side of (£.49). Now,
X(<1,h) =X(0,h) UX(1,h). By hypothesis X (1,h) C K and on X (0, h) the integrand is
positive. Hence we can let U exhaust X to get (£.45). O

Theorem implies the first part of Theorem [LI0:
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4.35. COROLLARY. Let X be a compact complex space with ar most isolated singular-
ities. and let (L, h") be a holomorphic hermitian line bundle on X;ey Which is semi-positive
in a deleted neighbourhood of Xgng and satisfies Demailly’s condition (LI0) on X;e (€.9.
L is everywhere semi-positive and positive at one point). Then X is Moishezon.

PrRooF. We apply Theorem .34 for the hyperconcave manifold X and since

/x,eg<<1) (%RL>”: /x,eg (%RL)” >0

we deduce dim HO(Xreg, L@ Kyx) > Ck" for some C > 0 and k sufficiently large. By Siegel’s
lemma for Andreotti pseudoconcave manifolds 271 and Remark we deduce that the
rank of the Kodaira map of HO(X,eg, LX ® Kx) is maximal. Corollary 29 entails that there
exists dimX independent meromorphic functions on X.e5. By the Levi extension theorem
we conclude that these functions extend to dimX independent meromorphic functions on
X. O

Let us define the “adjoint” volume of a line bundle L over a complex manifold M by
vol*(L) = limsup,_,n'k "dimHO(M,LX ® Ky ). From the proof of Theorem E34 we
infer the following.

4.36. COROLLARY. Let L is a line bundle over X;ey, where X is a compact complex
space with only isolated singularities.

(i) If L is semipositive outside a compact set,

/x,egm) (%RL)n<vol*(L)—/Xreg(l) (%RL)”@C’_

(if) If L is positive on Xreg

/Xr 0 <\/2;_711RL>n <vol'(L) <.
ey

(iii) If ¢ : Xreg — R is @ smooth function which is psh outside a compact set,

/x, Lo (V71009)" < - / (V=109y)" < e

Xreg(1)
where X¢5(0) is the open set where  is strictly psh.

PROOF. Relation ([@.45) shows the left hand-side inequality in (i), since the integral in
(.43 is the sum of two corresponding integrals taken over the sets Xyg(0) and Xreg(1).
The latter is finite since Xrey(1) is relatively compact by the hypothesis on the semiposi-
tivity of L. By the Serre-Siegel lemma we get also the finiteness in (i). From (i) we infer
immediately (ii). To prove (iii) we apply (i) to the trivial bundle L endowed with the metric
exp(—y) and we use the obvious fact that vol*(L) = 0. O

4.4. Demailly’s criterion for isolated singularities

Our aim is to prove now the second part of Theorem This shows that De-
mailly’s criterion generalizes to singular spaces with at most isolated singularities under
mild growth conditions of the curvature near the singular set.

We will work on the open manifold X;eg and prove that it posseses a lot of meromorphic
functions which extend to X by the Levi extension theorem.

In order to perform analysis on X;ey We introduce first a good exhaustion function and
a complete metric. Let 71: X — X be a resolution of singularities of X. Let us denote



4.4. DEMAILLY'S CRITERION FOR ISOLATED SINGULARITIES 75

by D; the components of the exceptional divisor. Then there exist positive integers n; such
that D := 3 n; D; admits a smooth hermitian metric such that the induced line bundle [D] is
negative in a neighbourhood U of D (cf. [35]). Let us consider a canonical section s of D],
i.e. D = (s), and denote by |s|? the poinwise norm of s with respect to the above metric.
By Lelong-Poincaré

F ddlog |s| = (the current of integration on D) — % RID! (4.50)

Hence ¢ = log|s|? is strictly plurlsubharmonlc on U ~. D and converges to —c on D. By
using a smooth function on X with compact support in U which equals one near D we
construct a smooth function x on X \. D =~ X such that x = —log(—log|s|?) on U ~.D.

With the help of the function x we construct a complete metric on X;ey. For this purpose
we recall first the notion of hermitian metric on a singular space. Let us consider a covering
{Uq} of X and embeddings 14 : Ug — CNa A metric on X is a metric cw on Xreg Which
on every open set Uy, as above is the pullback of a hermitian metric on the ambient space
CNe, w =1} wy . Itis constructed as usual by a partition of unity argument. Since the
singularities are isolated we can assume that the metric is distinguished, that is, in the
neighbourhood of the singular points wy is the euclidian metric. In particular w is Kahler
near Xsing. We consider then the metric wp = Aw+ 00 x where A > 0 is chosen sufficiently
large (to ensure that y is a metric away from the open set where dd is positive definite).
ay is complete by the same argument as in the proof of Theorem .34 (see (&48)). Note
that by Corollary B.36the metric wy has finite volume. This follows from the fact that, near
Xsing, X is strictly psh and w is given by the euclidian potential.

Assume now that L|y, is the inverse image by 14 of the trivial line bundle C4 on CNa,
Moreover we consider hermitian metrics hg = e =%« on C, such that Ighg = IEhE onUgN

Ug N Xreg- The system ht = {i1:hgy} is called a hermitian metric on L. It clearly induces
a hermitian metric on L|x.,. We shall allow our metrics to be singular at the singular
points, that is, §4 € Li(CNv) and ¢ is smooth outside 14 (Xsing). The curvature current
v/—1Rb is given in Uq by 17 (v/—189 ¢4) which on X agrees with the curvature of the
induced metric. We shall suppose in the sequel that the curvature current is dominated
by the euclidian metric i.e. \/—19d¢. is bounded above and below by constant times
we=+-1ydz; Ad 7.

Let us consider now a neighbourhood U of the singular set. We assume that U is small
enough so that there are well defined on U a potential p for w and a potential ¢ for the
curvature /—1Rb (they are restrictions from ambient spaces). By suitably cutting-off we
may define a function ¢ € € (Xgg) such that

U=xX—-9¢+Ap (4.51)

near Xsing . Remark that, since v/—1IR" is bounded above by a continuous (1,1) form near
Xsing, the potential —¢ is bounded above near the singular set. This holds true for p too
(it is smooth) so that  tends to —oo at the singular set Xgng. Let us consider a smooth
function y: R — R such that

and the functions y, : R — R given by y,(t) = y(t — v) for all positive integers v .



76 4. GLOBAL ASYMPTOTIC MORSE INEQUALITIES

Let us consider the metric h;, = ht exp ( — yV(Lp)) with curvature

VIR = /ZIRE) /Ty ()9 + V=1L (W)W AT .

On the set {y < —v —1} we have y, () = ¢ — v so that y,(¢) =1 and /() =0 and
therefore /—1RLM) = /—TIR(LM) 4 9aw . Since Y goes to —oo when we approach the
singular set we may choose vg such that for v > vo we have {¢ < —v —1} Cc U where U
is the neighbourhood of Xsng Where ¢ has the form .51). Bearing in mind the meaning
of ¢ and p together with the definition of «y it is straightforward that \/——1R('-vhb) = pon
{¢ < —v—1}. By Theorem .30 we have for k — oo,

kn
dimHO(Xreg, L@ Kx) > nl/u (<1hL>(¢2;R LN 4 ok

We have denoted U, the compact set { ¢y > —v —2} . We decompose thissetinU/, = {y >
—v}and U/ = {—v—2 < < —v} since on U, we have y, () = 0 and /—IR(EM) =
V—1IRLN We infer that

/ (VRGN = [l andvg (4.52)
U\l/(glvhv) Xreg(gl,h) Y

where a1,...,dy are the eigenvalues of \/——1R('-th) with respect to ap and dvg is the vol-
ume form of the same metric. Our hypothesis on the domination of v/—IR(LM) by the
euclidian metric implies that \/——1R(L’hL> is dominated by w and by wy. Hence the product
az--- Oy is bounded on Xreg. Since Xrgg(< 1) has finite volume with respect to ay the func-
tions |1y, a7 --- ap| are bounded by an integrable function. On the other hand 1, — 1

when v — oo so that the integrals in @X2) tend to [y (<1 (vV=IR®EMN)™ which s
assumed to be positive.
Thus it suffices to show that the integral on the set U;) i.e.

Lyponn, (VIR
Uy (<Lhy)

tends to zero as v — oo. For this purpose we use the obvious bound
I (V=IREM)™ < sup| &y -+ & - vol (U})
UJ(<Lhy)

where &, ..., 0, are the eigenvalues of \/——1R('-’hL) with respect to ayp and the volume is
taken in the same metric. We use now the minimum-maximum principle to see that d; is
bounded bellow and &, . . ., &, are bounded above on the set of integration U/ (< 1,hy). For
this we need the domination of /—1R(L:N") by w and the boundedness of y;, and y,, . Since
vol (U}/) — 0 as v — oo our contention follows. Hence dimHO(Xreg, EXK®@ Kx) > k" so
that Xeg has n independent meromorphic functions which can be extended to X by the Levi
extension theorem. The proof is finished.

4.37. REMARK. The proof of the Theorem [L.I0 is based on the existence of the ex-
haustion function from below x and of the complete metric cp with the properties (£.438)
and (.47). These objects are specific to the case of isolated singularities. If X is a compact
complex space with dimXgng > 1, Xreg does not generally possess a strictly psh exhaustion
function from below. That is why for general complex spaces we need stronger hypoth-
esis in order to obtain the fundamental L? estimate for (n,1)-forms. For example if X
is a compact complex Kahler space, Xreg admits complete Kéhler metric (Ohsawa [33]).
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Therefore, if X;eg admits a semipositive line bundle which is positive at a point p, stan-
dard L2 estimates for d show that L* @ K, gives local coordinates at p. Assuming that
codim Xsng > 2 it follows first that X;eq has a maximal number of meromorphic functions
(since Xreg is pseudoconcave in the sense of Andreotti) and then that X is Moishezon (by
the Levi extension theorem).

In the non—Kahler case we need a sort of uniform positivity condition on L near Xgng
in order to absorb the torsion of a complete metric on Xeg. In this respect the hypothesis
in Takayama’s theorem .40 seem appropriate. If we want the line bundle L to be defined
only on Xyeg We can introduce the following alternative condition.

Let w be a hermitian metric on X.¢ induced from a resolution of singularities X of
X. Assume that v/—1R! > w outside a compact set of X,y and that L satisfies Demailly’s
condition (LI0). Suppose moreover that codimXsng > 2. Then X is Moishezon. Indeed,
the condition v/—1R" > w shows that we can argue as in Section 5 and use a generalized
Poincaré metric to deduce the fundamental L2 estimate.

It would be interesting to know whether criteria as the Theorem carry over to
general complex spaces.

4.5. The Shiffman-Ji-Bonavero Criterion

In this section we study the L2 cohomology of Zariski open sets in compact complex
spaces. Using our previous results we will prove a theorem of Takayama [43] generalizing
the Siu—Demailly criterion if L — X is a line bundle endowed with a singular hermitian
metric which is smooth outside a proper analytic set Z O Xgng and defines a strictly positive
current near Z.

Let us briefly describe the generalized Poincaré metric. We denote by A the unit disc
in C and by A* = A~ {0}. The Poincaré metric on A* is

V-1 dzadz

P = (log 22 (4.53)

More generally, on the product (A*)" x A" we introduce the metric

I dzx A dzi VA

W= _12
2 k:1|zk\2(log]zk\2)2 2

dzg A dzk. (4.54)
k=T71
Let us consider a compact complex manifold and let Z be a union of smooth divisors with
normal crossings. For any point p € Z there exists a coordinate neighbourhood U of p
isomorphic to A" in which (X \Z)NU ={z=(z1,...,zn) : 21 #0,...,7 # 0}. Such
coordinates are called special. We endow (X ~ Z)NU = (A%)" x A™! with the metric
@X52). It is a metric possessing the singularity of the Poincaré metric near the punctures.
We define further the generalized Poincaré metric (also called Griffiths-Carlson metric)
which is a very useful tool in the analysis on Zariski open sets. It was introduced in [9]
(see also [48]) and plays an important role in value distribution theory and hyperbolic
geometry.

4.38. PROPOSITION. There exists a complete metric (of finite volume) on X \. Z, called
the generalized Poincaré metric, which in special coordinates is equivalent to the metric
(X52). It has bounded torsion and Ricci curvature.

PROOF. We write Z = UZ;j and consider a section gj of the line bundle [Z;] which
vanishes to first order on Zj. Then we endow [Zj] with a hermitian metric such that the
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norm of oj satisfies |0j| < 1. We take an arbitrary smooth metric © on X and set

O =0 -3V-1y 30 log(—log|ai|?)2. (4.55)
In special coordinates U in which Z; is defined by z = 0, |gi|? = |z|%eY, u € €*(U). Then

1

(u+log|z|?)2
The first term in the sum is semipositive. As for the second, —1/(u + log z|?) > 0 and
tends to O near the singular set. Since ddu is smooth, the second term is bounded below
by the negative of some smooth metric on X. This argument shows that O, is a metric on
U \ Z for g small enough. Taking &9 small enough also ensures that O, is positive on

the whole X \ Z. It is clear that ©g, and @.54) have the same type of singularity and this
shows that O, is complete and has finite volume. Let us denote by

o =— Iog|'| —log|gi|?) (4.56)

The function ¢ is quasi—plurisubharmonici. e. 3d¢ > —CO’ and Qg = @' — %«-1@5:1:.
We wish to show that there exist a constant C > 0 such that

V=1IR® > _CO,,, [T, <C. (4.57)

where Tg, = [Og,,00g,] is the torsion operator of Og, and |Tg,| is its norm with respect to
Og,. Now 00, = 00’ by (@.55), so it extends smoothly over X, and thus we get the second

relation of (A.21).
We turn now to the first condition of (57). We have

—%d?log( log|ai|?)? = 5 (L4 0u) A (Z+0u) —

u+|og|z|2(wu

RIZ] alog\|m||i2A5logllcrilli2>
log|[ai 2 (log | ai||2)?

The terms R[%!/log || ai||? tend to zero as we approach X so they can be absorbed in @ and
do not contribute to the singularity of ©¢, near Z. To examine the last term let us localize
to a point xg € Z. We choose special coordinates in a neighborhood U of xg in which Z;
has the equation zj =0 for j=1,...,kand Zj, j >k, do not meet U. Then for 1 <i <k,
|| Gi||? = ui|zi| for some positive smooth function u; on U and

Qg =0 +2v—1 soz( (4.58)

dlog||ail|ZAdlog|aill?  dziAdzi+v
(log|lail|?)? |zi|2(log |ai[7)?
where v; is a smooth (1,1)—form on U. Without loss of generality we may assume that

@' is the Euclidean metric on U so that @™ is the Euclidean volume element. Then there
exists a smooth function 8 such that

n 1+B(Z) ) n . n
O, =(1 " =: o, 4.60
e ( iz Rlog a2 ve) (4.60)

(4.59)

and consequently

det _ — (00y(z) dy(z) NOY(2)\ _ = 00Y(2)
V—IR® = _\/“19dlogy(z) = \/_1< 70 V2)? )2 V-1 y((zl%Gl.)

A brute force calculation of —/—1ddy(z),/y(z) and comparison to the singularities of O,
given by [@59) show that /—1R%t > —COg, for some positive constant C . This achieves

the proof of (@.L1). O
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4.39. THEOREM. Let X be an n—dimensional compact manifold and let L be a holo-
morphic line bundle with a singular hermitian metric ht. We assume that :

(1) v/—IRL) is smooth on M := X <. Z where Z is a divizor with only simple normal
crossings;
(2) V—IRLM) js a strictly positive current in a neighbourhood of Z .

Then,

. n — L\ N
dimHG, (M,L%) > H/M(qm (SEREM) ok, k—w,  (462)
where H (02)(M ,L¥) is the space of sections of LK which are L2 with respect to the restrictions
to M and L|u of smooth metricson X and L.

PROOF. We use the notations from the proof of Proposition We consider the
following family of metrics on L [m: hi = h'[7;(—log|gj|?)%, € > 0.

The curvature /—1R! is strictly positive in the sense of currents near Z, so there exists
A > 0 such that v/—1IR" > A®@’ outside a compact set of X ~. Z. Note that

VIR — /ZIRL + £/ —100 ¢
where ¢ has been defined in (#54). Then

VIR — 50, =v/—1R" + (& — 5&9)v/—109¢ — 6O/
>v/—1Rt — (¢ — dg)CO - 6&
>(A—(e—0g)C—0)0&

If £ and & are sufficiently small, v/—IR(-) — 5@, > 50/, so that VIR > 50,

Near Z the metric h' is locally represented by a strictly plurisubharmonic weight. Thus
ht is locally bounded below near Z and h- > Cht on X for some positive constant C and
some smooth metric ht. Consider the space

1k
HY (M, LY := {u € LM, L, @y, ht) : 3" u =0},

Since the Poincaré metric dominates the euclidian metric in local coordinates near Z, the L2
condition with respect to the Poincaré metric implies the that the elements of H?Z)(M, L)e

extend holomorphically to sections of LK, therefore H(Oz)(M,Lk)g C H(Oz)(M, LY. By Theo-
rem@3UforK eU e M

dimHY, (M, L%) > dimH (M, L9)e > / (%R(L’“@)uo(k”).

U(<1hk)
We can let € — 0 in the right-hand side in order to replace h: with h. Then we can let
U exhaust M to get the inequality from the statement. O

4.40. THEOREM (Takayama). Let X be an n—dimensional reduced and irreducible com-
pact complex space and let L be a holomorphic line bundle over X with a singular Hermit-
ian metric ht. Assume that the curvature current Rt is smooth on the complement of some
proper analytic subset Z O Xgng and that v/—1R! is strictly positive on some neighbour-
hood of Z. Then f(X\Z)KLL)(\/—lRL)” exists and if it is strictly positive X is a Moishezon
space.
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PROOF. We show that we can reduce the proof to an application of Theorem £.39 Let
T: X — X be a resolution of singularities of X (see [23]), such that T=1(Z) = D, a divisor
with only simple normal crossings. There exists a finite sequence of blow-ups

T Tm-1 T2

>/(\ = Xm — Xm-1 n

X1 Xo=X
such that

(@) T is the blow-up along a non-singular center Y;_; contained in the total transform
of ZinXj_1,i>1

(b) the total transform of Z in X = Xm through T = Tmo Tm_10--- o T1 is a divisor with
only simple normal crossings.

We build next an integral Kahler current T on X. Let Yo =T, 1(Yg), the total transform

of Yo. Then there exists a smooth hermitian metric hg on the line bundle [Yg]*l whose
curvature satisfies the following conditions:

1) is strictly positive along Yy,

2) is bounded on X1,

3) vanishes outside a neighbourhood of Y.

On X; we consider the bundle L := 15 (LX) @ [Y¢]~! endowed with the metric htt =
(ht)eki@hg, for kg € N. The curvature current of (Ly,htt) is Ty =ky T3 T ++/—1R(% ) %:ho),
The current ;T is positive on X7 and strictly positive on any compact set disjoint from
Ys. Hence, properties 1) — 3) show that for ky sufficiently large Ty is a strictly posi-
tive current near Z; := 1, *(Z), the integral fxlreg(gl,Ll)(\/__lRLl>n is finite if and only
Jxeg(<1L)(V—IR)" is finite and the first integral is > 0 if the second is.

Continuing inductively we construct a line bundle (L, ht) on X with curvature current
T smooth on M := X ~. t=1(Z) and positive on Z. Note that T~1(Z) = 1;,1(Zm_1) =D . By
(£52) we obtain
n n
(10 (KA Tk 17 n
dimHG, (V,04) > m/m(gm (AT) +ok), k-, (4.63)

where the L2 condition is taken w.r.t. smooth metrics on M and L. So actually HY, (M, LK) =

HO(X,L¥) by [17, Lemme 6.9]. Thus the integral in (@B3) is finite and with it also
Joxz)(<1.0)(V—1RN)". Moreover, if the latter integral is strictly positive, we have by(#.&3)
that dimHO(X, LX) = O(k"), for k — 0, and consequently L is big and X is Moishezon.
Since X and X are bimeromorphicallly equivalent, it follows that X is Moishezon, too. [

In the proof of Theorem we cannot infer that L is big. Of course, M =X\ Z
and M = X . 77%(Z) are biholomorphic through T and L|; = 7*(L"|m), for some r € N.
So H(OZ)(M,Ek) «—— HO(M, L™®) and dimHO(M, L) = O(k"). But in general the sections
of HO(M,L”‘) do not extend holomorphically past Z. This happens, however, in some
interesting cases.

4.41. COROLLARY. Under the same conditions as in Theorem assume that X is
normal, Z = Xsng and and f(x,eg)(gl,L)(\/—lRL)n > 0. Then L is big and X is Moishezon.

Indeed, in this case all sections of HO(M, LX) extend to sections of HO(X, L¥). However, if
we assume that X is smooth the situation is optimal.

4.42. COROLLARY. Let L be a holomorphic line bundle over a compact complex ma-
nifold. Then L is big if and only if there exists a current T € c1(L) satisfying the following
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conditions: (i) singsuppT C Z, where Z is a proper analytic set, (ii) T is strictly positive
in the neighbourhood of Z and (iii) [ix. z)<17)T" > 0.

A manifold X is Moishezon if and only if there exists an integral current satisfying
the conditions (i)-(iii) (in particular, if and only if it possesses an integral Kahler current

satisfying (1)).

PROOF. Assume that L is big. Then we know that X is Moishezon and by Moishe-
zon’s characterization Theorem 223 there exists a proper modification T : X — X, with X
projective. Then L = T*L is big, since the pull-back morphism HO(X, LK) — HO(X,L¥) is
injective. Using the existence of an ample line bundle on X we can construct a singular her-
mitian metric ht on L with v/=IR" > 0 in the sense of currents (see [15], [7, Proposition
6.6. (f)], [37]). Indeed, one can write L' =A®E forsomer large enough, where A isample
and E is effective. On E there is a hermitian metric hE, such that /—1RE = [Divs] = [E],
where s is a global holomorphic section of E. Then ht := (hA@hE)V/" is a hermitian metric

on L with strictly positive curvature current T. The metric h- := 7,.h" on L has curvature
current T = 7, T, which satisfies the conditions (i) - (iii).

Conversely, we proceed as in the proof of Theorem[4.40/to construct a blow-up 7 : X —
X such that T-1(Z) is a divisor with simple normal crossings. Moreover, we T : M — M is
biholomorphic, where we set as before M = X ~. 771(Z) and M = X ~. Z. We also construct

a line bunlde L on X such that L|g = 7*(L"|m). Moreover, dim H&)(I\W,Ek) =0(k"), as

k — oo, where the L2 condition is w.r.t. smooth metrics on X and L. Such metrics are
quasi-isometric on M = M and L|g = L"|m with smooth metrics on X and L". Thus, by

pushing forward the elements of Hf (M,L¥) we obtain that dimHZ, (M, L") = O(k"),
k — oo, where the L2 condition is w.r.t. smooth metrics on X and L. Since X is smooth,
[11, Lemme 6.9] shows again that H?z)(Merk> = HO(X,L"™) and therefore L" and L are
big. O

The Shiffman-Ji-Bonavero criterion is yet another characterization of big line bundles
and Moishezon manifolds, where one can drop the hypothesis (i) that the current T has
singular support contained in an analytic set.

4.43. COROLLARY (Shiffman-Ji-Bonavero). Let L be a holomorphic line bundle over
a compact complex manifold. Then L is big if and only if there exists a strictly positive
current T € c1(L).

A manifold X is Moishezon if and only if it possesses an integral Kahler current.

PROOF. The crucial ingredient is the approximation theorem of Demailly [[14]. We first
introduce a definition. A locally integrable function ¢ has analytic singularities if, locally,
equals $log (3 Aj|fj|?) + ., where f; are holomorphic functions and, A} are non-negative
smooth functions, whithout common zeroes, ( is smooth and ¢ € Q. . In particular the
singular set of dd¢ is an analytic set.

4.44. THEOREM ([14]). Let T be a closed (1,1)—current on a compact complex ma-
nifold X, which is bounded below by a smooth (1,1)-form a. There exists a sequence of
Kahler currents T = /=109 ¢ + 3, € > 0, in the same de Rham cohomology class as T,
converging weakly to T as € — 0, where ¢ is a real function with analytic singularities
and 3 isa ¢* representative of T.
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Now, if T € cy(L) is strictly positive, it follows from Theorem 44 that T, € c1(L) is
strictly positive for € > 0 sufficiently small, and that T, satisfies condition (i) of Corollary
E42. By the latter result, L is big. O

4.45. REMARK. The approach of Ji-Shiffman [24] is to approximate T by T, as above
and consider a complete K&hler metric on X \ Z, where Z = singsuppTe, which allows
to apply the L? estimates of Hormander-Bombieri-Skoda (Theorem EZI8) in order to show
that ®HO(X, LX) gives local coordinates outside Z.

The proof of Bonavero [[7] is based on his singular Morse inequalities (1.9)” and Theo-
remd.44 Actually the following characterization holds:

4.46. COROLLARY (Bonavero). Let L be a holomorphic line bundle over a compact
complex manifold. Then L is big if and only if there exists a current T € c4(L) satisfying
the following conditions: (i) T = +/—1dd¢ + B, where ¢ is a real function with analytic
singularities and 3 is a 4™ representative of T, and (ii) [ix.z)<1m)T" > 0 where Z =
singsuppT.

4.6. Holomorphic Morse Inequalities for g-convex manifolds

Let X be a g—convex manifold of dimension n and let ¢ : X — R be an exhaustion
function which is g—convex outside a compact set K.

Let us consider a smooth sublevel set X = {¢ < c} such that K C X.. We know that
2 has at least n — g+ 1 positive eigenvalues in the neighbourhood of dXc. By [3, Lemma
18] we may choose a hermitian metric w on X such that ninf{A1,0} + Aq is bounded from
below on a neighbourhood of dX¢. Then [3, Lemma 19] shows that

Zp(u,u) =Clu? ondX, ueQ®(X,LX®E),j>q.

Let us replace the metric ht with h')-( — heX(#) for some rapidly increasing convex function

X-
We have thus

ZLp(u,u)dS >0, ueBY (X, L*®E), j>q (4.64)
oX

(\/—1R('—’h§)u,u> > Ck|lul2, ueB® (X, LX®E), suppucV (4.65)

with a positive constant C > 0, for any k > kg, with convenient k and some small neigh-
bourhood V of dXc.

Using now the Bochner—Kodaira formula with boundary term (B.25) and (£.64), (£.65)
we deduce that

—E —E x : ;
lul2< S0 ul2+ 10 “ul?), ueB®(X,LX®E), suppucV,j=q (4.66)

with a possibly different C > 0. By applying (&8B) to {u where u € B®I (X¢, LK@ E), j >
g and ¢ is a cut—off function with { = 1 near dX. and supp{ C V we deduce that the
fundamental estimate @) holds for any u € B%I (X, LK@ E). Since B (X, LX® E) is
dense in Dom(EE") N Dom(EE"*) by Lemma [A.ZTIwe see that (@.T)) is satisfied. Therefore
we can apply the abstract Morse inequalities (£.I9) for the spaces H<02’)J (Xe, LX® E), where
the L2 condition is taken with respect to the metrics w on X¢ and ht | hE.
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By the strong Hodge theorem [A.26 we have Hé)z’)j (Xe, LK@ E) =2 %) (X, LX® E) and
by the representation theorem [B:43 we know that

A% (Xe, LK@ E) 2 HO (X, LKQ E) 2 HI (X, 0(L*® E)).

Finally we obtain the following result of Th. Bouche [8]. His proof is based on the same
principle of showing the fundamental estimate outside a compact set but he works with
complete metrics.

4.47. THEOREM. Let X be a g-convex manifold of dimension nand let (L,h%), (E, hE)
holomorphic vector bundles of rank one and r respectively Py.
Then
n . . n V1
Z(—l)lpdimH’(X,ﬁ(L"@E))grk—/ v-i
i=p Nt

RLMY" 4 (kD
>p,h&)( 2m X) ol

as k — oo, for any smooth sublevel set X; O K, and p > q. If v/—1R" is semi—positive ount-
side a compact set K, we can replace the right—hard side integral by fx(>p7hL) (%R'—) .

In order to justify the last assertion of the theorem let us choose d < ¢ such that L is
semi—positive outside X4 and v/—19d¢ has n —q -+ 1 positive eigenvalues.

Let us choose x such that x =0 on (—oo, f) whered < f < c. The curvature /—1R(-"%)
has then n — q + 1 positive eigenvalues in X¢ \ Xg so that Xc( ], h)L() C X; for j > q. Buton
the last set h} = h'-and the assertion follows.

Instead of assuming L to be semi—positive we can assume as in [8] that L is I-positive
outside a compact set i.e. v/—1R" has at least n — | 4 1 positive eigenvalues. Then one can
prove that the second assertion holds for p > q+1 — 1.

In the same vein one can study the growth of the cohomology groups of pseudoconvex
domains and weakly 1-complete manifolds.

4.48. THEOREM ([26]). Let X be a smooth, relatively compact pseudoconvex domain
in a complex manifold M and let L — M be a holomorphic line bundle which is positive
in a neighbourhood of dX. Then

n _ _ 0] y KN
3 (~1)1-PdimHG! (X, LK 0 E) < r—l/

VIRE)" ok
i=p @ n: X(>p)<2” ) ()

for p > 1, where the L2 condition is taken with respect to smooth metrics over X. Moreover

n

k n
: 0 k v—1plL n
dimH(X, 0(L“QE)) > 1 /X(@ (—ZH R ) +o(kM. (4.67)

In particular, if L is positive, dimHO(X, & (L¥)) > k"vol(X) +o(k"), where the volume is
taken with respect to metric %R'—.

Assume now that X is a weakly 1-complete manifold. Then X, are smooth pseudocon-
vex domains for ¢ a regular value of the exhaustion function so the previous result apply if
L is positive outside a compact set K C Xc. Moreover, by [45, Theorem 6.2]

HI(Xe, (LK@ E)) = %) (X, LK E) = H (X, LK R E).

The isomorphism theorem permits therefore to state Theorem E.48 for the cohomology
groups HI (X, 0(LK®E)), j > 1. This result was proved in [8, Th.0.2] where actually a g-
positive bundle L is considered over a Kahler weakly 1-complete manifold X. The K&hler
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assumption was removed in [25] answering positively a question of Ohsawa [32), p.218]
about the polynomial growth of degree n with respect to k of dimHI (X, 0(LK®E)), j > 1.

More importantly, (Z.&7) was proved by Takayama for the particular case of a sublevel
set X¢ of a X. By using the liberty to modify the curvature of L multiplying it with a factor
e~X(9) we can achieve that the integral in the right—hand side is infinite:

lim k~"dim HO(X¢, O(LK®E)) = oo

If L is positive near dXc.

This result toghether with the effective base point freeness methods introduced in alge-
braic geometry by Angehrn—Siu produce a answer to the conjecture of Nakano and Ohsawa
about the embeddability of weakly 1-complete manifolds.

4.49. THEOREM ([44, Theorem 1.2]). Let X be an n—-dimensional weakly 1-complete
manifold with a positive line bundle L. Then LM ® Kx is ample for m > n(n+1)/2. In
fact, X is then embeddable into P?"*1 by a linear subsystem of |(Kx @ L™®(2)| for
m>n(n+1)/2.

Actually, in the compact case the effective base point freeness was proved by Angehrn—
Siu [4] with the help of the Riemann—Roch theorem, Nadel’s vanishing theorem and Ohsawa-—
Takegoshi L2 extension theorem. Takayama applies the same strategy replacing the Riemann—
Roch theorem with (£.87).
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CHAPTER 5

Covering manifolds

5.1. Automorphic forms and the L?~index theorem of Atiyah

5.1.1. Une observation de Poincaré. Let X be a compact Riemann surface. There
is a close connection between the function theory on X and the function theory on the
universal cover X. Thanks to the uniformization theorem of Poincaré—Klein—Koebe we
know that that the universal cover of a Riemann surface of genus 0 (the sphere) is a sphere,
the universal cover of a Riemann surface of genus 1 (torus) is C and the universal cover of
a Riemann surface of genus > 2 is the unit disc.

One of the main theorems in the theory of Riemann surfaces states that any holomorphic
line bundle on X admits non-trivial meromorphic sections. In the case of tori which are
quotients C/I" where I is a discrete group of translations, the result follows by the theory
of theta functions . These are roughly speaking functions on C almost periodic modulo I
and there is a one-to-one correspondence between them and the sections of holomorphic
line bundle on C/T.

If the genus g of X is > 2 then the universal cover X is the unit disc D and X = D/I" where
I = m(X) acts on D. It is clear that I'-invariant holomorphic or meromorphic functions
on D correspond to holomorphic or meromorphic functions on X. We could try to find a
non-trivial I -invariant meromorphic function by writting it as a quotient m = g1 /g, of two
holomorphic functions on D. We have now the task to see what is the relation between
the f’s and the group; they are certainly not invariant, otherwise they would correspond to
functions on X so they would be constants.

Poincaré solved the problem by making the following twist. Consider the canonical
bundle Kp and its tensor powers K§"; they are trivial and a nowhere vanishing section is
given by dz®X. Then any meromorphic function can be written as a quotient m = f1/f,
where f; are I'-invariant sections of the pluricanonical bundle K§k for k > 2. To speak of a
I-invariant section of a vector bundle L we need a lifting of the action of I' on the base; if
we denote by ¥: L — L the action on the bundle, then it induces a linear map y, from L,
to Lyz. A section f is called invariant if y5(f(z)) = f(yz). In our special case the action on
KX is given by

fz.02%) = vz, (3Y) “az) 5.1)

e V1 KGN — KGX,is f(2) — ((y 1)*f)(yz), so that f is invariant if and only if
y*f = f, ye I, where the star indicates the pull-back of forms. Writting f = gdz® for a
holomorphic function g on d we get that f is invariant if and only if

dyy —k
o) = (g2) 9@ (5.2)
Functions satisfying (5.2) are called automorphic forms. If we have two automorphic forms
g1 and g» it is obvious that their quotient is an invariant meromorphic function. More
generally, given two I"-invariant sections of a holomorphic line bundle with a lifting of the

07
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action of I we see by using local frames that their quotient is a I'-invariant meromorphic
function.
To construct automorphic forms we use the so-called Poincaré series of order k:

-3 am(g)

where g is a bounded holomorphic function on D. It turns out that for k > 2 the series
P«(g) is convergent and it satisfies the relation (5.2). Let us note that if f = gdz®X then the
Poincaré series has the form:
= Z v, f(yz
ye

Now we can use the rich function structure of D; the freedom in the choice of g € /(D)
allows us to find a lot of automorphic forms Py(g) for k > 2. If we regard them as sections
of the pluricanonical line bundle K§" they can be pushed down to sections of K)‘?" that
separe points and tangent vectors, therefore implying that Kﬁ?", k >> 2, is very ample.
This procedure can be generalized to any relatively compact open set of a Stein manifold,
by replacing %’(z) by the determinant of the jacobian matrix detJy(z).

5.1. THEOREM. Let M €Y be an open set of a Stein manifold Y. Let ' € Aut(M) act
properly discontinuous and freely on M such that X = M /T" is compact. Then the canonical
bundle Kx is ample.

For a proof see Siegel [15] or Kollar [10].

5.1.2. The L?~index theorem. A draw-back of the method of Poincaré series is that it
doesn’t say anything about the existence of automorphic forms of low degree i.e. sections
of Kﬁ?" for small k. The L2 index theorem of Atiyah gives us the possibility of investigating
this problem.

Let ()?,gTX) be a riemannian manifold on which a discrete group I acts freely and
properly discontinously such that g™* is M—invariant.

Let X = X /I be the quotient and 77+ : X — X the canonical projection. Then X is
a Galois covering of X of Galois group I". We assume X paracompact so that I will be
countable. Since gT>< is M—invariant there exists a riemannian metric g'* on X such that
mgTX = g™%. We denote by dvg the volume form of g™, We call U a fundamental
domain of the action of I on X if the following conditions are satisfied:

a) X is covered by the translations of U,

b) different translations of U have empty intersection and

c)U~ U has zero measure.

Let (E, hE) be a hermitian vector bundle over X such that the action of I" lifts to E. This
means that for each y € I" there exists an automorphism yE :E — E which induces an iso-
morphism y& : Ex — Eyx such that (y§)*hE, = h&. Then there exists a hermitian vector

bundle (E,hE) on X such that (E,hE) = (1'E, £hE). On the sections Qo(X, E) we intro-
duce the scalar product (s1,S2) = [ <Sl,82>hE dvg and let L2(X,E) be the corresponding L2
space. There is an action of I on Q(X, E) given by Ly: Q(X,E) — Q(X,E),

Lu(x) = yE s u(y x), ue Q(X,E), x e X.
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By using a change of variables it is easy to check that L, extends to a unitary operator
Ly:L2(X,E) — L3(X,E).
It is easy to see that
L2(X,E) = LI ® L2(U,E) = LT ® L3(X,E) (5.3)
where U is a fundamental domain for the action of I". A basis for L2l is formed by the

functions
1 if y=y
&(Y)=1, .
0 if y#Y.
Then for f € L2(X,E) the above identification is given by

= (flo)y =Y o7 (flw)
4

which means that L2(U, E) is identified with those sections of E wich vanish outside U and
for any y we identify Co, © L?(U, E) with those sections wich vanish outside yU.

There is an unitary action of I" by left translations on L2 by I8, = 5. Itis easy to check
that actually L, = I,® Id and that {L, : y € ['} defines a unitary action of I' on L?(X,E).

Let (F,hF) be a further M—invariant hermitian vector bundle over X and let P : Q(X ,E) —
Q(X,F) be a linear differential elliptic operator.

We assume that P is M—invariant if it commutes to the action of I i.e. PL, = L,P. This
is equivalent to the existence of a differential elliptic operator P : Q(X,E) — Q(X,F)
such that P = 7¢°P.

We suppose from now on that X is compact. Then we can define the index of P and we
wish to find a notion of index also for P. The difficulty is that

KerP = {u e L?(X,E) : Pu=0}
is in general infinite dimensional, so we cannot use the usual dimension for the defini-
tion. Nevertheless, Atiyah [3] showed how one can associate a positive, possibly infinite
real number to this space, called the M'-dimension. Let us call a free Hilbert T'-module
a Hilbert space of the form L2I" ® /¢, . a Hilbert space, with the action y — ly @ ld.
For example L2(X,E) is a free Hilbert T-module. We call a (Hilbert) F-module any -
invariant subspace of a free Hilbert T—module. Note that Ker P is a F—-module since P is
invariant. We shall soon take the task of defining the '—dimension of a '-module in the
next Section. For the moment let us just remark that if I is trivial then it coincides with the
usual dimension and if I is finite we have
: 1
dimr ] dim

We define now the von Neumann index of P. Let Pt : Q(X,F) — Q(X,E) be the

formal adjoint of P, which is also M—invariant. We set

indexr- P = dimr- Ker P — dimp Ker P!

We can now state Atiyah’s L2 index theorem [3]:
5.2. THEOREM (Atiyah). Let P: Q(X,E) — Q(X,F) be a I—invariant elliptic oper-
ator on a Galois covering 75 : X — X of a compact manifold X = X /I". Then
indexr P = indexP
where P : Q(X,E) — Q(X,F) satisfies 1P = P.
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Let assume in the sequel that X is a complex manifold and the vector bundle E is
holomorphic. Then the Cauchy—Riemann operator a°: QOI(X,E) — QOITL(X,E) is M-
invariant i.e. LVEE = EELV: in terms of the decomposition (53) Ly acts only on the first

factor and 9" only on the second. Recall that the formal adjoint 9E = —#E;EE#E where
#z 1 QOJ(X,E) — QO (X,E*) is the Hodge operator BD).

Therefore, 9 and the Kodaira-laplacian OF = @ "9E +19Ed are also M—invariant.

The M'=index of € is the T—Euler characteristic of E
n

indexr (OF) = Z)( 1)} dimr Oy (X, E)
j:

where ﬁ?é% (X,E) are the reduced cohomology groups (B.29). From Theorem B2 we ob-

tain:

5.3. THEOREM. Let X be complex manifold of dimension n with a properly discontinu-
ous and free action of a discrete group I' such that X = ?/F is a compact Kéhler manifold.
Assume that there exist a holomorphic line bundle E on X such that the action of I" lifts to
E and suppose that we have fixed on X the pull-back of the Kahler metric from X and on
E the pull-back of a hermitian metric on E = E /. Then the Euler characteristic of the
adjoint bundle Kx @ E equals the Euler I'—characteristic of the adjoint bundle K¢ ® E:

n n

Z)(—l)qdiqu(X,Kx ®E) = Z)(—l)qdimrﬁ? (X, Kg ®E).
a= 0=

Unfortunately the previous theorem involves higher cohomology groups. But if we make
additional assumptions on the bundle E the higher cohomology vanishes:

5.4. THEOREM. Suppose that E is a positive line bundle. Then dimr ﬁ?z) (X, Kg ® E)=
dimHO(X,Kx ® E).

PROOF. Indeed, by the Kodaira vanlshlng theorem H9(X,Kx ® E) = 0 for q > 1 since
E is positive. Moreover, %ﬂ(g)(X,KX ® E) = 0 by the vanishing theorem of Andreotti-

Vesentini [2] (see also the vanishing results from [5]) since X is a complete Kahler manifold
and E is positive. O

The use of TheoremB.4lis twofold. We can either deduce the existence of automorphic
forms of low degree obtaining non-vanishing theorems on X or we can find holomorphic
L2 sections on X obtaining non-vanishing theorems on X. As an example of the first appli-
cation we have the following.

5.5. COROLLARY ([10]). Let X € Y be an open set of a Stein manifold Y and I" a
discrete group acting properly discontinuous and freely on X. If X = X /I is compact then:
i) dimHO(X,KZ¥) > 1fork > 2.

i) dimHO(X,KZK) > 2 fork > 4.
Indeed we can apply the previous theorem together with the fact that K is generated by its
L2 sections which shows that dimr ﬁ?z)(i, K2 > 1.

The other direction is to apply Theorem R.4]in order to get information about the existence
of holomorphic sections on X.
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5.6. COROLLARY ([10], Theorem 16.5). Let X be a projective manifold of dimension
n and E a positive line bundle on X. Fix a positive integer a(E) such that K)Z1® E2E) js
positive also. Let p: X — X a covering corresponding to a quotient I" of m (X). Then for
k > (n+2)("®(a(E) 4 n) we have that EX is very ample and EX = p*EK is generated by
its holomorphic L2 sections. Moreover for k large enough holomorphic L2 sections of EX
separate points of X.

This corollary has connections to the Shafarevich conjecture:

5.7. SHAFAREVICH CONJECTURE. Let X be a smooth projective manifold and X its
universal cover. Then there is a proper holomorphic morphism with connected fibers onto
a normal Stein space.

