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Equivariant Kodaira Embedding for CR Manifolds with
Circle Action

CHIN-YU Hs1a0, X1AOSHAN LI, & GEORGE MARINESCU

ABSTRACT. We consider a compact CR manifold with a transversal
CR locally free circle action endowed with an S!-equivariant posi-
tive CR line bundle. We prove that a certain weighted Fourier-Szegd
kernel of the CR sections in the high tensor powers admits a full as-
ymptotic expansion. As a consequence, we establish an equivariant
Kodaira embedding theorem.

1. Introduction and Statement of the Main Results

The goal of this paper is to study the Szegd kernel and the equivariant embedding
of CR manifolds with circle action. The embedding of CR manifolds in general
is a subject with long tradition. One paradigm is the embedding theorem of com-
pact strictly pseudoconvex CR manifolds. A famous theorem of Louis Boutet de
Monvel [7] asserts that such manifolds can be embedded by CR maps into the
complex Euclidean space, provided that the dimension of the manifold is greater
than or equal to five.

In dimension three, there are nonembeddable compact strictly pseudoconvex
CR manifolds (see e.g. Burns [9], where the boundary of the nonfillable example
of strictly pseudoconcave manifold by Grauert [15], Andreotti and Siu [2], and
Rossi [34] is shown to be nonembeddable). However, if the manifold admits a
circle action, then it is embeddable by a theorem of Lempert [26]. In the study
of CR functions, which would eventually provide an embedding, it is natural to
look at the orthogonal projector on the space of square-integrable CR functions,
called the Szegd projector. The Schwartz kernel of this projector is called the
Szegd kernel. In this spirit, a proof based on the Szegd kernel of Lempert’s em-
bedding theorem was given in [24, Theorem 1.13]. Using the Szeg6 kernel of the
Fourier components, it was recently shown in [16, Theorem 1.2] that there ex-
ists an equivariant embedding of strictly pseudoconvex CR manifolds with circle
action.
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Leaving the territory of strictly pseudoconvex CR manifolds, the natural idea
arises to embed CR manifolds into the projective space by means of CR sections
of a CR line bundle of positive curvature [14; 16; 19; 20; 21; 22; 24; 25; 30; 32].
This is the analogue of the Kodaira embedding theorem from complex geometry.
In the case of CR manifolds, we have to use an analytic method, whereas Ko-
daira’s original proof relied on cohomology vanishing theorems. Analytic proofs
of the Kodaira embedding theorem for Kihler and symplectic manifolds, based

on the Bergman kernel asymptotics, were given in [6; 27]. In this paper, we use
Szegd kernel analogues on CR manifolds of the Bergman kernel asymptotics on
Kihler or symplectic manifolds [10; 23; 27; 28; 35; 37; 39]. A motivating example

is the quadric
{21 € CPN L 21 P+ -+ 1zg 1P — lzg41 1> — - — |zn | = 0},

which is a CR manifold possessing a positive line bundle and a circle action. In
[6; 35; 39] the Szegd kernel on a strictly pseudoconvex CR manifold with trivial
line bundle [8] (see also [24]) was used to study the Bergman kernel on a Kéhler
manifold, whereas here we study the Szegd kernel for tensor powers of a CR line
bundle.

We are thus led to the problem of equivariant Kodaira embedding of CR man-
ifolds with circle action, which is the subject of this paper. We prove that a certain
weighted Fourier—Szegd kernel admits a full asymptotic expansion, and by using
these asymptotics we will show that if X admits a transversal CR locally free S'-
action and there is an S'-equivariant positive CR line bundle L over X, then X
can be CR embedded into projective space without any assumption of the Levi
form. In particular, when X is Levi-flat, we improve to C* the regularity in the
Kodaira embedding theorem of Ohsawa and Sibony (see Corollary 1.4).

Let us now state our main results. We refer to Section 2 for some standard
notations and terminology used here. Let (X, T'9X) be a compact CR manifold
of dimension 2n — 1, n > 2, endowed with a locally free S Laction S x X — X,
(€', x) — e'?x, and let T be the infinitesimal generator of the S Laction.