Since by the Remmert reduction every holomorphically convex space admits such a
morphism it would be sufficient to prove that X is holomorphically convex (i.e. for every
discrete sequence {x;} there exists a holomorphic function f which blows up on the se-
quence, sup | f(x;)| = ). We can introduce a weaker form, the convexity with respect to a
hermitian line bundle, by replacing the function with a holomorphic section. Napier [[11]
showed that if X carries a positive line bundle E then X is holomorphically convex with
respect to EX for large k. In particular the dimension of the space of holomorphic sections
is infinite for large k.

5.1.3. Definition and properties of the FT—dimension. It is probably high time to give
a definition of the T—dimension of a T—module of L2(X,E). We follow the elementary ac-
count of Kollar [[10]. For a general account in the natural framework of von Neumann
algebras see Cohen [6]. Let us consider a Hilbert space G and denote by #(G) the al-
gebra of bounded linear endomorphisms of G. Let us remind that there exists a function
Tr: #(G) — CU {0} called trace which is linear and TrAB = TrBA for A,B € #(G).
Moreover for a positive operator A > 0 (i.e. (Ag,g) > 0 for all g € G) we have TrA >0 and
TrA=0ifand only if A =0 (for notions of operator algebras like trace see Stratila & Zsido6
[16]]). Let us remind the definition of the trace of a positive operator. Fix an orthonormal
basis {ej} of G and put TrA := S (Aej,ej) € [0,]. The definition does not depend on the
choice of the basis. An important case of positive operator is the orthogonal projection P
on a closed subspace of F C G: choosing an orthonormal basis in F and in the orthogonal
complement of F we check that
TrP =dimF. (5.4)
Let us also note that for any B € #(G), B*B and BB* are positive and if B is represented
by the matrix (bij = (Bei,ej)) then TrB*B =¥ |bj; |2 and in particular TrB*B = TrBB*.
Let us take now G = L2T for a discrete group I'. As we have already noted a basis of
this space is (dy)y and there is a unitary action of " on L2l given by the left translations
l,. Let consider now the algebra o4 C %8(L2I") of all operators that commute with all left
translations. Let us denote the unit element of " by e. Then we can introduce a trace on
< by
TrrA=(Ad, %), Ac.af. (5.5)
This definition is justified by the following. Suppose that A is given by the matrix (ayn =
(Ady, 5,7)). Applying the equality Al, = 1,A to & and using l,de = &, we get that the matrix
coefficients satisfy the relation a,, = a, -1, In order to define a trace as before we should
consider 3 (Ady, 8y) = ¥ ayy = |I'|aee Which is finite only if I" is finite or A = 0. Therefore
we renormalize and obtain (B.5). It is easy to see that Trr satisfies the same properties as
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Tr. Let us consider a left M—invariant subspace F C L2T" (i.e. a F'-module), so that the
orthogonal projection P on F belongs to <. Imitating (&.4) we put

dimr F=TrrP= (Pée, 59)

The '-dimension has the following properties:

(1) 0<dimrF < 1.

(2) dimfF =0ifandonly if F =0.

(3) F C F/ implies dimp F < dimp F” with equality if and only if F = F'.
There is a useful formula for dimr F in terms of an othonormal basis {e;} of F. We com-
plete this basis to an ONB {fi,g;} of L2I" and expanding 8 = 5 (&, fi) fi + 3 (&%, 9j)9j =
> fi(e)fi+3 (% 9j)9; we get

dimr F = (P&, &) = (3 fi(e)fi, &) = 5 [fi(e) % (5.6)

As an example let us consider the isomorphism L?(S1) ~ L?Z given by u — (Un)nez
where uy, are the Fourier coefficients with respect to athe basis exp(int). This basis corre-
spond to the basis &, of L?Z so the action of Z on L?(St) is given by the multiplication
with exp(int). Let us consider the subspace Fg € L?(S?) of functions vanishing outside the
measurable set B. It is a Z-invariant set and the projection on Fg is given by Pgf = xgf
where xg is the characteristic function of B. Thus

dim; Fg = (Psdp, %) = (xB-1,1) = measure(B).

Finally let us introduce the M—dimension for F—modules of L2(X,E). As before we
denote by o ¢ Z(L%(X,E)) the algebra of all operators which commute with the action
of . Then to any operator A € Z(L2(X, E)) we can associate operators a,, € %(L?(U,E))
such that a (f) is the projection of A(8, @ f) on C8, @ Z(L%(U,E)). If moreover A € o

then the matrix (ayn ) satisfies the relation a,, = a, ,-1, and we can define

Trr A= Traee.

Remark that if A is positive then aee is positive too so we have a formula for Traee. If
F € L?(X,E) is a T—module then the projection P on F is in . and we put

dimr F=TrrP.

Imitating ([53) we get
dimrF = E / € de* 5.7
r | U| || X ( )

where {e;} is an orthonormal basis in F.

Let us introduce now the notion of F'—morphism A : V1 — V> between two '-modules:
it is a bounded operator which commutes with the action of I on V1 and V. We say that A
is a quasi-isomorphism if Ker(A) =0 and Im(A) is dense in Va.

5.8. PROPOSITION. The '-dimension just introduced has the properties:
(1) 0< dimr F <o,
(2) dimrF =0ifandonly if F = 0.
(3) F c F’ implies dimr F < dimp F” with equality if and only if F = F’.
(4) 1f A:Vy — Vs is a T—morphism then dimr Ker(A)* = dimr Im(A).
(5) If two N'-modules are quasi-isomorphic then dimr L1 = dimg Lo.
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Let us justify the next to the last assertion. The polar decomposition A = SW, where
S>0andW is a partial isometry (i.e. Ker(A) = Ker(W) and W : Ker(A)* — Im(A) is
an isometry), has the property that W is a F'-=morphism too. On the other hand WW * is the
projection on Im(A) and W*W is the projection on Ker(A)+. Thus we have to prove that
Trr WW* = Trr W*W. Let us consider the matrix (wyn) of W; since W € .o there exists a
function w : I — 2L2(U,E) such that w(y1n) = wyn. Then (WW*)ee = 5 W(y)W*(y)
and

TrrWW* = Z Trw(y)w* Z Trw*( =Trr W*W.
The following proposition will be useful in the proof of the Morse inequalities.

5.9. PROPOSITION. Let
O—Llp—Li—..—Lg—Llgr1—...—Lh—0

be a complex of "'—modules (dq commutes with the action of I and dg,1dq = 0). If g =
dimr Ly < o and hq = dimr Hg(L) where

Hq(L) = Ker(dg) /Im(dq_1)
then

q .
> (D% Ih; < Z DI (5.8)
j=1

for every g =0,1,...,n and for g = n the inequality becomes equality.

The proof is the same as in the case of vector spaces of finite dimension with the single
difference that we use now the property £.8 (4) of the F-dimension.

5.2. Estimates of the spectrum distribution function

As before let (X,gT*) be a paracompact M —invariant riemannian manifold, let X = X /I
be the quotient and 75 : X — X the canonical projection. Let (E,hF) be a M'invariant
hermitian vector bundle and let (E,hE) be a bundle on X such that (E,hE) = (T¢E, thE)

We consider an open set Y € X with smooth boundary and its preimage Y = T . r
acts on Y and V/F =Y. In general we will decorate with tildes the preimages of objects
living on the quotient. Let U be a fundamental domain of the action of I on V..

Let us consider a formally self-adjoint, strongly elliptic, positive differential operator
P on X acting on sections of E. Denote by P the M—invariant differential operator which is
its pull-back to X. From P we construct the following operators: the Friedrichs extension
in L2(Y,F) of P with domain Qq(Y,F) and the Friedrichs extension in L(U,F) of P
with domain Qg(U,F). From now on we denote these extensions by P and Rj. They
are closed self-adjoint positive operators. It is known that the Fridrichs extension P is
also I invariant i.e. it commutes with all L,. This amounts to saying that the spectral
projectors E (A, P) of P commute with all Ly. On the other hand the Rellich lemma tells
us that Ry has compact resolvent and hence discrete spectrum. We will undertake the task
of comparing the distribution of the two spectra. Namely since E(A, F~>) is " invariant its
image Im(E(A, P)) is a " invariant closed subspace of the free Hilbert FT—module LI ®
L2(U,F) = L2(Y,F) and we can consider its von Neumann dimension. We denote in
the sequel Nr-(A,P) = dimr Im (E(A, F~>)). Similarly we consider the counting function of
Pu, N(A,Ry) = dimIm (E(A,Py)). In order to compare Nr(A,P) and N(A,Py) we use
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essentially the analysis of Shubin [14]. Let P be a I" invariant self-adjoint positive operator
on a free F-module L2l ® s# where 27 is Hilbert space. Then we have the following
variational principle [14, Lemma 2.4]:

Nr(A,P) = sup{dimrL |L c Dom(Q),Q(f, f) < A||f|[2, Vf e L} (5.9)
where L is a ~—module and Q is the quadratic form of P.

5.10. PROPOSITION (Estimate from below). For all A € R,
Nr(A,P) > N(A,Ry). (5.10)

PROOF. Letusdenoteby Ag <A1 < ... the spectrum of By. Let {e;} be an orthonormal
basis of L2(U, E) which consists of eigenfunctions of P, corresponding to the eigenvalues
Aj. Let & be the extension by 0 on Y \ U of ej. Then {L&} is an orthonormal basis
of L2(Y,E) and L& € Dom(Q). Let ®, the F-module spanned by the orthonormal set
{Ly& : A <AYinL2(Y,F). Then by G&Z) dimr @) = 35 <2 1=N(A, RU). Moreover, it is
easy to see that ®, c Dom(Q) and Q(f, f) < A|f|% f € ®,, as Dom(Q) is complete in
the graph norm. Thus (&.10) follows from (&.9). O

The next step is an estimate from above of Nr()\,F~>). We denote by rank; T =
dimr Im(T). For the following we refer to [14, Lemma 3.7].

5.11. LEMMA. Let us consider the same setting as in the variational principle. Assume

T :L2(Y,E) — L2(Y,E) is a -morphism such that ((P+T)f, f) > | f||2, f € Dom(P)
and rankr T < p. Then

N-(u—€,P)<p, Ve>O0. (5.11)

In order to get an estimate from above we have to enlarge a little bit the fundamental
domain U and compare the counting function of P on Y to the counting function of P
with Dirichlet boundary conditions on the enlarged domain. For h >0, let U, = {x €
Y : d(x,U) < h} where d is the distance on X associated to the Riemann metric on X
and then let Up, := yUp. Next we need a partition of unity. Let ¢ € C=(Y), ¢ > 0,

oM = 1 on U and supp ¢ ™ c Uh, ¢ (v = ¢ o y~1. We define the function J,(,h) e C(Y)

by 3 = o (5,(#y")2) % so that 5 ,er (3)")2 = 1. If P is of order 2, which will be
assumed from now on, by [14, Lemma 3.1] (varlant of IMS localization formula, see [7]),

P_ZJ PJ Z‘OO

where g, is the principal symbol of P. Since the derivative of J,(, Vis O(h~1) and the order
of P is 2 we deduce that there exists C > 0 independent of h such that:

ZJ B ——Id (5.12)

We let P act on @(Uy,h,lz) and take its Friedrichs extension Ry ,. Since Ry, is positive,
Pu, +AEA R, > /\ Id We define the bounded operators Gy on LZ(V F) given by

G, =J"AE(A, PU )3y and G = 3 1 Gy. Since VP = 3Ry 3", BID) vields

P+G> ()\ — %) Id. (5.13)
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5.12. LEMMA.
rankr G < N(A,Ry,) (5.14)

PROOF. We start with the finite rank operator G on L2(Up, F),
G=3"AEM,Ry,)I"

Then, rankG < rankE (A, Ry, ) = N(A, Ry, ). Next we consider the free T-module LT ®
L2(Up, F) and the bounded M—invariant operator Id ©G. Then R(Id®G) = L2I @ R(G) so
that rank- 1d ®G = rank G. We now identify the space L2 @ L?(Up, F) with @< L?(Up,, F)
by the unitary transform K : 5,8y ©owy — (LyWwy), . Thus @er L?(Uny,F) is naturally
a free T-module for which K is " invariant. We transport Id®G on Dyer L2(Un.y, F)
by K and we think of it as acting on this latter space. We construct then a restriction
operator V : @,cr L2(Uny, F) — L2(Y,F), V ((Wy)y) = 3 yer Wy which is a surjective
r—morphism. We have also the '—morphism | from L2(Y,F) to @®,cr L2(Up,, F), 1(u) =
(U [uy, )y which is obviously bounded. With our identifications, and replacing E(A,Py, )
by LyE(A, F’Uh)L*1 in the definition of G, we have G =V (1d®G) | . Asin the case of usual

dimension rankrV (1d®G) I < rankr(Id®G) (see [14, Lemma 3.6]). Hence rankr G <
rankr (1d®G) = rank G < N()\,Puh) . O

5.13. PROPOSITION (Estimate from above). There is a constant C > 0 such that

C

Nr()\vls) <N ()\ +h27

Pu) AeR, h>0. (5.15)
PROOF. We obtain N (A,P) <N ()\ +3+E, Puh> by LemmaE11, G13), (&I4) and
let ¢ — 0 (the counting function is right continuous). 0

We are going to apply the above results to the semi-classical asymptotlcs as k — oo
of the spectral distribution function of the laplacian k-0 on X. We let E and G be
two —invariant holomorphic line bundles. Let us form the Laplace—Beltrami operator

DE =99 +9d on (0,q) forms with values in EX®G. We apply the previous results for
P — k~10E* |¢» the operator of the Dirichlet problem on Y. Now we have to make a good
choice of the parameter h. We take h = k=4 so that the derlvatlve of the cutting off function
3 is just O(ki). Then gp(k—20E)(da\") = k=2|a3("|2 = O(k~2). Modifying (52,
&I3) and (BEI5) accordingly we obtain the following semi—classical estimate.

5.14. PROPOSITION. There exists a constantC > 0 independent of k such that for A € R
and k > 0 we have

1 g« 1 g C 1 g«
N ()\ ,EDE TU) <Nr ()\ ’EDE \\7) ()\ +— 7 k O fuk_m) (5.16)
Let us fix € > 0. Then N(A + \%( L0E) <N(A 4 &, L0E [y,) since for sufficiently

large k we have ka% C Ug. So limsup, k™ "Nr (A ,%Gﬁk\?) < 19(Ug, A + ¢€) by &I8) and
Theorem The use of dominated convergence to make € — 0 in the last integral
yields:



96 5. COVERING MANIFOLDS

5.15. THEOREM. The spectral distribution function of 0E| on L2 o(Y,E¥®G) with
Dirichlet boundary values satisfies
. 1l =
limsup k"N ()\ ,EDEk|\7) < 19(U,N). (5.17)
k
Moreover, there exists an at most countable set .4 C R such that for A in R ~. 4" the limit
exists and we have equality in (&17).

5.3. Weak Lefschetz Theorems

5.16. THEOREM. Let (X, w) be an n-dimensional complete hermitian manifold and let
(L,hL) be a holomorphic hermitian line bundle. Let K € M and a constant C, > 0 such
that v/—1R" > C,w on X ~ K. Let 7 : X — X be a Galois covering of Galois group I,
L= (L) and letU be any open subset with smooth boundary such that K € U € X. Then,
for kK — oo,

~ ~ kn n
. n,0 k vV—1pL n
> 2 v_2 .
dimr H(z) (X,L%) > al /x(gl,hL)< o1 R > +o(k"), (5.18)
where HX2(X, LX) is the space of (n,0)—forms with values in LX which are L2 with respect

2 ’ -
to any metric on X and the metric 7z*(h‘) on L.

PROOF. We endow X and L with the metric @ = 77" and ht = 7*ht respectively.
Then (X, @) is complete. Let K = m=1(K). Since 1% is locally biholomorphic we have
V=IRL > Cowon X < K.

Using the Bochner—Kodaira—Nakano formula as in the proof of Theorem .30 we ob-
tain that

1 5«
Jull? < . Q% (u.u) (5.19)

for any u € QI (X ~ K, LX), where QM is the quadratic form of O, LetW C V be two
open neighbourhoods of K. Let 0 < p < 1 be a smooth function on X such that p =1 onW
and p=0on X V. Set p = po . Applying GI9) for (1 — p)u where u € Qp* (X, LK)
and (1) we get by the density lemma of Andreotti—\Vesentini

6 1 . ~ _
Jull® < Q% (u,u) +2 /x pulPdvx, ueDomQUNLYMX.LY)  (5.20)

From (2.20) we infer that the spectral spaces corresponding to the lower part of the spec-
trum of %D'—k on (n,1)-forms inject into the spectral spaces of the —invariant operator

%D\i:;k which correspond to the Dirichlet problem on V = rq?l(V). For the latter operator
we know the Weyl law. We consider, analogously to (£.5) the F—=morphism
£OY(A,10M) — £0(6A +24Ck 2, 0L
u— Eg, +24c1k1(%‘:‘\%k)(5u)
is injective for A < 5. O

Nori [13] generalized the Lefschetz hypersurface theorem. Assume X and Y are smooth
connected projective manifolds and Y is a hypersurface in X with positive normal bundle
and dimY > 1. Then the image of (Y ) in 5 (X) is of finite index. Recently, Napier and
Ramachandran [12]] proposed an analytic approach and generalized Nori’s theorem show-
ing that Y may have arbitrary codimension (but dimY > 1). They use the d—method on
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complete Kahler manifolds to separate the sheets of appropriate coverings. In the sequel
we use the Morse inequalities to study non-necessarily Kahler manifolds. However our
method requires that the image group is normal since we can deal only with Galois cov-
erings. First we introduce the notion of formal completion (see [4]). LetY be a complex
analytic subspace of the manifold U and denote by .#y the ideal sheaf of Y. The formal
completion U of U with respect to Y is the ringed space (U, &5) = (Y, projlim &y / AY).
If # is an analytic sheaf on U we denote by 7 the sheaf 7 = projlimZ @ (0] #)). If #
is coherent then .7 is too. Moreover by [4, Proposition V1.2.7] the kernel of the mapping
HOU,Z#) — HO(U,% consists of the sections of .# which vanish on a neighbourhood
of Y. Hence for locally free .% the map is injective.

5.17. THEOREM. Let (X, ) and (L,h%) as in Theorem B8 and assume that the inte-
gral in (&.18) is positive. Let moreover Y be a connected compact complex subspace of X
satisfying: (i) for any k, dimHo(X,%) < o0, Where .7 = O(LX @ Ky), (ii) the image G of
(Y ) in mm(X) is normal in 7 (X). Then G is of finite index in 75 (X).

PROOF. We follow the proof given in [12]. Since G is normal there exists a connected
Galois covering 71: X — X such that the group of deck transformations is I' = (X ) /G.
The cardinal |I'| equals the index of G in m(X). Let E = m1E. By applying Theorem
there exists C > 0 such that for large k, dimr H(”z’g)(i,[k) > Ck". Let us choose

a small open neighbourhood V of Y such that i (Y) — m (V) is an isomorphism; so
the image of (V) in m(M) is G. Hence, if we denote by j the inclusion of V in X,
there exists a holomorphic lifting j:V — X, o j = j. Since j is locally biholomor-

phic the pull-back map j* H(”ng’(i L% — H™O(V, LK) is injective. On the other hand

HO(V,. %) — HOV, Z) = HY(X,.Z). By (i) the latter space is finite dimensional so

dim H{‘é?()?,[k) < oo, We know that dimr HY, (X, L* © Kg) > 0 for k > C~Y/" If T were
n,0

infinite this would yield dimH3(X, L¥) = e which is a contradiction. Therefore |I'| < oo

and dimH{}(X,[¥) > C|T|k" > || for k > C~Y/M. Thus || < dimH°(X, ) for large
k. O
5.18. REMARK. (a) By a theorem of Grothendieck [[9], condition (i) is fulfilled if Y is
locally a complete intersection with ample normal bundle Ny (or k—-ample in the sense of
Sommese, k = dimY —1).
(b) Moreover, we can slightly generalize the statement of Theorem BI7, by assuming
that Y is a subset of a manifold V, where condition (i) holds, and there exists a locally
biholomorphic map ¢ : V — X. The proof is the same, but we use the map ¢ instead of
the inclusion j. In particular, if Y admits an immersion in X with positive normal bundle,
we can take V to be a small neigbourhood of the zero section and we obtain Theorem [L. T2
(c) We can replace condition (i) with the requirement that Y has a fundamental system of
pseudoconcave neighbourhoods {V}. Then dimHO(V,.%) is finite by []. This happens
for example if Y is a smooth hypersurface and Ny has at least one positive eigenvalue or,
if Y has arbitrary codimension, if Ny is sufficiently positive in the sense of Griffiths [8,
Proposition 8.2].
(d) Condition (ii) is trivially satisfied if (Y ) = 0. Thus, if X contains a simply connected
subvariety satisfying either (a) or (b), i (X) is finite.
(e) It follows from Remark 2.1 that, Theorem 4.1 holds for compact manifolds M, and also
for Zariski open sets in Moishezon manifolds.
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5.19. COROLLARY. Let X be a Zariski open set in a compact normal Moishezon space
X. LetY — X;gy be @ holomorphic immersion with ample normal bundle and assume that
the image G of (Y ) in i (X) is a normal subgroup. Then G has finite index in 1 (X).

PROOF. Since X is normal we have an isomorphism 11 (Xreg) — 0 (X), S0 We can
replace X with Xreg. We can thus desingularize X and assume that it is a manifold. We
consider on X a singular hermitian positive line bundle L. We modify then the proof of
Theorem in the following way. First we consider the singular support S of /—1R"
and construct the generalized Poincaré metric on X ~.S. Then we consider a covering
X — X of group " and apply Theorem B.16l (or a covering version of Theorem IZEZO])
on the covering X ~ m=1(S) of X \.S. We obtain in this way (n,0)-forms on X~ = (S)
which are L2 with respect to the pull-back of the Poincaré metric on X - 1(s) and a
metric on 7= (L) over X ~. 7 1(S) which is bounded below by a smooth metric on X. But
for (n,0)-forms the L? condition does not depend on the metric on the base manifold so we
can take the L2 condition with respect to a smooth metric on X and rqfl(L). Hence these
sections extend to X and we can apply the proof of Theorem E.17 O
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CHAPTER 6

Compactifi cation Theorems

In this chapter we apply the ideas developped so far about the spectral gap and the
Morse inequalities to the compactification problem. We wish to find sufficient conditions
under which a given noncompact complex manifold can be compactified - i.e. exhibited as
open or Zariski-open subset of a compact complex space (better yet, projective or Moishe-
zon variety). By considering such a problem, one hopes to reduce the study of certain
noncompact complex manifolds to that of compact ones, which are often easier to handle
from the perspectives of intersection theory, analysis, and classification.

The main motivating examples are the arithmetic quotients, which are quotients X of
bounded symmetric domains Q by torsion—free arithmetic lattices ' C Aut(Q). There are
three points of view on the compactification of arithmetic quotients: algebraic, differential
geometric and complex analytic.

On the algebraic side, the theory of compactification of such X was first considered by
Satake [60, 61]] who gave certain quotients of Siegel upper half spaces and other bounded
symmetric domains topological compactifications. This was later extended to other bounded
Baily [[7], and Baily—Borel [8], based in part on the works of Satake, endowed such topo-
logical compactifications with complex structures making X into a Zariski-open subset
of a (highly singular) projective—algebraic variety X, called Satake-Baily-Borel compact-
ifications. They showed this for all arithmetic quotients of bounded symmetric domains.
A further succes was the toroidal compactifications of arithmetic quotients on bounded
symmetric domains by Ash-Mumford-Rapopport-Tai [6].

Let us consider the arithmetic quotients from the point of view of differential geometry.
The bounded symmetric domains Q are equipped with Bergman metrics g invariant un-
der Aut(Q). (Q, we) are automatically Kahler-Einstein, inducing complete Kahler-Einstein
metrics w = axe on X. (X, w) are automatically of finite volume (cf. [56]). Moreover,
if we restrict our attention to ball quotients, the sectional curvature is pinched between
two negative constants. This allowed Siu and Yau [64] to apply differential geometric
methods to obtain the compactification of complete Kéhler manifolds with pinched neg-
ative sectional curvature and finite volume. They therefore yield a generalization of the
compactification of arithmetic quotients of rank one.

The first step in the proof Siu-Yau theorem is to show that the manifold is hypercon-
cave and then use results on compactifying X using complex analysis. One key point is
that Siegel’s theorem holds true for pseudoconcave manifolds [1]. Actually, Andreotti
and Grauert [2, 3] introduced the theory of pseudoconcave manifolds for the purpose to
study the arithmetic quotients. In [2] it was verified that certain arithmetic quotients X
of the Siegel upper half planes are pseudoconcave. It was later proved that all irreducible
arithmetic quotients of dimension > 2 are pseudoconcave (Spilker [65], Borel [14]). The
primary interest of [2] was to give an elementary analytic proof of the extendability of
meromorphic functions to Satake-Baily-Borel compactifications, but their method can also

1NN
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be used to embed X as open subset in certain projective varieties Z independent of the work
of Satake-Baily (cf. Pjatetskii—Shapiro [55]).

The approach of compactifying complete K&hler manifolds by using pseudoconcavity
was taken up again by Nadel-Tsuji [51]. Their result completed in particular the efforts
started by Andreotti-Grauert [2]] to give a complex-analytic proof that arithmetic quotients
of bounded symmetric domains are biholomorphic to quasi-projective varieties.

We will be concerned here again with the complex-analytic point of view. In the case of
strongly pseudoconcave manifolds X Andreotti-Tomassini [5] and Andreotti-Siu [4], based
in part on an idea of Grauert, proved a general theorem for embedding X as open subsets
of projective varieties Z. It is also known that general strongly pseudoconvex manifolds
of dimension greater than three can be always compactified (cf. Rossi [57]). However, in
dimension two there exists a famous conterexample of Grauert, Andreotti-Siu and Rossi
[31, 457,138, 27, 20]. The imposibility to compactify some strongly pseudoconcave man-
ifolds is intimately linked to the imposibility to CR-embed its boundary in the euclidian
space. This is a strongly pseudoconvex CR manifold which does not have enough CR
functions (solutions of the tangential d equation). Actually the non-solvable Lewy opera-
tor appears as the tangential 0 operator on a three dimensional strongly pseudoconvex CR
manifold and the CR structutes on such manifolds are generically non-embeddable. There
has been a tremendous activity about the PDE aspects of the tangential d operator and
classification of CR structures.

Let us explain the contents of the chapter. In Section we review the known re-
sult about the compactification of strongly pseudoconcave ends. Here we also discuss the
Grauert—Andreotti—Rossi counterexamples.

Our approach is to take the model of the manifolds studied by Siu-Yau and introduce
the notion of manifold with hyperconcave ends. The first result is that such ends can be
always compactified [46], even in dimension two. This is done in Section B2

It is then natural to seek conditions for a manifold with hyperconcave ends to be a
Zariski open set in its compactification. Indeed, in the case of Siu-Yau one compactifies
by adding one singular point to each end. The answer is provided in Section &3 Theorem
shows that it is sufficient for the manifold to possess a covering with Zariski-open
sets whose universal cover is Stein (the condition mimics the affine cover of a projective
manifold). Using this we can give a new proof of the Siu-Yau theorem and extend Nadel’s
compactification theorems (a sort of Kodaira characterization of projective varietes with
isolated singularities) in dimension two. This is the object of Section In Section
B3 we prove Theorem pinched about complete Kahler manifolds with pinched negative
curvature, with a strongly pseudoconvex end and finite volume away from this end. It
turns out that all the other ends are hyperconcave. We include the proof, based on the
holomorphic Morse inequalities, that the volume is automatically finite if the dimension is
bigger than three (Napier and Ramachandran [52]]). We also discuss some applications to
ball quotients due in dimension bigger than three to Napier and Ramachandran (previously
announced by Burns).

Manifolds with hyperconcave ends model arithmetic quotients of rank one. In Section
6.6l we present a proof of the compactification theorem of Nadel-Tsuji, which generalizes
the compactification of arithmetic quotients of any rank. It is based in an essential way on
the Morse inequalities from Theorem E.311
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6.1. Filling strongly pseudoconvex ends

We overview here the basic results about filling strongly pseudoconvex ends of com-
plex manifolds. We start with some piece of terminology and explain what a strongly
pseudoconvex end is. For a compact subset K of a complex manifold X, an unbounded
connected component of X \ K is called an end of X (with respect to K). If K; C K, are
two compact subsets, the number of ends with respect to K; is at most the number of ends
with respect to Ky, so that we can define the number of ends of X. Namely, X is said to
have finitely many ends if for some integer k, and for any K C X, the number of ends with
respect K is at most k. The smallest such k is called the number of ends of X, and then
there exists Ko C X such that the number of ends with respect to Kg is precisely the number
of ends of X. If no such k exists, we say that X has infinitely many ends.

In general, a manifold X is said to be strongly pseudoconcave end if there
exists a proper, smooth function ¢ : X — (c,a), a € RU{+o}, which is strictly plurisub-
harmonic on a set of the form {¢ < b}, b <a. Ford <awe set X4 ={¢ <c}. Wecall ¢
exhaustion function.

We say that a strongly pseudoconcave end can be compactified or filled iIn
if there exists a complex space X such that X is (biholomorphic to) an open set in X and
forany d < a, (X <~ X)U{¢ < d} is a compact set. We will call X somehow abusively the
compactification of X, although it is not necessarily compact.

6.1.1. Embedding and filling. A useful device for filling an end X is first to embedd
X holomorphically in the euclidian or projective space and then compactify it using the
Hartogs or Harvey-Lawson phenomenon.

The following theorem is due to Rossi [57, Th. 3, p.245]. Andreotti-Siu [4, Prop.
3.2] improved the result in different directions, e.g. they showed that it holds for normal
complex spaces. The uniqueness result comes from [4, Cor. 3.2].

6.1. ROSSI-ANDREOTTI-SIU THEOREM. All strongly pseudoconcave end X can be
compactified provided dimX > 3. If the exhaustion function is strictly plurisubharmonic
on X, the compactification X can be taken to be a normal Stein space with at worst isolated
singularities. Two normal Stein compactifications are biholomorphic by a map which is the
identitiy on X.

Let us describe briefly the method of [4, 57]. Lete <d < b. If dimX > 3, we can
use the Andreotti-Grauert theory [3] to show that the natural restrictions H(Xy,.%) —
H(Xe, .#) are isomorphisms for any coherent analytic sheaf .7 (see [4, Propositions 1.2-
3]). Therefore, for any coherent ideal sheaf .# C & whose zero set is disjoint from Xe, the
natural restriction HO(Xy, &) — HO(Xq, @'/.#) is surjective. This leads [4, Proposition
1.4] to the existence of many holomorphic functions that separate points, give local coor-
dinates and have a peak at pseudoconvex boundary points of X4. This means that we can
embed the strip xg into two concentric polydiscs and use Hartogs theorem [35, Theorem
VII, D.6]:

6.2. HARTOGS THEOREM. Let P; C P> be two concentric polydiscs in CN and let
A C P>~ Py be an analytic set of dimension at least two. Then there exists an analytic set
A C P,suchthat AN (P~ P1) =A.

Another useful idea is to try to fill in the CR manifold dXe intead of the strip xg.
This means to solve the complex Plateu problem for which we need the Harvey-Lawson
theorem. Let us first review the notion of CR manifold of hypersurface type [119, 18, 15].
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Let X be a strongly pseudoconvex domain in a complex manifold M. From the complex
structure of M, we can build on the boundary Y = 9X a partial complex structure which is
called a Cauchy-Riemann or CR structure. More generally, let Y be a smooth orientable
manifold of (real) dimension (2n—1). A CR structure on Y is an (n— 1)-dimensional
complex subbundle H )Y of the complexified tangent bundle TcY such that

H0Y NH1oY = {0},

and such that H(q o) is integrable as a complex subbundle of T¢Y (i.e. if uand v are sections
of Hi10)Y, the Lie bracket [u, V] is still a section of H(; o)Y).

IfY is a CR manifold, then its Levi distribution H is the real subbundle of TY defined
by H =Re{H1,0)Y ®H(1,0)Y }. There exists on H a complex structure J given by J(u+10) =
v—1(u—1), with u € Hi; 9)Y. AsY is orientable, the real line bundle H+ C T*Y admits
a global nonvanishing section 8. The CR structure is said to be strongly pseudoconvex if
d@(.,J.) defines a positive definite metric on H. Notice that in this case, 8 A (d6)"~1 £ 0,
and O defines a real contact structureonY.

The tangential Cauchy-Riemann operator, denoted dy,: 61(Y) — Hi10)Y,
associates to a function f € €%(Y) the projection on H(1,0)Y of the exterior differential d f.

A function f € ¥(Y) is called CR function if dpf = 0. By a CR embedding of a mani-
fold in a complex manifold we mean an embedding whose components are CR functions.
When we say that a CR manifold is a submanifold of a complex manifold, we understand
that the inclusion is a CR embedding, that is, the CR structure is induced from the ambient
manifold.

If Y = 0X, where X is a domain in a complex manifold M, then all restrictions of
holomorphic functions on M to Y are CR functions. We have also the following converse
[42] which may be also seen as a form of Hartogs phenomenon for CR functions.

6.3. KOHN-ROssI THEOREM. Assume that X is smooth, relatively compact domain in
a complex manifold whose Levi form of the boundary has at least one positive eigenvalue
everywhere. Then any CR function defined on dX extends to a holomorphic function in X.

We also need the abstract notion of complex manifold with strongly pseudoconvex
boundary. Apriori, it is not a domain with boundary in a larger complex manifold.

6.4. DEFINITION. A complex manifold X with strongly pseudoconvex boundary is a
real manifold with boundary, of dimension 2n, satisfying the following conditions: (i) the
interior IntX = X ~. dX has an integrable complex structure and (ii) for each point x € 9X
there exist a neighborhood U in X, a strongly pseudoconvex domain D ¢ C" with smooth
boundary, and a diffeomorphism h from U onto a relatively open subset h(U) such that
h(oU) C dD and h is biholomorphic from IntU to Inth(U).

From this definition we infer:

6.5. CONSEQUENCE. The complex structure induces an integrable Cauchy-Riemann
structure on the boundary dX. Moreover, if X is compact, there exists a defining function
¢ : X — (—oo,c] such that X = {¢ = c}, with the properties: (1) its Levi form is positive
definite on the holomorphic tangent space of dX and (2) ¢ is strictly plurisubharmonic on
{co< ¢ <c}.

It follows actually from results of Heunemann [39, Theorem 0.2] (see also Ohsawa
[54]]) that if X is compact X can be realized as a domain with boundary in a larger complex
manifold. We quote now a fundamental result [37].
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6.6. HARVEY-LAWSON THEOREM. Let Y be a compact strongly pseudoconvex CR
submanifold of CN. Then there exists a Stein space with boundary S c CN suchthat S=Y.

We say that Y bounds the Stein space S. Of course, we can resolve the singularities of
S and obtain that Y bounds a strongly pseudoconvex complex manifold (this might not be
however embeddable in the euclidian space). Conversely, if Y bounds a a strongly pseudo-
convex complex manifold M, a theorem of Grauert [30] shows that M bounds the Remmert
reduction S of M, which is a Stein space obtained by blowing down the exceptional set
of M. Heunemann’s theorem implies then that S can be realised as a complex space with
boundary in a larger Stein space S’, which can be embedded in the euclidian space by the
Remmert-Bishop-Narasimhan theorem [53].

6.7. REMMERT-BISHOP-NARASIMHAN THEOREM. If X is a Stein space of dimension
n of finite type N > n, that is, it can be locally realized as an analytic set of dimension,
the set of proper regular embedings og X in C™N is dense in the set of all holomorphic
mappings of X in C™N endowed with the topology of uniform convergence.

We see therefore that the embeddability of Y is equivalent to the bounding property
of Y. In order to apply the Harvey-Lawson theorem we need conditions for a strongly
pseudoconvex CR manifold to be embeddable in the euclidian space.

6.8. BOUTET DE MONVEL THEOREM ([19][p. 5]). Any compact CR manifoldY of real
dimension greater than three admits a CR embedding in the euclidian space.

The proof is based on the Hodge decomposition for the Kohn-Laplacian O, = Ebﬁz +
Efﬁb, which is not an elliptic operator but has however a parametrix a pseudodifferential
operator of type 1/2. For this purpose Boutet de Monvel uses the microlocalisation: for
each cotangent vector (x, &) in the cone Z* of vectors on which the Levi form is positive
definite, one can find a canonical transformation and an assocoated elliptic Fourier integral
operator which transforms the d,-complex to a simple form in the neighbourhood of (x, &).
On this form one can easily read all the relevant properties of the complex. If dimgY = 3,
Boutet de Monvel’s theorem breaks down. A counterexample is given by the boundary
of the strongly pseudoconcave manifold constructed in the example of Grauert-Andreotti-
Rossi. A straightforward argument can be found in Burns [[17], where the author shows that
the CR functions on S2 equiped with the induced CR structure from the complex structure
of Example 620 are equal at antipodal points. Therefore, CR functions cannot embed this
structure in the euclidian space. Sarkis [58] showed that meromorphic functions do not
separate antipodal points and this structures cannot be embedded in the projective space,
too. A theorem of Jacobowitz-Treves [40] shows that a generic strongly pseudoconvex CR
structure on a compact manifold is not embedable. We are led to the following beautiful re-
sult which follows from the works of Boutet de Monvel-Sjostrand, Harvey-Lawson, Burns
and Kohn [16, 37, 15| 41]].

6.9. THEOREM. LetY be a compact complex CR manifold of real dimension greater
than three. The following conditions are equivalent:

(@) Y is embeddable in the euclidian space,

(b) Y bounds a complex manifold,

(c) The tangential Cauchy-Riemann operator Oy on functions of Y has closed range
inL2.
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The equivalent conditions for the bounding property are not easily verifiable. So one
seeks answers to simpler questions such as the stability of an embedding. An embeddable
CR structure J is called stable, if for any sufficiently close (in the % topology) embeddable
CR structure one finds a close embedding to the embedding of J. Lempert treated this
problem in [44, 45| 43]. (see also J. Bland and C. L. Epstein [12], D. M. Burns and
C. L. Epstein [18]) His idea is to link the deformation of the CR structure on Y to the
deformation of the complex structure on a strongly pseudoconcave manifold Z bounding
Y. This was further developed by Epstein and Henkin [25] 24, 26]. In this context we have
the following.

6.10. LEMPERT SEPARATION THEOREM. Suppose a compact, strongly pseudoconvex
CR manifold M bounds a strongly pseudoconvex Stein space (or, equivalently, a strongly
pseudoconvex complex manifold ). Then M can be realized as a smooth real hypersur-
face in a complex projective manifold that M divides into a strongly pseudoconvex and a
strongly pseudoconcave part.

The main ingredient is the following Nash-type approximation result.

6.11. LEMPERT APPROXIMATION THEOREM. Assume a reduced Stein space X has
only isolated singularities, and K C X is a compact subset. Then there are an affine alge-
braic variety V, and a neighbourhood of K in X that is biholomorphic to an open set in
V.

The question whether the Harvey-Lawson holds for CR compact manifolds embed-
ded in the projective space is open [21, Probléme 1]. Even the analogue of the Rossi—
Andreotti-Siu theorem is not known in the projective space. More precisely, let ¢ : X — R
be a strictly plurisubharmonic function on a noncompact complex surface embedded in
CPN,

Consider a (1,1)-convex—concave strip Xd = {c < ¢ < d} (this means by definition
that the boundary component {¢ = d} is strongly pseudoconvex and {¢ = c} is strongly
pseudoconcave). Can one compactify X at the pseudoconcave end?

We know that the answer is positive if we can compactify the pseucoconvex end. This
is a converse of Lempert’s theorem.

6.12. ANDREOTTI THEOREM ([[I} Théoreme 6]). Let X be an Andreotti pseudoconcave
(in particular g—concave ) manifold embedded in the projective space. Then X is an open
set of its projective closure X.

This is obviously a generalization of Chow’s theorem. The proof is easy using the
Siegel-Remmert—Thimm Theorem .27] for Andreotti pseudoconcave manifolds. Indeed,
we know that dime X < dimeX and X is irreducible since X is. Let .#(X) and .# (X)
be the fields of meromorphic functions on X and X. Since X is minimal the restriction
AM(X) — #(X) is injective. By Theorem E27 we have degtr.# (X) < dimeX. It
follows that dimc X < degtr.# (X) < degtr.# (X) < dim¢ X.

We need a criterion for the embeddability of 1-concave manifolds. Let us recall that
the proof of the Kodaira-Grauert embedding theorem has two parts (cf. Remark £.19):

(i) prove that the ring @=1H®(X,L¥) = 7 (X, L) of a positive line bundle gives local
coordinates and separates points (by means of the L2 estimates for ).

(i) show that the canonical map @y : X — PH(X,L¥)* is an embedding.

Since X is compact, (ii) is an easy consequence of (i). But if X is non-compact the
implication (i) = (ii) is in general not true. Ohsawa gave an example of a positive line
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bundle on a weakly 1-complete manifold which is not ample (but one can show however
that (i) holds true). In general, (i) easily implies that any relatively compact subset of X
embeds into the projective space. The difficulty is to obtain an embedding of all of X.

6.13. ANDREOTTI-TOMASSINI THEOREM. Let X be a 1-concave manifold and let
L — X be a holomorphic line bundle such that .7 (X,L) gives local coordinates and
separates points every where on X. Then X admits a projective embedding.

This can be found in [5, Theorem 3, p.97], [4, Theorem 4.1] (a generalization for
complex normal spaces) and [51, Lemma 2.1] (see also the proof of Proposition £.52).
The hypotheses of the theorem are satisfied if e.g. X is the quotient of a bounded domain
D c C" by a properly discontinous group I, and there exists a positive integer N such that
for any x € D the isotropy group 'y = {y € I' : yx = x} has order less then N.

If dimc X > 3 in the previous theorem the assumption that the ring .7 (X, F) separates
points can be dropped; one has in fact the following

6.14. THEOREM. Let X be a 1-concave manifold with dimgc X > 3. Suppose there exists
on X a holomorphic line bundle L such that the ring <7 (X, L) gives local coordinates ev-
erywhere on X. Then o7 (X, L) does also separate points of X so that X admits a projective
embedding.

In dimension two this is no longer true, as we shall see in Example but holds for
hyperconcave manifolds.

We finish with a generalization due to Epstein-Henkin [26] of the embedding results of
Grauert, R. Narasimhan, Andreotti and Y.-T. Siu for compact, pseudoconvex and pseudo-
concave two-dimensional complex spaces, respectively.

6.15. DEFINITION. A compact CR-hypersurface Mg is called strictly CR—cobordant
to a compact CR—hypersurface M if there exists a complex space X with at most isolated
singularities and a ¥ *-strictly plurisubharmonic function p with at most isolated critical
points on X such that the set X = {x € X : 0 < p(x) < 1} is relatively compact, complex
subspace in X and X = M1 ~ Mo.

6.16. EPSTEIN-HENKIN THEOREM ([i26, Theorem 2]). Let M1 be embeddable strictly
pseudoconvex CR-hypersurface. Then any (not necesarry smooth) CR-hypersurface Mo,
strictly cobordant to My, is also embeddable.

6.17. COROLLARY ([26, Corollary 2]). If under the hypothesis of Theorem g. 18 a com-
plex space X defines complex cobordism between M1 and Mg, then X is embeddable in some
CN.

6.1.2. The Grauert-Andreotti-Rossi example. If dimX = 2, the Andreotti-Grauert
theory cannot be applied. Theorem is no longer true if dimX = 2, as shown in the
counterexample of Grauert-Andreotti-Rossi [31), 4, 57]. They are obtained as finite cover-
ings of small neighbourhoods of the boundaries of Stein manifolds of dimension 2. The
basic lemma for construction of non-fillable holes is [4, Proposition 7.1, p. 263]. We call
henceforth a non-ramified covering simply covering.

6.18. LEMMA. LetV be a relatively compact simply connected Stein domain in a com-
plex manifold of dimension > 2. Let U be a neighbourhood of bV and let p: W — U
be a nontrivial finite cover of U. Then W cannot be compactified. If m(bV) has proper
subgroups of finite index, such coverings do exist.
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PROOF. Indeed, assume that W is a completion of W. Then W ~ W has a strongly
pseudoconvex boundary. By the Hartogs’ extension theorem for functions [I35, Theorem
VII, D 4] we obtain an extension p: W — V. The map p must be ramified, otherwise p
would be a nontrivial cover of the simply connected manifold V. The ramification set R
is analytic and contained in V ~\. U, thus a finite set. Since V is simply connected, non—
singular and of dimension > 2, V \ R is simply connected. Therefore W . p~L(R) isan
irreducible covering of V . R. But this is possible only if p is trivial. This contradiction
shows that W cannot possibly exist.

Now, if rm(bV) contains non-trivial subgroups of finite index, this remains true for
(U ) where U is any small neighbourhood which retracts on bV. This means that U has
non-trivial finite coverings. OJ

Note that, if n >3, m(bV) = m (V) = {0}, by a Morse theoretic argument of Andreotti-
Frankel, so examples when Lemma .18 is not empty can occur only for dimV = 2.

6.19. EXAMPLE (Andreotti-Siu [4, p.267-70]). Let K c P2 be a Kummer surface
with 16 isolated, non-degenerate, canonical singular points. K is isomorphic to a quo-
tient T /{id, T}, where T is an algebraic torus and 7 is an involution (72 = id) with 16 fixed
points. Therefore Ky admits as double covering the torus T minus 16 points.

There exists a 1-real-parameter family of algebraic surfaces {K} such that for € # 0,
Ke is non-singular and Ko = K. There exists a manifold .# C R x P® such that K =
pr@l(s), where pry is the projection on the first factor.

If G c P2 is the union of 16 small neighbourhoods of the singular points in P3, .7 ~
pr];sl(G) is differentiably trivial near 0. This implies that K¢ ~ prE’D;L(G) is diffeomorphic to
Ko pr3(G) for small .

Consider now a singular point p of the Kummer surface K and B be a small ball around
p in P3. Then Ve = KN prg(B) are simply connected Stein spaces, which for € # 0
are non-singular. From the preceding paragraph if follows that, from small € £ 0, dV¢ is
diffeomorphic to dV, so that small neighbourhoods U, of dV¢ have differentiable double
cover small concentric shells W in the neighbourhood of a fixed point of the involution
T:T—T.

On W, we take the induced complex structure. By Lemma .18 the holes of W, cannot
be filled.

6.20. EXAMPLE. This example appeared in Rossi [57, p.252-6] (being attributed to
Andreotti), Andreotti-Siu [4, p.262-70] (where credit is given to Grauert) and Grauert
[31, p. 273]. It is constructed by the same principle as above, but it is more spectacular. It
provides complex structures on a ball minus a point, actually on P2~ {[1: 0: 0]}, which
are not fillable.

Let Q, be the family of quadrics in IP® given in the homogeneous coordinates [wg : w1 :
Wy : W3] by the equation wz(wsz + ewp) = wyWo. For € # 0 they are non-singular. There
exists an application ® : P2~ {[1:0:0]} — VA, see [4, (1), p. 265], where A is a real
analytic sphere, such that @ is a two-sheeted differentiable ramified covering. We can use
@ to induce a new complex structure on P2~ {[1:0: 0]}, so that ® becomes holomorphic.
By a variant of Lemma G618 for ramified coverings, we see that P2~ {[1: 0 : 0]} with the
new structure cannot be compactified.
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6.2. Compactification of hyperconcave ends

We already studied hyperconcave manifolds in Section A generalization of this
concept is as follows.

6.21. DEFINITION. A manifold X of dimension > 2 is a hyperconcave end if
there exists a proper, smooth function ¢ : X — (—o.a), a € RU {40}, which is strictly
plurisubharmonic on a set of the form {¢ < b}, b<a. Ford <c<awesetXc={¢ <c}
and X§={d < ¢ <c}.

The regular part of a variety with isolated singularities or the complement of a compact
completely pluripolar set of a strongly plurisubharmonic function in a complex manifold
have hyperconcave ends. Of course, hyperconcave manifolds have hyperconcave ends.

Our goal is to compactify hyperconcave ends at {¢ = —oo} (to fill the hole at —o0).

6.22. THEOREM. Any hyperconcave end X can be compactlfled i.e., there exists a
complex space X such that X is (biholomorphic to) an open set in X and for any d < a,
(X ~X)U{¢ < d} isacompact set. More specifically, if ¢ is strictly plurisubharmonic on
the whole X, )? can be chosen a normal Stein space with at worst isolated singularities.

Theorem identifies a large class of strongly pseudoconcave ends which can be
compactified even in dimension two.

In the rest of the section we will prove Theorem The idea of proof is to analyti-
cally embed small strips X° 5, for ¢ in a neighbourhood of minus infinity, into the differ-
ence of two concentric polydiscs. Then apply the Hartogs extension theorem to extend the
image to an analytic set which will provide the compactification. To obtain the embedding
we follow the stategy of Grauert and Kohn for the solution of the Levi problem. Namely,
we solve the L2 @-Neumann for (0,1)-forms on domains X, with strongly pseudoconvex
boundary {¢ = c} endowed with a complete metric at minus infinity. Instead of using the
finiteness of the sheaf cohomology, which is not available, we prove the finiteness of L2
Dolbeault conomology H(Oz’)l(xc) which in turn implies the existence of peak holomorphic

functions at each point of the boundary {¢ = c}.

6.2.1. Existence of peak functions. As in Section &.3.2lwe consider the smooth func-
tion x = —log(—¢). We set w= +/—-19dx = —/—1ddlog(—¢). Note that dox =
00¢/(—@)+ (0 AIP)/Pp%and (P NIP)/Pp% = dx AdX . Since /=193 /(—¢) rep-

resents a metric on Xo, we get the Donnelly-Fefferman condition:

10X]w < 1. (6.1)

Since x : Xo — R is proper, (&.1) also ensures that w is complete. Let ¢ < 0 be a regular
value of ¢. The metric w is complete at the pseudoconcave end of X and extends smoothly
over the boundary dXc.

We wish to derive the fundamental estimate for (0,1)-forms on Xc. For this goal we
look first at the minus infinity end and use the Berndtsson-Siu trick [10, 63]. Roughly
speaking, it uses the negativity of the trivial line bundle, thus avoiding the problems raised
by the control of the Ricci curvature of w at —oo. Let us denote by Qg’q(xc) the space of
smooth (0,q)-forms with compact support in Xc. Let 3 = —*d « be the formal adjoint
of @ with respect to the scalar product (u,v) = Jx.(u,v) dvg, where (u,v) = (u,v),, and
dvy =w"/n!.

6.23. LEMMA. For any v € Q9 (Xc) we have [[v|[2 < 8(|[av]” + [9v]?).
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PROOF. On the trivial bundle L = X¢ x C we introduce the auxilliary hermitian met-
ric eX/2. Let be dy the formal adjoint of d with respect to the scalar product (u,v)y =
Jx(u,v)eX/2dvg,. Then 9y = eX/29eX/2. We apply the Bochner-Kodaira-Nakano for-

mula for u € %co’l(xc):
/xc<[‘/_1‘75(_)(/2)’/\“] u,u)eX/2dv,, < /Xc (j0ul+|9u2) X 2dvy,,  (62)

where A, represents the contraction with w and [A,B] = AB — (—1)99A0IBBA s the
graded commutator of the operators A, B. The idea is to substitute v = ueX/4. 1t is readily
seen that

[Qu|?eX/2 < 2[avP+ F[ax[*vI?,  [9yul?eX/? < 219V + Flax | vI. (6.3)
Moreover ([v/—=199(—x/2), AeJu,u)eX/2 = ([\/=199(—x/2), Ae}v,V) . In general, for

a (p,q)-form a we have the identity ([w,Ay]a,a) = (p+q— n)|a|?, where n = dimX.
Taking into account that w = +/—1d7d x and that v is a (0, 1)—form, we obtain

([V=100(~X/2), Awu,u)eX/2 = 1= |y|2 > L1y|2, (6.4)
By €2), €3), ©&4) and (&) we obtain
%/ v]2dve < 2/ |3V + |9v]2) de+%/ V]2dVep. (6.5)
Xe Xe Xe
This immediately implies LemmaB-23 for elements v € Q5" (Xc). O

Let i : (—o0,0) — R be a smooth function such that n(t) =0on (—, —2], n’(t) > 0,
n”(t) > 0on (—2,0). Let us introduce the scalar product

@ V)nip) = [ 03" v, (6.6)

the corresponding norm || -||,(¢) and L2 spaces, denoted LY 9(Xc, 1 (¢)). Let Q5%(Xc) be
the space of smooth (0, q)-forms with compact support in X. Consider the maximal closed
extension of 9 to LY%(Xc,n(¢)) and let 1) be its the Hilbert-space adjoint. Note that

L39(Xe,n(9)) = L3 %(Xc) and that the two norms are equivalent. We denote by 8, the
formal adjoint of 9 with respect to the scalar product €F). Then 8, = & +i(dn(¢)),
where i(-) represents the interior product. Let o(3,df) = xdf A« be the symbol of 3,
calculated on the cotangent vector df. It is clear that o(8,,df) = a(3,df) does not
depend on n. We introduce the spaces B%9 = {a ¢ Qg’q(Yc) :0(9,d¢)a =0 on dXc}
(cf. (AI9), where o(3,d¢) = xd¢ A x be the symbol of 3, calculated on the cotangent
vector d¢. Integration by parts [28, Propositions 1.3.1-2] yields Domﬁf7 O%CO’Q(YC) =

B%9, 9, =9, onB%Y,

6.24. LEMMA. The space B%9 is dense in Domd nDomd,, in the graph norm

= = 1/2
U ([lul2g) + 10ul3 g +118"ull3 4)) "2

PROOF. We use first the idea from in order to reduce the proof to the case of a
compactly supported form u. The completeness of the metric w implies the existence of a
sequence {ay}, C 65°(X¢), such that 0 < a, < 1, ayy1 = 1 on suppay, |day| < 1/v for
every v > 1and {suppay }, exhaust Xc. Indeed, consider a smooth function p : R — [0, 1]
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such that p = 0 on a neighbourhood of (—, —2], p = 1 on a neighbourhood of [—1, )
and 0 < p’ < 2. Then a, = p(x/2"+?1) satisfies the conditions above.
Let u € Dom(d) "Dom(d"). Then a,u € Dom(d) NDom(d") and

10 (ayu) —aydull, = O(1/v)]lull,,
10" (ayu) —avd ully = O(1/v)|ull; -

Hence {a,u} converges to u in the graph norm. So to prove the assertion we can start with
a form u having compact support in X.. But then the approximation in the graph norm
follows from the Friedrichs theorem on the identity of weak and strong derivatives (see

Lemma[A.ZT). O

We confine next our attention to the fundamental estimate on X.

6.25. LEMMA. If n grows sufficiently fast, there exists a constant C > 0 such that
for any u € Doma N Dom52(¢) C Lg’l(xc,n(qb)), where K ={-3< ¢ < -3/2}.

PROOF. We give the trivial line bundle L = X x C the metric e (%), Let u € B%1,
suppu C {-3< ¢}.

Let us use a form of the Bochner-Kodaira formula introduced by Andreotti-Vesentini
and Griffiths. The curvature of the hermitian bundle (L,e~"7(#)) is denoted R". Itisa (1,1)-
formon X, R- =5 6,5dz% Ad #, where 6,5 = 305N (). Let 9[;‘ be the curvature tensor

with the first index raised. Let u = uy d 2 be a (0,1)-form on X.. We define the (0,1)—
form Rtu =y 6{'u, d 2. We also introduce the Ricci curvature R% = —RKx, where Ky is
the canonical bundle of X.

By (B29) we have for any u € B%1 we have:

Z(u,u)e 19 ds

(6.8)
where & is the Levi operator (B224) and O denotes the covariant derivative in the (0,1)-
direction.

Since dX. is pseudoconvex, .Z(u,u) >0 for all u € B®1, On {-3 < ¢ < —1}, R®™
is bounded and independent of 1, so there exists a constant R > 0 such that (R%u, u) >
—R|ul?, pointwise, for any u with suppu C {—3 < ¢}. On the other hand, we can use the
strict plurisubharmonicity of ¢ to choose a sufficiently increasing n (replace n with 7n
for T >> 1) such that (Rtu,u) > (R+1)|u|?, pointwise on {(—3/2) < ¢}, for any u. Since
(Rtu,u) > 0 everywhere, we obtain from (&38)

B . o
19ul gy +110"ullz ) = [[Bul|,) 5 + (REU.U) 4y + (R u,u)

n(é) @7 Jox,

2 Jull? 9. 2
Ul g) < 1905 0) + 1 gl gy + RED) [

ueB®l suppuc {-3<¢}. (6.9)

}|u|2e_”(¢)de,

Let u € B%L. We choose a cut-off function p; € € (Xc) such that supppr = {-3 < ¢},
pr=lon{-2<¢}. Setp,=1—p;. Onsupppo, n vanishes, therefore 5;(¢)(p2u) =
3 (p2u). Upon applying (62Z3) for pou we get

1o20l12 5y < 8(110(P21) 134y + () (P2W)134)) »  uEBOL. (6.10)
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The estimate (6.9) for p;u and (E.I0) together with standard inequalities deliver (6.7)
for elements u € B®1. By Lemma[6.24, estimate (6.7) holds for all forms u € Domd N
Domd 4) C Ly (Xe,n(9)). O

In the sequel we fix a function n as in LemmaB.25 Then the fundamental estimate
®-2) implies the solution of the L? d-Neumann problem. Consider the complex of closed,
densely defined operators

= T=0 S=d
T=0:L7°%n(9)) —= L3 (Xe.n(9)) —= Ly*(Xe.n(9)),
and the Gaffney extension (cf. Section [AZ.Z)

DomO = {u € DomSNDomT* : Su€ DomS*, T*u € DomT} ,
Ou=S"Su+TT"u forue DomQO.

Remark that O is an extension of the operator 519,,((,,) + 19,7(¢)5 defined on {u € BYa ;

du e Bo’q“}. It is actually its Friedrichs extension, which can be seen with a similar
argument as in Proposition Once the fundamental estimate (&) is established we
deduce the strong Hodge decomposition from Theorem A28k

6.26. THEOREM. The operator T has closed range and Range(T) has finite codimen-
sion in Ker(S). If f € RangeT, there is a unique solutionu L. KerT of the equation Tu = f

given by u = d;(d,)Gf, where G is the green operator; if f is smooth in X¢ so is u.

Theorem [B.26l can be regarded as a variant ‘with boundary’ of the vanishing theorem of
Donelly—Fefferman [22]], which asserts that H(';’)q(X) =0for p+q#dimX, where (X, w) is
a complete Kahler manifold, where the K&hler form « admits a global potential satisfying
€D

By solving the d—equation we construct peak functions at each point of 9Xc.

6.27. COROLLARY. Let p € dXc and f be a holomorphic function on a neigbourhood
of p such that {f =0} NX. = {p}. Then for every m big enough, there is a function
g€ O(Xe)NE*(Xe~{p}), a smooth function ® on a neighourhood V of p and constants
ai,---,am_1 such that

g 1+am1f+---F+af™?

fm

+O

onV NQ. In particular, we have lim,_|g(z)| = c.

PrRooF. We will apply the last theorem for a domain X., s ={¢ <c+d} withd >0
small enough. Let U be a small neighbourhood of p where f is defined. Pick ¢ € €;°(U)
such that ¢ = 1 on a neighbourhood V of p. Set

hm=/f™onU and 0 on X \ U

and B
Vm=0o0nV and dhyon X \ V.

Observe that vy, belongs to Qg’l(YC+5) for 6 small enough. Moreover, we have V=0
on Xc,s. Fix asuch & and now apply Theorem for Xc, 5. By this theorem, the
codimension of RangeT in KerS is finite. For every m big enough, there are constants
ai, - ,am-1 such thatv=vyn+am_1vm_1+---+aivs belongs to RangeT. Then there is
@' € €%0(X., ) such that 9@’ = —v. Seth=hp+am_ 1hm_1+---+ajhsandg=h+a'.
We have dg =0 on X~ {f =0}. Theng € 0(Xc) N € (Xc~ {p}). The function ® in the
corollary is equal to @ on V. Thus it is smooth on V. The proof is completed. O
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By using the estimates in local Sobolev norms near the boundary points, we can prove
as in Folland-Kohn [28] that N maps Lo (Xc,n(9)) N Q%1(X,) into itself. We could
repeat then the solution of the Levi problem as given in [28, Theorem 4.2.1], in order
to find holomorphic peak functions, for each boundary point. However, we propose in
Corollary &.2Z7], a simpler proof for the existence of peak functions, which doesn’t involve

the regularity up to the boundary of the @-Neumann problem.

6.2.2. The embedding. In this section we prove Theorem using the results from
Section and the method of [4].

6.28. PROPOSITION. Let ¢ be a regular value of ¢. Then for é > 0 small enough we
have:

(a) The holomorphic functions on X, separate points on X° 5,

(b) The holomorphic functions on X, give local coordinates on X¢ 5, and

(c) foranyd € (c—9,c) there exists d* € (d, c), such that the holomorphically convex
hull of Xg, with respect to the algebra of holomorphic functions on X, is contained
in Xg-.

6.29. REMARK. If dimX > 3, an analogous statement to Proposition [6.28 was proved
in [4, Proposition 1.4], using the Andreotti-Grauert theory, as explained at the beginning

of 8211

Proposition &.28 will be the consequence of the following two lemmas. We can assume
that dX¢_¢ is smooth for € > 0 small enough. Choose a projection 77 from a neighbourhood
of X into dXc. We will denote by (X, €) the point of dX¢_¢ whose projection is x € dXc.

6.30. LEMMA. Let X1, X2 be two different points in dX.. Then there are two neigh-
bourhoods V1, V, of X1, X2 and v = v(X1,X2) > 0 such that the holomorphic functions of X
separate V1 x (0,v] and Vo x (0, v].

ProoOF. This is a direct corollary from the existence of a function holomorphic in Xc,
and € in X¢ . {X1} which tends to o at X;. O

6.31. LEMMA. Let x be a point of dXc. Then there are a neighbourhood V of x and
T = 1(X) > 0 such that the holomorphic functions in X, give local coordinates for V x (0, ].

PROOF. Without loss of generality and in order to simplify the notations, we consider
the case n = 2. Choose a local coordinates system such that x = 0 and locally X¢ C {|z1 —
1/2|%+ |z2)? < 1/4}. We now apply Corollary B27 for functions f1(z) = z; and f,(z) =
z1(1—1z,). Denote by g1, g2 the holomorphic functions constructed by this corollary for a
number m big enough. We can also construct the analogue functions if we replace m by
m+ 1. Denote by g and g, these new functions.

Let G : X — C*givenby G = (01,92,0%,95). We will prove that G gives local coor-

dinates. Set
z 257
1(2) = (A,l_ﬁ).
Z3 2124

Let W be a small neigbourhood of 0. By Corollary 627, the map | o G is defined on W N X,
and can be extended to a smooth function on W. Moreover, on W we have

10G(z) = (z1+0(z§),z2+0(z1)).

Then 1 o G gives an immersion of W N X in C2, whenever W is small enough. In conse-
quence, G gives coordinates on W N Xc. O
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PROOF OF PROPOSITION [B28l. We cover X x dX. by a finite family of open sets of
the form V; x Vo (from Lemma[&.30) and the form V x V (from Lemmal&.31). We have a
finite family of v and 1. Then properties (a) and (b) hold for every & smaller than these t
and v. Property (c) is an immediate consequence of Corollary 627 O

PROOF OF THEOREM [B.22]. First let us remark that the assertion (i) is a consequence
of (i), so we shall prove only the latter. We assume therefore that the function ¢ : X —
(—o0,a) is strictly plurisubharmonic everywhere.

The proof of the compactification statement for dimX > 3 in [4, Proposition 3.2] uses
only the assertions (a), (b) and (c) of Proposition B.28, so we just have to follow it. For
the readers’ convenience we give here the details. The main tool is the Hartogs extension
phenomenon.

Let c and 9 as in Proposition 6.28 and choose d € (¢ — J,c). By Proposition (c),
the holomorphically convex hull of {¢ < d}, with respect to &'(Xc), is contained in Xy,
for some d* € (d,c). We can therefore find a finite number of open sets U;, and functions
fi e 0(Xc), 1 <i <Kk, such that

{p=d}cU Ui, Ifilu|>1, [filgpea | <1/2. (6.11)

By Proposition &28, (a) and (b), we can find .1, , fi € &(Xc) which separate points
and give local coordinates on {d < ¢ < d*}. Whithout lost of generality we can assume
that | f; 1{¢<d} | <1/2.

Consider the map a : Xc — C', a(x) = (f1(x),---, fi(x)). We shall use the notation

Pg:{zeC':|zi\<s,1<i<I}, 0<e<l.
From relation (&11) we deduce
a({¢ <d}) CPyp, a({p=d})nP=0. (6.12)

Denote G = Py~ Py and set H = a~1(G)nX{". It is clear that a(H) is a complex
submanifold of G, for a is a proper injective immersion. Since a(H) has dimension at
least 2, it follows from the Hartogs phenomenon &2 that we can find an € € [1/2,1], such
that a(H) N (P1 . P¢) can be extended to an analytic subset V of P;.

We can glue the topological spaces X~ a~1(P;) and V along H ~. a~(P;) using the
identification given by the holomorphic map a. Hence, we obtain a complex space Xc,
such that X¢~ a~1(P,) and V are open subsets of X .

We show next that Xc is a Stein space. It is enough to construct a strictly plurisub-
harmonic exhaustion function. For this purpose, observe first that fj, 1 <i < I, extend
naturally to functions f., by setting fI =1zionV. Choose 0 < &, < & < 0 and a cut-off
function p which equals 0 on {¢ < c— &} and 1 on {¢ >c— }. Consider moreover
a smooth increasing convex function A defined on (—oo,c), such that lim¢_,cA (t) = +co.
Then for a sufficiently large constant A > 0, the function

l ~
w=AY [fP+pA@)

is a strictly plurisubharmonic exhaustion function on Xe.

We have thus found for every ¢ < a a Stein space X, such that the strip X&is (biholo-
morphic to) an open subset of X.. By passing to the normalization, we may assume that
Xc is normal. From [4, Corollary 3.2], we deduce that for any c* < a the normal Stein
spaces X and X are biholomorphic and the biholomorphism is the identity on the smaller
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strip. We can drop the subscript ¢ and denote by X the common Stein completion. By
letting c — —oo we obtain that X itself is biholomorphic to an open set of X. The proof is
complete. O

6.32. REMARK. We can use another argument than Proposition .28 to show Theorem
B22. Firstly, we can find a CR embedding W : X, — CN, using Sarkis [59, Corollaire
4.13]. The latter result asserts that a compact strictly pseudoconvex 3-dimensional CR
manifold is embeddable in the euclidian space provided it is embeddable in the projective
space and possesses a non-constant CR function. In our case these conditions are fullfiled.
Using the complete metric (£.47) and the positivity of the trivial line bundle, it is easy to
see that the (n,0)-forms embed dX in the projective space. By Corollary E27]and Sarkis’
theorem the embedability of dX. in some CN follows.

Secondly, we apply the Harvey-Lawson theorem B8 to find a Stein space S  CN which
bounds W(dXc), show that W extends to a holomorphic map W: X — S, injective near
0Xc, and finally infer from here that X can be compactified.

The existence of peak holomorphic functions in Corollary affords however the
simpler and more elementary proof based on Proposition

6.33. REMARK (Generalization of Theorem6.22)). TheoremB.22 holds also for normal
complex spaces with isolated singularities. These are the only allowed normal singularities
in dimension 2.

Indeed, let X be a hyperconcave end with isolated normal singularities. Note that
Definition makes sense also for complex spaces. Let a; denote the singular points
and choose functions ¢; with pairwise disjoint compact supports, such that ¢; is strictly
plurisubharmonic in a neighbourhood of a; and lim,_,5 = —c. Using the function § =
¢ + 5 & ¢i, with & small enough, we see that X, is a hyperconcave end. By Theorem
we get a normal Stein compactification Y of Xeg.

Take {Vi} pairwise disjoint Stein neighbourhoods of {a;j}. Then Vi~ {aj} C X;¢ and
a normal Stein compactification of V; \ {a;} is V. Using the uniqueness of a normal Stein
compactification [4, Corollary 3.2] we infer that the V; are disjointly embedded inY. There-
fore, Y is also a compactification of X.

In particular, the singular set of a hyperconcave end with only isolated singularities
must be finite.

6.34. REMARK (Complex cobordism). Another point of view on Theorem is to
consider the sets Yo = {¢ = c}, which, for regular values ¢ of ¢, are compact strongly
pseudoconvex CR manifolds of dimension 3. Following Epstein and Henkin [126], we call
two CR manifolds Y1 and Y, of dimension 3 strictly complex cobordant, if there exists
a complex manifold X with boundary, such that X = Y; UY, and there exists a strictly
plurisubharmonic function p on X so that Y1 and Y, are two non-critical level sets of p.
They show then [26 Theorem 1] that if Y1 bounds a complex manifold, also the components
of Y2 bound complex manifolds.

Theorem can be rephrased by saying that, if a compact strongly pseudoconvex
CR manifold Y is strictly complex cobordant to —co, the manifold Y bounds a strongly
pseudoconvex compact manifold. In particular, Y is embeddable in CN, for some N.

Note that, by the example of Grauert, Andreotti-Siu and Rossi, there exist compact
strongly pseudoconvex CR manifolds of dimension 3 which do not bound a complex ma-
nifold and are not embeddable in CN. This is in contrast to theorem B8l
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6.2.3. Comparison with the Grauert-Andreotti-Rossi example. We want now to
compare the compactification result with the examples of Grauert, Andreotti-Siu and Rossi.
We call as before a non-ramified covering simply covering. An immediate consequence of
Theorem is the following.

6.35. COROLLARY. Let V be a Stein manifold of dimV > 2. Let K be a compact
completely pluripolar set, K = ¢ ~1(—o0) where ¢ is a strictly plurisubharmonic function
defined on a neighbourhood U of K, smooth on U ~ K. Then any finite covering of V \ K
can be compactified to a strongly pseudoconvex space.

PROOF. V ~ K is a hyperconcave end and any finite covering of a hyperconcave end is
also a hyperconcave end. O

Corollary is in stark contrast to the examples of non-compactifiable pseudocon-
cave ends of ExamplesEI9and They are obtained as finite coverings of small neigh-
bourhoods of the boundaries of Stein manifolds of dimension 2. Such coverings have “big’
holes which cannot be filled, whereas ‘small’, i.e. completely pluripolar holes can always
be. Moreover, if dimV =2 and K € V is completely pluripolar, it follows from Corollary
B35 and LemmalEI8 that i (V ~ K) doesn’t have proper subgroups of finite index.

It is obvious that the manifolds W, constructed in Example are not hyperconcave
ends. Also, P2~ {[1:0: 0]} with the new complex structure constructed in Example
cannot be a hyperconcave end, for if it were, V ~.A would be one too (we average the values
of a defining function on the two sheets). So A would be completely pluripolar, which is a
plain contradiction.

6.2.4. Embedding of Sasakian 3—manifolds. We explain first some well known facts
about Sasakian manifolds. Let X be a strictly pseudoconvex CR manifold, with com-
pactible complex structure J, and compactible contact form 6. This allows us to define
a Riemannian metric gg on X given by

go(.,.)=dB(.,J.)+06(.)6(.).
Let R be the Reeb vector field associated to 6, defined by
iRf=1, ird0 =0.

Associated to the data (X, 6,R,J,gg), there is a canonical connection [0 on T X, called the
Tanaka-Webster connection (see Tanaka [66] and Webster [69]), which is the unique affine
connection on T X such that

e [Jgg=0,000=0,006=0.

e For any u, v in the Levi distribution H, the torsion T of O satisfies T (u,v) =

d@(u,v)Rand T (R,Ju) =JT (R,u)

In particular, the torsion of the Tanaka-Webster connection cannot vanish identically. How-
ever, we have the following definition

6.36. DEFINITION. A strictly pseudoconvex manifold is called a Sasakian manifold if
the torsion of its Webster connection in the direction of the Reeb vector field vanishes, i.e.
T(R,.) = 0 with the notations above.

Examples of compact Sasakian manifolds are the unit sphere in C" or the Heisenberg
nilmanifold (see Urakawa [68]). Sasakian 3-manifolds were classified up to diffeomor-
phism by H. Geiges [29]. They were further studied by F. Belgun in [9]: every Sasakian
3—manifold is obtained as a deformation of some standard model (see [[9] for more details).
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In [11], O. Biquard and M. Herzlich consider a class of manifolds which are modelled
on the complex unit ball, and are thus called asymptotically complex hyperbolic. This
construction will allow us to get an embedding theorem for Sasakian manifolds. Let us
first recall what an asymptotically complex hyperbolic manifold is.

Let X be a (2m — 1)—dimensional compact manifold, m > 2. We assume that X has a
strongly pseudoconvex CR-structure. Let 6 be a compatible contact form, and J a compati-
ble almost complex structure. y(.,.) :=d8(.,J.) is then a metric on the contact distribution.
Following Biquard and Herzlich [11]], we endow M := (0, ) x X with the metric

g=dr’+e 26%+e"y. (6.13)

Actually, in [I1], the authors consider the metric dr2 +e% 82+ ey on M, but the reason
for our choice will become clear later.

We can extend the almost complex structure to act on the whole tangent bundle as
follows. Consider the Reeb vector field R and define

\]ar - erR,

where ¢d; is the unit vector field in the r direction. g is then a Hermitian metric with respect
to J, i.e. Jis an g—isometry. The fundamental 2—form associated to g is

w=d(e"0). (6.14)

Although w is a closed form, in this general setting, ((0,0) x X,g) is not necessarily
a Kahler manifold, because J is not necessarily an integrable almost complex structure.
Indeed, the proof of [[11, Proposition 3.1] shows that J is integrable if and only if the
torsion of the Webster connection of (X, 8) in the direction of the Reeb vector field vanishes
identically, i.e. if and only if X is a Sasakian manifold (see Definition [6.36)).

Assume now that X will be a Sasakian manifold, so that (M, g) is a Kéhler manifold.
Then

w=—2v/—190r, (6.15)
so that —r : M — (—0,0) is a proper smooth strictly plurisubharmonic function. (this ex-
plains the choice of sign of the r variable for g in (€13): with our choice, M has a strongly
pseudoconvex boundary, whereas with the choice of [[11] M has a strongly pseudoconcave
boundary). Therefore M is a hyperconcave end, and the following theorem is a direct
consequence of Theorem B.22t

6.37. THEOREM ([47]). Let X be a Sasakian manifold of dimension at least 3. Then
there is a CR embedding of X in CN for some integer N.

6.3. Compactification by adding finitely many points

The present section is devoted to proving sufficient conditions for the set X < X to be
analytic. If this is the case, it can be actually blown down to a finite set, due to the existence
of a strongly pseudoconvex neighbourhood.

6.38. THEOREM. Let X be a hyperconcave end and let X be a smooth completion of
X. Assume that X can be covered by Zariski-open sets which are uniformized by Stein
manifolds. Then X ~. X is the union of a finite set D’ and an exceptional analytic set which
can be blown down to a finite set D. Each connected component of X, for sufficiently small
¢, can be analytically compactified by one point from D’ UD. If X itself has a Stein cover,
D’ = 0 and D consists of the singular set of the Remmert reduction of X.
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In order to prove Theorem E.38 we consider first the particular case when the compact-
ification X is a Stein space.

We begin with some preparations. LetV by a complex manifold. We say thatV satisfies
the Kontinuitatssatz if for any smooth family of closed holomorphic discs A; in V indexed
by t € [0,1) such that UbA; lies on a compact subset of V, then UA; lies on a compact
subset of V. It is clear that every Stein manifold satisfies the Kontinuitétssatz, using the
strictly plurisubharmonic exhaustion function and the maximum principle. Moreover, if the
universal cover of V is Stein then V satisfies Kontinuitdtssatz since we can lift the family
of discs to the universal cover.

Let F be a closed subset of V. We say that F is pseudoconcave if V \ F satisfies the
local Kontinuitatssatz in V, i.e. for every x € F there is a neigbourhood W of x such that
W \ F satisfies the Kontinuitdtssatz. Observe that the finite union of pseudoconcave subsets
is pseudoconcave and every complex hypersurface is pseudoconcave.

We have the following proposition which implies the Theorem .38

6.39. PROPOSITION. Let X be a Stein space with isolated singularities S and K a
completely pluripolar compact subset of X which contains S. Assume that X = X . K can
be covered by Zariski-open sets which satisfy the local Kontinuitétssatz in X . S. Then K
is a finite set. If X = X \ K satisfies the local Kontinuitatssatz, K = S.

PROOF. We can suppose that X isa subvariety of a complex space CN. Let B be a ball
containing K such that bBN X is transversal. By hypothesis, we can choose a finite family
of Zariski-open sets V1, ..., Vk which are uniformized by Stein manifolds and NF; is empty
near bB, where F; = X \.V; . Observe that F is an analytic subset of X, Fj C K UK. Since
F U (K ~\'S) is pseudoconcave in X~ S, F have no component of codimension > 2. By
Hartogs theorem, if n = dimX > 2, there is a complex subvariety F of X which contains F;.
This is also a consequence of Harvey-Lawson theorem [:37]. We will prove this property
for the case n = 2. Set F = UF,.

Observe that ' = F NbB is an analytic real curve. The classical Wermer theorem [[70]
says that hull(I") \. T is an analytic subset of pure dimension 1 of CN \.T" where hull(I") is
the polynomial hull of I". By uniqueness theorem, hull(I") C X. Since S is finite, we have
hull(CUS) = hull(F) US. Set F' = (FUK)NBand F” = hull(") US.

6.40. LEMMA (In the case n = 2). We have F' C F”.

PROOF. Assume that F” ¢ F”. Then there are a point p € F’ and a polynomial h on
U such that supgr |h| < supgs |h| = |h(p)|. Set r = h(p). By maximum principle, we have
h=1(r)NnF’ Cc K~.S. In particular, we have p € K . S. Recall that F/ \. S is pseudoconcave
in X’ =X NB~S. We will construct a smooth family of discs which does not satisfy the
Kontinuitdtssatz. This gives a contradiction. The construction is trivial if p is isolated in
F’. We assume that p is not isolated. By using a small perturbation of h, we can suppose
that h(p) is not isolated in h(F).

Set ¥’ =h(F")and £” = h(F”). Then &’ (resp. £") is included in the closed disk (resp.
open disk) of center 0 and of radius |r|. The holomorphic curves {h = const} define a
holomorphic foliation, possibly singular, of X’. The difficulty is that the fibre {h =r} can
be singular at p. Denote by T the set of critical values of h in h(B). Then T is finite.

Denote also © the unbounded component of C ~ (X" UT). It is clear that ¥’ meets
©. This property is stable for every small pertubation of the polynomial h. Since K is a
completely pluripolar, K nh—1(a) is a polar subset of h—%(a) for every a € C.
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Choose a point b € © such that 0 < dist(b,%’) < dist(b,Z”UT) and a € ¥’ such that
dist(a,b) = dist(b,Z’). We have a ¢ X" UT. Replacing b by a point of the interval (a,b)
we can suppose that dist(a,b) < dist(a’,b) for every a’ € ¥’ \ {a}. Fix a pointq € F’ such
that h(q) =a. Set & = |a—Db|. Since a ¢ T, we can choose a local coordinates system
(z1,22) of an open neigbourhood W of q in Q' such that z; = h(z) —b, q= (a—b,0) and
{(z1,22), |21| < &1+ &, 22| < 2} € W with & > 0 small enough. We can choose a W
which does not meet F” and is small as we want.

Let L be the complex line {z; = a —b}. By maximum principle, K" = F'NL is equal
to KNL. Then K’ is a polar subset of L. This implies that the length of K’ is equal to 0.
Thus, for almost every s € (0,2) the circle {|z2| = s} NL does not meet K’. Without lost of
generality, we can suppose that K’ does not meet {|zo| = 1} NL. Now we define the disk
Zt by

N ={z1=(a—Db)t,|zo] <1}
fort € [0,1). This smooth familly of discs does not verify the Kontinuitatssatz for W ~
F. O

Now, denote by F the smaller hypersuface of X which contains F. Set F = UF. If
n=2we have FUK C F. This is also true for n > 2. It is sufficient to apply the last lemma
for linear slices of X.

6.41. LEMMA. Let L be a pseudoconcave subset of a complex manifold V. If L is
included in a hypersurface L’ of V then L is itself a hypersurface of V.

PROOF. Observe that L is not included in a subvariety of codimension > 2 of V. As-
sume that L is not a hypersurface of V. Then there is a point p in RegL’ which belongs to
the boundary of L in L”. Choose a local coordinates system (z,...,zn) of a neighbourhood
W of p such that W contains the unit polydisk A", p € A"and L'NW = {z; =0} NW. We
can suppose that 0 ¢ L and we can choose W small as we want.

Let 71: A" — A" be the projection on the last n — 1 coordinates. Let q e L* =
ri(LNA") such that dist(0,L*) = dist(0,q). Consider the smooth family of discs given by
A ={z=(21,7") : |z1] < 1/2,2" =1tq}. This family does not verify the Kontinuitétssatz in
W ~ L. [

We can end the proof of Proposition We know that (F UK) ~\. S is pseudoconcave
in X~ Sand FUK C F. By LemmalE4d], (F UK) S is a hypersurface of X \.S. By
Remmert-Stein theorem, any analytic set can be extended through a point, so F; UK is a
hypersurface of X. Then F UK C F since NF = @. We deduce that K is included in N5
which is analytic and bounded subset of CN. Therefore K must be a finite set. O

6.42. REMARK. The Proposition holds for K not pluripolar. For this case, the
proof is more complicated. Using another submersion of X given by the map z —
(h(z),h(z) + €z1,--- ,h(z) + €zn), we can suppose that R = maxk. s|z| > maxg«~|z|. Let
g € bBrN (K~ S) where Br is is a ball of center 0 and radius R. Using a small affine
change of coordinates, we can suppose that bBrNX is transversal at g. We then construct
easily a family of discs close to Tq(bBR) N X, which does not satisfy the Kontinuitétssatz,
where Tq(bBR) is the complex tangent space of bBg at q.

PROOF OF THEOREM [6.38] Let X be a hyperconcave end such that the exhaustion
function ¢ is overall plurisubharmonic. Let X be a smooth completion of X. Then X ~ X
has a strictly pseudoconvex neighbourhood V. Based on Remmert’s reduction theory,
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Grauert [30, Satz 3, p.338] showed that there exists a maximal analytic set A of V. More-
over, by [30, Satz 5, p.340] there exists a normal Stein space V' with at worst isolated
singularities, a discrete set D C V' and a proper holomorphic map :V — V’, biholo-
morphic between V . A and with V'~ D and r7(A) = D. That is, A can be blown down to
the finite set D. Of course, Vgpg C D.

The maximum principle for ¢ implies A ¢ X~ X. Let ¢ :V/ — [—o0,00) be given by
Y=¢omtonV/'~Dand (y = —oo0n n()? ~. X). Then ¢ is a strictly plurisubharmonic
function on V'’ and (X ~. X) is its pluripolar set. By Proposition B39, (X ~ X) is a
finite set. Therefore X ~. X consists of A and possibly a finite set D’. If X has a Stein
cover, it follows from the Kontinuitétssatz that 71(X ~ X) = Vgng: Therefore D' = 0 and
D= Vs’mg. O

6.43. REMARK. If in Theorem we suppose only that X admits a Zariski-open
dense set which is uniformized by a Stein manifold, we can prove in the same way, that

X ~. X is included in a hypersurface of X, i.e. X contains a Zariski-open dense set of X.

6.4. Extension of Nadel’s theorems

We are in the position to extend the theorems of Nadel [50] to dimension two. If X
is a hyper 1-concave manifold, it follows from [1]] that the meromorphic function field
2 (X) has transcendence degree over C less or equal than dimX. If the transcendence
degree equals dimX, that is, if there exist dimX algebraically independent meromorphic
functions over C, we say that X is Moishezon. We have the following characterization.

6.44. PROPOSITION. A hyper 1-concave manifold X is Moishezon if and only if X is
biholomorphic to an open set of a compact Moishezon space X. A sufficient condition for
X to be Moishezon is to admit a semipositive line bundle which is positive at one point.

PROOF. By Theorem there exist a compact complex space X, such that X c X.
Moreover X ~. X is a pluripolar set. Let us remark that, due to the existence of a Stein
neighbourhood of the set XX, all meromorphic functions on X extend uniquely to X,
Hence %()?) = . (X), which implies the first part of the proposition. The second part is
the content of [67, Corollary 3.2]. O

We extend now Nadel’s main result [50, Theorem 0.1] to dimension 2.

6.45. PROPOSITION. Let X be a connected manifold of dimension n > 2. Assume that:
(i) X is hyper 1-concave.
(if) X is Moishezon.
(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

Then X can be compactified by adding finitely many points to a compact Moishezon space.

PROOF. By conditions (i) and (iii) and Theorem E.38, we can find a compact complex
space X, with at worst isolated singularities, such that X is an open set of X and X ~. X is

finite. Since .7 (X) = 7 (X), X is itself Moishezon. O
Note that Proposition implies that a manifold satisfying (i)-(iii) has finite topolog-
ical type.