We assume that this S!-action is transversal CR, that is, T preserves the CR
structure 710X, and 7 and 719X @ T1.9X generate the complex tangent bundle
to X. In our paper, we systematically use appropriate coordinates introduced by
Baouendi, Rothschild, and Treves [4, Theorem II.1, Proposition 1.2]. Namely, if
X admits a transversal CR locally free S L_action, then for each point p € X, there
exist a coordinate neighborhood U with coordinates (xi, ..., x2,—1), centered at
p =0, and there exist n > 0, &g > 0, and ¢ € C*°(D, R) independent of 6, where
D :={(z,0) €U :|z] <n,|0| <eog} C U, such that by setting

Zj=x2j1+ixz;, j=1,....,n—1, Xop—1 =20,
we have

T=— onD, (1.1)
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and the vector fields

7= %50 iy 1 (12)
= —ti—(2,7)—, =1,...,n—1, .
T TR TR

form a frame of T'0X over D. From this it follows that the vector fields
Z1, ..., Zn_1 form a frame of T%' X over D, and they annihilate the functions

Z1’~"5ZV£71’ §:=0+i¢’

which are thus CR functions. The map

D —s C", pr— 1),y Zn1(P), C(P))

is therefore a CR embedding, so that X is locally embeddable. In fact, by [
Theorem II.1] any abstract CR structure invariant under a transversal Lie group
action is locally embeddable. We call (xy, ..., x,—1) canonical coordinates, D
canonical coordinate patch, and (D, (z, ), ¢) a BRT trivialization.

In this paper, we work with locally trivializable CR vector bundles; see Defi-
nition 2.5. Such bundles admit local CR frames and transition matrices with CR
entries. We further consider S 1-equivariant CR bundles, that is, CR bundles en-
dowed with a CR S!-action lifting the S I_action on X (see Definition 2.6). Such
bundles admit local Sl-equivariant CR frames, called rigid CR frames, so there is
a family of trivializations that cover X so that the entries of the transition matrices
are CR functions annihilated by T'; see Proposition 2.7. The operator 7' extends to
an operator on C*°(X, L); see ( ). We consider further an S 1-equivariant Her-
mitian metric on L. Then for every rigid frame { fi, ..., f+}, the inner products of
fj and f; are annihilated by T for any j, £.

Let L be an S'-equivariant CR line bundle over X, and let L* be the kth power
of L, which is also an S 1-equivariant CR line bundle. Let

3, QY (X, LY — Pt (x, LY

be the tangential Cauchy—Riemann operator with values in L*. The action of S!
commutes with 3;. We will therefore obtain information about 3, by decompos-
ing the spaces of sections under the group action. For every m € Z, we consider
the Fourier component of the space of smooth sections C*°(X, LX) consisting of
equivariant CR sections of L¥ of frequency m, that is,

C(X, L*) := {u e C®(X, LY); Tu = imu}, (1.3)
and the corresponding Fourier component of the space of CR sections,
Hy (X, LY) = {u € Cp(X, L*); 9pu = 0}. (1.4)
Since X is a compact manifold, we have for every m € Z (see [21, Theorem
1.23] and also Theorem 3.7) that
dim A}, (X, L*) < o0. (1.5)
For A > 0, put
My o (X, LY = P H),, (X, L), (1.6)

lm|=<x
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We assume further that L is endowed with an S'-equivariant Hermitian metric
h. The curvature of (L, k) at a point x € X is denoted by R)% (cf. Definition ),
and (L, h) is called positive if R)f is positive definite at any point x € X. The
Hermitian metric on L* induced by 4 is denoted by #¥. Working with a positive
line bundle L, we will embed the manifold X by using weighted projections on the
Fourier components (cf. (1.9)) of sections of H(b),<ka(X , LY fors >0 sufficiently
small.

The bundle CT X is Sl—equivariant, and we can take an S 1—equivariant Her-
mitian metric (-|-) on CT X such that

T'WOx 1 7%1x, T LT X eT1%X), (T|T)=1,

and (u|v) is real if u, v are real tangent vectors (see Theorem ). We denote by
dvy the volume form induced by (-|-).