The next result characterizes, along the lines of Kodaira, those non-compact manifolds
of dimension n > 2 that can be compactified by adding finitely many points and that admit
quasiprojective algebraic structure.
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It corresponds to [50, Theorem 0.2], where the case n > 3 is considered. We have formu-
lated condition (ii) below more geometrically. In [50] the corresponding condition is that
the ring ®x-oH®(X,EK) gives local coordinates and separates points of X. Note also that
the next result answers [48], Problem 1] for the case g = 0.

6.46. PROPOSITION. Let X be a connected manifold of dimension n > 2. The following
conditions are necessary and sufficient for X to be a quasiprojective manifold which can
be compactified to a Moishezon space by adding finitely many points.

(i) X is hyper 1-concave.
(i) X admits a positive line bundle E.
(iii) X can be covered by Zariski-open sets which can be uniformized by Stein mani-
folds.

PROOF. The necessity of conditions (i) and (ii) is obvious, while the necessity of (iii)
follows from a theorem of Griffiths [34, Theorem I].

For the sufficiency, we need a variant of the embedding theorem of Andreotti-Tomassini
0. 13l

6.47. LEMMA. Let X be a hyperconcave manifold and E be a positive line bundle on
X. Then X is biholomorphic to an open set of a projective algebraic manifold.

PROOF. If ¢ denotes the exhaustion function of X, v/—1(RE + 33 (—log(—¢))), A >
1, is a complete Kéhler metric on X. Using the L? estimates with singular weights for
positive line bundles (Theorem B16), we obtain that @y-oH®(X,EX® Ky ) separates points
and gives local coordinates everywhere on X. Repeating the proof of [51, Lemma 2.1] we
obtain an embedding in the projective space and then conclude by Theorem B12 O

Let X be a projective compactification given by Lemma Then Theorem
implies that X ~. X is an analytic set. Proposition .46l is proved. O

6.48. REMARK. We can obtain a stronger version of [51, Theorem 0.1] in dimension
two. Nadel and Tsuji use the following terminology. A manifold X of dimension n is
called very strongly (n — 2)-concave if there exists a ¢’ function ¢ : X — R such that
{w>c} eX,forall c € R, and outside a compact set ¢ is plurisubharmonic and /=199 ¢
has at least 2 positive eigenvalues. If dim X = 2, this notion coincides with hyperconcavity.
Nadel and Tsuji prove the following theorem: a complete Kahler manifold (X, w), dimX =
n, satisfying the conditions

(i) Ric(w) <0,
(if) X is very strongly (n —2)-concave,

(iii) The universal covering of X is Stein,
is biholomorphic to a quasiprojective manifold. By Proposition B.46 we can, if dimX = 2,
remove the requirement that X is complete Kahler and replace (i) with the existence of a
positive line bundle.

Let X = M/I" be an irreducible arithmetic quotient of dimension n > 2. The proof of
Borel [13] shows that X is very strongly (n — 2)-concave. Thus, Proposition B.48 gives, in
dimension two, a generalization of the fact that arithmetic quotients can be compactified,
with a completely complex-analytic proof.

6.49. REMARK. A compact Moishezon space X with isolated singularities such that
X~ X is finite needs not be either projective or algebraic in the sense of Weil. See the
example of Grauert [30, p. 365-6].
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6.50. REMARK. We can obtain the following version of Proposition Namely, a
manifold X, dim X = 2, satisfying the two conditions,

(i)” X is hyperconcave and
(i1)” X can be covered by Zariski-open sets which can be uniformized by
bounded domains of holomorphy in C",

can be compactified by adding finitely many points to a compact Moishezon space. Indeed,
we show first as in [50, p. 187] that X is Moishezon, using the result of Mok -Yau on the
existence of complete Kéhler-Einstein metrics on bounded domains of holomorphy, as well
as the L2-estimates for 8. Then we resort to Proposition .45,

Note that in [50, Theorem 0.3] it is shown that a manifold X as above, with dimX > 2,
has moreover the stucture of an abstract algebraic variety.

We close the section with an extension of Theorem 614l Generalizing the Andreotti-
Tomassini theorem, Andreotti-Siu [4, Theorem 7.1] show that a strongly 1- concave mani-
fold X of dimX > 3 can be embedded in the projective space, if it admits a line bundle E
such that @y oHO(X, EX) gives local coordinates on a sufficiently large compact of X. The
proof is based on techniques of extending analytic sheaves. Moreover, the result breaks
down in dimension 2 as the following example shows.

6.51. EXAMPLE. We use Example B9 and its notations. The strongly 1- concave ma-
nifold Y = K¢ prI;31(G) has as differential double covering the torus minus 16 small balls
around the fixed points of the involution. Denote X, this new manifold. With the induced
complex structure from Y¢, X¢ is a strongly 1-concave, non-compactifiable manifold. If
on X we consider the pull-back E of the hyperplane line bundle on Yg, @y-oH®(Xe, EX)
gives local coordinates everywhere. But X is not embeddable in the projective space, for
if it were, we could compactify it by Theorem E13

We show in the next proposition that, if we impose the condition of hyperconcavity,
such phenomenon cannot occur. Here ¢ and b have the same meaning as in Definition

6.52. PROPOSITION. Let X be a hyperconcave manifold of dimension n > 2. Let ¢ be
a real number such that ¢ < b. Assume there is a line bundle E over X’ = {¢ > c} such
that the ring @-oH%(X’,EX) gives local coordinates on X’. Then X is biholomorphic to
an open subset of a projective manifold.

PROOF. By TheoremB.22, X is an open subset of a variety X with isolated singularities.
Moreover X ~. X’ is a Stein space.

Replacing c by a ¢’ such that ¢ < ¢/ < b we can suppose that there are holomorphic
sections Sy, ..., Sm Of HO(X’, Ek) which give local coordinates of X’ where k is big enough.
We can define a holomorphic map : X’ — PMhy

m(z) = [So(z) : -+ : Sm(2)].

Then T gives a local immersion of X" in P™. Since X ~ X' is embeddable in an euclidian
space, a theorem of Dolbeault-Henkin-Sarkis [21], [58] implies that 7T can be extended to
a meromorphic map from X into P™.

Denote by Z the set consisting of the singular points of X, the points of indeterminacy
of rtand the critical points of 7. Then Z is a compact analytic subset of X ~ X'. Since
X ~ X' is Stein space, Z is a finite set. The map 7T gives local immersion of X ~. Z in P™,
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Let H be the canonical line bundle of P™ and set L = 7*(H). Then L is a positive line
bundle of X~ Z. In particular L is positive on X . Z and by a theorem of Shiffman [62]
extends to a positive line bundle on X. By Lemma B4, X is biholomorphic to an open
subset of a projective manifold. O

6.5. Compactification of manifolds with pinched negative curvature

Our goal is to prove the following generalization of the Siu-Yau theorem in the case
when a strongly pseudoconvex end is allowed.

6.53. THEOREM ([47]). Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that IntX is endowed
with a complete Kahler metric with pinched negative curvature, such that away from a
neighborhood of 0X, the volume of X is finite. Then

(1) dX is embeddable in some CN.

(2) There exists a compact strongly pseudoconvex domain D in a smooth projective
variety and an embedding h : X — D which is a biholomorphism between IntX
and h(IntX), h(dX) = dD, and D ~ h(X) is an exceptional analytic set which can
be blown down to a finite set of singular points.

PROOF. We show that all the ends of X, with the exeption of the end corresponding
to 0X, are hyperconcave. Indeed, let E1,...,En be the cusps of X ~~ U, where U is a
neighbourhood of dX. We fix some end E; and consider the associated Busemann function
r:Ej — (0,0). It follows from [64, Proposition 1] that —r : Ej — (—o0,0) is a strictly
plurisubharmonic proper function (note that for the Busemann function, Siu and Yau use
the opposite sign convention). From Theorem we deduce that there exists a Stein
space S with boundary and an embedding of X as an pen set in S, such that dS = dX.

In particular, the Kohn-Rossi theorem shows that every holomorphic function de-
fined in a neighbourhood of dX extends to a holomorphic function on X. As a by-product
we obtain that dX is connected.

Using [39, Theorem 0.2] (see also Ohsawa [54]) the space S can be embedded as a
domain with boundary in a larger Stein space S’ such that dS is a hypersurface in S’. By the
embedding theorem of Remmert-Bishop-Narasimhan [53], S’ admits a proper holomorphic
embedding in CN for some N. Restricting this embedding to S = dX we obtain the
conclusion (1).

We prove now point (2). Note that by applying theorems B.22 and .38 we can deduce
(2) for some strongly pseudoconvex domain D, but we cannot say directly that this domain
is an open set of a projective manifold. Therefore we proceed as follows. We start by
glueing S’ to a pseudoconcave projective manifold. Lempert’s approximation theorem
allows to assume that the Stein space S’ constructed before is an open set in an affine
algebraic variety, hence also in a projective variety Y. We use now the notations from the
proof of Consequencelel Let € € (0, c) be sufficiently small. We setW ={e—0J < ¢ <c}
and glue the manifolds X and (Y ~.S) UW along W. The resulting manifold will be denoted
by X. Hence X is a domain with compact strongly pseudoconvex boundary in X.

Since S’ is an affine space in some CN, we can regard the embedding of W/ = {e — & <
¢ < &}inY asamap with values in CN. Now X can be compactified to a compact strongly
pseudoconvex domain, so the extension theorem of Kohn-Rossi, applied to the components
of this embedding, show that the embedding extends to a holomorphic map from X to
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CN c PN, Pulling back the hyperplane line bundle of PN through this map, we obtain a
line bundle E — X which is semi-positive on X and positive on (X ~. S') UW.

A partition of unity argument delivers a Hermitian metric on X which agrees with
the original metric w of IntX on say {¢ < £}. With respect to this metric the canonical
bundle of X is positive on {¢ < £}. Hence, the bundle L = EXK® Ky Is positive on X for
k sufficiently large. Moreover, the curvature /—1R" of L dominates w on {¢ < £} and
therefore /—1R" is a complete metric on X. The L, estimates of Hormander-Andreotti-
Vesentini from Theorem produce sections of @VHO(?, LY @ Ky) that separate points

and give local coordinates on X.

On the other hand the manifold X is hyper 1-concave (we use again the plurisuper-
harmonicity of the Busemann function on each cusp). By Lemma .47 we find a smooth
compactification X ¢ PN of X and therefore of X. The desired projective strongly pseu-
doconvex domain is D = M~ (X ~ §). By [30, Satz 3,p.338] there exists a maximal,
nowhere discrete analytic set A of D (the exceptional analytic set [30, Definition 3, p. 341])
and by [30, Satz 5, p.340] there exists a Remmert reduction 71: D — D’, which blows down
A to a discrete set of points. The set D~.M = M ~ M is a pluripolar set, namely the set
where the plurisubharmonic function —r takes the value —co. By the maximum principle
for plurisubharmonic functions, A C D~ M. The set (D ~. M) is also a pluripolar set,
and D’sing C n(A) C (D~ M). By Wu’s theorem [32], any simply connected complete
Kéhler manifold of nonpositive sectional curvature is Stein. Hence the universal covering
of M is Stein. It is then shown in [64, § 4] (using the Schwarz-Pick Lemma of Yau) and in
Proposition (using Wermer’s theorem) that D, = 1(D \ M).

Therefore D ~. M = A is an exceptional analytic set in the sense of Grauert and by
blowing down this exceptional set we obtain the set D’Sing. Actually, each end Eq, ...,En of

M can be compactified with one point of the singular set D’Sing = {X1,...,Xm}. Moreover,
by the uniqueness of the Stein completion from Theorem BT we see that D’ and S’ coincide.
O

6.54. REMARK. It follows from the proof that each end of X, exept that corresponding
to dX, can be analytically compactified by adding one singular point. Theorem also
holds true if we assume that the complete Hermitian metric is defined on X (including
the boundary). However, in the case of quotients in Corollary &.58 the induced Hermitian
metric is defined only in the interior of X.

The first application of Theorem is the classical theorem of Siu-Yau, which is the
particular case when dX = @.

6.55. COROLLARY (Siu-Yau). Let X be a complete Kéhler manifold of finite volume
and bounded negative sectional curvature. If dimX > 2, X is biholomorphic to a quasipro-
jective manifold which can be compactified to a Moishezon space by adding finitely many
singular points.

As a second application we study some quotients of the unit complex ball B" in C"
which where considered by Burns and Napier-Ramachandran [52, Theorem 4.2].

6.56. COROLLARY. LetT be a torsion-free discrete group of automorphisms of the unit
ball B" in C", n > 2, and let X = B"/I". Assume that the limit set A is a proper subset of
0B" and that the quotient (dB" . A)/I" has a compact component A. Let E be the end of
x corresponding to A and assume that X ~ E has finite volume. Then A is embeddable in
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some CN and X can be compactified to a strongly pseudoconvex domain in a projective
variety by adding an exceptional analytic set.

PROOF. As is well known, the limit set A is the set of accumulation points of any
orbit I' - x, x € B", and is a closed T-invariant subset of the sphere at infinity B". The
complement dB" ~ A is precisely the set of points at which I acts properly discontinuously,
and the space X U(dB"~\.A)/T is a manifold with boundary (dB"~.A)/T" (see for example
[23 §10]). A is a compact subset of this boundary, hence there is a neighborhood E of
A in X which is diffeomorphic to the product A x (0,1). It follows that E is an end of
X, because A is compact and connected. Actually, E is a strongly pseudoconvex end, in
the sense that its boundary A at infinity is strictly pseudoconvex. Since X =B"/I is a
complete manifold with sectional curvature pinched between —4 and —1, Corollary
is an immediate consequence of Theorem E53 O

The third application is to actually establish the equivalence between the finite volume
condition and the embeddability of the boundary.

6.57. COROLLARY. Let X be a connected complex manifold with compact strongly
pseudoconvex boundary and of complex dimension n > 2. Assume that X is endowed with
a complete K&hler metric with pinched negative curvature. The following assertions are
equivalent :

(a) dX is embeddable in some CN,
(b) X has finite volume away from a neighbourhood of 9X.

If one of the equivalent conditions (a) or (b) holds true, X can be compactified to a strongly
pseudoconvex domain in a projective variety by adding an exceptional analytic set.

PROOF. The implication (b) = (a) was proved in Theorem E53 We wish to prove
(a) = (b). Indeed, once X is assumed to be embeddable, we follow the second part of
the proof of Theorem .53 The difficulty is now that we do not know apriori that X can be
compactified.

Since dX = {¢ = c} is embeddable it follows from the Epstein-Henkin Theorem
that also {¢ = €} is embeddable for € € (0,c). Using the Harvey-Lawson theorem we fill
in {¢ = £} and we compactify the stip {€ < ¢ < c} to an affine Stein space S, which can be
realized as a Stein domain with boundary in a bigger Stein space. Lempert approximation
theorem entails that we can assume that S is a domain in an affine variety. We extend now
the embedding of {& < ¢ <c}inS c CN to X by using the following Hartogs type result:

6.58. PROPOSITION ([52, Prop.4.4]). Let (M, w) be a connected complete Hermitian
manifold of dimension n > 1 and let X C M be a domain with nonempty smooth compact
strongly pseudoconvex boundary. Assume that the restriction w|x of w to X is K&hler.
Suppose f is a holomorphic function on U N X for some neighbourhood U of X in X.
Then there exists a holomorphic function h on M such that h = f near dX. In particular,
J0X is connected.

We can repeat the proof of Theorem and construct the positive holomorphic line
bundle L on the manifold X. By applying Theorem E.34 we obtain

n

- 0.7 |k —1pL\"
dlmH(”Z)(X,L)>m/X(2_\/:RL) +o(kM, (6.16)
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Since dim H(”Z’?(?, L) < oo ()? is hyperconcave) and the curvature «/—1RL of L dominates

won {¢ < €}, where £ < ¢, we deduce that (X, w) has finite volume away from a neigh-
bourhood of dM. O

The assertion (a) = (b) is [52, Theorem 4.1]. We infer the following result anounced
by D. M. Burns and proved by T. Napier and M. Ramachandran [52, Theorem 4.2]:

6.59. THEOREM (Burns, Napier-Ramachandran). Let " be a torsion-free discrete group
of automorphisms of the unit ball B in C" with n > 3 and let X = B/I". Assume that the
limit set A is a proper subset of dB and that the quotient (0B ~. A)/I" has a compact
component A. Then X has only finitely many ends, all of which, except for the unique end
corresponding to A, are cusps. In fact, X is diffeomorphic to a compact manifold with
boundary and can be compactified.

The proof is based on [52, Theorem 4.1] which shows that the finite volume hypothesis
of Corollary 656l is automatically satisfied in the case n > 3. The presence of the strongly
pseudoconvex boundary forces the volume to be finite, since X is then embeddable by
having real dimension at least 5.

If n = 2 we have to assume the volume to be finite in order to obtain the embedding of
the boundary. It is interesting to ask whether Burns’ theorem holds also in dimension 2 or,
equivalently, whether the compact strongly pseudoconvex component of a set (0B~ A\) /I
is embeddable for all torsion-free discrete groups of automorphisms of the unit ball B in
C2.

6.6. Nadel-Tsuji compactification theorem

In this section we discuss briefly a generalization of the theorem of Siu-Yau, namely a
geometric proof of the compactification of arithmetic quotients of arbitrary rank. We will
call acomplex manifold of dimension n very strongly (n —q)—pseudoconcave if there exists
a €2 function  : X — R such that {¢y > b} is compact for any b € R and outside a compact
set g is weakly plurisubharmonic and its Levi form has at least g positive eigenvalues. Note
that in the case g = n we recover the class of hyperconcave manifolds.

6.60. THEOREM (Nadel-Tsuji [51]]). Let (X, w) be a complete K&hler manifold of di-
mension n of negative Ricci curvature. Assume that X is uniformized by a Stein manifold
and that X is very strongly (n — 2)—pseudoconcave. Then, X is biholomrphic to a quasi—
projective variety.

The first step is to generalize the Andreotti-Tomassini embeding theorem to the present
context [51, Lemma 2.1]. There exists therefore a holomorphic embedding F : X — Z of
X onto a non-singular projective—algebraic variety Z. We will henceforth identify X with
its image under F. The goal is to show that Z ~. X is an analytic set of Z. The main toll
are the Morse inequalities of Theorem .37 and existence theorems for complete Kahler—
Einstein metrics on bounded domains of holomophy and certain quasi—projective varieties.
Let us briefly explain the proof. Z ~. X contains at most a finite number of irreducible
hypersurfaces D; of Z. Denoting the union of D; by D we will show that X =Z \ D. By
removing some hypersurface V in Z and using existence theorems for complete K&hler—
Einstein metrics [49, Main Theorem] one can show that both W = X \V and W' = (Z
D) \.V admit K&hler-Einstein metrics of Ricci curvatures = —1. Denote the Kahler forms
by w and «' resp. From Yau’s Ahlfors—Schwarz lemma [] for volume forms we have
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" > . To show that W =W’ and hence X = Z \. D it suffices to show that w" = ™. In
fact, since Kéhler—Einstein metrics are determined by their volume forms this would imply
w= & and henceW =W’,

Denote by K the canonical line bundle and by [D] the divisor line bundle. We relate the
volumes of (W, w) and (W, «') to the asymptotic growth of the dimensions of the spaces
of L* holomorphic sections H{, (W, (K ® [D] @ [V])¥) and H, (W', (K@ [D] @ [V])¥). As
pseudoconcavity implies extension theorems for holomorphic sections of line bundles from
W to W’ the asymptotic growth of these spaces is the same. On the one hand for the quasi—
projective variety W” the asymptotic growth of HE, (W', (K @ [D] @ [V])K) is determined
by the volume of (W', w’). On the other hand, Theorem 37] gives a lower bound for the
asymptotic growth of H(OZ) (W, (K®[D]® [V])¥) by the volume of (W, w). Equating the two
asymptotic rates yields the inequality vol(X, w) < vol(X’, /). Combined with w" > «w™
this yields the desired identity w" = ™ and hence X = Z ~. D.

It should be possible to give a proof of the Nadel-Tsuji theorem without recourse to
the existence of Kahler-Einstein metrics by using complex-analytic tools, as we did in the
previous sections for the case of hyperconcave manifolds.

6.7. Embedding of strongly g-concave manifolds

Let us consider the problem of embedding a g—concave manifold in a projective space
or more generally in a Moishezon manifold.

The first basic result in this direction is the Andreotti Theorem 612, which shows that
the embeddability implies the compactification of the manifold, which is a generalization
of Chow’s algebraicity theorem. An analytic criterion for the embeddability is given by the
Andreotti-Tomassini embedding Theorem £13 We wish to discuss now a more intrinsic
characterisation of g—concave manifolds. The general problem is the following:

6.61. PROBLEM. Let X be a g—concave manifold and let L — X be a positive line
bundle. Find sufficient conditions for X to be an open set of a projective or Moishezon
manifold. Find examples of non—algebraic X (if any).

It is easy to see that hyper 1-concave manifolds possesing a positive line bundle are
projectively embeddable. Moreover, when X admits a positively embedded (i.e. with pos-
itive normal bundle) smooth compact divisor Z, from the rigidity theorem of Griffiths [33]
we infer that global sections in high tensor powers of the the associated bundle [Z] embed a
small neighbourhood V of Z in the projective space. In particular X has a maximal number
of independent meromorphic functions, since the meromorphic functions extend from V to
X.

In general, the difficulty consists in applying the Bochner—Kodaira—Nakano formula for
solving @. Indeed, there is a conflict of signs between the negativity of the Levi form of the
exhaustion function and the positivity of the curvature. If we want to modify the curvarure
of L by multiplying the metric with a suitable weight we lose the positivity. Therefore, we
cannot solve the d—equation directly but rather use a quantitative version of the d—method,
namely the holomorphic Morse inequalities.

We will prove an existence criterion giving a lower bound for dimH9(X, LK) in terms
of geometric data such as the Levi form of X and the curvature of L. As a corollary we
see that, roughly speaking, if the volume of X in the metric v/—1R" exceeds the volume
of dX times a constant expressing the size of the Levi form and of the curvature /—1R"
near the boundary, the ring <7 (X,L) contains local coordinates for each point outside a
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proper analytic set of X. An important feature of our estimate is the presence of a negative
boundary term which expresses the obstruction to finding holomorphic sections. We need
some preparations and notations in order to state the result. Let X be a g—concave manifold
with exhaustion function ¢. If dXc is smooth the Levi form of X, has at leastn—q—1
negative eigenvalues (since the defining function for X¢ is ¢ — ¢). Therefore the following
setting may be considered.

Let D € X be a smooth domain in a complex manifold X such that the Levi form of dD
has at least 2 negative eigenvalues. Then we can choose a defining function ¢ for D which
is smooth on D, D = {¢ < 0} and dd¢ has at least 3 negative eigenvalues. We can in
fact modify a defining function in order to get an extra negative eigenvalue in the complex
normal direction to dD. In the following we keep the function ¢ fixed.

Let us explain why we need at least two negative eigenvalues of the Levi form restricted
to the boundary, or at least 3 positive eigenvalues for /—18d¢. Our method is based on L2
estimates for (0,1)—forms on D which imply the finiteness of the first conomology group
H(X,F) for holomorphic vector bundles F over X. By the Andreotti-Grauert theory we
have dimHP(X,F) <o for p<n—(q+1)—1=n—-qg—2 and dimHP(X,F) = o for
p =n—q—1. Therefore we have to imposen—gq—1>1ie.n—q> 2.

We introduce a hermitian metric w = wy in the neighbourhood of D such that in a
neighbourhood V of gD the following property holds:

6.62. PROPERTY. The first 3 eigenvalues of \/—1dd¢ with respect to w are at most
—2n+ 3 and all others are at most 1.

Finally set dS,_ for the volume form of @D in the induced metric from /—1R- and
|d@ | for the norm of d¢ in the metric associated to /—1R".

We can state the estimate for the dimension of the space holomorphic sections on the
concave domain D.

6.63. EXISTENCE CRITERION. Let D € X be a smooth domain in a complex manifold
X such that the Levi form of dD possesses at least 2 negative eigenvalues. Let L be a
holomorphic line bundle on X which is assumed to be positive on a neighbourhood of D.
Then

. . —Nna: 0 k \/—_1 L n dSL
liminf k"dimH (D,L)>/D<—R> —C((p,L)/B (6.17)

k—— 00 21T D |d¢||_
The constant C(¢,L) depends explicitely on the curvature of L and on the Levi form

V—100¢ (cf. @I8)).

PROOF. We proceed as follows. In a first instance we find the fundamental L? esti-
mate for the (0, 1)—forms with values in LX. Then following the proof of Theorem &2l we
compare the spectrum of the Laplace operator on D (for a complete metric) with the spec-
trum of the Dirichlet problem over a smaller domain D(g/2) which is a set of points of
D at distance less than \/&/2 times a certain constant from dD (see (€£.28) for the precise
definition). On D(&/2) we can use Demailly’s spectral formula and get a lower bound for
the dimension of the space of sections in LK for large k. We shall need the full strength of
Demailly’s result since the curvature of the changed metric has negative eigenvalues. In the
last step we apply the results to metrics which approximate the positive metric on L in the
interior of the manifold. In the process of approximation the set where the curvature has a
negative part concentrates to the boundary dD and is responsible for the negative boundary
term in the final estimate of the Existence Criterion.
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We begin by setting some notations and defining the constant C(¢,L).
Let n a hermitian metric on X, @ areal (1,1)—form and K a compact set in X. We set:

P(V,V)
Mp(®P,K)=sup  sup ,
'7( ) xeK veTyX~ {0} I’](V, V)

the supremum over K of the highest eigenvalue of ® with respect to n. In hindsight to our
previous situation denote:

<

L($) =M, 1 (V—100¢,D)
L(~9) =M, —ir (~V~190¢,D)
= My (v—1R", D)
=1+2(n—1)Mg(v~1R"D)
ML(09) =M —5p (V=109 A 99, 0D)
which represent the relative size of the respective (1,1)—forms. We also put:
C1=/2ML(—¢)M,(L) -1
Ca = 2ML(—¢)Mg,(L) -1
Cs = 2ML($)Mg,(L) +1
Ca = 2M,(L)ML(09)
The definition of C(¢, L) is then
C(¢,L) = (2rm)~"C1C,CH2Cy. (6.18)

<

Let y1 < o < --- < yh be the eigenvalues of /—1dd¢ with respect to . We have
chosen w such that (see Property £.62) in a neighbourhood V of 9D,

M <Tp<M3< —2n+3, (6.19a)
M< 1. (6.19h)

Let x : (—o0,0) — R, x(t) = t=2. We consider the complete metric:

w=w+X(9)09 NI¢ (6.20)
which grows as ¢ ~2 in the normal direction to dD. Along the fibers of L we introduce the
metric:

¢
h: =htexp <—s X(t)dt) (6.21)

inf ¢
where ht is the given metric on L (for which v/—1R" is positive). The curvature of h is

V=IRME) = /TIRY +/“1ex ()30 +v—1ex'($)0d A

We evaluate the eigenvalues of +/ —1R<L’h5> with respect to ap with the goal to apply the
Bochner—Kodaira formula. Denote by ' < T'9 < --- < T'9 the eigenvalues of \/~199¢
and ¢ < < -+ < T the eigenvalues of /—1ex(9)3d¢ +/—1ex'(¢)d¢ Ad¢ with
respect to ap. The minimum-maximum principle yields

M <ry<Ma<ry<ra<—2n+3 by (E198) (6.22a)
rg<o since M3 <0, (6.22b)
MY <max{ly, 0} <1 fora<j<n, by (6.195) . (6.22¢)
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onV. Itis also easy to see that the highest eigenvalue of v/—1x’(¢)d¢ A ¢ with respect
to wy satisfies

V=1X'(¢)0¢ A I$(v,v)
veTf)l(JE{O} wo(V,V) <x(¢), foralixeD. (6.23)
By €2Z3) we have

ré<ex(¢)(r¥+1)
and therefore,

ri<rs<(-2n+4)ex(¢) by (€.223),
rs<ex(9) by €270),
Mf<2ex(¢) forda<j<n, by ©.220) .
Summing up we obtain
M5+ +TE< —ex(9). (6.24)

This sum will appear in the Bochner—Kodaira formula and carries the information about
the concavity of D.
We also have to estimate the eigenvalues of /—1R" with respect to «yp. We denote by
01 < 0z < -+ < ap the eigenvalues of /— 1R with respect to wand by a9 < ad <--- < a
the eigenvalues of v/—1IR" with respect to wy. It is straightforward that
al < ap <My(E) <o onV. (6.25)

Since the torsion operator of wy with respect to ay are bounded by a constant A > 0 (de-
pending only on ay), the Bochner—Kodaira formula (B:220), 870) assumes the following
form:

_|_k —Lk*
%(Ha P+ |3 u||2)
>/D[—k(r§+~--+rﬁ)—k(ag+---+a2)—Ax(¢)]\u\zdv (6.26)

for any compactly supported (0,1)—form in D with values in LK. The volume form is taken
with respect to wy and the norms are with respect to ay on D and ht on L. The inequalities

€&24), ©29) and (6.26) entail
(1050213707 > [ [-Kn— ML) +rex(9)-AX(@)] luPav  (621)

for any compactly supported (0,1)-form in D with values in LK and support in V. We
use now the term ke x(¢) to absorb the negative terms in the left-hand side of (&.27). We
introduce the following notation:

D(g) = {x eD: ¢(x) < —\/E/M{H(L)} . (6.28)

We may assume that V contains the set CD(¢) (for € small enough). In the set CD(g) we
have ex(¢) > M/, (L) and if we choose k > 2Ae~1 we get

—k(n—1)My(L) +kex(¢) —Ax(¢) >

N X

so that (€27 yields
|k LK,
3 (HdL ul2+ |- uHZ) > k/ luj?dV, suppueCD(g), k>2Ae?t (6.29)
D
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Since the metric ay is complete we deduce that (£29) holds true for any (0,1)-form u €

k
Domad N Dom5L " with support in CD(¢) (by the density lemma of Andreotti—\esentini
AT0).

Having obtained the fundamental estimate (£.29) we follow the proof of the abstract
Morse inequalities Theorem (.8). We fill in the details since we need the precise output to
be able to make ¢ — 0.

By @.13), for A sufficintly small and k sufficintly large,

dimHO(D, Lk Kx)+N1<)\,DLk> > NO<)\,DLK>. (6.30)

Thus, we have to estimate N1(A, 01°) from above and then N° ()\ , DLk> from below.

Following Theorem .2 we show that the essential spectrum of Ot on (0,1)-forms
does not contain the open interval (0,1/24) and we can compare the counting function
on this interval with the counting function of the same operator considered with Dirichlet

boundary conditions on the domain D(&/2) (introduced in (£28))) and denoted DIISK(;:/Z)' In

particular N1 (/\ , I:!'-k> is finite dimensional for A < 1/24. Let pe € €*(D) such that p =0
on a closed neighbourhood of D(¢) and ps = 1 on CD(&/2). Denote C; = 6sup |dpg|? < .
The constant depends on € (which is fixed) but not on k. Then for k sufficiently large the
operator oY on (0,1)—forms has discrete spectrum in (0,1/24) and

N1 (/\,DLK> <N? (24)\ +16Cck L, 0k, /2)> , forA e (0,e/2). (6.31)
We obtain now a lower estimate for N© ()\ , D'—k). For A < 1/24 and sufficiently large k the
following relation holds :

NO(A, 08 = NO(A, 005, ). (6.32)

The asymptotic behaviour of the spectrum distribution function for the Dirichlet prob-

lem has been determined explicitely in Theorem There exists a function V. (u,x) =

V;Q(Lvh%)(u,x) (cf. (30)), depending on the eigenvalues of the curvature of (L,h%), which
is bounded on compact sets of D and right continuous in u such that for any u € R

limsupk "NJ (1, 5| gi/ VL (1, %) dvx . 6.33

msupk "N’ (.05 g) < || V(X dvg (633)

Moreover there exists an at most countable set . C R such that for u outside % the limit
of the left—hand side expression exists and we have equality in (£33).
For A < (1/24) and sufficiently large k we have

dimHO(D,L¥) > N° (/\,DLK> ~NY (/\,DLK> (6.34)
For A < (1/24) and A outside Z¢ we apply (€33) and €&32):
H —nN 0 DLk > l/ _O
kILrnook NY(A,O0) > 5 oe/2 Ve(A,x)dvyx. (6.35)

On the other hand given & > 0 we learn from (&31)) that for large k
k _ =k
B ()\,DL ) <N? (24)\ +16C.k L, cPE |?)

<N? (24)\ 43, mﬁkh)
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hence
limsupk "N*(A, 0% < n_l,/ v1(24) +5,%)dV (x).
k—sc0 " JD(g/2)
and after letting k go to infinity we can also let & go to zero. Using these remarks we see
that for all but a countable set of A we have
liminfk "dimHO(D, LX) > %/ [VO(A,x) — VE(24A %)] dV (%)
k—00 ~/D(g/2)
In the latter estimate we may let A — 0 (through values outside the exeptional countable
set) and this yields, by the formulas in (Z.81) for the right-hand side
n
liminfk "dimHO(D, LK) > i/ VEIR(LAY) 6.36
K—co (DL =% D(e/2)(<1he) < 2 ) (639
The set D(£/2)(< 1, he) is the set of points in D(g/2) where /—1R(L"%) is non—degenerate
and has at most one negative eigenvalue. Thus D(g/2)(< 1,h¢) splits in two sets: the
set D(£/2)(0, hg) where /—IR(LNE) is positive definite and the set D(g/2)(1, hg) where
V—IRLe) js non—degenerate and has exactly one negative eigenvalue. The integral in
®.36) splits accordingly into one positive and one negative term:

liminfk~"dimHO(D, LX) > i/ (ﬂR(L,hb)”
D(e/2)(0t)

]
o0 n! 21

1
n!

V-1 <L,ht>)”
/D<s/2><1,h%>( 2 (637
Our next task is to make € — 0 in (&37). For € — 0 the metrics h, converges
uniformly to the metric h of positive curvature on every compact set of D. So on any
compact of D we recover the integral of R-. On the other hand D(&/2) exhausts D and the
sets D(&/2)(1,h) concentrate to the boundary aD.
Let us fix a compact set K C D. For sufficiently small £ we have K € D(&/2) and

V-IR(LhE) n>/ V=Ip(the))"
/D(S/Z)(O,he)< 2n > - K(O,hg)( 2 >

We have hs — ht on L in the ¥*-topology. Since K(0,h) = K letting £ — 0 in the
previous inequality yields

liminf

V=IR(LAY) ”>/ V-IR(Lh") " 6.38
g0 K(s/Z)(O,hg)( ) g L( on ) 3

21T

Let us study the more delicate second integral in (&37)). For this goal we fix on D
the ground metric w_ = RY. This choice will simplify our computations. We denote by
Af < AE <o < AE the eigenvalues of V—IR®NE) with respect to . Then the integral
we study is

n
I :i/ V-1p(Lhg) :Ln/ AEAE.. AE ' /n!
€7 nl D(s/2)(1,h£)( 2m ) (2m) Se) 172 n 0{/
where the integration set is
S(e) :=D(g/2)(1,hg) = {x€D(g/2) : Af(x) <0< A5 (x)}

We find an upper bound for |l¢| so we determine upper bounds for [Af], [AS], ..., [AS] on
S(&). Since A5 is negative on S(&) we have to obtain a lower bound for this eigenvalue. By
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the min-max principle

A£(x) = min RUM) 4 /1ex(9)009 +V~Tex'($)09 7 3b | ()
l - .

VeTD RL(v)

We use now v/—Lex’()d¢ A d¢(v) > 0. Moreover, since A£(x) < 0 we have

. /—100¢(v) . \/——105¢(v)_ —V/—=130¢(v)
otb RL(v) <9, b RL(v) ~ T RL(v) '
Hence
Af>1-ex(¢)ML(—9) onS(e). (6.39)

The inequality (6.39) gives information about the size of S(¢). Indeed, Af < 0 and €39)
entail ¢ > —/eM_(—@). Thus the integration set is contained in a ‘corona’ of size /¢ :

S(e) C D(s/z)ﬂ{x eD: p(x)> —\/sML(—qb)} : (6.40)

Since £x(¢) < 2My,(L) on D(g/2) (see (&Z8)) we deduce the final estimate for the first
eigenvalue:

IAE| <2ML(—¢)ML(L)—1=:C, onS(e). (6.41)
We examine now the eigenvalues )\js for j=2,...,n—1. The min—-max principle yields:

Af <14ex(¢)ML(9)+ min max\/—_lex’(¢)d¢/\5¢(v).

FCTD veF RL(v)
dmF=j

The minimum in the last expression is 0 and is attained on some space F C kerd¢. There-
fore we get:

AF| <14+2Mg,(L)ML(¢) =:C3 onS(e)for j=2,...,n—1. (6.42)

The highest eigenvalue satisfies the estimate:

A< 1 eX(OML(9) +ex'(9) o Y10 1000,

The inequalities: £x(¢) < 2M!,(L) and ex’(¢) < (2M.,(L))¥%c~1/2 hold on D(g/2) (the
last one since x'(¢) = —¢—3). We introduce the short notation:

ME(9¢) =M, /1 (V=109 N, Ke),

where K¢ ;=D\ {x eD:¢(x) > —\/EML(—(P)}. It is clear that M (d¢) converges to
M_(d¢) for e — 0. With this notation,

IAE| < 1+2ML(LML(9) + &~ Y2(2M. (L)% ?ME(d9) onS(e). (6.43)
At this point we may return to |l¢| and use the obvious inequality

[le| < (2rm) " Volg. (S(¢)) ?F;Mfl AZ]--[Aq]
&
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where Vol represents the volume with respect to the metric /—1R". We need to find a
bound only for the volume. Taking into account (6.40),

Vol (5(6)) < VE (VA9 - /(ML) 2
dS. | B — (V=
xsup{/{¢c} @ .ce[ VEML(—9), —/e(2ML(L)) 1}} (6.44)
Relations (&.43)) and ([&.44) yield:
limsup Vol (S(€))sup|Af|
S(e)

E—

ds.
< (V2ML(OML(—¢) — 1) 2M.,(L)M_ (3 /
(VAVGLLML(=9) ~ 1) M, (LML(99) [ 5o
ds.
—C,C /
174 Jop [do|L
Using (€.41) and (&.42) we conclude
. B B ds.
limsup [I¢| < (271 "C1C,C 2C/ 6.45
E—>Op‘£‘ ( ) 123 4 9D |d¢‘L ( )

We are ready to let e — 0 in €37) and we use (€38) and €45). In 38) we can further
let the compact K exhaust D. This proves (&17) and with it the Existence Criterion. [

6.7.1. Perturbation of line bundles. As application of the existence theorem we prove
a stability property for certain g—concave manifolds. Let us consider the complement X of
a sufficiently small neighbourhood of a submanifold of codimension > 3 in a projective
manifold. Assume that we perform a small perturbation of the complex stucture of X such
that along a (not necessaraly compact) smooth divisor the structure remains unchanged.
Then the resulting manifold still has a maximal number of meromorphic functions. If
moreover the canonical bundle is positive, any small perturbation suffices for the result to
hold.

Let M be a compact complex manifold and A C M of dimension g. Then M~ A is
(q+1)-concave. Itis well known (see [1]]) that for a g—concave manifold X (q < n—1) the
transcedence degree degtr.z"(X) of the meromorphic function field is at most the complex
dimension of X. In analogy to the corresponding notion for compact manifolds we say that
a g—concave manifold is Moishezon if degtr % (X ) = dimc X.

Let us consider now a projective manifold M, a submanifold A C M and the concave
manifold X := M~ A. Our aim is to study to what extent small deformations of the sublevel
sets X¢ for small values of ¢ > inf¢ (i.e. for X¢ close to X) give rise to concave Moishezon
manifolds. As a matter of fact we may consider small neighbourhoods V of A, which
means that Xc € M~V for small ¢ > inf¢. Then M \V is pseudoconcave in the sense of
Andreotti and the notion of Moishezon manifold still makes sense (see [1]]).

6.64. STABILITY THEOREM. Let M be a compact projective manifold and let Z be
an ample smooth divisor. Let A C M be a complex submanifold of codimension at least
3. Then for any sufficiently small neighbourhood V of A and for any sufficiently small
deformation of the complex structure of M \\V leaving T (Z) invariant, the manifold M \\V
with the new structure is a pseudoconcave Moishezon manifold. If the canonical bundle
Kwm Is positive, the statement holds for any small enough perturbation.

An immediate consequence is the following.
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6.65. COROLLARY. Let M be a compact projective manifold and let let Z be an ample
smooth divisor. Let A C M be a complex submanifold of codimension at least 3. Then
for any sufficiently small neighbourhood V of A and for any deformation of the complex
structure of M which is sufficiently small on M \V and leaves T (Z) invariant, the manifold
M with the new structure is Moishezon.

In this section we discuss the relation between the perturbation of the complex structure
of a line bundle and the perturbation of the complex structure on the base manifold. This
requires a glance to the corresponding section of Lempert’s article [44]. Let us consider a
compact complex manifold Y = (Y,.#) with boundary endowed with a complex structure
& Let Z be a smooth divisor in Y. Denote as usual by [Z] the associated line bundle. We
are interested in the effect of a small perturbation of .# onY on the complex structure of
[Z] or of the canonical bundle Ky over a compact set D € Y. This will suffice for the proof
of the Stability Theorem. Indeed, denote by L a positive line bundle on a concave manifold
Y and assume that for a small perturbation .#’ of .# there exists a perturbation L’ of L such
that the curvature forms of L and L’ are close on a sublevel set D. Then the right hand—side
terms in (617) calculated for .# and .#” are also close. If one is positive so is the other and
both manifolds D and D’ (and therefore Y and Y’) are Moishezon.

Let us remark that not every perturbation of the complex structure on Y lifts to a per-
turbation of [Z]. We need the hypothesis that the tangent space T (Z) is .#" invariant. Then
Z is a divisor in the new manifold Y/ = (Y, .#") and we consider the associated bundle [Z]'.
Of course any perturbation of .# lifts to a perturbation of the canonical line bundle.

The next Lemma is a “small perturbation” of Lemma 4.1 of Lempert [44]. In the latter
a compact divisor Z C IntY is considered whereas in our case we deal with a divisor which
may cut the boundary. However, since we are interested in the effect of the perturbation
just on a compact set the proof is the same. We use the ¥’ topology on the spaces of
tensors defined on Y and also on spaces of restrictions of tensors to compact subsets of Y .
We say that two tensors are close when they are close in the € topology.

6.66. LEMMA. Let (Y,.#) be a compact complex manifold, Z a smooth divisor in Y
and D €Y. There exists a finite covering % = {Uq }aea Of D and a multiplicative cocycle
{94 € 04 (UanUyg) : a,B € A} defining the bundle L = [Z] in the vicinity of D, with
the following property. If .#’ is another complex structure on'Y close to .# such that T (Z)
rests .#" invariant, the bundle L determined by Z in the structure .#” can be defined in the
vicinity of D by the cocycle {g;B €0 n(Ugqg OUB) : o, € A} such that g’aﬁ will be as
close as we please to g, g 0N Ug mUﬂ assuming .#’ and .# are sufficiently close.

PROOF. We remind for the sake of completeness the construction of the cocycles. For
every point of Y N D there exists an open neighbourhood U inY and a .#-biholomorphism
Y of some neighbourhood of U into C", n = dimY, such that ¢4, (U) is the unit polydisc
and Yy (Z) C {z€ C": z3 = 0}. Let {Uq}1<a<m be a finite covering consisting of sets
U as above and for each a denote by (4 the corresponding biholomorphism. We select
further an open set Ug € Y \. Z such that % = {Uq }o<a<m is a covering of D. For every
1 < o < mwe select a smooth strictly pseudoconvex Stein domain U D Uq such that g
is biholomorphic in the neighbourhood of Ug. Set moreover Uy = Up. We construct a
cocycle defining L = [Z] in the open set UgsU; as follows. First define functions g4 such
that go is identically 1 on Ug and gq = z10 g for a > 1. The bundle L is defined in the
vicinity of D by the .# holomorphic multiplicative cocycle {gqp} Where g = 9a/9g-
Note that g is holomorphic on a neighbourhood of Uy NUp > U NUg.
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Let .#’ be a complex structure as in the statement. Then Z is a complex hypersurface
in the new structure and defines a line bundle L’. We describe next the cocycle of L’. The
hypothesis on the sets U allows the use of a theorem of Hamilton [36]] for U;. The theorem
asserts that for a small perturbation .#’ of the complex structure on a neighbourhood of U,
there is a .#’ biholomorphism , of a neighbourhood of UZ, into C" close to Y. As shown
in [44] we can even assume @, (Z) C {z € C" : z; = 0}. Set g;, to be identically 1 on Ug
and g, =z1 0y}, for a > 1. Then put g’aB = gﬁ,/g}g. Since Yy and Y, are close, g, is .’
holomorphic on a neighbourhood of U, and 92113 is .#’ holomorphic on a neighbourhood
of Uy NUp. The cocycle {9}, } defines L' in the open set UgUg.

The functions g4 and g/, are close on U 4. We can now repeat the arguments from [44]
to show that g4 and g’aﬁ are also close on Uy NU. O

6.67. LEMMA. Let (Y,.#), Z and D €Y be as in the preceding Lemma. Assume that
[Z] is endowed with a hermitian metric h. If .#’ is another complex structure on'Y close to
#, leaving T (Z) invariant, there exists a hermitian metric h’ on the line bundle [Z]’ near
D such that the curvature form RIZ" will be as close as we please to RZ on D assuming
&' and . are sufficiently close.

PROOF. We can define a smooth bundle isomorphism [Z] — [Z]’ in the vicinity of D
by resolving the smooth additive cocycle Iog(gg{ﬁ/gaﬁ) in order to find smooth functions
fa, close to 1 on a neighbourhood of U 4 such that %B = fadap fﬂ‘l. Then the isomor-
phism between [Z] and [Z]" is defined by f = {fq}. The metric h is given in terms of the
covering % by a collection h = {h4} of smooth strictly positive functions satisfying the
relation hg = hg |gap|. We define a hermitian metric h’ = {h, } on (Z]' by hyy = hg | fg?
h, is close to hy on D. The curvature form of [Z]’ has the form

V —1 [Z]/ 1 / /
Therefore, when .#" is sufficiently close to ., ¥-tRIZ"is close to ¥-1R[Zl on D. O

In the same vein we study the perturbation of the canonical bundle.

6.68. LEMMA. Let (Y,.#) and D € Y be as above. Assume Ky is endowed with a
hermitian metric h. If .#” is another complex structure on Y close to .#, there exists a
hermitian metric h’ on Ky, near D such that the curvature form RKv’ will be as close as we
please to RKY on D assuming .#’ and .# are sufficiently close.

PrROOF. We find as before a finite covering %7 = {Uq }qea 0f D and biholomorphisms
Wy defined in a neighbourhood of U, which map U, onto the unit polydisc in C". For
every a € A we select a smooth strictly pseudoconvex Stein domain U; D Ug such that
Yq is biholomorphic in the neighbourhood of U;. The canonical bundle Ky is defined

in the vicinity of D by gqp = det (Oq/dg) = det (a (L,Ua o (p[;l) /dw) which is .7
holomorphic on a neighbourhood of U, OUE D UgNUyg. Here w are the canonical co-

ordinates on C". We apply as before Hamilton’s theorem and obtain .#” biholomorphisms
W/, in a neighbourhood of UZ, into C" close to g .

The cononical bundle Ky is defined in the vicinity of D by g’aB = det (dw&/&%).

Since Y, is close to Yy we see that g;B is close to gqp ON Uy NUg. By repeating the
arguments in the proof of Lemma .67 we conclude. O
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6.7.2. The Stability Theorem. In this section we prove the Stability Theorem. Let us
consider a compact manifold M, dimM = n, and a complex submanifold A of dimension
g. Then X =M~ A'is (g+ 1)—concave. Let us remind the construction of an exhaustion
function. Select a finite covering % = {Uq }a>1 of A with coordinate domains such that if
the coordinates in Uy are zq = (z4,22,---,20) we have ANUg = {z € Uq : 287 = -.. =
Zg =0}. Set ¢a(2) = Yg11 |z%|%. Choose a relatively compact open set Ug € M ~. A such
that 7 = {Uo} U = {Uq }a>0 is a covering of M and set ¢o =1 on Up. Let {pa}a=0
be a partition of unity subordinated to %/. Define ¢ = ¢a = 3 q>0PaPa. The function ¢
enjoys the following properties:

(1) ¢ cc*M),A={¢p=0}and ¢ >0.
(2) Foranyc > 0we have {¢ >c} € M\ A.

(3) 999 = S (Pa099a + 9ad8pa +3pa N 99a+ 0o A pa ) Where
00¢q =235, 1dzy AdZ4,.

Forze A, 009 (2) = 54 Pa(2)0994(z) has n —q positive eigenvalues. Hence dd¢ has
n— q positive eigenvalues in a neighbourhood of A. Moreover 39 ¢ is positive semidefinite
on A. Let us construct a hermitian metric on M which is “small”” in the normal direction
to A (near A) and “large” in the tangential direction to A. We can consider on each Uq
the metric 6~y dzg Adzy + 835, 1 dzy AdZy, (8 > 0), and then patch these metrics
together with the partition of unity to obtain a metric ws on M. Let Y <0 <--- <\
be the eigenvalues of v/—1dd¢ with respect to ws. For & sufficiently small there exists a
neighbourhood U 5 of A such that on U, yf >—-0(d) for j=1,...,qand yf > 0(671) for
J=0q+1,...,n. Therefore we can choose 9 such that on Ug, yf >—1forj=1,...,qand
yo>2n—3for j=q+1,...,n.

Let us consider now the domains X¢ = {¢ > c} for ¢ > 0 sufficiently small. If codimA >
3 the domains X¢ admit as definition function ¢ — ¢ whose complex hessian has 3 nega-
tive eigenvalues in the vicinity of 0X.. If M possesses a positive line bundle we are in the
conditions of the Existence Criterion. Note that the metric ws satisfies Property B.62] for
all Xc with c sufficiently small. For technical reasons we construct a metric w as follows.
Consider the real part g5 of the hermitian metric ws . Thus g is a riemannian metric on
M. Take a hermitian metric w whose real part g satisfies g(u,v) = gs(u,v) +gs(-£u, .#Vv)
(u,v € C®T(M)) where .# is the complex structure of M. If & is sufficiently small w still
satisfies Property 6:620 From now on we fix such a metric w on M. The constants M, (L)
are calculated with respect to this metric.

6.69. LEMMA. Assume that M is a projective manifold and L is a positive line bundle
over M. Let A be a submanifold with codimA > 3. Then for sufficiently small regular
values ¢ > 0 we have

5 anL r]>CC—(]§L/ ot 6.46
/xc< 2 > ( ’ ) X |d¢\|_ ( )
where C(c — ¢, L) has been introduced in €&I9).

PROOF. Remark first that the constant C(c — ¢, L) converges to 0 for c — 0. Indeed,
99(c— @)= —0d¢ so the constants M (c — ¢), M (¢ —c) and M/ (L) are bounded for ¢
running in a compact interval since dd¢ and L are defined over all M. We observe further
that d¢(z) — 0 when z — A (in fact d¢ [a=0). Hence ML (d(c— @) Ad(c—¢),dXc)
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converges to 0 (and with it C(c — ¢)) when ¢ goes to 0. Examine now the term

/ dS,.
oxc Aol

Although |d¢ | — 0 for z — A this integral goes to 0 too for c — 0. Indeed, since A
has codimension > 3 we have

dSL:/ dS. = 0(c%), c—0.
2% {9=c)

On the other hand for a regular value c of ¢,
’d(p fdxc‘zo(c), c—0.

We infer ds
L 4
—— =0(c"), c¢—0.
JTag =0
for regular values c of ¢. In conclusion the boundary integral in (£.48) goesto 0 asc — 0.
The domain integral in (€.46)) being bounded from below by a positive constant the Lemma
follows. O

At this stage we can prove the Stability Theorem. Let us consider a smooth domain
Y := X for ¢ small enough such that condition (€28) holds. Let .#’ be a new complex
structure on' Y which leaves T (Z) invariant, for an ample smooth divisor Z on M. We apply
Lemma for the manifold Y and a smooth relatively compact set D where D := Xg,
d > c, such that &48) still holds on X4. By hypothesis the bundle L carries a hermitian
metric with positive curvature. LemmaE.67 shows that there exists a hermitian metric h’ on
the bundle L near D such that R- and RL" are as close as we please in the ¥’ topology on D
if .# and .#” are sufficiently close. In particular R is positive near D. Note that a defining
function for D’ is still d — ¢ and its complex hessian will have 3 negative eigenvalues in
the vicinity of dD’ for a small perturbation of the complex structure.

Thus we can apply the Existence Criterion for D’ and L’. In order to calculate the
constant C(d — ¢,L") we construct first a metric &’ onY in the following way. The metric
w determines a riemannian metric g on'Y which was chosen such that g(u,v) = gs(u,v) +
0s5(#u, #v) for u,v € C®T(M). We consider then a hermitian metric &’ on Y’ with
real part g’ where g'(u,v) = gs(u,v) +95(-#'u, . #'v) foru,v € C® T (M). The metric '’
satisfies the Property [6.62 with respect to the defining function d — ¢ of D’, provided .#
and .7’ are sufficiently close. Therefore the constants My/(d — ¢), My/(¢ —d), My (L") and
My/(d(d—¢),0D’) are close to the corresponding constants My (d — ¢ ), M| (¢ —d), M (L)
and M_(2(d — ¢),0D) respectively. This entails that C(d — ¢,L’) is close to C(d — ¢, L).

! n -
It is also clear that [p (MR'— ) and [;5,dS;//|d¢|L, are close to the corresponding

2
integrals on D and D of ¥-1\/=1R" and dS/|d¢ ... Therefore
GaRY) > c-a.L) [ a5y
L (5R) > ca—o) [ et 628)
By the Existence Criterion
dimHO(D/, L) > k" (6.47)

for large k and thus D’ and so Y’ are Moishezon, provided .# and .#’ are sufficiently close.
An entirely analogous argument takes care of the case of perturbation of the canonical
bundle Ky. This proves the Stability Theorem.
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CHAPTER 7

Generalized Bergman kernels on symplectic manifolds

In this Chapter we wish to prove the asymptotic expansion of the generalized Bergman
kernels as stated in Theorems [LZT and [LZ21 The method is to first use the spectral gap of
the renormalized Bochner-Laplace operator and the finite propagation speed of solutions
of hyperbolic equations to localize the problem. Then we combine the Sobolev norm
estimates and a formal power series trick, and in this way, we compute the coefficients of
the expansion (cf. (Z78)), (Z&3)).

The asymptotic expansion of the Bergman kernel of the spin® Dirac operator was ob-
tained in [18]. We will adapt the method used there to our situation. One of the difficulties
of the analysis of the renormalized Bochner—Laplacian is that there are small eigenvalues
(cf. Corollary [ZZ)). In the case of the spin® Dirac operator the only small eigenvalue of
the operator is zero when k — oo, which permits to obtain the full off-diagonal asymptotic
expansion (cf. [18, Theorem 3.18]). In the current situation, we have small eigenvalues
and we are interested to prove the near diagonal expansion of the generalized Bergman
kernels. This result is enough for most of applications.

Let us provide a short road-map of the chapter. The first section is devoted to the proof
of the existence of the spectral gap in Corollary [.Z2l Then we shall sketch the ideas of the
proof of Theorems [L.21] and in Section The full details are available in the recent
preprint [?,124]. In Section[Z.3, we explain some applications of our results. Among others,
we give a symplectic version of the convergence of the induced Fubini-Study metric [133],
and we show how to handle the first-order pseudo-differential operator Dy of Boutet de
Monvel and Guillemin [13], which was studied extensively by Shiffman and Zelditch [28],
and the operator d +d when X is Kahler but J # J. We include also generalizations for
non-compact or singular manifolds and as a consequence we obtain an unified treatment of
the convergence of the induced Fubini—Study metric, the holomorphic Morse inequalities
and the characterization of Moishezon spaces.

7.1. The spectral gap of the Dirac and Bochner-Lapace operators

Our first task is to define a generalization for the space of holomorphic sections from
the case of complex manifolds. For this purpose we shall exhibit the spectral gap of the
Bochner-Laplacian. The results of this section are taken from [?].

7.1.1. Statement of the results. Let (X, w) be a compact symplectic manifold of real
dimension 2n. Assume that there exists a Hermitian line bundle L over X endowed with a
Hermitian connection 0" with the prequantization property:

V=1

21

where Rt = (0%)? is the curvature of (L, O%). In different applications it is also necessary
to consider a Hermitian vector bundle (E,hE) on X with Hermitian connection COF and

1 A1

R =w (7.1)
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curvature RE. Let g™ be a Riemannian metric on X and J: TX — TX be the skew-
adjoint linear map which satisfies the relation

w(u,v) =g Ju,v) for u,veTX. (7.2)

Let J be an almost complex structure which is separately compatible with g™* and c, i.e.
9™%(3,3)=g"*(,-), w(J-,3-) = w(-,-) and w(-,J-) defines a metric on TX (for example,
J(—JZ)*% verifies these conditions; see [25, p.61]). Then J commutes with J.

We introduce the Levi-Civita connection 07 on (TX,g™) with its curvature R™ and
scalar curvature rX. Let 0%J € T*X ® End(TX) be the covariant derivative of J induced
by OTX. We introduce the induced Bochner-Laplacian acting on % (X, LK@ E):

k KoEn 5 —LK k
AL ®E _ (DL ®E> DL ®E _ z[(D;m&E)Z_ DE;%I;] (73)
|
where {e;}; is an orthonormal frame of (TX,g™%). The spectrum of AL“®E drifts to the
right at linear rate in k as k — co. Thus we do not have any analog of the space of harmonic

forms. That’s why we renormalize in the following manner. We fix a smooth Hermitian
section ® of End(E) on X. Set

T(X) = —mTrrx[JJ] = —‘2_1R'-(ej,Jej) >0, (7.4)
Ho= __inf +/—1Rg(u,du)/|ulZ >0, (7.5)

UETX, XeX
and define the renormalized Bochner-Laplacian:
Do = A-9F _ KT+ O, (7.6)

In order to study this operator we construct canonically a spin® Dirac operator Dy
acting on Q%* (X, LX® E) = @g_o Q%4(X,L*® E), the direct sum of spaces of (0,q)-forms
with values in LK@ E. We have the following vanishing theorem:

7.1. THEOREM. There exists C > 0 such that for k € N, the spectrum of D2 is contained
in the set {0} U (2kpo —C, +). Set D, = Dy [ o, then for k large enough, we have

kerD, = {0}. (7.7)

As a simple corollary, kerD, = {0} for k large enough, where D, = Dy [qo.a, Which
is the vanishing result of [8, Theorem 2.3], [15, Theorem 3.2]. If A is any operator, we
denote by Spec(A) the spectrum of A.

7.2. COROLLARY. There exists a constant C; > 0 (which can be estimated precisely by
using the €°-norms of R™X, RE, RL, 0%J and @) such that the spectrum of the Schrédinger
operator Ay o is contained in the union [—C,Cy| U [2kpp —Cy, +):

Spec Ao C [—Cr,CL] U [2kpo —Ci, +oof. (7.8)

where Cy_ is a positive constant independent of k. For k large enough, the number dy of
eigenvalues on the interval [—C| ,C | satisfies

di = (ch(LX® E) Td(TX), [X]). (7.9)

In particular dy ~ k"(rank E) vol,(X).
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In the case E is a trivial line bundle, Corollary [Z2 is the main result of Guillemin and
Uribe [2I, Theorem 2]. In [21I] it was established that dyx ~ k"voly,(X). When J =],
Borthwick and Uribe [8, p. 854] got the precise value dy, for large enough k, in this case.
The idea in [8, [15, [16, 21] is to first reduce the problem to a problem on the unitary circle
bundle of L*, then apply Melin’s inequality [22, Theorem 22.3.2] to show that Ay o Is
semi-bounded from below. In order to prove [21, Theorem 2], they apply the analysis of
Toeplitz structures of Boutet de Monvel-Guillemin [[13]. We provide a simple proof based
on a direct application of Lichnerowicz formula.

For the interesting applications of [21, Theorem 2], we refer the reader to Borthwick
and Uribe [8, 10, 11]. For the related topic of geometric quantization see [26}, 34].

This section is organized as follows. In Section we recall the construction of the
spin® Dirac operator and prove our main technical result, Theorem [Z7l In Section [Z1.3,
we prove Theorem [ZT and Corollary [Z2 In Section [Z1.4, we generalize our result to the
L2 case. In particular, we obtain a new proof of [16, Theorem 2.6].

7.1.2. The Lichnerowicz formula. Let TX® = TX ®g C denote the complexifica-
tion of the tangent bundle. The almost complex structure J induces a splitting TX® =
T@OX pTOX, where TAOX and T (O1X are the eigenbundles of J corresponding to the
eigenvalues /—1 and —/—1 respectively. Let PO1 = 3(1—/=1J), P%! = 1(1+/~1J)
be the natural projections from TX¢ onto T (19X, respectively T (O-1X.

Accordingly, we have a decomposition of the complexified cotangent bundle: T*X¢ =
TL0*X T OL*X. The exterior algebra bundle decomposes as AT *X ¢ = @, AP9, where
AP = APAT*X ¢ = AP(T (L0 *X) @ AY(T (01X,

Let 0L and 0% be the canonical hermitian connections on T(2:9X and T@DX re-
spectively:

10 _ pl0~TX pl,0
OL0 — pLogTXp10

DO,l — PO,].DTX PO,l )

Set A, = 07X — (00 @ 0%1) € T*X @ End(T X) which satisfies JAy = —AzJ.

Let us recall some basic facts about the spin® Dirac operator on an almost complex
manifold [23, Appendix D]. The fundamental Z, spinor bundle induced by J is given
by A% = A& (T O ) g A(TOL*X). For any v € TX with decomposition v =
Vio+Vo1 € TEOX @ TODX, let Vip € T(©@1*X be the metric dual of vy o. Then ¢c(v) =
V2(V; g A —iyy, ) defines the Clifford action of v on A%+, where A and i denote the exterior
and interior product respectively.

Formally, we may think

1/2
Ao =S(TX)® (detT<1>°>x) / ,

where S (T X) is the spinor bundle of the possibly non-existent spin structure on T X, and

1/2
(detT (17°)X) is the possibly non—existent square root of det T (19X .

Moreover, by [23, pp. 397-398], O induces canonically a Clifford connection on
A%+ Formally, let 0STX) pe the Clifford connection on S(TX) induced by 07X, and let
(1% be the connection on (det T (19X )¥/2 induced by 010, Then

Ociff — 0SUX) & 1d + Id 0%,
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Let {w;}"_; be a local orthonormal frame of T(+:9X. Then

ezj:%<Wj+Wj> and ezj_lz%(wj—wj), ji=1,....n, (7.10)

form an orthonormal frame of TX. Let {wi}?:l be the dual frame of {w;}{'_;. LetT be

the connection form of 0% @ 0%% in local coordinates. Then O7* =d 4T + Az. By [23,
Theorem 4.14, p.110], the Clifford connection O on A%+ has the following local form:

DT =d+ 25 (I +Az)eiej)c(ec(e))
1]
—d+y {(rwn Wy 7+ (7.11)
m
%<A2w| W) i o, + %<A2W| ,Wm>w' AWTA } )
Let OY“*E be the connection on LX® E induced by O, OE. Let OA**®L“9E pe the
connection on A®* @ LK@ E,

D/\O'.®LK®E — DC“ff ® Id + Id ®DLK®E. (712)

Along the fibers of A% @ L*® E, we consider the pointwise scalar product (-, -) induced
by g™, ht and hE. Let dvx be the riemannian volume form of (TX,g™). The L?-scalar
product on Q% (X, LK® E), the space of smooth sections of A% ® LK@ E, is given by

(51,52) = /X (51(),5200)) dvx (X) . (7.13)
We denote the corresponding norm with ||-||.

7.3. DEFINITION. The spin® Dirac operator Dy is defined by

2n
D=y cle)) 0 "o : Q0 (X, LK@ E) — QO (X, L* 0 E). (7.14)
=1

Dy is a formally self-adjoint, first order elliptic differential operator on Q%*(X,LX® E),
which interchanges Q%&#(X, L@ E) and Q%% (X LX® E). We denote

Dk+ = Dk rQO,wm, DI; = Dk rQO.odd . (715)
Let RT™"X be the curvature of (T@0x, 00, Let
Wy = — ; RE (W, Win) WM A iy ,
m

(7.16)
r(x) = 3 R-(w}.w)).
J

Remark that by (Z2), at x € X, there exists {w;}{!_; an orthogonal basis of T@OX, such
that J = /=1 diag(ay(x),- - - ,an(x)) € End(T 10X), and a;j(x) > 0 fori € {1,---,n}. So

Wy = —ZHZa| (X)W A iy

(7.17)
T(X) = ZnZ a(x).

The following Lichnerowicz formula is crucial for us.
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7.4. THEOREM. The square of the Dirac operator satisfies the equation:
DZ — (DA07‘®L"®E> T A eLkeE _ 2k — KT + 1K +(R), (7.18)
where K is the scalar curvature of (TX,g™), and

cR) =3 <RE +1Tr [RT(LO)XD (er,em)c(er)c(em) .

I<m
PROOF. By Lichnerowicz formula [2, Theorem 3.52], we know that

DE — (D/\O,0®LK®E)* DAO’.®LK®E+%K+C(R) +K Z R'-(e|,em) c(e|)c(em). (7_19)

I<m
Now, we identify R- with a purely imaginary antisymmetric matrix —271/—1J € End(T X)
by @Z2). As J € End(T 39X), by [2, Lemma 3.29], we get (ZI8). O

7.5. REMARK. Let & = & @ &~ be a Clifford module. Then it was observed by
Braverman [15] §9] that, with the same proof of [2, Proposition 3.35], there exists a vector
bundle W on X such that & = A% ®W as a Zp—graded Clifford module.

As a simple consequence of Theorem[Z.4] we recover the statement on the drift of spec-
trum of the metric Laplacian first proved by Guillemin-Uribe [21, Theorem 1], (see also
[8, Theorem 2.1], [15, Theorem 4.4]), by passing to the circle bundle of L* and applying
Melin’s inequality [22, Theorems 22.3.2-3].

7.6. COROLLARY. There exists C > 0 such that for k € N, the Bochner-Laplacian
ALCE — (OL9E)* OL9E on (X, Lk E) satisfies :

AY9E k1> —C. (7.20)
PROOF. By (ZI8), for s € €°(X,LX®E),
IDks |2 = [N #HEs|12 —k(T(x)s,5) + (2K +C(R))S,5) - (7.21)

From (ZI1T), we infer that

HD/\Q‘@L"@ESHZ — HDL"®E5HZ+ H 'Z (AW, ,Wm>W' /\Wm/\SHZ.
,m

and therefore there exists a constant C > 0 not depending on k such that
0 < |IDys||? < [|0H“Es||? — k(1 (x)s,5) +Cl|s|2 = (&~ kT (x))s,s) +C[s]2.
U

7.7. THEOREM. There exists a constant C > 0 such that for any k € N and any section
s€ Q70X L*QE) = @1 Q24X LK@ E),

IDks||? > (2kiio —C) s (7.22)
PROOF. By (I8), for s € Q% (X,LX®E),
IDgs||? = {07 92 _k(T(x)s,5)} — 2K(wss, S) + (2K +C(R))s,5) . (7.23)
We consider now's € (X, LK® E’), where E’ = E @ A%*. Estimate (Z20) becomes
2 _K(1(x)s,8) = —C|s2. (7.24)

Ifs € Q>O(X,LX®E), the second term of (Z23), —2k(wys, s) is bounded below by 2k ||s||%.
While the third term of (ZZ3) is O(||s||?). The proof of (ZZ2) is completed. O

HDL“@E’S
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7.1.3. Applications of Theorem [l We give now the proofs of the result stated in
Section[ZT1l

PROOF OF THEOREM [Tl By (£.Z2), we get immediately (7). For the rest, we use
the trick of the proof of Mckean-Singer formula.

Let 7], be the spectral space of Dﬁ corresponding to the interval (O, u). Let %’f, H
be the intersections of .77, with the spaces of forms of even and odd degree respectively.
Then 7, = %’f ® ., . Since D; commutes with the spectral projection, we have a
well defined operator D/ : A" — A, which is obviously injective. But estimate (Z22)
implies that 7, = 0 for every u < 2kA —C, hence also .%,;" = 0, for this range of p.
Thus 7, =0, for 0 < u < 2ku —C. The proof of our theorem is completed. O

PROOF OF COROLLARY [Z.2] Without loss of generality we may assume @ = 0. Let
P : Q% (X,LK®E) — € (X,LX®E) be the orthogonal projection. For s € Q% (X, LX®
E), we will denote so = Pys its 0—degree component. We will estimate Ay g on Pk(kerD;)
and (kerD )+ N&™(X,LXQE).

In the sequel we denote with C all positive constants independent of k, although there
may be different constants for different estimates. From ([ZZ1)), there exists C > 0 such that
fors € €°(X,LX®E),

|[1Dks|® — (Bkos,8)| < Clls|>. (7.25)
Theorem [ZTand [ZZZ5) show that there exists b > 0 such that for k € N,
(Dkos,S) = (2kA —D)||s||2, forse €°(X,LX®E)N (kerD)) . (7.26)

We focus now on elements from Py (ker Dk+), and assume s € kerDy. Sets’' =s—sg €

Q>(X,L*®E). By L23), (L),

—2k(ays,s) < CJ|s||?. (7.27)
We obtain thus [8, Theorem 2.3] (see also [9], [15, Theorem 3.13]) for k > 1,
I8/l < Ck™*2]lsoll. (7.28)

(from (ZZ8), they got KerD, =0 for k > 1, as sp = 0 if s € kerD,). In view of (ZZ3) and

0,0 k
| TN 9E s |2 — k(T(x)s0, S0) < Cl|Sol|*. (7.29)

By (Z10),

Ot eL'eBs — OYeEgy 1t Abs, +a (7.30)
where s, is the component of degree 2 of s, A}, is a contraction operator comming from the
middle term of (ZTT), and o € Q>°(X,L*®E). By (Z29), (Z30), we have

k
|0~ “E o+ Absa||* — k(T(X)s0,50) < C|lsoll?, (7.31)

and by (ZZ8), (Z30),
|0-“Eso]|* < CKIsolI?, (7.32)

By (Z28) and ([Z32), we get
HDLK®ESO+A/252H2 > HDLk®ESOHZ_ZHDLk®EsoH | Abs2|| .
> || 0o —Cllsol12

Thus, (Z31) and (Z33) yield
HDLK@ESoHZ—k(T(X)So,So) < ClJsol|?. (7.34)
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By (ZZ0) and ([Z34), there exists a constant a > 0 such that

| (Akos,s)| < als||®, seP(kerDy). (7.35)
By (ZZ8), we know that for k > 1, P : kerD; — Py(kerD})) is bijective, and
€™ (X,L*@E) = P(kerD,) @ (kerD )L N &= (X, L E). (7.36)

The proof is now reduced to a direct application of the minimax principle for the
operator Ayp. It is clear that (ZZ28) and (Z35) still hold for elements in the Sobolev
space W1(X,L*® E), which is the domain of the quadratic form Qy(f) = HDLK@EfHZ —
k(T(x)f, f) associated to Ay o. Let A <AX < -+ < )\Jk < -+ (j € N) be the eigenvalues of
Dy o. Then, by the minimax principle [A30,

A= min max f). 7.37
: FCDokafEF,HfH:le() (7:37)

where F runs over the subspaces of dimension j of Dom Qy.

By (Z35) and (Z.37), we know )\Jk < a, for j < dimkerDy . Moreover, any subspace
F C DomQ with dimF > dimkerD,, + 1 contains an element 0 # f € F N (kerD)*. By
(Z26), (Z37), we obtain AK > 2kpo —b, for j > dimkerD,” + 1.

By Theorem [ZT]and Atiyah-Singer theorem []],

dimkerD;f = indexD;” = (ch(LK® E) Td(TX), [X]) (7.38)

where Td(T X) is the Todd class of an almost complex structure compatible with c. The
index is a polynomial in k of degree n and of leading term k"(rankE)vol,(X), where
Vol (X) is the symplectic volume of X. O

7.8. REMARK. If (X,w) is Kéhler and if L, E are holomorphic vector bundles, then

o _ |k
Dk =v2(d+3 ) where d = a- " DZ preserves the Z-grading of Q%¢. By using the
Bochner-Kodaira-Nakano formula, Bismut and Vasserot [6, Theorem 1.1] proved The-
orem[Z7 As @ : (kerD)) N&*(X,LK@ E) — QOY(X,LX®E) is injective, we infer

2]|9s||* > (2kpo—Cu)|Is||2, for s € (kerD} ) N g™ (X, LK@ E). (7.39)

By Lichnerowicz formula [, (21)], 20 @ = Ax o+ 2K +¢(R) on ¥ (X, LK® E ), and Corol-
lary [ 2 follows immediately.

7.9. REMARK. As in [[7], we assume that (L,h~, 0O%) is a positive Hermitian vector
bundle, i.e. the curvature R" is an End(L)-valued (1,1)-form, and for any u € T(1OX
{0},se L~ {0}, (R~(u,m)s,s) > 0. Let SK(L) be the k™ symmetric tensor power of L. Then
if we replace L¥ in Sections by S(L), or by the irreducible representations of
L, which are associated with the weight ka (where a is a given weight), when k tends to
+oo, the techniques used above still apply.

7.1.4. The spin® Dirac operator on a covering manifold. We extend in this section
our results to covering manifolds and refer to Chapter Bl for the necessary background about
elliptic operators on covering manifolds and '-dimension.

Let X be a paracompact smooth manifold, such that there is a discrete group I acting
freely on X with a compact quotient X = X /T. Let 7 : X — X be the projection. Assume
that there exists a M—invariant pre—quantum line bundle L on X and a M—invariant con-

nection 0" such that & = \/2—‘_H1(DE)2 is non—degenerate. We endow X with a M—invariant
Riemannian metric g"*. Let J be an I-invariant almost complex structure on T X which is
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separately compatible with @ and g™%. Then J, ¢™%, @, J, L, E are the pull-back of the
corresponding objects in Section by the projection 7 : X — X. Let ® be a smooth
Hermitian section of End(E ), and ® = ®o 71-. Then the renormalized Bochner-Laplacian
Ak,CT) IS
Bp=0"F —k(tomr)+® (7.40)

which is an essentially self-adjoint operator. Following Section we introduce the
[—invariant §pin~° Dirac operator Dk on Q% (X,L*® E) and the M'—invariant Laplacian
ALOE — (OM9E)* OO on (X, [X® E). Let D} and D be the restrictions of Dy
to LY **(X,[X® E) and L3 **(X,[X® E), respectively.

7.10. PROPOSITION. There exists a constant C > 0 such that for k € N, Ek = —Con
L2(X,LK® E).

PROOF. By applying Lichnerowicz formula (ZIB) for s € €5°(X,LX® E), we obtain as
in the proof of Corollary [Z.8} that there exists C > 0 such that (A, 55,5) > —Cl|s||%. Since

the metric gT>z is complete, this is valid for any s € Dom(Zk &) O

In the same vein, we can generalize Theorem [ 7]

7.11. THEOREM. There exists C > 0 such that for k € N and any s € Dom(Dy) with
vanishing degree zero component,

1Dks|? > (2kA —C) [Is|*. (7.41)

As an immediate application of the estimate (Z41) for the Dirac operator and Remark
[Z5, we get the following asymptotic vanishing theorem which is the main result in [16,
Theorem 2.6].

7.12. COROLLARY. ker 5; = {0} for large enough k.
We have also an analogue of Theorem [Z11

7.13. COROLLARY. There exists C > 0 such that for k € N, the spectrum of D2 is
contained in the set {0} U (2kA —C, +0).

PROOF. The proof of Theorem [Z1] does not use the fact that the spectrum is discrete.
Therefore it applies in this context, too. O

We study now the spectrum of the IN—invariant Bochner-Laplacian Zk %"

7.14. COROLLARY. The spectrum of Zk,&) is contained in the union (—Cy,Cyr) U (2k Lo —
CL,+) , where C._ and L are the same positive constants as in Corollary [.2 For large
enough k, the M'-dimension dy of the spectral space E ([—CL,CL],Zk’a)) corresponding to
(—C_,Cy) satisfies dy = (ch(LK® E) Td(X), [X]). In particular dx ~ k"(rank E) volg,(X).

PROOF. By repeating the proof of Corollary [Z.2, we get estimates (7.28) and (7.35) for
smooth elements with compact support. Lemma B2 yields then

(B, 355)| <allsol?, s€Dom(8, 5)NPk(kerDy), (7.42a)

k>
(B 35:5) > (2KA —D)[s|[?, s € Dom(A, 5)N (ker D )*. (7.42b)
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Recall that Py represents the projection L3*(X,LK® E) — LI°(X, LK E). Since
the curvatures of all our bundles are '-invariant, estimate (ZZ8) extends to the covering
context with the same proof. In particular, Py : ker D,” — Pi(ker D;") is bijective, Py |

B+
and its inverse are bounded. So Pk(kerf);) is closed. By Proposition B.8, (4), .
dimr ker D, = dimr Pc(kerD}) . (7.43)

As in ([(Z38), we have
Dom(Zkﬁ)) = Pi(kerD)) @ (kerD, ) N Dom(Zk@) : (7.44)

We use now a suitable form of the minimax principle from [29, Lemma 2.4] (cf. also (£9)):

Nr(H,8, ¢) =sup{dimrV : V. C DomA, 5 ; (B, 5f, ) <u|fl[>,VfeV} (7.45)

k® '

where V runs over the F'—modules of Lo(X,LX@ E).

By (Z41), (Z.423) and (Z.45), we get

Nr(CL, 8y 5) > dimrker Dy’ . (7.46)
Let us consider u < 2kpo —Cp. We prove that

NF (1,8, 5) < dimr ker Dy . (7.47)

LetV C Dom(4, ) be an arbitrary F—module with (A, u,u) < pl|ul%. If dimrV >
dimr ker D}, by Proposition 58, (4) and (ZZ4), there exists 0 # v € V N (ker D}} )+, which
in view of ([(Z.420) is a contradiction. Therefore dimrV < dimp kerﬁz. By (£45), we get
(Z4D). N

Relations (Z46) and (Z.47) entail that the function Nr(u,Ak@) is constant in the in-
terval u € [Cr, 2kup — Cr) and equal to dimp ker[~);. Enlarging a bit C_ if necessary, we
see that the spectrum of Ek’a) is indeed contained in [-C,C ] U[2kpuo —CL, +), and the

r—dimension dy of the spectral space E ([—Ci,CL]. A, ) equals dimr ker 5;.
By Corollary [ZI2, dimr kerD,” = indexr D;. Moreover, Atiyah’s L2 index Theorem

(cf. [?, Theorem 3.8] or E2) shows that indexr D = indexD,". By (Z38), the proof is
achieved. O

7.2. Asymptotic of the Bergman kernel

We use now the existence of the spectral gap of the renormalized Bochner-Laplacian
in order to define the Bergman kernels.

7.15. DEFINITION. Let us denote by 7, the span of eigensections of Ay ¢ = ALGE _
kT 4 @ corresponding to eigenvalues in [-Cy,C_]. Let P, be the orthonormal projection
from ¢>(X,LX® E) onto %, The smooth kernel of (Ax0)9Psy4 . q > 0 (where (Ak,q,)o =
1), with respect to dvx (x') is denoted Py (x,X") and is called a generalized Bergman kernel
of Ak’q) .

The kernel Pqk(x,X') is a section of 15 (LX® E) @ 15 (LX® E)* over X x X, where 15
and 7 are the projections of X x X on the first and second factor. Let {S}‘}?ﬁl be any
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orthonormal basis of .7 with respect to the inner product (ZZI3) such that A »SK = A; kSK.
Using these notations we can write

dk
Pak(X,X) = _ZAﬁksr(x) @ (SK(X))* € (LK@ E)x® (LY®E)}. (7.48)

Since LX ® (LX)* is canonically isomorphic to C, the restriction of Pqy to the diagonal
{(x,X) : x € X} can be identified to Bqy € € (X,E ®E*) = € (X,End(E)).

7.2.1. Localization of the problem. We will first show how to localize the problem.
Let aX be the injectivity radius of (X,g™*). We fix £ € (0,a*/4). We denote by BX(x, €)
and B™X(0, £) the open balls in X and TyX with center x and radius &, respectively. Then
the map TuX > Z — expX(Z) € X is a diffeomorphism from B™X(0,&) on BX(x, &) for
£ < aX. From now on, we identify B™*(0, £) with BX(x, &) for £ < aX.

Let f : R — [0,1] be a smooth even function such that f(v) =1 for |v| < €/2, and
f(v) =0 for |v| > €. Set

Fla)=( / +°° f(v)dv) - / :m g2t (v)dv. (7.49)

—00

Then F(a) is an even function and lies in the Schwartz space . (R) and F(0) = 1. Let F

be the holomorphic function on C such that F(a?) = F(a). The restriction of F to R lies in
the Schwartz space .'(R). Then there exists {c; }{*_; such that for any p € N, the function

k .~
Fp(a) =F(a)— ) cja'F(a), (7.50)
=1
verifies
F)(0)=0 forany0<i<p. (7.51)
7.16. PROPOSITION. Forany I,m € N, there exists C; ,, > 0 such that for k > 1
1 n_ / —L+2(2mt+-2n+1)
R (ebio) 06X) —Pox(exX) | < Cik .52

Here the €™ norm is induced by O~ and [F.

Using (Z.49), (ZE0) and the finite propagation speed [[17, §7.8], [32, §4.4], it is clear that
forx,x' € X, R (%(Ak,q,) (x,-) only depends on the restriction of Ay o to BX(X, ek=1), and
= (%(Ak,q,) (x,x') =0, if d(x,x') > ek—4. This means that the asymptotic of A} P (X,°)
when k — +o0, modulo &'(k~*) (i.e. terms whose ™ norm is ¢ (k') for any I, m € N),

only depends on the restriction of Ay ¢ to Bx(x,ek*%). In particular, the asymptotic of
Pg.k(X0,X) as k — oo is localized on a neighborhood of xo.

7.2.2. Rescaling and Taylor expansion of the rescaled operator. Thus we can trans-
late our analysis from X to the manifold R?" ~ T, X =: Xo. For Z € B™* (0, £) we identify
Lz,Ez and (LX®E)z to Ly, Ex, and (LX® E )y, by parallel transport with respect to the con-
nections O\, OF and O-“°E along the curve vz : [0,1] 5 u — expy (UZ). Let {e;}; be an
oriented orthonormal basis of Ty X, and let {e'}; be its dual basis.

For £ > 0 small enough, we will extend the geometric objects from B™* (0, £) to R?" ~
Ty X (here we identify (Z1,- -+, Z2n) € R2Mto 5 Zigj € Ty, X) such that Ay o is the restriction
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of a renormalized Bochner-Laplacian on R?" associated to a Hermitian line bundle with
positive curvature. In this way, we replace X by R?",

At first, we denote by Lo, Eg the trivial bundles with fiber Ly,, Ex, on Xo = R2", We still
denote by O, OF, ht etc. the connections and metrics on Lo, Eg on B™*(0,4¢) induced

by the above identification. Then ht, hE is identified to the constant metrics hte = hbo,
h&o = hBo,
Let p : R — [0, 1] be a smooth even function such that

p(v)=11if |v|<2; p(v)=0 if|v|>4. (7.53)

Let ¢ : R?" — R?" is the map defined by ¢.(2) = p(|Z|/€)Z. Then Dy = Do ¢, is
a smooth self-adjoint section of End(Eg) on Xo. Let g7%(Z) = g"™*(¢<(2)), Jo(Z2) =
J(9£(Z)) be the metric and complex structure on Xo. Set 00 = ¢z00F. Then OFo is the
extension of CF on B™X(0, ). If Z = ¥;Ziej = Z denotes radial vector field on R?", we
define the Hermitian connection (%0 on (Lo, h'0) by

Mol = 20t + 2 (1— p%(|2| /£))RY, (%, ). (7.54)

2
Then we calculate easily that its curvature Rt = ()2 is

Rb(Z) = ¢zR" + %d ((1 —p*(1Z|/€))Ry, (%, ->)
_ (1—p2(|2|/e>)RL +0(1Z|/€)RY, 2, (7.55)
~(pp ><|Z|/s>ﬁA [RY, (%) —Rb, 2 (%))

Thus R0 is positive in the sense of (Z4) for £ small enough, and the corresponding constant
Lo for R is bigger than %uo. From now on, we fix € as above.

Let Affoq,o be the renormalized Bochner-Laplacian on Xg associated to the above data

by (Z8). Observe that R is uniformly positive on R?", so by the argument in the proof
of ioLollary we know that [Z8) still holds for Aff’mo. Especially, there exists C., > 0
such that

SpecAkq, C [—CLy,CLy) U [KHo — CLy, +00]. (7.56)

Let S_ be an unit vector of Ly,. Using S_ and the above discussion, we get an isometric
Eo® LK ~ Ey,.

7.17. DEFINITION. Let Py 4 be the spectral projection of Afff’% from € (Xo,L§ ®
Eo) ~ € (Xo, Ex,) corresponding to the interval [-C|,,C,], and let quk(x,x’) € End(Ey,),
(,X' € Xo) (q > 0) be the smooth kernels of Poq = (843, )%Po.x (We set (4%, )0 = 1)
with respect to the volume form dvyx, (x’).