Let wy € C®°(X, T*X) be the real 1-form of unit length annihilating 71X @
791X and satisfying wo(T) = —1. The Levi form £, at a point x € X is the
Hermitian quadratic form on Txl’OX given by £, (U, V) = —% (dwo(x), U A V),
U, Ver!x.

Let (:|)x = (+]-) be the L? inner product on C*®°(X, L*) induced by h* and
dvy. Let L*(X, Lk) be the completion of C*°(X, L¥) with respect to (-|-). We
extend (-|-) to L2(X, L%).

For every m € Z, let L%l (X, L%y c L*(X, L) be the completion of C° (X, LK
with respect to (+|-). Let

oV L2 (X, LF — L2(X. L5 (1.7)
be the orthogonal projection with respect to (-|-). We have the Fourier decompo-
sition

LA(X, LM = @ L2 (X, LY.
meZ
We first construct a bounded operator on L2(X, LX) by putting a weight on the

components of the Fourier decomposition with the help of a cut-off function. Fix
8 > 0 and a function

o )
5€Cy ((=6,8)), 0<tm=<1l,s5=1o0n 35 (1.8)
We define the weighted projector on the Fourier components by
Fis: L2(X, LM — L2(X, L"),
= rg(;> A )

mezZ
For every A > 0, we consider the partial Szegb projector

M <0 L*(X, LX) > H) _, (X, LY, (1.10)

which is the orthogonal projection on the space of equivariant CR functions of
degree less than A. Finally, we consider the weighted Fourier—Szegé operator

Prs = Fi5 0 T <ks © Fres s L*(X, LX) — M) _5(X, LY. (1.11)
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The Schwartz kernel of Pg s with respect to dvyx is the smooth function
Prs(x,y) e Lﬁ‘c ® (L{f,)* satisfying (cf. Section 2.2, [27, B.2])

(Pysu) (x) = /X Pes(x, Yu(y)dox (), ueL*(X,L". (1.12)

Let f; = fj(k), j=1,...,dx, be an orthonormal basis of Hgéka(X, LX). Then

d
Pis(x,y) =Y (Fis () ® (Fes ()™,

Jj=1

0 (1.13)
Prs(x,x) =Y |(Fis f1) (X))

j=1

(see Lemma 4.1), and these representations are independent of the chosen or-
thonormal basis. Note that the partial Szegd kernel Z‘;": (1fix) |ik does not admit
an asymptotic expansion in general, and hence the necessity of using the weighted
projector Fy s. This is discussed in Section

To describe the Fourier—Szegd kernel Py s(x,y), we will localize Py s with
respect to a local rigid CR frame s of L on an open set D C X. We define the
weight of the metric 2 on L with respect to s to be the function ® € C*°(D)
satisfying |s|ﬁ = ¢7>®. We have an isometry

Urs:L*(D)— L*(D, L%,  ur—> ue*®sk, (1.14)

with inverse Uk_vl :L3(D, L% — L%(D), o > e ¥®s7*x. The localization of
Py s with respect to the trivializing rigid CR section s is given by

Piss i Limp(D) = LX(D),  Piss=Ug, PsUrs. (115
where Lgomp(D) is the subspace of elements of L?(D) with compact support in
D. Let Py s s(x,y) € C®°(D x D) be the Schwartz kernel of Py s with respect

to dvy, defined as in ( ). In the first main result of this work, we describe the
structure of the localized Fourier—Szegd kernel Py 5 5(x, y).

THEOREM 1.1. Let X be a compact CR manifold with a CR transversal locally
free S'-action, and let (L,h) be an S'-equivariant positive CR line bundle on
X. Consider a point p € X and a canonical coordinate neighborhood (D, x =
(x1,...,x2n—1)) centered at p = 0. Let s be a local rigid CR frame of L on D
and set |s|ﬁ = e 2%, Fix § > 0 small enough and Dy € D. Then

Prss(x,y) :/ ERPEID o (x vy 1, k)dt + O(k™) on Dy x Dy, (1.16)
R
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where ¢ € C°(D x D x (=38, 8)) is a phase function such that, for some constant
¢ >0, we have

dvo(x,y, t)|x=y = _ZImgbCD(x) + tawo(x),

dyp(x,y,)]x=y =2Im 3, ®(x) — two(x),

Ime(x,y,t) >clz — u)|2,

(-xv yvt) €D xDx (_578)5 X = (Zv-xzn—l)v y= (w, y2n—1)v
, (1.17)
>l —yP,

d¢
Im(p(x7 yvt)+ a(-xﬂ y7t)

(xsy’l)eDXDX(_(ss(s)v
0
o(x.y.0)=0 and 5§u;yx>=0 if and only if x = y,

and g(x,y,t, k) € S{ (1; D x D x (=6,8))NCy°(D x D x (=4, 9)) is a symbol
with expansion

o
8.y t.k)~ > gi(x,y, K" in SP.(1: D x D x (=8,8)),  (1.18)
j=0

and for x € Dy and |t| < §, we have

go(x,x, 1) =Q2m)™"| det(R)Ic‘ —2tLy)| |75 (1)) (1.19)

We refer the reader to Section for the notations in semiclassical analysis used
in Theorem 1.1. The determinant of a Hermitian quadratic form R, on TXI’OX
is defined by det R, = A1 ---A,—1 wWhere A1, ..., A,_1 are the eigenvalues of R
with respect to (-|-).

It should be noticed that the integral in the classical Boutet de Monvel and Sjos-
trand’s description [8] of the Szegd kernels for strictly pseudoconvex domains is
R4, whereas the integral in our expansion ( ) is (=48, 8). The difference is
that in [8], the authors work with the Szegd projector on the infinite-dimensional
space of CR functions, whereas here we use the weighted Fourier—Szeg6 pro-
jector ( ) on a finite-dimensional space of sections of L¥, where the cut-off
function 75 at frequency level plays an essential role. Moreover, Pk s s(x, y) are
semiclassical kernels (with k in the phase) compared to the kernel in [8], where
there is no semiclassical parameter. We refer to Section for a comparison to
Szegd/Bergman kernels in other geometric situations.

From Theorem we deduce the asymptotics of the kernel Py s(x, y) on the
diagonal. Note that Py s(x, x) = Pi s.s(x, x).

COROLLARY 1.2. Under the conditions of Theorem [.1, we have, as k — 00,

o0
Pes(x,x) ~ Y K" Ibj(x) in Sp.(1: X), (1.20)
j=0
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where bj(x) e C*(X), j=0,1,2,...,and
bo(x) =Qm)™" A | det(R)f — 2t£x)||t5(t)|2dt (1.21)
with t5(t) € Cg°(R) introduced in (1.3).

The leading term by of asymptotics (1.20) thus reflects the interplay between the
curvature of L and the Levi form of the base manifold X, a phenomenon first
noticed in [22]. This is a new feature compared to the asymptotics of the Bergman
kernel of a positive line bundle over a complex manifold where only the curvature
of L appears [10; 23; 27; 28; 37; 39]. Note however that for a Levi-flat manifold
X, we have

bo(x) = (271)7”/ |det(Rf)||T5(t)|2dt, (1.22)
R

which is an integrated version of the leading term for complex manifolds, reflect-
ing the fact that Levi-flat manifolds are foliated by complex manifolds.

In the general case, note that for § small enough and |f| < §, we have
|det(Rf —2tL,)] >0 for all x € X due to the positivity of L and compactness
of X. Hence by(x) > 0 on X, and we deduce from ( ) that for k large enough
(see also Lemma 4.2),

dy
d= [ Y1 Pdoe = [ Pt duneo 20
b S X

Since we also have dy < k" by [ Theorem 1.4], we see that the spaces
Hi <ks(X, L¥) have maximal growth di ~ k".
We now define the Kodaira map. Consider an open set D C X with

) ¢‘pco. (1.23)
—nT<6<m

and let s : D — L be a local rigid CR trivializing section on D; see Proposi-
tion . For any u € C*(X, Lk), we write u(x) = s¥(x) ® #(x) on D, with
ueC®(D). Let {f; (]i.k:l be an orthonormal basis of ’Hg <5 (X L*) with respect
to (+|-) such that f; € ’Hg!mj (X, L¥) and set gj =Frsfj, 1 <j=<d. The Kodaira
map is defined on D by
Grs:D— (CPdk_l, (1.24)
x> [Fesfio... Fosfal:=181(x).....8q,(x)] forxeD. =