7.18. PROPOSITION. Forany|,m € N, there exists C; , > 0 such that for x,x’ € B™* (0, ¢),
| (Po.gk — Pay) (X, X) | om < Crmk " (7.57)
PROOF. Using (ZZ9) and (Z.58), we know that for x,x’ € B™*(0, ¢),

k
’Fk(%(Ak,cb) (%, X") = Pog k(x,X) ’cgm < Cymk ~2F2(mN+1) (7.58)
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Thus from ([Z52)) and (Z58) for k big enough, we infer (Z&7) for g = 0; Now from the
definition of Py q k and Py i, we get (Z57)) from the relation D'é;‘@)E = e, +kM-(e)) +TE(ej)
and (Z&7) for g = 0. O
Let dvrx be the Riemannian volume form of (Ty,X,g™%). Let k(Z) be the smooth
positive function defined by the equation
dV)(O(Z> = K(Z)dVTx(Z). (7.59)
with k(0) = 1. Denote by Oy the ordinary differentiation operator on Ty, X in the direction
U,and set & = Og. If 0 = (a1, ,0n) is a multi-index, set 29 = ZJ* ... Z52". We also

denote by (99RL)y, the tensor (99RL)y, (ei,€j) = 0% (R-(ei,€}))x,- Denote byt— - For
s € €™ (R, Ey,) and Z € R?", set

Sis)(Z) =s(Z/t), [ =Stk 200k —3s,,

(Sts)(Z2) =s(Z/1), Dh=t§ t (760)

L= 1EKkING, K ES,.

7.19. THEOREM. There exist polynomials .27 j r (resp. %ir, ¢;) (reN,i,je {1,---,2n})
in Z with the following properties:
— their coefficients are polynomials in R™* (resp. R™*, Rt, RE, ®) and their derivatives
atxouptoorderr—2(resp. r—1,r,r—1,r),
i j,r iIsamonomial in Z of degree r, the degree in Z of % ; (resp. ;) has the same
parity with r — 1 (resp. r),
— if we denote by

Oy :JMi,j,rDaDej‘f’%’i,rDa + G, (7.61)
then

m
H=Lo+ Y O+ O™, (7.62)

and there exists m’ € N such that for any k € N, t < 1 the derivatives of order < k of the
coefficients of the operator ¢'(t™1) are dominated by Ct™1(1 +|Z|)™. Moreover

1
Lo ==y (O + 3R (Z.)*~ T, (7.63)
J

OA(Z) = — 2 (OR0( 7,012 (T + 5R5 (7.80)) — 2 (ARg(,1) — (DT
02(2) = %<R%X(%,ei)%,ej>)(o (Da + ;R)';O(% )) (Dej + %R%(%,ep)
2 1 L 1
+ [ R @ epei e~ (5 w%Z(a RNy +RE ) (2.00)] (Ta + SRk (.01

30 (agzwaRL) i, (#.0)) - %[(ajR%(%,ei)zj]z

1 X z

{4} is a family of self-adjoint differential operators with coefficients in End(E )y,
We denote by P : (€°(X0,Ex), |l llo) = (€% (Xo0,Ex,), |l /o) the spectral projec-
tion of % corresponding to the interval [—Cyt2,Cit?]. Let 2q(Z,Z') = Pqix,(Z,2),
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(Z,Z' € Xo, q > 0) be the smooth kernel of P41 = (4)9 Po; with respect to dvrx(Z').
We can view Z41x(Z,Z’) as a smooth section of 71*End(E) over TX xx TX, where
m: TX xx TX — X, by identifying a section S € ' (T X xx T X, " End(E)) with the family
(Sx)xex, Where Sy = S| 1. Given a trivialization ¢ : TX|y — U x R? and v,V € R,
X — Sx(¢~1(v),¢~1(V)) is a section of End(E) over U, so we can define the ©S-norm

1S(¢1(v), 0 (V)| s(x.End(e)) Of this section.
Let & be the counterclockwise oriented circle in C of center 0 and radius Lo/4. By

(Z3),
1 )
Py = ﬁ/é)\qu _ %) A, (7.64)

From (Z8), we can apply the techniques in [18] which is inspired from [5, §11] to get the
following key estimate.

7.20. THEOREM. There exist smooth sections Fq, of End(Ey,) such that for k,m,m’ e
N, o > 0, there exists C > 0 such that ift €]0,1], Z,Z’ € Ty X, |Z|,|Z'| < o,

’ glal+a]

W< qt—Z)qut> 2,2

Recall that Po qk(x,X) was defined in Definition [ZI71 By ([Z60), for Z,Z’ € R,

< Ctk. (7.65)

|lal, |a’\<m & (X,End(E))

Po.q.p(Z,2') =t 2" 2k~3(Z) Py (Z/1,Z /) K 2(Z)). (7.66)

By (Z&1), (ZEE6), Proposition Theorems we get the following near diagonal
expansion of the Bergman kernel:

7.21. THEOREM. Forl.m,m’ € N, | > 2q, o > 0, there exists C > 0 such that if k > 1,
2,2 € T X, |Z|,12'| < a/Vk,

glal+lal g ,
7oz (P2

lal+|a’|<m

@ (X)

I
- Z Fq,r(\/Ez,\/EZ’)K*%(Z)K*%(Z’)k*EWH <Ck— 7M. (7.67)
r=2q

To complete the proof the Theorem [Z2, we finally prove Fy, = 0 for r < 2g. Moreover,

(£85) and (Z&0) yield
bgr(Xo) = Fg,2r+24(0,0). (7.68)

Let us check our formulas with the help of the Atiyah-Singer formula. For k large
enough we have from ([Z9)

dimjﬁ(:dk:/ch(L"@E)Td(TX) (7.69)

o n ) Cl('—) n—1 n—2

— rank(E) /X - " +/ (TX)>< T L o(2),
where ch(-),c1(-), Td(-) are the Chern character, the first Chern class and the Todd class of
the corresponding complex vector bundles (T X is a complex vector bundle with complex
structure J). Let P20 = 1(1—/=1J) be the natural projection from TX @g C onto T (10X,
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Then 040 = pLOOTXpL0 js 3 Hermitian connection on T (19X, and the Chern-Weil repre-
sentative of c1(TX) is ¢y (T (20X, O020) — ¥-1 7 Trraox(0M0)2 Then

(OL0)2 — pLo [RTX - %(DXJ) A (DXJ)] pL0. (7.70)
Thus if J = J, then by (ZZ0),
1 1
(1,0) 1,0 _ X 2 mX 712
<cl(T X0 ),w>_4n<r +2|D J| ) (7.71)

Therefore, by integrating over X the expansion (L.Z1)) for k = 1 we obtain ([Z.69), so (I.Z2)
is compatible with [Z&9).

7.2.3. Evaluation of Fyr. The almost complex structure J induces a splitting Tr X ®g
C=TLOX aTODX, Where T(@0X and T(©DX are the eigenbundles of J corresponding
to the eigenvalues v/—1 and —+/—1 respectively. We choose {w;}! ; an orthonormal basis

of TX%LO)X, such that
—2m/—1J,, = diag(ay, - ,an) € End(To9X). (7.72)

We use the orthonormal basis epj_1 = %(Wj +W;j) and epj = %(wj -Wj),j=1,...,n
of Ty,X to introduce the normal coordinates as in Section [LT.3 In what follows we will

use the complex coordinates z = (z1,--- ,zp), thus Z =z +2, and w; = \/éad , W = 2(,%.
It is very useful to introduce the creation and annihilation operators bj, b;",
1 1
bi = —24 +5aizi, b =2Z+>az, b=(by,---,by). (7.73)

2 2
Now there are second order differential operators &, whose coefficients are polynomi-
als in Z with coefficients as polynomials in RTX, R% RE RL and their derivatives at Xo,
such that

L=L+ 5 o, with 2 =3 bibj'. (7.74)
r=1 I
By proceeding as in [31], we obtain

7.22. THEOREM. The spectrum of the restriction of . on L2(R?") is given by {2 SN aia

aj € R} and an orthogonal basis of the eigenspace of 25 ; aia; is given by
1 5 :
b® (2P exp (—Z IZai|zi\ )), with B € R". (7.75)

Let N be the orthogonal space of N = ker.£2 in (L2(R?,Ey,), || |lo). Let PN, PN"
be the orthogonal projections from L2(R?" E, ) onto N, N+, respectively. Let PN(Z,Z")
be the smooth kernel of the operator PN with respect to dvrx(Z). From ([Z75), we get

n

Phe.2) = (231)n [1a exp (- % Y aillaf+ 142 - 227) ). (7.76)

Now for A € &, we solve the following formal power series on t, with gr (A ) € End(L?(R?",E,),N),
fi-(A) € End(L*(R?", Ex,),N™),

0

-2y () + 7))t = 1dizqgan, ) (7.77)

r=
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From (Z6&4), (ZZ17), we claim that
1 1
= a i gfl
Far 2 /5)\ Or(A)dA + 2 /6)\ fr(A)dA. (7.78)

From Theorem[Z22, (ZZ8), the key observation PN¢;,PN = 0, and the residue formula, we
can get Fq by using the operators (#9)~1, PN, PN", @i(i <r). This gives us a way to
compute bg, in view of Theorem [Z2Z2and (ZE8). Especially, for g > 0,r < 2q,

Foo=P", Fqr=0, (7.79)
Foz2q = (PNOPN — PNy (29) 1PN 6PN apN,
Foz = (£9) PN oy (£9) 1PN 1PN — (£9) 1PN PN

+PNGy(£D) 7PN 01 (29) PN —PNo,(29) PN

In fact, #2 and &, are formal adjoints with respect to || ||o, thus in Fo 2, we only need
to compute the first two terms, as the last two terms are their adjoint. This simplifies the
computation in Theorem [1.22

7.3. Applications

In this Section, we discuss various applications of our results. In Section [Z.37], we
study the density of states function of Ax . In Section [Z3.2 we explain how to handle
the first-order pseudo-differential operator Dy, of Boutet de Monvel and Guillemin [13]
which was studied extensively by Shiffman and Zelditch [[28]. In Section[Z.3.3, we prove a
symplectic version of the convergence of the Fubini-Study metric of an ample line bundle
[33]. In Section [ZZ34, we show how to handle the operator d +d  when X is Kahler but
J # J. Finally, in Sections [Z.3.5, we establish some generalizations for non-compact
or singular manifolds.

7.3.1. Density of states function. Let (X, w) be a compact symplectic manifold of
real dimension 2n and (L, 0", h%) is a pre-quatum line bundle as in Section 1l Assume
that E is the trivial bundle C, ® = 0 and J = J. The latter means, by ([Z2), that g™* is the
Riemannian metric associated to w and J. We denote by vol(X) = [ ‘;]’—ln the Riemannian
volume of (X,g™*). Recall that dy is defined in [Z9) (see also ([ZE9)).

Our aim is to describe the asymptotic distribution of the energies of the bound states
as k tends to infinity. We define the spectrum counting function of Ay := Ay o by Nk(A) =
#{i : A x <A} and the spectral density measure on [—C,Cy] by

1 d
Vk = e ﬁNk()\)a A €[-CL.C. (7.80)

Clearly, vk is a sum of Dirac measures supported on Spec Ay N [—Cp,Cy]. Set
1
p:X —R, p(x):ﬂ|DXJ|2. (7.81)

7.23. THEOREM. The weak limit of the sequence {vi}k>1 is the direct image measure

1 f : : .
p*( 2) that is, for any continuous function f € €’ ([-C.,C_]), we have

vol(X) n!
] C 1 "
JLTO/CL fdvic= vo|(X)/x(fop)H‘ (7.82)




156 7. GENERALIZED BERGMAN KERNELS ON SYMPLECTIC MANIFOLDS

PROOF. By (ZZ8), we have for q > 1 (now E is trivial): Bgk(x) = 3%, A9 [SK(x)[2
which yields by integration over X,

1

d—k/qukdvx_— |k_/ ATdy (A (7.83)
since SK have unit L? norm. On the other hand, [Z89), (IZT) entail for k — oo,

1 okt

5 /x Bokdvx = / bodvx + ' 0 ) (7.84)

- voI(X) /qudvx + ﬁ<kil>'

We infer from (Z.83)-(Z.84) that (Z.82) holds for f(A) = A9, g > 1. Since this is obviously
true for f(A) = 1, too, we deduce it holds for all polynomials. Upon invoking the Weier-
strass approximation theorem, we get (Z82) for all continuous functions on [—C ,Cy |. This
achieves the proof. O

7.24. REMARK. A function p satisfying (Z82) is called spectral density function. Its
existence and uniqueness were demonstrated by Guillemin-Uribe [21]]. As for the explicit
formula of p, the paper [11] is dedicated to its computation. Our formula [Z8T)) is different
from [11, Theorem 1.2].E

An interesting corollary of (Z81) and (Z82) is the following result which was first
stated in [11), Cor. 1.3].

7.25. COROLLARY. The spectral density function is identically zero iff (X,w,J) is
Kahler.

7.26. REMARK. Theorem[Z.Z3 can be slightly generalized. Assume namely that J = J
and E is a Hermitian vector bundle as in Section [ZT T such that RE = n @ Idg, ® = ¢ IdE,
where n is a 2-form and ¢ a real function on X. Then there exists a spectrum density

function satisfying (ZZ82) given by

1 v—1
p:X —R, p(x):E\DXJ\2+Tn(ej,Jej)+¢. (7.85)

The proof is similar to the previous one, as Trg, Bqk(X) = ¥, A% [SK(x)[2

7.3.2. Almost-holomorphic Szegd kernels. We use the notations and assumptions
from Section [Z.3.7] especially, we assume J = J.

LetY = {u € L*,|ul,.- =1} be the unit circle bundle in L*. Then the smooth sections
of LX can be identified to the smooth functions

E2Y )= {f e €™(Y,C); f(yeV10) =V KOt (y) foreV-¥ e st yeY),

where yeV~19 is the St action on Y..

The connection 0" on L induces a connection on the S1-principal bundle 1:Y — X,
and let THY c TY be the corresponding horizontal bundle. Let g7 = g™ & d 62 be the
metricon TY = THY @ TS, with d6? the standard metric on S* = R/27nZ. Let Ay be the

n [T, (3 7)], the leading term of Go; should be K_l/zbgl) which was missed therein, as the principal
terms of 2., -2 7 e do, T T!d by [11, equation after (3.11)]. Now, from [LT} (3.5)], bgl) is 3(32,T/a)). Thus
£ in [114, (3.8)] is incorrect.
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Bochner-Laplacian on (Y,g™"), then by construction, it commutes with the generator g of
the circle action, and so it commutes with the horizontal Laplacian

Ay =Dy + 32, (7.86)

then A, on € (Y )k is identical with A on € (X, LX) (cf. [10, §2.1]).
In [13, Lemma 14.11, Theorem A 5.9], [[14], [21, (3.13)], they construct a self-adjoint
second-order pseudodifferential operator Q on'Y such that

V =A+V—1109 —Q (7.87)

is a self-adjoint pseudodifferential operator of order zeroon Y, and V,Q commute with the
Sl-action. The orthogonal projection I onto the kernel of Q is called the Szegd projec-
tor associated with the almost CR manifold Y. In fact, the Szegd projector is not unique
or canonically defined, but the above construction defines a canonical choice of I mod-
ulo smoothing operators. In the complex case, the construction produces the usual Szego
projector IT.

We denote the operators on € (X, LX) corresponding to Q, V, I by Qy, Vk, My, espe-
cially, Vi(x,y) = & [&"e~ V=10V (xeV~19 y)d@. Then by (787,

Q=AY — kT — V. (7.88)
By [21, §4], there exists p1 > 0 such that for k large,
SpecQk C {0} N[u1k,+ool. (7.89)
Since the operator Vi is uniformly bounded in k, naturally, from (Z8), (Z.&9), we get
dimker Qy = dy = /XTd(TX)ch(Lk). (7.90)

Now we explain how to study the Szegt projector My A. This can be done from our
point of view. Recall F is the function defined after (Z49). Let My(x,X’), F(Qy)(x,x’) be
the smooth kernels of My, F(Qy) with respect to the volume form dvy (x').

Note that V is a 0-order pseudodifferential operator on X induced from a 0-order pseu-
dodifferential operator onY. Thus from ([Z88), (Z89), we have the analogue of [[18] Propo-
sition 3.1]: for any I, m € N, there exists C; i > 0 such that for k > 1,

|F(Qu)(X,X') = Ti(%,X) | gm(xx) < Crmk ™. (7.91)

By finite propagation speed [32, §4.4], we know that If(Qk)(x,x’) only depends on the
restriction of Qi to BX(x, €), and is zero if d(x,x’) > €. It transpires that the asymptotic of
My(x,x") as k — oo is localized on a neighborhood of x. Thus we can translate our analysis
from X to the manifold R?" ~ T, X =: Xo as in Section [.Z2} especially, we extend 0" to a
Hermitian connection (%0 on (Lo, h“0) = (Xg x Ly,,h™0) on Ty X in such a way so that we
still have positive curvature R™; in addition R-0 = R} outside a compact set.

Now, by using a micro-local partition of unity, one can still construct the operator Q*°
asin [13, Lemma 14.11, Theorem A 5.9], [14], [2T, (3.13)], such that V%o differs from V by
a smooth operator in a neighborhood of 0. On X, and Q” still verifies (ZZ89). Thus we can
work on ¢ (Xo,C) as in Section[Z.Zl We rescale then the coordinates as in (Z&0). The VkXO
is a 0-order pseudodifferential operator on Xq induced from a 0-order pseudodifferential

2As Professor Sj ostrand pointed out to us, in general, i — Py is not &'(k=>) as k — oo, where Pq)
is the smooth kernel of the operator Ag (Definition[ZI5). This can also be seen from the presence of a
contribution coming from @ in the expression ([LZ1)) of the coefficient ky .
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operator on Yg. This guarantees that the operator rescaled from VkXO will have the similar
expansion as (Z74) with leading term t?R; in the sense of pseudo-differential operators.

From (Z90) and [18, (3.89)], similar to the argument in [[18, Theorem 3.18], we can
also get the full off diagonal expansion for My, which is an extension of [28, Theorem 1],
where the authors obtain ([Z32) for |Z|,|Z’| < C/vk with C > 0 fixed. More precisely,
recalling that PN is the Bergman kernel of % as in

(ZZ6) we have:

7.27. THEOREM. There exist polynomials j;(Z,Z’) (r > 0) of Z,Z’" with the same parity
with r, and jo =1, C” > 0 such that for any k,m,m’ € N, there exist N € N,C > 0 such that
fora,a’ € Z?", |a|+|a'| <m, Z,Z' € T X, |Z],1Z'| < & %0 € X, k > 1,

gl 1 Nk(2,2) : (PN (VKZ, VKZ )k~ 2(Z)k 2 (2 )k~ /2
5za57@ \ g &)= 2 (i ’ o (x)

< Ck=H1=m/2(1 1 |Vkz| + [VKZ'|)Nexp(—/C"uvk|Z - Z')). (7.92)

The term k2 in (Z32) comes from the conjugation of the operators as in ([Z&7),
%W(X) is the ™ -norm for the parameter Xo € X, and we use the trivializations from
Section[[.2. We leave the details to the interested reader.

7.3.3. Symplectic version of Kodaira Embedding Theorem. Let (X, w) be a com-
pact symplectic manifold of real dimension 2n and let (L, 0% h') be a pre-quantum line
bundle and let g™* be a Riemannian metric on X as in Section [ZT.11

Recall that .7, C € (X, LX) is the span of those eigensections of Ay = AY — Tk cor-
responding to eigenvalues from [—C,C.]. We denote by P74 the projective space asso-
ciated to the dual of 7z and we identify IP.J7" with the Grassmannian of hyperplanes in
. The base locus of .7 is the set BI(#) = {x € X : s(x) =0foralls € 54 }. Asin
algebraic geometry, we define the Kodaira map

D XN BI(#) — P
By (x) = {s € A :5(x) = 0}
which sends x € X ~ Bl(J#) to the hyperplane of sections vanishing at x. Note that .7}

is endowed with the induced L? product (ZI3) so there is a well-defined Fubini-Study
metric grs on P 27" with the associated form cwrs.

(7.93)

7.28. THEOREM. Let (L,O%) be a pre—quantum line bundle over a compact symplectic
manifold (X, w). The following assertions hold true:

(i) For large k, the Kodaira maps @ : X — P77, are well defined.

(if) The induced Fubini-Study metric %CD;(oq:s) converges in the €’ topology to w;
for any | > 0 there exists C; > 0 such that

1 . C
k Pilers) 0], <5

(iii) For large k the Kodaira maps ®y are embeddings.

(7.94)

7.29. REMARK. 1) Assume that X is K&hler and L is a holomorphic bundle. Then Ay
is the twice the Kodaira-Laplacian and .7 coincides with the space H%(X,L¥) of holo-
morphic sections of LK. Then (i) and (iii) are simply the Kodaira embedding theorem.
Assertion (ii) is due to Tian [33, Theorem A] as an answer to a conjecture of Yau. In [33]
the case | = 2 is considered and the left-hand side of (Z94) is estimated by C; /v/k. Ruan
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[27] proved the € convergence and improved the bound to C,/k. Both papers use the
peak section method, based on L2—estimates for d. A proof for | = 0 using the heat kernel
appeared in Bouche [12]. Finally, Zelditch deduced (ii) from the asymptotic expansion of
the Szego kernel [35].

2) Borthwick and Uribe [10, Theorem 1.1], Shiffman and Zelditch [28, Theorems 2,
3] prove a different symplectic version of [33, Theorem A]. Instead of .7, they use the
space H?(X,Lk) (cf. [10} p.601], [28, §2.3]) of “almost holomorphic sections’ proposed by
Boutet de Monvel and Guillemin [13], [14].

PROOF. Let us first give an alternate description of the map ®y which relates it to the
Bergman kernel. Let {Sk}OI be any orthonormal basis of .77 with respect to the inner
product (ZI3). Once we have fixed a basis, we obtain an identification J# = J4* = C%
and Ps#;" = CP% L. Consider the commutative diagram.

X < BI(A4) —2 P

lld lg (7.95)
X Bl 2 Cpht

Then

* Ak [V -1 5 &
Py (wrs) = Py <2—n00 log 3 [w; |2>, (7.96)
=1

where [wy, ..., wg, | are homogeneous coordinates in CP%L. To describe ®y in a neigh-
borhood of a point xg € X ~ BI(.#), we choose a local frame e, of L and write Sk = fke®k
for some smooth functions fX. Then

PBy(x) = [H(0:...; T (), (7.97)

and this does not depend on the choice of the frame e_.
(i) Let us choose an unit frame e, of L. Then |SK|2 = | £X|2|e. | = | £X|2, hence

T2 k2
BO,k:_Zl|Si| :'Zl|fi| :
i= i=

Since bpo > 0, the asymptotic expansion ([LZI) shows that Bg  does not vanish on X for
k large enough, so the sections {S}‘}idil have no common zeroes. Therefore ®, and @, are
defined on all X.

(ii) Let us fix xg € X. We identify a small geodesic ball B*(xo,€) to B™*(0, ) by
means of the exponential map and consider a trivialization of L as in Section [Z.2Z7] i.e.
we trivialize L by using an unit frame e, (Z) which is parallel with respect to O along
[0,1] > u — uZ for Z € B™*(0, £). We can express the Fubini-Study metric as

) [ L S omnm- L § mmamnon
: |

VI
— Y dw; AdW; — — Wiw, dwi A dwWy
w2 2,21 g g T

_ d
. —=d910g (jzl\w,-\
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and therefore, from ([£.97),

e = B =
Pi(rs)(Xo) = —— | —— S dfkadfk— —— § fKEkd XA d K| (xo)
K 21 \f'<|2jz1 J J ‘kajgl] k=1 k
V=1
T [ F4(x0,X0) "Helxdy F¥(X,y) — TX(X0,X0) 2dx F¥(X,¥) A dy FK(X,Y)] [xey=xo: (7.98)

where fK(x,y) = S% K(x) fK(y) and |¥(x)|2 = £¥(x,x). Since

Pok(%,y) = f*(x,y)ef (x) @ef (y)",
thus Pok(x,y) is fX(x,y) under our trivialization of L. By (Z57), we obtain

1, —1.1 1
E CDk(Cq:S) (XO) - 2—7_[ [%dxdyFO’o - %dxFQO A dyF070:| (0, 0)
v—=11 1
OO

Using again (ZZ8), (Z79), we obtain

© 0f(wrs)(r0) = % 3 210211zl + 0 () = wiro) + 0 (1/K),
and the convergence takes place in the ¥’ topology with respect to xg € X.

(i) Since X is compact, we have to prove two things for k sufficiently large: (a) @y are
immersions and (b) @ are injective. We note that (a) follows immediately from ([Z.94).

To prove (b) let us assume the contrary, namely that there exists a sequence of distinct
points Xy £ Y such that ®y(xy) = P (yx). Relation [Z35) implies that ®y(x) = @(Yi),
where @, is defined by any particular choice of basis.

The key observation is that Theorem [Z.ZT] ensures the existence of a sequence of peak
sections at each point of X. The construction goes like follows. Let xg € X be fixed. Since
®y is point base free for large k, we can consider the hyperplane ®y(xo) of all sections of
S vanishing at xo. We construct then an orthonormal basis {Sik}io'i1 of 77 such that the
first dx — 1 elements belong to ®y(xp). Then S'ék is a unit norm generator of the orthogonal

complement of ®y(xp), and will be denoted by S)‘ﬁo. This is a peak section at xg. We note
first that |SK (xo)|? = Box(Xo) and Pox(X,Xo) = SK (X) ® SK (xo)* and therefore

Sk (X) = Pok(X,X0) - i (Xo)- (7.99)

Bok(Xo)
From (Z617) we deduce that for a sequence {ry} with ry, — 0 and vk — o,

/ S (x)Pdv (x) = 1— G(1/K), Tork — . (7.100)
B(X0,rk)

Relation (ZI00) explains the term ‘peak section’: when k grows, the mass of Slﬁo concen-
trates near Xo. Since ®y(xx) = Px(yk) We can construct as before the peak section S)‘Ek = S'§k
as the unit norm generator of the orthogonal complement of ®y(xx) = Pk (yk). We fix in
the sequel such a section which peaks at both xi and y.

We consider the distance d(xg,Yk) between the two points xi and yx. By passing to a
subsequence we have two possibilities: either v/kd (X, yk) — o as k — o or there exists a
constant C > 0 such that d (x, yx) < C/v/k for all k.
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Assume that the first possibility is true. For large k, we learn from relation ([ZZI00)
that the mass of S)‘ﬁk = S{}k (which is 1) concentrates both in neighborhoods B(x, k) and
B(Yk, ') with rp = d(xx,Yyk)/2 and approaches therefore 2 if k — . This is a contradiction
which rules out the first possibility.

To exclude the second possibility we follow [28]. We identify as usual BX(x, €) to
B™X (0, £) so the point y; gets identified to Z, /v/k where Z, € B™*(0,C). We define then

SK (tZ,/VK)|?
fc:[0,1] — R, fk(t):%.

We have fi(0) = fi(1) = 1 (again because S = Sk ) and fi(t) < 1 by the definition of
the generalized Bergman kernel. We deduce the existence of a point tx € (0,1) such that

fl/ (tc) = 0. Equations (Z&Z), (Z29), (ZITI) imply the estimate
2
fi(t) = e~ s Ti31%I1 (14 g (t24) /VK) (7.102)

and the €2 norm of g over B™*(0,C) is uniformly bounded in k. From (ZI02), we
infer that |Z,|3 == 2 ¥;aj|zcj1? = 0(1/Vk). Using a limited expansion eX = 1+ x+
x2¢(x) for x = t2|24|3 in (ZI0D) and taking derivatives, we obtain f;(t) = —2|Zx|3 +
0(1Zd3) + 0(1Zk3/VK) = (=24 0(1/VK))|Z|3. Evaluating at t, we get 0 = f/(t) =
(=2+6(1/Vk))|Z|3, which is a contradiction since by assumption Z # 0. This finishes
the proof of (iii). O

(7.101)

7.30. REMARK. Let us point out complementary results which are analogues of [10,
(1.3)—(1.5)] for the spaces 7. Computing as in [Z98) the pull-back ®;hrs of the Hermit-
ian metric hes = grs— v —1weson P2, we get the similar inequality to (Z34) for grs
and w(-,J-). Thus, ®y are asymptotically symplectic and isometric. Moreover, arguing as
in [10, Proposition 4.4] we can show that ®y are ‘nearly holomorphic’:

1 1 =
llody| =14 0(1/k), 9K = o(1/k), (7.103)
uniformly on X, where || - || is the operator norm.

7.3.4. Holomorphic case revisited. In this Section, we assume that (X, w, J) is Kéhler

and the vector bundles E,L are holomorphic on X, and OF, O are the holomorphic Her-
mitian connections on (E, hE), (L,h"), moreover, ¥-1R- = . Let g™ be any Riemannian

metric on T X compatible with J. But we assume that J # J in ([ZZ). Set
O(X,Y) =g"™* (IX,Y). (7.104)

Then the 2-form © need not to be closed (the convention here is

different to [3, (2.1)] by a factor —1). We denote by T (19X,

T(©1X the holomorphic and anti-holomorphic tangent bundles

as in Section[Z2 Let {e;} be an orthonormal frame of (TX,g™X).

Let 5Ek* be the formal adjoint of the Cauchy-Riemann operator 5Ek on the Dolbeault
complex Q%*(X,LX® E) with the scalar product induced by g™, ht, hE as in (ZI3).
Set Dy = v2(3 ™ + 3 ). Then DZ = 2(373™ 1+ 373™) preserves the Z-grading of
Q0%*(X,L*® E). Then for k big enough,

ker Dy = kerDZ = HO(X, LK@ E). (7.105)
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Here Dy is not a spin® Dirac operator on Q%*(X,LX® E), and D% is not a renormalized
Bochner—Laplacian as in ([Z.6)). Now we explain how to put it in the frame of our work.

7.31. THEOREM. The smooth kernel of the orthogonal projection from ¢ (X, LX®E)
on kerDE, has a full off-diagonal asymptotic expansion analogous to (Z392) with jo =
detcJask — .

PROOF. As pointed out in[Z8, by [6, Theorem 1], there exist g,Cp > 0 such that for
anyk € Nand any s € Q”0(X,L*® E) := @q-1 Q%(X,LXQ E),

IDks[f2 > (2kpo —Cu) Is|| - (7.106)

Moreover SpecD2 C {0} U [2kpo —Cp, +9].
Let S~B denote the 1-form with values in antisymmetric elements of End(T X) which
issuch that if U,V,W € TX,

(STBUV,W) = ——Vz_l ((a —5)@) (U,V,W). (7.107)
The Bismut connection 08 on TX is defined by
OB=0X4+578, (7.108)

Then by [4, Prop. 2.5], OB preserves the metric g™* and the complex structure of TX.
Let 0% be the holomorphic Hermitian connection on det(T (29X with its curvature R,
Then these two connections induce naturally an unique connection on A(T *©1X), and
with the connections 0%, (0, we get a connection 0-B& on A(T*OUX)® LK®QE. Let
A~B-Ecpe the Laplacian on A(T*®VX) @ LK@ E induced by 0-8Fr asin (Z3). Forany v e
T X with decompositionv =v o+Vg1 € TEIX @ TODX, letv; , € T*ODX be the metric
dual of vy 0. Then c(v) = V2(V; o A —iy,, ) defines the Clifford action of v on A(T*©1X),
where A and i denote the exterior and interior product respectively. We define a map
©: A(T*X) — C(TX), the Clifford bundle of TX, by sending e't A--- Ae'i to c(ej,) - --¢(ej;)
foriy < --- <ij. Then we can formulate [4, Theorem 2.3] as following,
X

D2 — A BBy rZ +S(RE 4+ kRL + %Rdet) n gc

We use now the connection 0~BE« instead of 0%« in [[18, §2]. Then by (ZI06), (Z109),
everything goes through perfectly well and as in [[18, Theorem 3.18], so we can directly
apply the result in [18] to get the full off-diagonal asymptotic expansion of the Bergman
kernel. As the above construction preserves the Z-grading on Q%*(X,LX® E), we can also
directly work on € (X, LXQ E). O

(00©) — %|(a —9)0%.  (7.109)

7.3.5. Generalizations to non-compact manifolds. Let (X,©) be a Kahler mani-
fold and (L,h‘) be a holomorphic Hermitian line bundle over X. As in Section [:34,
let R-,RY%! be the curvatures of the holomorphic Hermitian connections O, 0% on L,
det(T (19X), and let - € End(T X) such that ¥-2RL(-,-) = ©(JL-,-). The space of holo-
morphic sections of LK which are L2 with respect to the norm given by (ZI3) is denoted by

HY, (X, LX). Choose an orthonormal basis (SK)i>1 of H(OZ)(X,Lk). For each local holomor-
phic frame e we have Sk = fke? for some local holomorphic functions fX. As shown in
[33, Lemma 4.1] the series zi>1|fik(x)]2 converges uniformly on compact sets (together

with all its derivatives) to a smooth function. It follows that Bx(x) = Yi>1|SK(X)|2 =
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=1 | 4(x)|?|eK|? is also a well defined smooth function. We have the following gen-
eralization of Theorem L2

7.32. THEOREM. Assume that (X,©) is a complete Ké&hler manifold. Suppose that
there exist € > 0, C > 0 such that one of the following assumptions holds true :

V—=1R" > €0, V=1R%™ >~ _Co0. (7.110)

L = det(T*%9X), h- is induced by © and v—1R%™ < —¢@. (7.111)

Then there exist coefficients b, € €°(X), r € N, with bg = (detJ")¥/2 such that for any
compact set K C X, any m,| € N, there exists Cy | x > 0 such that for k € N,

<Cryx k™ (7.112)

1 K .
WBk(x) — r;br (X)k

¢'(K)

PROOF. By the argument in Section if the Kodaira—Laplacian ok = ING= lAkp
acting on sections of LX has a spectral gap as in (ZZ8), then we can localize the problem, and
we get directly (ZII2). Observe that DZ|qo. = L. In general, on a non-compact manifold,
we define a self-adjoint extension of Dﬁ by

_Lk _Lk Lk _Lk _Lk _Lk
DomDZ={ueDomd NDomd :d uecDomd ,d ueDomd },
L=k —LkesLK

Dfu=2(0 @ +9d @ )u, forueDomDj.

The quadratic form associated to DE is the form Qi given by
Lk Ky
Dom Qg := Dom dL N Dom dL
Lk ik ik ik, (7.113)
Qu(u,v) =2(d u,d v)+2(d u,0 v), u,veDom Q.

In the previous formulas " is the weak maximal extension of 3" to L2 forms and 3"
is its Hilbert space adjoint. We denote by QO"(X,Lk) the space of smooth compactly
supported forms and by L%’(X ,L¥) the corresponding L2-completion.
Under one of the hypotheses (Z110) or (ZI1T)) there exists u > 0 such that for k large
enough
Qu(u) = pk|ull?, ueDomQNLYY(X,L¥) forq> 0. (7.114)
Indeed, the estimate holds for u Qg’q(X,L") since the Bochner-Kodaira formula [2)
Prop. 3.71] reduces to Qx(u) > 2( (KR™ + R%&) (i, W))Wl Aiwu,u), for u e QYI(X,L¥),
where {w;} is an orthonormal frame of T(@0X. But this implies (ZII4) in general, since
Qg"(x, LX) is dense in Dom Qy with respect to the graph norm, as the metric is complete.

1k
Next, consider f € Dom AN Lg’O(X,L") and setu=a" f. It follows from the defini-
tion of the Laplacian and (ZI14) that

—Lke <LKy
18F2=2(0 "u,d "u)=Qk(u) > pk|jul|? = pk(Lkf, ). (7.115)
This clearly implies Spec(Ax) C {0} U [ku, o[ for large k. O

Theorem permits an immediate generalization of Tian’s convergence theorem.
Tian [33, Theorem 4.1] already proved a non—compact version for convergence in the €2
topology and convergence rate 1/+/k. Another easy consequence are holomorphic Morse

inequalities for the space H&) (X, LK),
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Observe that the quantity 31 | f¥(x)|2 is not globally defined, but the current

W = \/2—__; 93 log (i;\ fik(x)\2> (7.116)

is well defined globally on X. Indeed, since Rt = —dd log ]eL|ﬁL we have

an(— volpn o da log By (7.117)
k 21
If dim H?Z)(X,L") < oo we have by ([£93) that w = @} (wrs) where dy is defined as in
(Z93) with 7, replaced by H(Oz)(x, LK.

7.33. COROLLARY. Assume one of the hypotheses (ZI10) or (ZIII) holds. Then:
(a) for any compact set K C X the restriction x|k is a smooth (1,1)-form for suffi-
ciently large k; moreover, for any | € N there exists a constant C; x such that

e W)

C| K
Cl] < >
k 2”

2K -k’

(b) the Morse inequalities hold in bidegree (0,0):

‘/_—1RL>n. (7.118)

1
e N0 k
liminfk "dimHS, (X,L4) > = /( —

In particular, if dim H& (X, LK) < oo, the manifold (X, ®) has finite volume.

PROOF. Due to (Z.I17), B doesn’t vanish on any given compact set K for k sufficiently
large. Thus, (a) is a consequence of (ZI12) and (ZII7).

Part (b) follows from Fatou’s lemma, applied on X with the measure

@"/n! to the sequence k~"By which converges pointwise to (detJ\)%/2 = (Y-1RL)"/@"
on X. O

The inequality (ZII8) was also obtained in 39). Under hypothesis (ZI11)) it repre-
sents Theorem 311

Another generalization is a version of Theorem [LZ1] for covering manifolds. We retain
the notaitons from[Z.T.4 It is shown in Corollary [ZI4lthat the spectrum of the renormalized
Bochner-Laplacian satisfies

SpecA, g C [~Ci,CL]U[2kpo —Ci, +eo] (7.119)

where Cy_ is the same constant as in Section [Z.TTland L is introduced in (Z5). Let 4 be
the eigenspace of A & With the eigenvalues in [-Cp,Cy]:

i = RangeE ([-CL,CL],4, 3) » (7.120)
where E (- ,Ak q)) is the spectral measure of Ak &
dimension of %’1 equals dx = dim 7. Finally, we define the generallzed Bergman kernel
Py Of A 5 as in Definition [ZZT5. Unlike most of the objects on X, Pq is not M—invariant.

By (IZIEQ]) and the proof of Proposmon [£18] the analogue of (Z52) still holds on any
compact set K C X. By the finite propagation speed as the end of Section [LZ.1] we have:

From Corollary [Z.14] the von Neumann
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7.34. THEOREM. We fix 0 < &g < infyex {injectivity radius of x}. For any compact set
K c X and m,| € N, there exists Cry | x > 0 such that for x,x' € K, p e N,

1

P Pak(6.X) = Pai(Tr (X), 78 (X))

o <Crmikk ™1, ifd(x,X) < &,

I (kxK) (7.121)

<Crmikk ™1, ifd(x,X) > €.

i /
k" Pak(xX) % (KxK)

Especially, F~>q,k(x,x) has the same asymptotic expansion as B k(7 (x)) in Theorem [LZT]
on any compact set K  X.

7.35. REMARK. Theorem [Z.34] works well for coverings of non-compact manifolds.
Let (X,©) be a complete Kahler manifold, (L, h-) be a holomorphic line bundle on X and
let 71 : X — X be a Galois covering of X = X /I". Let © and (L, h") be the inverse images
of ©@ and (L,h") through r7-. If (X, ©) and (L,hb) satisfy one of the conditions (ZZII0) or
(ZITD), (X,0) and (L, ht) have the same properties. We obtain therefore as in (ZIIB) (by
integrating over a fundamental domain):

7.36. COROLLARY. Assume one of the hypotheses or[ZITT holds. Then

.. . ~ ~ 1 v/ —1 n
-n 0 k L
liminfk™"dimr H(Z)(X,L ) > /x< o R ) .

=
k—s00 n!
where dimr is the von Neumann dimension of the M'-module H?Z)(X, LK).
Note that in Theorem we obtain Morse inequalities on covering manifolds for
(n,0)—forms.

(7.122)

7.3.6. Singular polarizations. Let X be a compact complex manifold. A singular
Kahler metric on X is a closed, strictly positive (1,1)-current co.

If the cohomology class of w in H2(X,R) is integral, there exists a holomorphic line
bundle (L,h%), endowed with a singular Hermitian metric, such that Vz—__an'- = w in the
sense of currents. We call (L, h%) a singular polarization of c. If we change the metric h*,
the curvature of the new metric will be in the same cohomology class as w. In this case we
speak of a polarization of [w] € H2(X,R). Our purpose is to define an appropriate notion
of polarized section of L¥, possibly by changing the metric of L, and study the associated
Bergman kernel.

First recall that a Hermitian metric ht is called singular if it is given in local trivial-
ization by functions e =% with ¢ € L{. The curvature current R- of h* is well defined and
given locally by the currents 33 ¢.

By the approximation theorem of Demailly [20, Theorem 1.1], we can assume that
ht is smooth outside a proper analytic set =  X. Let m: X — X be a resolution of
singularities such that 77: X ~. 71 %(Z) — X ~. Z is biholomorphic and 77~ 1(Z) is a divisor
with only simple normal crossings. Let ggx be an arbitrary smooth J-invariant metric on
Xand @'(-,-) = 95%(J-,-) the corresponding (1,1)-from. The generalized Poincaré metric
on X~ Z =X~ 1 (2) is defined in @55) by

O, = @' —&v/~1y ddlog(—log | ai[f)?, 0 < g < 1 fixed, (7.123)
|

where m1(Z) = U;Z; is the decomposition into irreducible components 5 of 7-1(%) and
each Z; is non-singular; o; are sections of the associated holomorphic line bundle [Z;] which
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vanish to first order on %, and || g ||; is the norm for a smooth Hermitian metric on [Z;] such
that ||ai||; < 1.

We can construct as in the proof of Theorem .40 (cf. [30, §4]) a singular Hermitian line
bundle (L, h") on X which is strictly positive and Lig_, 15 2 77°(L*), for some ko € N.

We introduce on L|x. s the metric (ht)l/ ko whose curvature extends to a strictly positive
(1,1)—current on X. Set

1/'<0|‘| —log||ai||?))8, 0<e<1, (7.124)

1k
HO (X Z L9 = {u e LIOX 51X, @g k) 19" u=0}. (7.125)
The space H(OZ)(X < Z,LX) is the space of L2-holomorphic sections relative to the met-

rics ©g, on X \ X and hg on L|x.s. Since (h[)l/ko is bounded away from zero (having
plurisubharmonic weights), the L2 condition with respect to the Poincaré metric imply that
the elements of H(OZ)(X . Z, LX) extend holomorphically to sections of LX over X. The

subspace H (X \. 2, LX)  HO(X, LX) is the space of polarized sections of L,

7.37. COROLLARY. Let (X, w) be a compact complex manifold with a singular Kéhler
metric with integral cohomology class. Let (L,h") be a singular polarization of [c] with
strictly positive curvature current having singular support along a proper analytic set .
Then the Bergman kernel of the space of polarized sections [ZI2Z5) has the asymptotic

expansion ([ZI12).

PROOF. We first remark that by the localization argument in Section [ZZ.1, Theorem
[Z:3T has a noncompact version analogous to Theorem provided we can prove the ex-
istence of the spectral gap of the Kodaira-Laplacian oL . We will show that this is the case
for the non-Kéhler Hermitian manifold (X \ X,0g,) equipped with the Hermitian bundle
(L|x-s,ht). By applying the generalized Bochner-Kodaira-Nakano formula of Demailly
[19, Theorem 0.3] as in [6, Theorem 1], we see that the existence of the spectral gap follows
if we show that there exists constants n > 0, C > 0 such that

VZIRMxzE) 5 pe, | VZIR® > —COy,, [T <C. (7.126)
where Tg, = [Og,,00Og,] is the torsion operator of Og, and |Tg,| is its norm with respect to
Og,. But (ZI26) follows from Proposition £38 O

7.38. REMARK. (a) Corollary [Z.31] gives an alternative proof of the characterization
of Moishezon manifolds given by the Shiffman-Ji-Bonavero Criterion (cf. also Takayama
[30]]), discussed in detail in Section 5 Indeed, any Moishezon manifold possesses a
strictly positive singular polarization (L,h%). Conversely, Corollary [Z.37 entails a weaker
form of TheoremE39where we suppose that the curvature /—1R" is positive on the whole
manifold X. As in Section EE5 this implies Corollarry 43

(b) The results of this section hold also for reduced compact complex spaces X pos-
sessing a holomorphic line bundle L with singular Hermitian metric h- having positive
curvature current. This is just a matter of desingularizing X. As space of polarized sections
we obtain H(OZ)(X < %, LK) where X is an analytic set containing the singular set of X. We
obtain thus a new proof of of a particular case of Theorem .40
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APPENDIX A

Elliptic differential operators

The purpose of this Appendix is to collect some basic facts about the theory of differential
operators on manifolds in the form they are used in the text. General references for the subject are
H 6rmander |6, 18], Narasimhan [10] and Taylor [13, [14].

A.l. Functional spaces

A.1.1. Basic notations. Let M be a differentiable manifold and E be a vector bundle over M.
Let U be an open set of M. We denote by Q(U, E) the space of smooth sections of E over U. The
correspondence U — Q(U,E) defines a sheaf denoted Q(E). If E = ANT*M and F is a vector
bundle over M we set QU,A'T*M ®F) = Q'(U,F). If F is trivial we omit it from the notation.
The space of smooth sections with compact support in U is denoted by Qq(U,F). Accordingly we
have the notation Q}(U,F). We keep the traditional Q°(U,C) = ¢ (U) and Q(U) = €5 (U).

A.1.2. The canonical measure on a riemannian manifold. Let M be a riemannian mani-
fold, endowed with a riemannian metric g = g™. There exists a unique positive measure on M
determined by g, v : %o(M) — R so that for any chart (U,x%,... x")

/¢de — /Rn¢(xl,...,x”),/ydet(gi,-)\dxl...dx“ (A1)

for all ¢ € €o(M), supp¢ C U. The assertion is proved as follows. For any chart (U,x%,... x")
we define \( m : 6o(U) — R by the formula (AJ). The change of variable formula shows that
for another chart (W,y?,...,y") the functionals vy y and wyv are equal on (U NW). By using a
partition of unity we show the existence of a functional vy on %p(M), whose restriction to 4o(U)
is vy m for any chart (U,x%, ... x"). The uniqueness is clear.

If M is orientable, the canonical measure is given by integration against the volume form
determined by g. This is the unique n-form w on M such that for any positively oriented chart
(U,xt, XY, wlu=+/det(gij)dx} A ... AdX". In this case we denote w = dvy .

A.1.3. Thel, spaces. Let E — M be a vector bundle, endowed with a hermitian metric. We
introduce a global scalar product by

(U,B):/M<G,B>dVM, a,ﬁEQo(M,E). (AZ)

Let Lo(M, E) be the completion of Qo(M, E) under this scalar product. In the case of E = Al T*M
we denote Lo(M,A' T*M) by LL,(M). We also introduce the space L»(M,E,loc) of locally L,-
integrable sections. It is a Fr echet space, with seminorms given by integration on compact sets.

A.1.4. Thetopology of Q(M,E) and Qo(M, E). There exists a unique Frechet space topology
on Q(M, E) such that the linear one—to—one map Q(M, E) — [xem Ex is continuous. Moreover, the
functionals f — || f[|k,v := ¥ |a|<v Sup|D? f|, K compact set in a coordinate chart (U,x*,...,x"),v €
N, form a fundamental system of continuous seminorms.

For a compact set K C M we denote by Qg (M, E) the subspace of sections with compact support
in K. We endow Qq(M, E) with the inductive limit topology of the spaces Qk, (M, E), v € N where
{Ky }v is an exhaustion with compact sets of M.
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A.15. Currentson manifolds. Let M be a manifold and E — M a vector bundle. The space
of continuous linear functionals on Qo(M, E) is denoted by Qg (M, E) and the space of continuous
linear functionals on Q(M, E) is denoted by Q'(M,E). Of course, if M is compact, Q'(M,E) =
Qp(M,E). If M is endowed with a riemannian metric g and E is hermitian, L»(M, E, loc) is embed-
ded in Q4(M, E) by

¢ (a,0) = /(a,¢>de, 6 € Qo(M,E), a € Lo(M, E, loc)

If T € Qy(M, E) we can define its restriction T|; € Qp(U,E) to an open set, as well as the multi-
plication with a smooth function. Qi (M, E) is a sheaf of ¥"*—modules, where €™ is the sheaf of
smooth functions on M.

Let (U,x%,...,x") be a coordinate system such that E| is trivial. Let (ey,...,&) be a frame in
Elu. If T € Q4(M,E), T|uy has a unique representation

T|U :T1e1+...+Tre( (A3)
with distributions T; € Q(U). Thus, there exists a sheaf isomorphism
(M, E) = Q(E) @4 Qup(M),
where Q(E) is the sheaf of smooth sections in E. If we denote by U the image of U in R" we

define the distributions 'I](xl, ., X" on UcR" by composing with the chart diffeomorphism. We
identify in this way T |y with a vector of r distributions on U.

A.1.6. Sobolev spaces. More generally, we need to introduce Sobolev norms on sections of E.

Acurrent T € Qp(M,E) is said to be in the Sobolev space Ws(M, E; loc) if for any coordinate
system (U,x, ..., x") such that E|y is trivial, the distributions T;(x!,...,x") € Ws(U loc), where T;
are defined by [A33). The topology on Ws(M, E; loc) is defined by the seminorms

r
T — _ZHdJTj (x4 XMls, @ € €5°(M), supp C U
i=

The definition is correct, due to the diffeomorphism invariance of Sobolev spaces, [6, Theorem
2.6.1]. We have then the following result on the regularity properties of Sobolev spaces. Let
Q«(M, E) represent the space of sections of E of class £X.

A.1l. THEOREM (Sobolev embedding). For s> n/2, n=dimM, we have a continuous injection
Ws (M, E;loc) C Qk(M, E).

We need also the following Sobolev spaces. Let K be a compact set in M. Assume that E is

hermitian. We set
Ws(K,E) = {T e Wg(M,E;loc) : suppT C K}.

If M is a compact manifold, Ws(M, E;loc) = Ws(M,E). The induced topology on Ws(K,E) can
be defined by a hermitian scalar product which makes it a Hilbert space. Let {U,} be a finite
open covering of K and {¢, } be a subordinated smooth partition of unity. We assume that U, are
coordinate charts and E|y, are trivial. On each U,, we choose an orthonormal frame (ey,...,€/).
We have the representation Ty, = T,€] +...+T,"€/, where T} can be thought as distributions on

U, C R". We set
1/2

Tl = (3 3 166T12)
V=

A.2. RELLICH’S LEMMA ([13, Proposition 4.4]). Theinclusion Ws(K,E) — W (K,E) is com+
pact for s>t > 0.

Let us define
Wso(K, E) = the closure of Qo(K, E) inWs(K, E)
If s€ Z,, Wso(K,E) =Ws(K, E) [13, p. 291]. As before, we set Wij,(M) = Win(M, Al T*M).
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A.1.7. Differential operators. We refer to Narasimhan [I20] for elementary properties of dif-
ferential operators P: Q(M,E) — Q(M, F) acting between the (sheaves of) sections of two vector
bundles E, F on M.

Let P: Q(M,E) — Q(M,F) be a differential operator acting between sections of two hermit-
ian vector bundles. The formal adjoint P of P is a differential operator P' : Q(M,F) — Q(M,E)
of the same order as P, satisfying

(Pa,B) = (a,P'B), acQoM,E),BcQM,F).

We use the notation P! in order to distinguish the formal adjoint P* from the Hilbert space adjoint
P*. Note that P is symmetric if and only if P = Pt
We extend the operator P to an operator

P:Qu(M,E) — Qp(M,F)
by setting
Pa(B)=a(P'B) .aeQy(M,E),BeQM,F)
If a € L?(M,E), B € L>(M,F), the relation Pa = 3 in distribution sense means

(Bvd’):(avtp(p) ’¢€QO(M3F)'

Let P: Q(M,E) — Q(M,F) a m-order differential operator. If (ef,...,&) and (fy,..., fq)
are local frames of E|y and F|y over an open set U C M, any section s€ Q(U,E) can be written
s= 5 s’e, and P has the form

Ps= (P's") 1,
where P}' are scalar differential operators. The symbol of P is a form on T,M whith values in
Hom(Ey, Fx), for each xe M. Let £ e T*M, n € E. If f € (M), s Q(M,E) satisfy df(x) =
&, f(x)=0,s(x) =n.

Weset op(x, &) 1 Ex — Fx, op(X,&)n = %P( fMs)(x). We have gp.g(X, &) = 0p(X,&)o0g(X, &)
for two operators P an Q.

A.3. DEFINITION. A differential operator P is said to be dliptic if ap(x, &) is injective for all
E e TM~ {0} and x e M.

We introduce the more general notion of eliptic complex. Let M be a riemannian manifold and
E" = @l ,E' be a graded hermitian vector bundle. Let D : Q(M,E’) — Q(M,E") be a graded
differential operator of order 1 and degree 1 i.e. D: Q(M,E') — Q(M,E™*1). We assume that
D2 =0, that is, we have a complex

0—Q(M,E% — QM,E}) — ... — Q(M,E") —0 (A.4)
We say that the complex (&) is elliptic if
A=Ap =DD'+D'D (A.5)

is an elliptic operator.

A.4. EXAMPLE: THE DE RHAM COMPLEX. Letd: Q'(M) — Q'*1(M) be the the exterior
derivative (de Rham operator). In this case E* = A'T*M, D = d. Then gg(x, &) = &A. The formal
adjoint d' is traditionally denoted 5. We have & : Q'*1(M) — Q'(M) and o5(x,&) = i¢. Define
A = d& + 5d the Laplace—Beltrami operator. Therefore oa(x,&) = |€]% and A is elliptic. It is also
easy to see that the Witten deformation D = d; defined in 1)) has the same symbol as d and the
Witten laplacian A defined in Z8) is elliptic.

A.5. EXAMPLE: THE CAUCHY-RIEMANN COMPLEX. Assume M is a complex hermitian ma-
nifold and F is a holomorphic hermitian vector bundle on M. Let 9 : QPIT*M®@F — QPHH1IT*M
F be the Cauchy-Riemann operator so that E* = AP*T*M ® F, D = 4. Then 05(x,&) = &oaN
where &1 is the (0,1)—part of &. Let 9 : QP9(M) — QP4-1(M) be the formal adjoint of 4. Then
O3 (X&) =g,
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We set A” = 99 + 9. This is the d—Laplacian. Its symbol is gpr(x, &) = |&o.1|2. Thus A” are
elliptic.

A.1.8. Regularity.

A.6. GARDING’S INEQUALITY ([A5, 11, Theorem 8.1]). Let P be an dlliptic second order dif-
ferential operator acting on sections of a vector bundle E over a manifold M. For any compact
K C M there exists a constant C > 0 such that for all u € Qo (K, E) we have

lul[f < C((Pu,u) + [|ul[5). (A.6)
We quote now the regularity theorem [I5, 111, Corollary 1.5], [12Z, Corollary 7.1, p.54].

A.7. REGULARITY THEOREM. Let P be an dliptic second order differential operator act-
ing on sections of a vector bundle E over a manifold M. Assume u € Q((M,E) satisfi es Pu €
Win(M, E;loc). Then u € Wii2(M,E;loc). In particular, P is hypodliptic, that is Pu e Q(M,E)
impliesue Q(M,E).

This is a consequence of the fact that P admits a parametrix (i. e. an inverse modulo smoothing
operators) a pseudodifferential operator of order —2. The same argument leads to the following
variant of the Garding inequality. For any compact K C M there exists a constant C > 0 such that
for any u € Wo (K, E) we have

[[ullm+2 < Cm([[Pul[m +[lullo) - (A7)

A.2. Selfadjointness

Our aim is to study the L,-cohomology on non-compact spaces by using harmonic and spectral
theory. For this purpose we need to understand the self-adjoint extensions of the Laplace operators.
We encounter two situations:

(i) M is endowed with a complete metric, e.g. M is compact. Then the Laplace operator is
essentially self-adjoint and there exists only one self-adjoint extension.

(i) the metric of M is incomplete, e.g. M has a non-empty boundary. Then there are in general
more then one self-adjoint extension. We will use in this case the Friedrichs extension.

We present the basic definitions and introduce the quadratic forms inAZT1l The essential self-
adjointness on complete manifolds is proved in In[AZ3 we define the Friedrichs extension
and as particular case we disccuss the Dirichlet and Neumann boundary conditions. For the purpose
of Hodge theory we introduce also a self-adjoint extension called the Gaffney extension in [AZ.4

A.2.1. Basic defi nitions. Let M be a riemannian manifold and E be a hermitian vector bundle.
Assume now that P: Q(M,E) — Q(M, E) is an elliptic symmetric differential operator.

In general, at least two possibilities present themselves to extend P as a closed densely defined
operator on L2(M,E). The first choice is to consider the closure P whose graph is the closure of
the graph of P: Qo(M,E) — L2(M, E). This is the minimal extension of P denoted also Pyin. The
second is to consider the maximal extension

Dom(Pnx) = {a € L3(M,E) : Pa € L*(M,E)}

and for a € Dom(Pnax) Set Pmax0 = Pa (where Pa is computed in the sense of distributions).
Clearly, Dom(Pnin) C Dom(Pmnax) and Pmax is an extension of Pyin. Let us denote by P* the Hilbert
space adjoint of P: Qo(M,E) — L»(M,E). It is easy to see that P* = Pyu. If P is a self-adjoint
extension of P, we have Pmin C P’ C Pnax. P is called essentialy self-adjoint if P = P* (equivallently
Pmin = Pnax). We can already prove that elliptic operators are essentially self-adjoint on compact
manifolds.

A.8. THEOREM. LetP:Q(M,E) — Q(M,E) bean elliptic symmetric operator on a compact
manifold M. Then Prin = Pnax and P is essentially selfadjoint.
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PROOF. If a € Dom(Pmax), the regularity theorem[AZimplies a € Wo(M, E). Since Wo(M,E) C
Dom(Pmin), We get Pmin = Pnax. Moreover, it is easy to see that P* = Py, where P* is the Hilbert
space adjoint of P. Thus P = P*, so P is essentially selfadjoint. O

Therefore P has a unique selfadjoint extension, namely its closure, denoted P : Wo(M,E) —
Lo(MLE). If P: Q(M,E) — Q(M, E) is positive, like A, its closure is also positive.

We shall work in general with the quadratic form associated to an operator rather than with the
operator directly. We intoduce here this useful tool. For an exhaustive study of quadratic forms see
[9, Chapter 6], [11, V111.6] (and historical notes at p. 307), [2, Chapter 4].

Let H be a complex Hilbert space. A quadratic form is a sesquilineare map Q : Dom(Q) x
Dom(Q) — C where Dom(Q) is a dense linear subset of H. Q is said semibounded if Q(u,u) >
C||u||? for u € Dom(Q) and positive if Q(u,u) > 0 for u € Dom(Q). A semibounded quadratic form
Q:Dom(Q) x Dom(Q) — C, Dom(Q) C H, is called closed if (Dom(Q), ||-||q) is complete, where
| fllo=(Q(f)+]/f||?)¥/?, f € Dom(Q). There exist a basic correspondence between semibounded
closed quadratic forms and semibounded self-adjoint operators which is described as follows. For
the sake of simplicity we may assume that the lower bound is c= 0.

A.9. PROPOSITION. To a positive self-adjoint operator F we associate the quadratic form Q
given by
Dom(Qr) = Dom(F¥2)andQr (u,v) = (F¥?u,F¥2v), u,v € Dom(Qg). (A.8)
Then
Dom(F) = {u € Dom(Q) :there existsv € H with
Q(u,w) = (v,w)for allw € Dom(Q)}

Conversely, given a positive closed quadratic form Q there exists a positive self—adjoint operator F
such that (A8) holdsi. e. Q = Qf. In particular, the domain of F is described by (A.9).

(A.9)

For the proofs we refer to [2, Lemma 4.4.1] and [2, Theorem 4.4.2].

A.2.2. Selfadjointnesson complete manifolds. LetD: &(M,E’) — & (M, E") be an elliptic
complex (AZ). We consider the weak maximal extension

D = Dpax : Lo(M,E") — La(M,E"). (A.10)

Dom(D) consists of elements u such that Du calculated in distributional sense is in L2. We obtain
in this way a complex of closed, densely defined operators, i.e. Im(Dmax) C Ker(Dmax). Since we
mainly work with the operator D max, We will drop the subscript and write simply D instead of D max.
Let D' = Dt be the maximal extension of the formal adjoint of D and D* be the Hilbert-space
adjoint of D.

In order to study the domain of our operators we use the following fundamental lemma of
Andreotti—\Vesentini [T, Lemma4,p. 92—3]. For an operator P the graph-normis defined by Dom(P) 5
Ur— [|ul| + [[Pul].

A.10. ANDREOTTI-VESENTINI LEMMA. Assume (M,g™) is complete. Then Qo(M,E’) is
densein Dom(D), Dom(D'), Dom(D) N Dom(D!) in the graph norms of D, D' and D + D!, respec-
tively.

PRoOOF. We first reduce the proof to the case of a compactly supported form u. The complete-
ness of the metric w implies the existence of a sequence {a, }, C 65" (M), such that 0 < a, <1,
ay+1 =1 on suppay, |da,| < 1/u for every u > 1 and {suppay}, exhaust M. To construct this
sequence we first construct an exhaustive function a: M — R with |da] < 1. This is done by
smoothing the distance to a point (we can assume that M is connected). Next, consider a smooth
function p : R — [0, 1] such that p = 0 on a neighbourhood of (—c, —2], p =1 on a neighbourhood
of [-1,) and 0 < p’ < 2. Then a, = p(a/2H*1) satisfies the conditions above.
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Let u € Dom(D) NDom(D'). Then a,u € Dom(D) N Dom(D') and
ID(ayu) —auDul| = O(1/ ) ull,
ID*(ayu) — auD'ul| = O(1/p) ull.
Hence {a,u} converges to u in the graph norm. So to prove the assertion we can start with a form

u having compact support in M. But then the approximation in the graph norm follows from the
Friedrichs theorem on the identity of weak and strong derivatives [[4, Proposition 1.2.4]:

A.11. FRIEDRICH’S LEMMA. Let Pf =S ad f/dxc+ bf be adifferential operator of order 1
on an open set Q C R", with coeffi cients & € €1(Q), b € €°(Q). Then for any v € L?(R") with
compact support in Q we have

lim [[P(vpe) = (PV) « pe 12 = 0.
The proof of the Andreotti-Vesentini lemma is achieved. O
As a by-product of Friedrichs lemma we obtain also:

A.12. COROLLARY (Integration by parts). Assumethat uc Lo(X,EY loc), ve Lo(X,E41 loc)
and Du e Lo(X,E%1 loc), D'v e L(X,E92, loc). Suppose also that u and v have compact support.
Then (Du,v) = (u,D'v).

PROOF. We may assume that u,v have support in a trivialization patch diffeomorphic to R™.
We denote w, = wx* p.. We have by Friedrichs lemma:

(Du,v) :ellno((Du)svvs) (Dug, ve) (Ue, D've)

= lim = lim
e—0 e—0

(Ug, (D'V)¢) = (u,D'v). (A.11)

= [lim
e—0
O
A.13. COROLLARY. If M iscomplete, D* = D!, (D')* = D.

PROOF. It is clear that from definitions D' C D!. Conversely if u € Dom(D!) there exist u, €
Qo(M,E®) withuy, — u, D'u, — D'u. Then

(Dw,uy) = (W,D'uy), we Dom(D)
by the definition of D. The limit of this equalities for g — oo gives
(Dw,u) = (w,D'u), we Dom(D)
i.e. ue Dom(D*) and D*u = D'u. O

Of utmost importance is the self-adjointness of the laplacian (AX5). For simplicity we denote
A=Np.

A.14. COROLLARY. A isessentially self-adjoint. The quadratic form associated to its unique
selfadjoint extension is the form Q given by Dom(Q) = Dom(D) N Dom(D*) and

Q(u,v) = (Du,Dv) + (D*u,D*v), u,ve Dom(Q) (A.12)

In particular,
KerAmax = KerD N KerD* (A.13)

PrRooOF. We will show that Ama is selfadjoint. Since Amax = A* this implies
A=A :( max)* :Amax:A*a

which means that A is essentially self-adjoint.
Let u € Dom(Amax). Since A is elliptic we have u € Wo(M, E", loc) by Gérding’s inequality.
Thus D'u,Du € Ly(M,E", loc) and by Corollary [AI2 we can integrate by parts if u is multiplied
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with a smooth compactly supported function. Let a,, be the family of functions defined in the proof
of the Andreotti-Vesentini lemmal[AI0 By following [3] we obtain:

|a,Dul|? + [|a,D'u|| = (a%Du,Du) + (u,D(a%D'u))
= (D(a%)u,Du) + (u, a3 DD"u) — 2(a,day, A u, Du) + 2(u,a,da, A D'u)
= (af,u,Au) — 2(day A u,a,Du) + 2(u,day A (a,D'u))
< (@U, Amaxt) +27#(2|a, Dul|[Jul] +2||a Dul Jul])
< (U, AmacWt) +2#([[ayDul|? + [|a, D'ul? +2|ul|?).
We get therefore

||a,Dul|® + ||a,D'ul|® < (85U, Drractt) 4+ 2% H]|u]?).

1-2-H
By letting  — oo, we obtain ||Dul|? + || Dul|? < (u,AmaxU), in particular Du, Dtuare in Lo(M,E").
This implies

(U, AmaxV) = (Du,DV) + (D'u,D'v)  u,v € DOM Ay, (A.14)
because the equality holds for a,u and v, and because we have a,u — u, D(ayu) — Du and
D'(a,u) — D'uin L2. An analogous calculations show that the right-hand side of (B.14) equals
(AmaxU, V). Thus

(U, AmaxV) = (BmaxU, V), U,V € Dom(Amax) (A.15)
which means that Apmax C (Amax)™. But Amax is the maximal extension of A so that Apax = (Amax) ™
O

A.2.3. Friedrichsextension. In general, if M is not complete, the symmetric elliptic operator
P:Qo(M,E) — L2(M,E) is not essentially self-adjoint. In this case, we have to choose one
self—adjoint extension and a particulary useful one is the Friedrichs extension [2, p. 86]. In order to
exhibit the Friedrichs extension we use quadratic forms.

Let P: Dom(P) C Hy — H> be a positive linear operator, where H1 and H, are Hilbert spaces.
(A positive operator is also symmetric due to the polarization formula.) The associated quadratic
form Qp is defined by

Dom(Qp) = Dom(P), Qp(u,V) := (Pu,v), u,v € Dom(Qp).

By [2, Theorem 4.4.5] Qp is closable, i. e. there exists a positive closed form Q extending Qp . Let
us take the smallest closed positive form Qp with this property. Note that

Dom(Qp) is the completion of Dom(Qp) = Dom(P) for the norm |||/ g, (A.16)

that is, u € Dom(Qp) if and only if there exists (u,) C Dom(Qp) so that ||u, —ul| — 0 and Qp(uy —
uy) — 0 for v, — . In this case Qp(u) = limQp(uy).

A.15. DEFINITION. The positive self-adjoint operator F with Qr = Qp as defined in &) is
an extension of P, called the Friedrichs extension.

Due to the one—to—one correspondence between closed quadratic forms and self—adjoint oper-
ators, we will practically work only with the the closure Qp.

A.16. EXAMPLE: THE DIRICHLET PROBLEM. Assume M is a compact manifold with bound-
ary. Let P: Qo(M,E) — L»(M, E) be a positive elliptic operator. The Friedrichs extension of P is
called the operator P with Dirichlet boundary conditions. If P = A is given by (AX), its quadratic
form is

Qa(u,v) = (Du,Dv) + (D*u,D*v), u,ve Qo(M,E) (A.17)
Arguing as in Proposition [AI9 we obtain

DomQ, =W (M, E). (A.18)
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A.17. EXAMPLE: THE @-NEUMANN PROBLEM. Let M be a relatively compact smooth domain
in a complex manifold X and F — X be a holomorphic vector bundle. Let M = {x € X : r(x) < 0}
where r is a smooth function on X which has non—vanishing gradient on dM. We denote

B%4(M,F)={uc Q®(M,F) : dr Axu=00ndM}. (A.19)
Integration by parts ([4, Propositions 1.3.1-2]) shows that

(du,v) = (u,8v) forue Q%I(M,F),ve B*I(M,F) (A.20)
We consider the operator

Dom(P) = {u € BI(M,F) : due B*H1(M,F)}

_ ~ (A.21)
Pu=ddu+3Jdu, forue Dom(P).
which by (AZ0) is positive. An extension of the associated form Qp is
Dom(Q) =B%I(M,F), Q(u,v) = (du,dv) + (du,9V). (A.22)

It is easy to see that Q is closable and its closure is the form Q with
Dom(Q) = {ue LY4(M,F) : 3(uy) c B%Y(M,F) so that limuy, = u
and (||duyl)), (|[8uy]|) are Cauchy sequences } (A.23)
Qu = lim ([|duy|>+||9uy||?), for ue Dom(Q).

The self-adjoint extension of P given by the Friedrichs method is called the d-Neumann laplacian.

A.2.4. TheGaffney extension. We return to the complex of weak maximal extensions ([A10).
We describe a self-adjoint extension of the D-laplacian which is very convenient for the formulation
of the Hodge decomposition. It was introduced by Gaffney in [5] and it coincides, of course, with
the unique self-adjoint extension in the case of a complete metric and also with the Friedrichs
extension in the case of the d-Neumann problem.

Let D* be the Hilbert-space adjoint of D.

A.18. PROPOSITION. Let (M,g™) be a riemannian manifold and (Q"(M),D) be an eliptic
complex. The operator defi ned by

Dom(A) := {u € Dom(D) "Dom(D*) : Due Dom(D*), D*ue Dom(D)},

. . (A.24)
Au=DD*u+ D*Du for u e Dom(4).

is a self-adjoint extension of the D-laplacian, called the Gaffney extension. The quadratic form
associated to A isthe form Q given by

Dom(Q) := DomD N DomD*

Q(u,v) =(Du,Dv) + (D*u,D*v), u,v e Dom(Q) (A.25)

PROOF. For a proof of the self-adjointness of A we refer to [5], [4, Proposition 1.3.8]. We
determine now the quadratic form of A. First remark that Q is a closed form. Indeed, if {u,}
is a Cauchy sequence in the norm ||-||q, there exist elements u, a, B aus L, such that u, — u,
du, — a, Su, — B. Since duy, — du in distribution sense, a = du and hence du € L,. Since
uy € Dom(D*) we have (Dw,u,) = (w,D*uy,) for any w € Dom(D). By passing to the limit we get
(Dw,u) = (w,B), thus u € Dom(D*) and D*u = 3.

Let F be the unique self-adjoint, positive operator associated to Q. The domain of F is given
by (A9). For u € Dom(4) it is clear that u € Dom(Q) and u satisfies &9) with w = Au. Therefore
A C F and, since both operators are self-adjoint, F = A. O
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Note that by the definition of the Gaffney extension
KerA={ue DomA : Au=0} = KerDNKerD* (A.26)

and call it the space of harmonic elements of Lo(M,E").
It is useful to formulate an interior regularity result for elements of the domain of the quadratic
form of an elliptic operator.

A.19. PROPOSITION. Thedomain of the quadratic form (A.2Z5) satisfi esDom(Q) C Wi (M, E, loc).

PROOF. Let K C M be a compact set, & € ¢5° with £ =1 on K. Let ue Dom(Q). It easy
to see that {u € Dom(D) and £u € Dom(D*). Without loss of generality, we can replace u by
&u and assume thus that u has compact support in M. Let L be a compact which contains suppu
in its interior. By Friedrichs lemma, there exists a sequence (uy) C Qo(M,E) such that u, —
u, Duy — Du, D*uy, — D*uin L,. By Garding’s ineguality Al applied to u, — u, we obtain
that (uy,) is a Cauchy sequence in Wy o(L,E") and therefore u € Wy o(L,E"). a

A.20. EXAMPLE: THE d-NEUMANN PROBLEM. We describe now the Gaffney extension in
the case of the -Neumann problem. Let D = o be the weak maximal extension of the Cauchy-
Riemann operator and let 9" be its Hilbert-space adjoint. Integration by parts ([4, Propositions
1.3.1-2]) shows that

B%9(M,F) = Q%I(M,F)nDom(d"), @ =& onB%I(M,F). (A.27)

From (&Z7) follows that the restriction to Q%94(M,F) of the Gaffney extension (B24) for D =
is exactly the operator (AZT). Moreover, we have an analogon to the Andreotti-Vesentini lemma

A0
A.21. LEMMA ([, Proposition 1.2.4]). Q(M,F) is dense in Dom(d) in the graph-norm of @

and B%9(M, F) is dense in Dom(d") and in Dom(d) N Dom(d") in the graph-norms of d° and
0+0 , respectively.

The proof is again based on the Friedrichs lemma AT but a more delicate convolution process
in the tangential direction is required.

A.22. PROPOSITION. The d-Neumann laplacian i.e. the Friedrichs extension of (AZI) coin-
cides with the Gaffney extension (A.Z4) of the d-laplacian.

PROOF. By Proposition Definition[AIH and Proposition it suffices to show that
the quadratic forms (AZ3) and (BZH) are the same. But this results immediately from Lemma
U

A.3. Hodge Decomposition

Let (M,g™) be a riemannian manifold and E* = @' ,E' be a graded hermitian vector bundle.
LetD: &(M,E") — &(M,E") be an elliptic complex and consider the complex of closed, densely
defined, weakly maximal extensions [AI0).

The ordinary L? cohomology of (BI0) is defined to be
HY (M,E) = KerDﬂL2(M,Eq)/RangeDﬂL2(M,Eq) (A.28)

The cohomology H('z)(M,E) is denoted in case of the de Rham complex Example [AZ] by
Hz (M) = Hgg (M), called the L* de Rham cohomology of M. In case of Example it is

denoted H(‘Z)'(M, F) and called the L? Dolbeault cohomology of (M,F).
If we are want the cohomology group to inherit the Hilber-space stucture, we introduce the

reduced L? cohomology of (BI0), defined to be
ﬁ?z)(M, E) =KerDNLy(M, Eq)/ [Range DN Lp(M,EY)] (A.29)
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where V] denotes the closure of the space V. We take the closure in order to make sure that

ﬁ?z)(M, E) is a Hilbert space.

We link the L2 cohomology to the theory of elliptic operators via the Hodge decomposition for
the Gaffney extension A (AZ4) of the Laplace—Beltrami operator. We denote by

" (M,E) = KerA = KerDNKerD* (A.30)
and call it the space of harmonic elements of Lo(M,E").
A.23. WEAK HODGE DECOMPOSITION. The following weak Hodge decomposition holds:
Lo(M,E") = # (M,E)3[ImD]@[ImD*],
KerD = 7 (M,E)®[ImD].
In particular we have an isomorphism:;
Ay (M,E) = #%(M,E). (A.31)

A general condition for the range of D to be closed and for the finiteness of the L2 cohomology
is as follows.

A.24. PROPOSITION ([[4, Theorem 1.1.1-3]). (i) A necessary and suffi cient condition for Im (D) N
L2(M,Ef9) and Im(D*) NL2(M,EY) to be closed is that there exists a positive constant C such that

[ull? < C(||Dul|? + ||D*ul|?), ueDomDNDomD*NLy(M,E%,ul #9M,E) (A.32)

(ii))Assume that from every sequence ux € Dom(D) N Dom(D*) N Lz(M, EY) with ||uk|| bounded
and Dug — 0 in Lp(M,E%1), D*ux — 0 in L3(M,E%1) one can sdlect a strongly convergent
subsequence. Then both Im(D) NL2(M,E9), Im(D*)NL2(M,E“) are closed. Moreover, .727%(M, E)
isfi nite dimensional and Hy, (M,E) = %(M,E).

Practically we deal with an estimate which will imply the strong Hodge decomposition.

A.25. DEFINITION. We say that the fundamental estimate holds in degree q if there exist a
compact set K € M and C > 0 such that

||u|]2<C<||Du|]2+||D*u\|2+/K|u|2de) , ueDom(D)NDom(D*)NLy(M,E%). (A.33)

If M is hermitian and E9 = QPY9T*M ® F, we say that the fundamental estimate holds in bidegree
(p,q).
A.26. THEOREM. Assume that the fundamental estimate holds in degree q.
(i) Theoperators D on Lo(M,E%1) and A on L»(M, E9) have closed range and we have the
strong Hodge decomposition:
Lo(M,EY) = #9(M,E)®ImDD* @ ImD*D, (A.34)
KerDNLy(M,EY) = #9M,E)®ImDNLy(M,EY). (A.35)
(i) There exists a bounded operator G on L,(M, EY), called the Green operator, such that
AG =GA=1d—P,, P,»G = GP,» = 0, where P, isthe orthogonal projection on .79,
(iii) If f € Im(D) N Ly(M,E9), the unique solution u L Ker T N Lo(M,E%?) of the equation
Du= f isgiven by u= D*Gf.
(iv) Theoperator G mapsL,(M,E?) NQ(M,EY) into itself.
PROOF. Consider a sequence {ux} € DomDNDomD* NLy(M,EY) with {|Juk||} bounded and

|ID*uk]| + ||Duk|| — 0, for kK — co.
Let & be a smooth, compactly supported function on IntM, such that £ = 1 on K. Hence

Q(& Uk, Eu) + [ §ul* = D(E U1+ [ID* (o)1 + 1€ | (A.36)
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is also bounded. Let L = supp & and consider the Sobolev space Wy o(L,E?) with norm || - ||1. By
Eu € Wio(L, E9). Garding’s inequality (AX) shows that (|| uk||1) is bounded.

By the Rellich’s Lemmal&Z, the inclusion (Wi o(L,E9), |- [|1) — (L2(M,E9), ||-]|) is compact.
We can select therefore a convergent subsequence in L(M,EY), denoted also {&uk}. Since & =1
on K, it follows that {uk|k } converges in ||-||. By estimate (A:33), this entails that {ux} converges
in Ly(M,E9).

Proposition AZ4limplies that (A32) holds and 779 is finite dimensional. From [A32) we infer
that

|f|| <C|Af||, feDomA, f L KerA. (A.37)

Therefore A has closed range. Since A is self-adjoint we have
Lo(M,E%) = ImA@ KerA = Im(DD*) @ Im(D*D) @ s#%M,E).

By (A37) there exists a bounded inverse G of A on ImA. We extend G to L,(M,EY) by setting
G =0o0n.9M,E). We obtain thus a bounded operator G on L,(M,E%), bounded by the constant
C from (A33ZD), satisfying Ker(G) = #9(M,E) and Im(G) = Im(A). It is now easy to check that
(i), (i) and (iii) hold true.

Finally, assertion (iv) follows from Proposition (the interior regularity for the elliptic oper-
ator A). O

Let us say what the previous theory gives if the manifold M is supposed to be compact. Then A
is essentially self—adjoint by [A8 or [AI4 and the unique self—adjoint extension may be described
as the Gaffney extension. The fundamental estimate (A.33) holds in all degrees (just take K = M).
Theorem A28 implies that the strong Hodge decomposition holds in all degrees. Since Q(M,E") C
Lo(M,E") we can restrict the strong Hodge decomposition to Q(M,E") we obtain:

Q(M,E") =" (M,E)©DQ(M,E") & D'Q(M,E")

t t (A.38)
u= DD'Gu+ D'DGu+P,u

Note that G and P;» map smooth forms to smooth forms.
The cohomology of the complex (&3) is denoted by H' (M, E). From (&38) it folows that the
map.

H'(M,E) — " (M,E)

[u — Pyu (A39)

is an isomorphism. The classical formulation of (A39) is that each cohomology class contains a
unique harmonic form. We deduce also

H'(M,E) = .#"(M,E) = H(M,E). (A.40)

We call H"(M,E) the de Rham cohomology in the case of the de Rham complex &2 and the
Dolbeault cohomology in the case of the Cauchy-Riemann complex

A.4. Spectral properties

The point of extending a differential operator to a selfadjoint one is to study its spectral prop-
erties. Let A be a closed operator on a Hilbert space H. We say that a complex number A lies in
the resolvent set of Aiif A — A'is a bijection of Dom(A) onto H with a bounded inverse. Note that
by the closed—graph theorem if A —A: Dom(A) — H is a bijection, the inverse is automatically
bounded.

The spectrum of A, denoted o(A), is the complement in C of the resolvent set. We shall
study only self—adjoint operators, whose spectrum is always a non—empty set of the real line. Let
E:Bor(R) — £ (H) be a spectral measure, where Bor(R) is the family of Borel sets in R (for the
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definition of a spectral measure, see 11}, Vol I, p.263]). If f : R — C is a bounded Borel function
we can define the integral

/Rf(t)dE(t) € Z(H)

using the usual pattern of defining the integral for step—functions first and then writling the integral
of a general bounded Borel function f as the limit of the integrals of a sequence of step—functions,

which converge uniformly to f. If E : Bor(R) — Z(H) is a spectral measure we can define the
associated scalar measures on R, by setting Bor(R) > B — (E(B)u, V), for each (u,v) € H x H.

For any bounded Borel function f : R — C we have then

([ 10dE®)uv) = [ 10dEQUY)

We have the following fundamental result [[L1, Theorem VI1I1.6], [2, Theorem 2.5.5].

A.27. SPECTRAL THEOREM. Each self—adjoint operator A has a unique spectral measure E

such that
Dom(A) = {ueH: /thd(E(t)u, ) < oo}

Au:kIme(/RX[,KK](t)tdE(t))u:: (/ﬂ@tdE(t))u, u € Dom(A).

and

We can actually define the integral of a general Borel function with respect to E and obtain a
Borel functional calculus. Namely, we set

/f( = lim /X[ ki (D) F (1) dE(L)

and define the closed, densely defined operator f(A) by
Dom f(A) = ueH:/|ft (t)|2d( Etu,u)<oo}

In particular

A)u,v):/Rf(t)d(E(t)u V)

Let Q be the quadratic form associated to A. We deduce that
Dom(Q) = {ueH: / tdE®RUY <},

(A.41)
Q(u,v) /td t)u,v), u,ve Dom(Q).

A.28. DEFINITION. Let us define the spectral resolution associated to A by (E, ) cr Where
E) = E((—,A]). When we want to stress the dependence on A we note E, (A). We set &(A) =
&(A,A) :=1ImE, (A). The spectrum counting function of A is defined as

N(A):=dimImE, =dim&(A)

The most important tool for estimating and for comparing the eigenvalues of different operators
is the variational principle or minmax principle. The simplest but very useful form of the variational
principle is the following

A.29. GLAZMAN’S LEMMA. The spectrum conting function of a semibounded self—adjoint
operator A satisfi esthe variational formula

N(A) = sup{dimF : F closed ¢ Dom(Q), Q(u,u) < A|ul|?, Yue F} (A.42)

where Q is the quadratic form of A.
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PROOF. Assume that u e ImE). For any B € Bor(R)
(E(B)u,u) = (E(B)E((—,A])u,u) = (E(BN (=, A])u,u)
so formula (AZ1) entails

Quu = [ Ltd<E<t>u7u> < A(E((~,AT)u,u) = Au]?

Hence Q(u,u) < A|[ul|? for all u € ImE, and N(A) does not exceed the right—hand side of (&Z2).
Consider a closed linear space F ¢ Dom(Q) such that Q(u,u) < A ||ul|? for all u € L. We show that
E) : F — ImE, isinjective. If u€ KerE), = ImE((A,+)) we have

Qu,u) = /(A W)td(E(t)Ua W) > A(E((A,+0))u,u) = AfJul]?

if u# 0. Thus any u € F NKerE, must vanish. We infer that dimF < dimImE, = N(A). Formula
(AZD) is established. U

Let A be a semibounded self—adjoint operator and let Qa be the associated closed quadratic
form. We consider the sequence Ay < A> < ... < Aj <... according to the formula

Ai= inf su Qa(f, f A.43
' Fepom(Qu) feF,HEH:l A(1 1) ( )

where F runs through the j—dimensional subspaces of Dom(Qa).

A.30. VARIATIONAL PRINCIPLE (compact resolvent case). Assumethat theinjection (Dom(Qa),||:||g.) —
(H,||-]) isacompact operator. Then A hasa discrete spectrumand the numbers A j satisfy lim;__., Aj =
oo, and coincide with the eigenvalues of A written in increasing order and repeated according to
multiplicity.

In the presence of the essential spectrum the situation is more complicated.

A.31. VARIATIONAL PRINCIPLE. Let usdefi nethebottom of the essential spectrum asinf ass(A)
if Oess(A) # @ and 40 if Oess(A) = &. Then for each fi xed |, either @) there are at least j eigenval-
ues (counted according to multiplicity) below the bottom of the essential spectrumand A j isthe j—th
eigenvalue or b) A; is the bottom of the essential spectrum, inwhichcaseAj =Aj 1 =Aj0=...
and there are at most j — 1 eigenvalues (countig multiplicity) below Aj;.

For the proofs we refer to [[11), Vol IV, p.76-78], [[2, Cap. 4.5]. Let us mention other alternative
definitions of A:

N g e A (s
where F runs over the ||-||g,—closed (j — 1)—codimensional subspaces of Dom(Qa). Moreover, in
(AZ3) we can let F run through j-dimensional subspaces of a care form for Qa or through subspaces
of Dom(A) and the value of A; does not change.