By the proof of [21, Lemma 1.22] there exists an open cover of X with sets D
satisfying (1.23). Thus we have a well-defined global map

Brs: X — CPAL X > [Frsfis- s Frsfal (1.25)

Since g; € ’Hg!mj (X, L¥), we have Tg; =im;g;, and hence

gi(@?x) =55 %) @8 (%) = s (%) ® ™% (x).
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Thus
D s(e’x) = [81(7%), ..., Ba (@) =[™0F1 (), ..., ™40 Gy ()]
=[eMOP) (). ..., M0 Dk ()], (1.26)

We are thus led to consider weighted diagonal S'-actions on CP¥ | that is, actions
for which there exists (mq,...,my,myy1) € NS]H such that for all 6 € [0, 27),

imy410

12 im0
ezl any1l=[e"z1, .. e ZN+1]s

[z1,...,2N41] € CPV. (1.27)

THEOREM 1.3. Let (X, T'°X) be a compact CR manifold with a transversal
CR locally free S'-action. Assume that there is an S'-equivariant positive CR
line bundle (L, h) over X. Then there exists §o > 0 such that for all § € (0, dp),
there exists k(8) such that for k > k(8) and any orthonormal basis { f j}?’; | of
Hg,gka (X, L*) with respect to (-|-) such that fi€ ’Hg’mj (X, L*%), the map Dy s
introduced in ( ) is a smooth CR embedding that is S'-equivariant with respect
to the weighted diagonal action defined by (m1, ..., mgy,) € Ng" as in ( ), that
is,
Dy 5(ex) =P Dy 5(x), x€X,0€[0,2n).

In particular, the image ®i s(X) C CP%~=1 is a CR submanifold with an induced
weighted diagonal locally free S'-action.

In [20, Theorem 1.11], it was proved that if X admits a transversal CR locally free
S1-action and there is an S'-equivariant positive CR line bundle L over X, then
X can be CR embedded into projective space under the assumption that condition
Y (0) holds on X. The condition Y (0) is needed in [20] to ensure that the spaces
HO(X, L¥) are finite dimensional. The Kodaira map defined by these spaces is
proved to be a CR embedding for k large enough. The embeddings are thus not S!-
equivariant. In Theorem 1.3, we remove the Levi curvature assumption Y (0) used
in [20] and also obtain an equivariant embedding. We achieve this by working
with Fourier components of the spaces H 0(x, L*) (cf. (1.5), (1.6)), which are
finite dimensional even if H?(X, LX) are not. The ample spaces of CR sections are
the direct sums 7'{'2,<k5 (X, L¥) of Fourier components Hg,m (X, L*) for |m| < k8,
which tend to fill HO(X, L¥) as k — co. We consider the weighted projector on
the Fourier components (1.9), the associated weighted Fourier—Szegdé operator
( ) and the resulting equivariant Kodaira map ( ). Then the main technical
ingredient is Theorem 1.1, which provides a precise description of the kernel of
the weighted Fourier—Szegd operator.

An interesting case where Y (0) does not hold but Theorem applies is the
case of Levi-flat CR manifolds.

COROLLARY 1.4. Let X be a compact Levi-flat CR manifold. Assume that X ad-
mits a transversal CR locally free S'-action and an S'-equivariant positive CR
line bundle. Then there exists 8o > 0 such that for all § € (0, 8), there exists k()
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such that for k > k(8), the map ®y 5 introduced in ( ) is a C*° CR embedding
of X in CP%—1 that is S'-equivariant with respect to weighted diagonal actions.

Ohsawa and Sibony [31; 32] constructed for every x € N a CR projective em-
bedding of class C* of a Levi-flat CR manifold by using d-estimates. The first
and third authors [25] gave a Szegb kernel proof of Ohsawa and Sibony’s result.
A natural question is whether we can improve the regularity to k = co. Adachi
[1] showed that the answer is no in general. The analytic difficulty of this prob-
lem comes from the fact that the Kohn Laplacian is not hypoelliptic on Levi-flat
manifolds. Corollary 1.4 shows that we can find C*° CR embeddings of Levi-flat
manifolds in the equivariant setting.

When X is strongly pseudoconvex, it is known [33, Theorem 1.11] that there
is a S'-equivariant positive CR line bundle over X. From Theorem 1.3 we deduce
the following:

COROLLARY 1.5. Let (X, T'°X) be a compact strongly pseudoconvex CR mani-
fold with a transversal CR locally free S'-action. Then there exist smooth CR em-
beddings @ 5 of X in CP%~! that are S'-equivariant with respect to weighted
diagonal actions (cf. Theorem 1.3).

We illustrate Corollary 1.3 in Example

This paper is organized as follows. In Section 2, we recall the necessary no-
tions and results from semiclassical analysis and theory of CR manifolds with
circle action. In Section 3, we prove the asymptotics of the Fourier—Szeg6 kernel
(Theorem and Corollary 1.2). Section 4 deals with the Kodaira embedding
theorem.

2. Preliminaries

2.1. Some Standard Notations

We use the following notations: N = {1, 2, ...}, Ngo =NU {0}, R is the set of real

numbers, R := {x € R; x > 0}. For a multiindex o = (@1, ..., ) € Ny, we set
el =1+ -+ + . For x = (xq, ..., x,) € R™, we write

ol glal

o _ v xYm [ o __ a0 alpm
x* =x X", 8x_/. = Bx]-’ NS axl axm =35
1
_ a __ o 1%
Dy =-dy,  Di=D{ - D

Let z=(z1,...,2m), 2j = Xx2j—1 +ix2j, j =1,...,m, be coordinates of C",
where x = (x1, ..., x2m) € RZ" are coordinates in R" Throughout the paper, we

also use the notation w = (w1, ..., wy) €C™", wj=yr;_1 +iy2j, j=1,...,m,
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where y = (y1, ..., yam) € R¥". We write
ZQZZ?I"'Z%'"a zﬂt:z‘i‘l...ggﬂm’
3 0 1 0 .0 o 0 1 0 4 0
L= = — —1—, L= = = iI— 1,
Y 9z; 0 2\ 0xpj1 ) Y0z 2\dxgjo1 0 dxgj
glal N o glel
a;‘:agll-.-ag;nzﬁ, ag:azl'...azm:ﬁ‘

Let X be a C* orientable paracompact manifold. We denote by 7X and T*X
the tangent bundle of X and the cotangent bundle of X, respectively. The com-
plexified tangent bundle of X and the complexified cotangent bundle of X are
denoted by CT X and CT*X, respectively. We denote by (-, -) the pointwise du-
ality between T X and 7*X and extend (-, -) C-bilinearly to CT X x CT*X.

Let E be a C* vector bundle over X. The fiber of E at x € X is denoted by
E..Let F be another vector bundle over X. We write F X E* to denote the vector
bundle over X x X with fiber over (x, y) € X x X consisting of the linear maps
from E, to F).

Let Y C X be an open set. The spaces of smooth sections of E over Y and
distribution sections of E over Y are denoted by C*°(Y, E) and 2'(Y, E), respec-
tively. Let &’(Y, E) be the subspace of 2'(Y, E) whose elements have compact
support in Y. For m € R, we denote by H™ (Y, E) the Sobolev space of order m
of sections of E over Y. Put

Hm

oY, E)={u € D' (Y, E);oue H"(Y,E), forall p € CSO(Y)},
HC"(’)mp(Y, E)y=H].(Y,E)N &' (Y,E).

2.2. Definitions and Notations from Semiclassical Analysis

We recall the Schwartz kernel theorem [18, Theorems 5.2.1, 5.2.6], [36, p. 296],
[27,B.2]. Let E and F be smooth vector bundles over X. Let ¥ be an open set of
X.Let A(-,-) € Z'(Y x Y, FX E*). For any fixed u € C{°(Y, E), the linear map
CPWY, F*) v (A(, ), v®u) € C defines a distribution Au € 2'(Y, F). The
operator A : Cgo(Y, E)— 9'(Y, F), u > Au, is linear and continuous.