We wish to prove the well-known fact that the essential spectrum is stable under compact per-
turbations. Consider an elliptic complex (A4) and the corresponding Laplace operator A defined
on a manifold M. Let K € M be a compact set. We denote also by A and Ay the Friedrichs
extensions of A restricted to Qo(M,E) and Qo(M \ K, E), respectively.

A.32. PROPOSITION (decomposition principle). Inthe notation asabove, the Laplace-Beltrami
operators A and Ay have the same essential spectrum.

PRrROOF. If A'is a densely defined self—adjoint operator on a Hilbert space, then the essential
spectrum Oess(A) may be defined as the set A € R for which there exists a noncompact sequence
{fn}nen in the domain of A with

|fa]|=1 foreach neN and nIim |[(A—Ald)fq|| =0.
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Any part of such a sequence, from which it is impossible to extract a convergent subsequence,
is called a characteristic sequence for (A,A). Let ¢ be a smooth compactly supported nonnega-
tive function on M which is equal to one on a neighborhood of K. If {fn}nen is an orthonormal
characteristic sequence for (A,A) for some A > 0, then we set g, = fon — fon—1 (N >1). We see
that {gn }nen is noncompact and that lim,_||(A— A Id)gn|| = 0. The Rellich lemma implies that
{®0n}nen Is compact, since ¢ is compactly supported. Moreover, by passing to a subsequence of
{fn}nen, if necessary, we may assume that g, — 0 in the E—valued first Sobolev space W (U, E),
where U is a relatively compact neighborhood of the support of ¢. Then limp || (Avk —
Ald)(1—¢)an|| =0, and consequently

- . ~ (1-9)0n
with =
e S [ T
is a characteristic sequence for (Apnk ;A ). SO Oess(A) C Tess(Bm\k )- We trivially have Tess(Auk ) C
Oess(D)). O

We end with some words about elliptic operators on compact manifolds. Let P:W»>(M,E) —
L>(M, E) be a self—adjoint, positive elliptic operator on a compact manifold M.

Consider the operator P+ 1 :Wo(M,E) — L2(M,E). It is also a selfadjoint operator. Since
I(P+1)a|l > |la|| we can easily verify that P+ is injective, has closed and dense range. Thus,
P+1:Ws(M,E) — L(M,E) is a bijective map so there exists (P+1)~1: La(M,E) — Wx(M, E).
Consider i : Wo(M,E) — L2(M,E) the inclusion. The Rellich theorem says that i is a compact
operator. It follows that

T:io(P+1)1:Ly(M,E) — Lo(M,E)
if a compact operator with ||T|| < 1. Moreover, T = T* since P+ is selfadjoint. From the spec-
tral theory of selfadjoint compact operators we infer that L>(M, E) has an orthonormal basis {u;}
consisting of eigen functions of T:

Tuj = pju; ,u; eW(M,E).
such that each i appears only finitely many times in the sequence (14);. Moreover 0 < p; <1and

we can order p;j so that uj \, 0 as j — oo,
We deduce that {u;} is an ONB of eigen vectors for P it self:

Puj = Ajy;
with Aj = “—11 —1,50A; >0, Aj /S was j — . By[RT8u; € Wo(M, E) and the regularity theorem,

we see uj € Wy(M,E). Proceeding by induction we get u; € W;"(M,E) for all me N. By the
Sobolev embedding theorem u; € Q(M, E).

A.33. THEOREM. Let P:Wo(M,E) — L2(M, E) be a selfadjoint positive elliptic operator of
order 2.

: a) Wecan fi nd an ONB {y }j=o for Lo(M, E) of eigenvectors, Pu; = Aju;
. b) The eigenvectors u; are smooth and limj_.. Aj = o.

A.34. COROLLARY. P:Ws(M,E) — L2(M,E) isFredholmand KerP C Q(M,E).
PROOF. We have KerP = E(0) so dimKerP < « and KerP C Q(M,E). Moreover R(P)

O

@»;>0E(A)) is closed and R(P)+ = KerP so codimR(P) < o,
We define finally the Green operator. Set G: lo(M,E) — L»(M, E) where
Gu=1% M=o (A.45)
A A0 '

G is bounded and ||G|| < 1/min{Aj|A; > 0}. We denote . = KerP and P, the orthogonal pro-
jection on 7. Thus
PG=I1—-Py. (A.46)
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APPENDIX B

Elements of analytic and her mitian geometry

B.1. Hermitian geometry

B.1.1. Hermitian metrics on manifolds. Let X be a complex manifold. A hermitian metric
on X is a smooth family h™X = {hIX},cx, where h! X is a hermitian metric on the fiber TX for each
x € X. Let (z,...,2,) local coordinates on X. Then h™* has the form

h= Zhjdej ® dz, (hij) € Mp(C), hjk = h(a/de,a/an) (B.1)
where hjy are smooth functions on the chart domain. The real part g™* = Reh™ is therefore a
riemannian metric on X, compatible to the complex structure. The K ahler form w = —ImH X is a
real (1,1)-form on X, given in local coordinates by
v—1
w= Tzhjkdzj A dz (B.2)
Moreover, the volume form of the riemannian metric g™* satisfies
wn
dux = — . (B.3)

B.1. DEFINITION. The metric h™* (or sometimes even g'*) is called Kahler metric if w is
d-closed, dw = 0.

Let F — X be a complex vector bundle on X. On each fiber there exists a complex structure, so
we can define, as for TX, a hermitian metric on F as a smooth family H = {hf }xcx, where h is a
hermitian metric on the fiber K for each x € X. For two sections v, w of F over an open set U we
have a function on U defined by the pointwise scalar product:

(W) (x) 1= (W) (X) 1= (), W(X))p = b (V(X), W()). (B.4)

If we (E,hE), (F,hF) are two hermitian vector bundles, then we define a hermitian metricon E® F,
by hE®F := hE @ hF. We are particulary interested in the following particular case. Suppose X is
endowed with a hermitian metric h (with real part g™ = Reh" ) and that (F,h%) is a hermitian
vector bundle on X. The bundle AP94T*X has a hermitian metric hA"*T"X, The metric on APIT*X ®
F is then """ T X @ hF.

B.2. NOTATION. The space of smooth sections of AP4T*X ® F over an open set U is denoted
QPY(U,F). Anelement of this space is called an E-valued (p,q)-form. The sheaf U —— QP9(U,F)
is denoted QPA(F). The space of smooth sections of APA9T*X ® F with compact support in open
set U is denoted Q54U F).

Let us introduce a global scalar product on ngq(x, F) by setting
(VW) = / VWV vwe QRY(X,F). (B.5)
X

where for simplicity (v,w) = (V,W)ear=x . and dV is given by B3). The completion of Qf%(X, F)
with respect to (B is denoted LY 4(X,F).

We can restate (B25) in terms of the star operator which we introduce now. First, let us view h”
as an element of Homc (F,F"). Then

(v wre = hF (v)(W) = hF (w)(v). (B.6)

101
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We define

#e  APIT*XQ@F — ATPAT*X @ F*
_ (B.7)
#e(a @ f) =xa@hF(f)

Now, there is a natural duality, denoted A, between APIT*X @ F and AS'T*X @ F* given by com-
bining the wedge product with the natural duality F x F* — C:

APIT*X @ F x A T*X @ F* — APTSAtT*X
(a@f,peé)— (@A (Be) =anBai(f)

Using (B.8) we obtain

(B.8)

VA#eW = (W) dVx, vweAPIT*XxF. (B.9)

B.1.2. Local potentialsof K ahler metricsand the dd— Lemma. Let (X,h™) be a hermitian
manifold, w = Reh™,

B.3. DEFINITION. A real valued function ¢ : U — R, U open set in X, is called an local
potential of the metric h™%, if V—109¢ = won U.

B.4. LEMMA (dd—Lemma). Let w be a smooth d—closed (1,1)—form on a manifold X. Then
for each point there exist a neighbourhood U of x and a smooth function ¢ : U — R such that

vV—109¢ = wonU.

PROOF. (compare [22]). Choose U a ball in a local coordinate system. By the Poincare lemma
we can construct a real 1-form a with da = win U. We decompose a = f3 + B, with 8 of bidegree
(1,0). Comparing bi—degrees, we get 438 = 0, dB =0and dB +dB = w. By Dolbeault lemma,
there exists a smooth function (¢ with d@ = B. Hence d@ = 8 and

W=0B+0B=00W+3dY =033 —T)=v—199(2Imy)
We choose ¢ =2Im . O

B.5. COROLLARY. A hermitian metric G™* isKahler if and only if G™* admits local potentials
in the neighbourhood of each point.

B.1.3. The Current associated to a plurisubharmonic function. Let X be a complex mani-
fold and ¢ € L1(X,loc) be a plurisubharmonic function. Then T = /—1dd¢ is a d—closed positive
current on X. If ¢ is strictly plurisubharmonic, T is a strictly positive current.

B.6. LEMMA (dd—Lemma for currents). Let T bea closed positive (1,1)—current. Then for ev-
ery point of X there exists a neighbourhood U of x and a plurisubharmonic function ¢ € L1(U,loc)
suchthat T = +/—1090¢.

PROOF. We follow the proof of the dd—lemma for smooth forms. Since the Poincare and Dol-
beault lemmata hold for currents too, we get as before a distribution uon U such that v—1ddu=T.
Since T is positive, it follows that u is represented by a function ¢ € L(U,loc), which is obviously
plurisubharmonic. O

B.7. NOTE. We can replace T with a strictly positive current in the previous statement. The
solution ¢ will be then strictly plurisubharmonic.
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B.1.4. Curvatureform. Let F — X be a hermitian holomorphic vector bundle endowed with
the hermitian metric h = hF. There exists a unique connection (7 compatible with the complex
structure and the hermitian metric, [10, p. 75] [5, p. 304], called the Chern connection.

The curvature operator (O%)? is a bundle morphism F — A T*X @ F given by the mul-
tiplication with the curvature matrix RF € QY%(End(F)). Since we are concerned only with the
positivity of line bundles we describe the curvature matrix only for this case. If rank F =1, End(F)
is trivial and RF is canonically identified to a (1,1)—form on X, such that/—1RF is real.

Let 3 : Flu — U x C be a trivialisation of F and let e(x) = 3 ~%(x,1), x € U, be the corre-
sponding holomorphic frame.

The hermitian metric is represented by the smooth function h: U — R, h(x) = |&(x)|2. It is
useful to denote h=e~?, where ¢ € €*(U,R) is called a weight of h.

The curvature has the form

RF =—ddlogh=0d¢ onU.

This is a global form. If (Uy) is a covering of X such that F|y, is trivial and e, € I'(U,,F) are
holomorphic frames, we have a cocycle c,, € ¢*(U,NU,) such that e, = c,yey on Uy, NU,.
There fore h, = |c,y |?hy, and since ¢,y is holomorphic, ddlogh, = ddlogh, on U, NU,.

B.1.5. Bochner-K odaira-Nakano formula. Let (X,h") be a hermitian manifold and let w =
Reh"™ be its K'ahler form. Let F — X be a hermitian holomorphic vector bundle endowed with the
hermitian metric h = h-. We define the Lefschetz operator,

WA I APIT*X @ F — APTLAHIT* X o F | (B.10)

which is the exterior multiplication with c, acting trivially on the F-component. It is a bundle
morphism having as adjoint with respect to the fiberwise scalar product the map

A:APITX QF — AP LT X QF ) Au= (—1)%8Y %0 AT (B.11)

that is, (w A v,w) = (v, Aw) for any elements v € APIT*X @ F, w € APFLAHIT*X @ F. Of course,
wA and A are also formal adjoints for the integrated scalar product (B.5).

Let OF be the Chern connection of F. It can be extended to the sheaf Q' (F) by forcing the
Leibniz rule:

OF:Q'(F) — Q" '(F), OF(a®s)=da®s+(—1)®anFs (B.12)

for a a form and sa section of F over some open set U of X.
We have a decomposition after bi-degree

DF — (DF)/+(DF)//,

(OF): Q" (F) —Q"™"(F), (OF): Q" (F)—Q (813

o0 tl

(F).
The fact that F is holomorphic implies that there exist operators

o+l e o o1

0:Q7°(F)— Q" (F) d:Q"°(F)— Q" (F).

The Chern connection is characterized by the properties
(0" =a, (OF)Y =(nF)"tohn" (B.14)

where hF is considered as an element of Hom(F,F").
We introduce the operators

(DF)//* — —#F*E#F , (DF)//* : QH.(F) N Q.,.,l(F)

.0 .71,.(F)

B.15
(OF)* =—%a%, (OF)*:Q"°(F)—Q (B-19
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which are the formal adjoints of (OF)” and (OF )"
((OF)"u,v) =(u, (OF)™v), ue Q§I(F),ve QF*(F)
((OFY'uv) =(u, (OF)*v), ueQRYF),ve Qt  9(F)

For two graded operators A, B acting on Q" (F) we define the graded commutator (or graded
Lie bracket) as

[A,B] = AB+ (—1)%0AdDBR A (B.16)
Let us introduce the laplacians
A =[O, (OF)"] (B.17a)
A" =[(OF)”,(OF)"™] (B.17b)
and the torsion operator
T=IAdw| (B.18)

We have the following generalization of the usual K &hler identities in the presence of torsion. For
the proof we refer to [19], [3] or [B, Ch. VII].

B.8. KAHLER IDENTITIES. We have the commutation relations
A7) == V=1((O)" +T7) (B.192)
A (OF)]=v-1((0F)"+T") (B.19b)
The identities (B:193), (BXI20) and the Jacobi identity yield:
B.9. BOCHNER-KODAIRA-NAKANO IDENTITY.
? =N+ [V-1IR A+ [(OF), T - [(OF), T (B.20)
By using repeatedly the Jacobi identity Demailly obtains the following useful reformulation:

B.10. COROLLARY ([3]). The operator At = [(O%) +T,(0)* 4+ T'] is a positive and
formally selfadjoint operator with the same principal symbol asAr. Moreover,

;é = ;:,tor + [\/__1RF’/\] +S (B.21)
where Sis an 0-th order operator depending only on the torsion of the metric . Namely,
=1 —
S= [/\, [/\,Tddwﬂ —[0w, (w)*]. (B.22)

Combining (B:Z0) with the inequality of the geometric and arithmetic means and the fact that
AN'u,u) > 0 we obtain:
(

B.11. THEOREM (Nakano’s Inequality). For any ue QF9(X,F),
3 1 _ .
Q(A”w u) > ([V—1R",AJu,u) — E(HTUH2+ I T*ulf? + [ Tul® + [T ul[?) (B.23)

Next let us use a form of the Bochner—Kodaira formula introduced by Andreotti—Vesentini
[2] and Griffiths [11]. Let M be a smooth, relatively compact domain in a complex manifold.
Let us assume that there exists hermitian metric on X, K'ahler near dM, written in local coordi-
nates z* as a smooth positive definite matrix (g,z). Let us consider a holomorphic kermitiam
vector bundle (G,h®) in a neighbourhood of M and let R® = 5 6,5dz* Ad# be its curvature,
where 6,5 = —dumdglogh®. Let BB“ be the curvature tensor with the first index raised. Let
u= % YU 2gd 2 A~ Ad20® f be a G-valued (0,q)—form on X. We define the (0,q)—form
RCu = q—l!zBA‘iu“AZ...Aqd_élA---/\d?q@) f.

We define next the Levi operator (see [11, p.418]). First let us remark that we can choose a '—

invariant defining function r for M such that |dr| = 1 in a neighbourhood of dM, with respect to the
hermitian metric on X. Let us pick, near a boundary point of M, an orthonormal frame w?, ..., w"
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for the bundle of (1,0)—forms, such that " = dr. We have 9r = —9w" =3 ;5 0 AWP, (1<
a,B<n).

B.12. DEFINITION. The Levi form of dM is the restriction of ddr to the holomorphic tangent
bundle of dM; it is given in the dual frame of w?,...,w""! by the matrix (I4p)1<a p<n-1. M is
pseudoconvex if the Levi form is everywhere positive semi—definite.

For a (0, q)—form written locally u = q—l, > Uay .. g, WA A% @ f where f isan orthonormal
frame in G, we set

‘”E/ﬂ(uv U) = (qf%]_)l Z IC!B Uaﬁlmﬁq,lnﬁﬁl...ﬁq,l (1 < avB < n) .
The form ue B*4(M, G) ifand only if ug, ..q, =0forne {ai,...,aq}. Therefore forue B%4(M,G)
the summation restricts over 1 < a,3 <n-—1and
g(U,U) = ﬁZIGB uaﬁlmﬁq—lUBBlmBq—l >0. (824)
Finally, let O denote the covariant derivative in the (0, 1)—direction.

B.13. LEMMA. Assumethat the F—invariant metric on X is Kahler ina F—invariant neighbour-
hood U of M. Then for any u € B®4(M, G) with support inU we have

Q(u,u) = ||Tul|?+ (RCu,u) + (Ricu, u) +/arv| Z(u,u)dS (B.25)

PrRoOOF. This formula was given by Griffiths [11), p. 429, (7.14)]. O O

B.2. Positivity concepts
B.2.1. Plurisubharmonic functions.

B.14. DEFINITION. A function ¢ :U — R on a complex manifold is called strictly plurisub-
harmonic if

d9¢(u,T) >0, ue TLOX < {0}. (B.26)
¢ is called plurisubharmonic if we have just > in (B:25).

B.2.2. Positiveforms. We define here the notion of positivity for (1,1)—forms. For a thorough
discussion see [5, 11.1].

B.15. DEFINITION AND THEOREM (Strictly positive form). Let a be a real (1,1)—form on the
complex manifold U. Then the following assertions are equivalent:
(i) Forall ue T3OU < {0} we have a(u,u) >0,
(i) If o has the local form a = /=15 auy(2)dz, A dz,, the hermitian matrix (a,y(2)) is
positive definite for all z
(iii) ais the K ahler form of a hermitian metric on TU.

If they are satisfied, a is called strictly positive.

Let ¢ : U — R is smooth. Then ¢ is strictly plurisubharmonic if and only if /=19d¢ is
strictly positive.

B.16. DEFINITION AND THEOREM (Positive form). Let a be areal (1,1)—form on the complex
manifold U. Then the following assertions are equivalent:
(i) Forall ue T3OU < {0} we have a(u,u) >0,
(i) If a has the local form a = v/—1% a,v(z)dz, A dzy, the hermitian matrix (ayy(2)) is
positive semi-definite for all z
If they are satisfied, a is called positive.
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B.2.3. Positivelinebundles. We introduce the important notion of positive line bundles. Some
observations are in order. We use a differential-geometric notion of positivity, which goes back to
Kodaira. Thus one could speak about Kodaira-positivity. Since this is our primary definition we say
simply “positive line bundle” instead of “positive line bundle in the sense of Kodaira”.

There are many notions of positivity. On the differential-geometric side we have the Nakano
and Griffiths positivity. On the function-theoretical side, we have the approach of Grauert, which
we’ll describe below. And we have also the algebraic-geometric concept of ampleness of Grothen-
dieck and Hartshorne. We refer the reader to [22, 5, 12]. All this notions are equivalent for line
bundles over complex manifolds.

B.17. DEFINITION (Positive line bundle). The hermitian line bundle L is called positive if the
real (1,1)—form /—1O(L, h) is strictly positive. This is equivalent to saying that the local weights ¢
of the curvature form /—10(L, h) are strictly plurisubharmonic. We say that L is semi—positive, if
v/—10(L, h) is a positive form. This is equivalent to saying that the local weights ¢ of the curvature
form \/—10O(L, h) plurisubharmonic.

B.18. THEOREM (Kodaira). A line bundle is positive if only if the image of its Chern class
ci(L) € H3(X,Z) in H2(X,R) is represented by a positive (1,1)— form.

One direction is simple, since %RL represents in H2(X,R) the de Rham class of the image of
ci(L) trough the inclusion Z — R. For the other direction, one has to construct the hermitian metric
h', see [5, p. 308], [0, p. 148], [17]

B.2.4. Projective algebraic spaces. We call a compact complex space X projective algebraic,
if there exists a holomorphic embedding @ : X — PN. This means that X is biholomorphic to
a compact analytic subset A ¢ PN. By a theorem of Chow, A is an algebraic variety so X has a
natural algebraic structure. Let X be a projective compact manifold, ¢ : X — PN. Then the pull—
back @*¢'(1) of hyperplane is positive. Kodaira established that this property characterises the
projective manifolds.

B.19. THEOREM. Let X be a compact manifold and L — X be a positive line bundle. Then for
large k the maps ®y : X — PHO(X,L¥)* are embeddings. Thus, X is projective if and only if it
admits a positive line bundle.

B.2.5. Positive bundleson complex spaces. We define now the positivity notion for complex
spaces. There exists a classical definition of Grauert, which will be decribed below. However, since
we use methods of potential theory, we formulate our definitions in terms of curvature. We need
first to extend the notions of line bundle, hermitian metric to complex spaces.

B.20. DEFINITION. Let X be a complex space. A function ¢ : X — R is said to be strictly
plurisubharmonic if for any point x € X there exists a local chart T:U — U c CN of X, x€ U,
and a strictly plurisubharmonic function ¢ € ¢*(U,R) such that ¢|y =P oT.

In a similar manner we define the notion of function of class ¢X. These definitions do not
depend on the choice of local chart [9, p. 335].

B.21. DEFINITION. A line bundle L over a complex space X is a complex space together with
a holomorphic map m: L — X which satisfy the local triviality axiom: for any point x € X there
exists an open set U 5 xand a biholomorphic map ¢y : L|y — U x C which is linear on the fibers.

Let T:U — U c CN be a local chart of X such that L|y is trivial.We obtain then a local chart
on L by setting
Ly —UxC—UXC (B.27)

B.22. DEFINITION. Let L — X be a line bundle. A hermitian metric h on L is a system of
hermitian products {hx}xcx on the fibers of L which varies smoothly with x € X. This means that
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there exists a covering of L with local charts T : L|y — U x C as in (BZZ), and smooth hermitian
metrics on U x C such that hf |, = hoT.

As before, the definition is independent on the choice of local charts. We can describe the
hermitian metric in terms of a cocycle.

Exactly as in the case of line bundles over manifolds, a line bundle can be defined by a cocycle.
Let {U, } be a covering such that L|y, is trivial and let e, : U, — L be holomorphic frames. Then
there exist holomorphic functions ¢, : U, NU, — C* such that ¢, = c,ve,. The system (cyy)
forms a cocycle which defines L.

In this language, a hermitian metric is a system h, : U, — R of positive smooth functions
such that hy, = |c,y|2hy. This follows by setting h, := |e,|?

B.23. DEFINITION. The hermitian holomorphic line bundle (L,h%) is called positive if —logh,
is a strictly plurisubharmonic function on U, for all v.

By the observation after Definition[BI7] this is equivalent to the definition we gave if X were
a manifold. Note that the locally defined (1,1)—forms —/—1ddlogh, patch together and give a
globally defined smooth (1,1)—form+/—1R" on Xre.

For the moment we want to make the connection with the definition of Grauert. Let (L,H) be a
hermitian holomorphic line bundle over the complex space X. The dual line bundle L* is described
by the cocycle (glj\}), where (guv), 9uv € 0* (U NU, ) is the cocycle of L. The hermitian metric
h- induces a hermitian metric h-" on L*, given locally by the system (h;1), if h- is represented by
(hy). We define p: X — C, p(v) = |v ﬁL*. Then p : L*|y, — C has the form p(v) = |wej|n- =
Iw|?h 1, for v = we’, with € the dual of e,. It follows logp(v) = log|w|?> — logh,. Since the
function C > w — log|w] is strictly plurisubharmonic if follows that log p is smooth and strictly
plurisubharmonic on L* ~ {zero section} if L is positive. Let us denote by

T={vel": |V <1} (B.28)

T is called the Grauert tube of L*. We introduce now the notion of pseudoconvexity adapted to the
general situation of complex spaces. In the case of manifolds see Definition[B.34l

B.24. DEFINITION. Let G be an open set in a copmplex space. G is called strictly pseudocon-
vex, if for any boundary point x € dG we can find a neighbourhood U an a strictly plurisubharmonic
$:U —RsuchthatUNG={xeU:¢(x) <0}.

We deduce the following
B.25. PROPOSITION. If (L,h\) is positive, the Grauert tube T  L* is strongly pseudoconvex.

PROOF. Indeed, we write T = {ve L*: logp(v) < 0} and use that log p is strictly plurisubhar-
monic on L* ~ {zero section}. O

If X is a manifold, the converse is also true as shown in [9, Satz. 62,p. 341]

B.26. DEFINITION. A line bundle E over a complex space X is called Grauert— negative if
the zero section of E has a strongly pseudoconvex neighbourhood V C E. The bundle E is called
Grauert—positive if E* is Grauert—negative.

We used here [9, Def 1,p. 342], where general vector bundles are considered. The terminology
of Grauert is "weakly negative (positive)”. We can therefore reformulate the Proposition

B.27. COROLLARY. If (L,h) ispositive, L is Grauert—positive.
We quote now Grauert’s generalization of Kodaira’s embedding theorem.

B.28. THEOREM (Grauert). A compact complex space X is projective algebraic if and only if it
carries a Grauert—positive bundle.
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B.3. Differential formsand currentson complex spaces

In this paragraph, we let X be an n—dimensional paracompact complex space.

We follow the definition of smooth differential forms and currents by Fujiki [7]. The sheaf Q'
(resp. QP9) of germs of € *—r—forms (resp. ¢*—(p,q)— forms) with direct sum decomposition
Q" = ©p,q—rQP9 and the differentials d : Q" — Q"1 (resp. 9 : QP4 — QP+1dand 9 : QP9 —
QPa*1) with d = 9 + @ is locally defined as follows and globally defined by gluing them.

When X is a subspace of a domain V in C!' = C' (z1,...,2z) with the ideal sheaf .7/ = .#x. We
define Q=& by Q=& /(S + )&, where .7 = {T; f € .7}, T being the complex conjugate of
f. Next define the &—submodule Qyx of &} by

Q=Y IS &dz+ Y I &dzg+ &I + &7,
where &,d.# = {3 h,dg,;h, € & andg, € .} and similary for &d.7. Then put
Q =& /(Qx QY

for r > 1. These naturally form as Q—graded algebra & . Further, define the &—submodules

QPI(p+q=r)of Q" by &d = {@ € & ,; there exists a i € & inducing @}. Then is immediate

to see that we have a direct sum decomposition Q" = @ p q—rQP9. Moreover, the usual differential

d (resp. @ and @) on &) (resp. &%) induces the one on Q" (resp. QPY) with d = 8 +-8. On the other

hand, the natural complex conjugation on & induces a C—antilinear involution on Q. In particular,

we can define the real form on X as those left fixed by this involution. Morphisms of complex
spaces f : X — Y and g:Y — Z induce a natural pull-back homomorphism f*: & — & and

satisfy f*og* = (go f)*.

We let Qg(X) denote the space of smooth r—forms on X with compact support endowed with
¢ *—topology.

We define the space O (X) of r—currents on X as the vector space of complex—valued contiuous
linear functionals on Q3""(X) with the ¥*~topology. The differential d : Q"(X)" — Q"+%(X)’
is defined by dT(¢) = (—1)*'T(d¢) for T € Q"(X)’ and ¢ € Q3""}(X). By gluing them,
we can define the sheaf Q' of germs of r—currents on X and d : Q" — Q"*Y. We also denote
by ng‘*(X) the space of smooth (p,q)—forms on X with compact support. The ¥’ *—topology of
QF9(X), the space QP4(X)’ of (p,q)—currents, the sheaves QP and @ : QP94(X)" — QP+LA(XY,
0:QPY — QPHLY g : QPA(X) — QPAtL(X) 9 : QPY — QP4 with d = @ + 2 are also
defined as above and as in the case of usual complex manifolds.

By the discussion above we get complexes of sheaves on X:

(Q°d):Q° — Q' — Q% — ...
and
(Q.de):QOI —>Ql/—>QZI—>

Note that the sheaves Q" and Q", (r > 0) are fine, but in general, (<,d) and (Q*’,d) are not
resolutions of C (or R) on X. There are natural homomorphismus of complexes of sheaves

Z—R—C—(Q%d)— (Q*,d)
which induce homomorphisms of hypercohomology groups
H*(X,Z) — H*(X,R) — H*(X, Q%) — H*(X,Q*). (B.29)
By the fineness of 4 and Q" (r > 0), the canonical edge homomorphisms H*(I'(X,Q°®)) —
H*(X,Q°*) and H*(I' (X,Q*)) — H*(X,Q*’) are isomorphisms.
The singular support of a current T € QP is defined as the smallest subset Sof X such that T
is @ smooth form on X\ S

A real €*—(p, p)—form & on X is strictly positive (resp. semipositive) if there exists an open
covering % = {Uq} of X with, for each a, an embedding j4 : Uy — Vi 0of Uy into a subdomain
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Vg in Cle and a € strictly positive (resp. semipositive) (p, p)—form &, on V in the usual sense
such that j5&a = &|u,.

A (p,p)—current T isreal if T =T in the sense that T(¢) = T (@) for all ¢ € Q™" P(X), and
areal current T is positive when (v/—1)PT (@ AT) > 0 for all @ € Q) PO(X).

Arreal (p, p)—current T on X is strictly positive if there exists a strictly positive €*—(p, p)—form
wP on X such that T — wP is a positive current on X. T is said to be strictly positive at a point x € X
if there exists a neighbourhood U of x such that T|y ia a strictly positive current on U.

Areal (1,1)—current con X is said to be a Kahler current (cf. [16]) if it is d—closed and strictly
positive on X. A d—closed (1,1)—current or a d—closed ¢™—(1,1)—form is said to be integral if its
hypercohomology class is in the image of H?(X,Z) under the map in (B29).

Let 71: L — X be a holomorphic line bundle over X. A singular Hermitian metric ht on L
isamap ht : L — [—o0, 4-00] which is given in any local trivialization 7: m1(U) — U x C by
h-(v) = |t(v)|e" W) forve m1(U), where @iy € L1(U,loc). The curvature current of (L, h-) is
the d—closed (1,1)—current /—1R") given by v/—1IRY) = /=1y, on U, which is independent
of the choice of the local trivialisation.

B.4. Pseudoconvex and pseudoconcave manifolds

Manifolds satisfying convexity conditions are very important in complex analysis. This point
will be made clear in the sequel. Let us just mention at the outset that domains of holomorphy in C"
(natural domains of existence of holomorphic functions) are characterized by the pseudoconvexity
property. Convexity in complex analysis is introduced imposing conditions on the complex hessian
of an exhaustion function. These functions can be viewed as Morse functions in the complex setting.
They permit the use of the powerful methods of cohomology theory and the main applications are:
finiteness, vanishing and isomorphism theorems, extension of analytic objects, algebraicity of the
meromorphic function field, filling of holes of complex manifolds and many others.

B.4.1. Basic notions. We review first the basic facts about analytic convexity. Let U be an
open subset of C" and ¢ : U — R be a smooth function. Assume for simplicity that 0 € U and
consider the Taylor expansion of ¢ at 0:

¢(z):¢(0)+2Re[i%(O)zj+ s ¢ (0)zjz] + n
597 ,;Z:ldzjdzk ,-,Zzl

9%¢

S 3

The quadratic form
n

)\ 47 _ 9? -
Ly (WV) =0999(0)(v,v) = j;lm(o)vwk

is called the Levi form of ¢ at 0. A biholomorphic change of variables near 0 acts on .Z4(0) by
a linear change of variables given by the Jacobi metrix of the transformation. This implies that
the numbers of positive and negative eigenvalues of the Levi form at a point do not depend on the
choice of local coordinates.

Let us introduce the notion of convexity due to Andreotti—Grauert [1].

B.29. DEFINITION. (i) A manifold X of complex dimension n is called g—convex (1 < gq< n)
if there exists a smooth function ¢ : X — [a,b),ac R, be RU{+o} such that X = {¢ <c} € X
for all c € [a,b) and the Levi form 00 ¢ has at least n— g+ 1 positive eigenvalues outside a compact
set K.

(if) A manifold X is called g—complete if it is g—convex with K = .

(iii) A manifold X of complex dimension n is called g—concave (1 < q < n) if there exists
a smooth functions ¢ : X — (a,b],a€ RU{—w} b e R such that X; = {¢ > c} € X for all
ce (a,b] and dd¢ has at least n— q+ 1 positive eigenvalues outside a compact set.

B.30. ExAMPLE. A manifold is 1-complete if it admits a strictly plurisubharmonic exhaustion
function. Recall the following.
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B.31. DEFINITION. A complex manifold is called Stein, if the the global holomorphic functions
(a) separate points, () give local holomorphic coordinates everywhere and (y) blow up on any
disctrete sequence (holomorphic convexity).

It is easy to see that a Stein manifold is 1-complete. The problem whether the converse is true
was known as the Levi problem on complex manifolds. It was solved affirmatively by Hans Grauert

[@.

B.32. THEOREM. A manifold is Sein if and only if it admits a strictly plurisubharmonic ex-
haustion function.

Grauert’s proof uses the so called bumping lemma. Further proofs are based on existence
theorems for the d—equations are due to H 6rmander [[5], Kohn [6], Demailly [4]

The analytic convexity of a manifold is determined by the behaviour of the Levi form of an
exhaustion function on the analytic tangent space of sublevel sets. Let D be a relatively compact
domain with smooth boundary in a complex manifold X. Let p € ¥*(U) defined on an open
neighbourhood U of D such that D = {x € X : p(x) < 0} and dp # 0 on dD. We say that p is a
defining function of D. The analytic tangent space to dD at x € dD is given by T-%(dD) = {v e
TLO(X) : dp(n) = 0}. The definition does not depend on the choice of p.

B.33. LEMMA. The number of positive and negative eigervalues of the Levi form restricted to
the analytic tangent plane isindependent of the chice of local holomorphic coordinates and defi ning
function at a point X.

For the proof we refer to [21].

B.34. DEFINITION. The domain D is called strongly pseudoconvex if the Levi form restricted
to the analytic tangent space is positive definite. D is called (weakly) pseudoconvex if the Levi form
restricted to the analytic tangent space is positive semi-definite.

B.35. EXAMPLE. Let X be a compact manifold and let (L,h%) — X be a positive line bundle.
We consider the Grauert tube (BEZ8) T = {ve L* : ||« < 1}. If we denote by p = Mﬁu —1then
09p|t10(57) = T (R")|710(9T) Where 71: T — X is the projection. Thus ddp is positive definite
on the analytic tangential space. Then T is a strictly pseudoconvex domain called the Grauert tube.

Assume that D is strongly pseudoconvex. By replacing p with e*P —1 for A>> 1, we can achieve
that the defining function has positive Levi form on the whole tangent space 'I;l’O(X) ,x€ 0D and
therefore we can assume that p is strictly plurisubharmonic in a neigbourhood of dD. It follows that
D is a 1—convex manifold. Indeed, the function ¢ : D — R, ¢ = - is strictly plurisubharmonic
exhaustion function. Conversely, the smooth sublevel sets of a 1-convex manifold are strongly
pseudoconvex.

An important related notion which is also very natural is the following.

B.36. DEFINITION. A manifold X is called weakly 1-complete or weakly pseudoconvex if there
exist a plurisubharmonic exhaustion function.

The notion was introduced by S. Nakano [[18] in order to solve the problem of the inverse of the
monoidal transformation. Any 1-convex (and therefore any compact or Stein) manifold is weakly
1-complete. A proper modifications of a weakly 1-complete manifold is again weakly 1-complete.
In particular a holomorphically complete manifold is weakly 1-complete.

It follows immediately from definitions that if X is g—convex (g—concave), X% is g—convex (g—
concave) for c such that the exceptional set is contained in Xc. If X is g—convex, we can choose
b = +co and ¢ to be an exhaustion function. This is achieved by composing ¢ with a convex rapidly
function A : [a,b) — R, for example A(t) = (t}b) , and use Remark(*). This is not true for the
g—concave case, that us we cannot always choose ¢ to be an exhaustion function from below. The
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complex manifold P* .S, where St is the unit circle in C canonically embedded, is 1—concave but
we cannot take Q = —oo in the definition. If this were the case, the function ¢ would be strictly
plurisubharmonic in a neighbourhood of St and St = {¢ = —o} i.e. S' would be pluripolar. But
this is a contradiction. 1—concave manifolds for which a = —oo are called hyperconcave and will be
studied in the sequel.

B.37. EXAMPLE. Let X be a compact complex space with isolated singularities. Then X
is 1—concave and actually hyperconcave. If p € Xgng We consider a local chart 7:U — CN pe
U, 1(p) =0. Let ¢p: U~ {p} — R, ¢p(x) = log|7(x)|? which is the pullback of the s plurisub-
harmonic function log |z/® to U ~. {p}. Note that ¢p(x) — —o0 as x — p. By patching togheter
the functions ¢, with the help of a partition of unity we obtain a function ¢ : X;egg — (—o0, b] such
that {¢ > c} € X for all c < band ¢ is strictly plurisubharmonic outside a compact set of Xeg.

B.38. ExAMPLE. More generally, let X be a compact complex space and let Z be a an analytic
subset containing Xsng. If dimZ = q, then X \ Z is (q+ 1)—concave [20].

B.39. EXAMPLE. Let (E,hF) be a holomorphic hermitian vector bundle of rankr over a com-
pact manifold X of dimension n. Assume that ©(E, hE) has signature (st) i.e. forany ec E,e#0
the hermitian form (v/—1(E,hF)e, €) on T10 has spositive and t negative eigenvalues. Let us define
consider the function ¢ : E — R, ¢ (v) = |v|2. The Levi form 30 ¢ restricted to the analytic tan-
gent space T10(9E), where Ec = {vE E: ¢(v) <c} (c>0), hast+r — 1 positive and snegative
eigenvalues. ([, 23], [0, p.426]). Replacing ¢ with €*® / A>> 1, we can gain one more positive
eigenvalue in the exterior normal direction to the sublevel sets on any compact set. It follows that
Ec is (n—t+1)—convex. In particular, if E is negative in the sense of Griffiths i.e. t =nthen E is
1—convex for ¢ > 0. If, on the contrary E is Griffiths positive i.e. s=n,t =0, K is (r + 1)—concave.

B.40. EXAMPLE. Let Z be a hypersurface of a compact manifold X and let Nz be the normal
bundle of Z in X. Assume that Nz is endowed with a hermitian metric such that v/—10(Nz) has
signature (s,t), where s+t =dimZ = n. By the previous example, for each ¢ > 0, the subset
(Nz)e={ve Nz:|v|p, <c}is (n—t+41)—convex and (n—s+2)— concave. Let ¢y : Ny — R
such that  is a defining function of (Nx)c and dd has (t + 1) positive and s negative eigenvalues
in a neighbourhood of d(Nz)c. One can extend  to a function on L = [Z]. Moreover, by considering
the canonical section o € HO(X,[Z]) we can define the function n = o . By [I1, Proposition
8.3], the Levi form dan of n has (t +1) positive and s negative eigenvalues on a neighbourhood
of W= {xe X:n(x) <c}. Assume for example that Nz is positive i.e. s=n,t =0. Then Z has a
1-concave neighbourhood in X.

We recall now some basic facts of the Andreotti—Grauert theory [, [[13] complemented with
similar results for weakly 1—complete manifolds.

B.41. THEOREM (Finiteness theorem). Let X be an n—dimensional complex manifold and
E — X be a holomorphic vector bundle.

(i) If X is g—convex (resp. g—concave), dimH (X,E) < oo for j > q(resp. j <n—q—1)

(ii) If X isweakly 1-complete and L — X isaline bundle which is positive outside a compact
set then dimH ! (X, L*® E) < oo for j > 1 and k suffi ciently large.

The proof of Andreotti and Grauert is sheaf—theoretic and makes use of the “oumping lemma”.
It works on complex spaces too. On the analytic side the approach is to represent the sheaf coho-
mology

{ue LY (X,E,loc): 3 u=0}

HI(X,6(E)) 2 H (X, E, loc) := X e —
{ue Ly (X,E,loc) :u=9d v,ve Ly’ "(X,E,loc)}

o (B.30)

Indeed, let us consider the fine sheaf
U-— W% UE)={uel(U,E,loc): 3 ue LE+L(U,E, loc)} .
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By the Dolbeault—Grothendieck lemma we have a resolution of sheaves

" Fa

=E
0 — O(E) — WOO(E) —2— WOL(E) WON(E) — 0
and (B:30) follows from the abstract de Rham theorem. There are now two points of view. One is
due to Andreotti—\Vesentini and consists in introducing a complete hermitian metric on a sublevel
set Xc of X and on the fibers of the bundles which represents the cohomology of X: i.e. such that
the natural morphism _ '
HG3) (%6, E) — H3) (X, E, loc) (B.31)
or
HE) (X, L© E) — HO (X4, L*®E), j>1,k>1 (B.32)

are isomorphism. The fundamental estimate, which implies the finiteness of the L>—~cohomology, is
derived using the modified metrics. By the L Hodge theory A28 each class of cohomology is rep-
resented by a harmonic form with respect to the complete metric. In order to study the cohomology
of X, consider the restriction morphisms for ¢ > d and K C Xg:

Using the representation (B:3T)), (B:32) and a Runge type approximation theorem one has the
following:

B.42. THEOREM (Isomorphism theorem). The morphisms (B:32) are isomorphisms for j > q
(resp. j <n—qg-—1)if X isg-convex (resp. g—concave). The morphismsB:32)) are isomorphisms
for j > 1 and k> 1 under the hypotheses of Theorem [B.Z1(ii).

The proofs of Theorems B:Z1] and using the method described above and technical ele-
ments from [[14] can be found in [19].

Another point of view, due to Kohn and H érmander is to represent the cohomology of X by
smooth forms up to the boundary. First, by the Dolbeault isomorphism

U QUI(X,E): 0 u=0}
F-QPI-1(X,E)
Introduce also the space of harmonic forms of the I—Neumann problem:

A (X,E) = {ue Q%) (Xo) :ue Dom(@ )nDom(@ ), 9 u=0,3" u=0}

HI (X, Q°(E)) :HOJ (X, E)

By definition, such harmonic forms satisfy boundary conditions on @ since they belong to Dom(d *).
We have then:

B.43. THEOREM (Representation theorem). (i) If X is ¢—convex (resp. ¢—concave) then the
canonical morphism 7% (X,E) — H%I (X, E), u— [u] isan isomorphismfor j > q (resp. j <
n—q-—1).

(i) If X isweakly 1-complete and L is positive outside a compact set, the canonical morphism
A% (X, LK@ E) — HOJ (X, LK@ E) isan isomorphismfor j > 1 and k> 1.

For the proof of (i) see [6, Theorem 4.3.1] and for (ii) [23, Theorem 6.2].
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