The Schwartz kernel theorem states that, conversely, for any continuous linear
operator A : CSO(Y, E) - 2'(Y, F), there exists a unique distribution A(-,-) €
2'(Y x Y, F X E*) such that (Au, v) = (A(-,-),v ® u) for any u € Ci°(Y, E),
vE Cgo(Y, F*). The distribution A(-, -) is called the Schwartz distribution kernel
of A. We say that A is properly supported if the canonical projections on the two
factors restricted to Supp A(+,-) C Y x Y are proper.

The following two statements are equivalent:

(a) A can be extended to a continuous operator A : &' (Y, E) — C*®(Y, F),
(b) A, ) e C®(Y x Y, FKE*).

If A satisfies (a) or (b), then we say that A is a smoothing operator. Further-
more, A is smoothing if and only if forall N >0andseR, A: HS (Y, E) —

omp
HS+N

oo (Y, F) is continuous.
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Let A be a smoothing operator. Then for any volume form du, the Schwartz
kernel of A is represented by a smooth kernel K € C*(Y x Y, F X E*), called
the Schwartz kernel of A with respect to d, such that

(Au)(x):/MK(x,y)u(y)dy,(y) foru € C3°(Y, E). 2.1

Then A can be extended to a linear continuous operator A : &'(Y, E) —
C®(Y, F) by setting (Au)(x) = (u(-), K(x,-)),x €Y, forue &' (Y, E).

Let W) and W» be open sets in RY, and let E and F be complex Hermitian
vector bundles over W and W>, respectively Let 5,5 € R and ng € R. For a

k-dependent continuous function Fy : p(Wl, E)— H, (Wz, F), we write

com loc

Fie=O(K") : Higpy (W1, E) — HI%C(Wz, F)
if for any y € C5°(W>) there is a positive constant ¢ > 0, independent of k, such

that
lx Feully <ck™|ulls forallue Hcomp(Wh E), 2.2)

where || - || denotes the usual Sobolev norm of order s. We write

Fy=0(k™) : Hyypp (W1, E) — Hyo (Wy, F)

com

if Flr=0kN): Hcsomp(Wl, E)— IOC(WZ, F) for every N > 0.

A k-dependent continuous operator Ay : Cgo (W1, E) = 9'(W», F) is called
k-negligible on W, x W if for k large enough, A; is smoothing and for any
K @ W, x Wy, multiindices «, 8, and N € N, there exists Cg o g, 5 > 0 such that

|8°‘8’3Ak(x | <CKa,gNk on K. (2.3)
In this case, we write
Ap(x,y)=0((k™>) on W x Wy,
or
Ay =0((k") on Wy x Wi.

If A, By : C(‘)X’(Wl, E) — 9'(Wy, F) are k-dependent continuous operators, we
write Ay = By + O (k™) if Ay — B = O(k~°°) on W) x Wj.
Let Ay : L>(X, L¥) — L%(X, L¥) be a continuous operator. Let s, 51 be local
rigid CR frames of L on open sets Do € M, D1 € M, respectively, and let |s|%l =
® and |s; |% = ¢72®1, The localization of A; (with respect to the trivializing

rigid CR sections s and s1) is given by
Abss 1 L (D) NE(D1) — L (D), 0
u+—> e_k‘bs_kAk(s{‘ekq)‘u) = Uk_,slAkUk,Sl. ’

Let Agss (x,y) € 2'(D x D;) be the distribution kernel of Ay . Let
o,0',ny € R. We write

Ar=O®K"): H° (X, L*) — H® (X, L%
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if for all local rigid CR frames s and s; on D and D1, respectively, we have

Aks.sy = O(K™) : HG (D1) — Hio(D).

comp
We write

Av=0k ) : H (X, L") — H? (X, L")
if for all local rigid CR frames s abd s; on D and D1, respectively, we have

Alss = O(™) : Hp o (Dy) — Hi (D).

comp
We write

Ap=0k™™)
if for all local rigid CR frames s abd s; on D and D1, respectively, we have

Ak,s,sl (x,y)= O(k_oo) onD x Dj.

When s =1 and D = Dy, we write A s := Agss and Ag s(x,y) 1= Ak s.5(x, ¥).
We recall the definition of the semiclassical symbol spaces [ 3, Chapter 8].

DEFINITION 2.1. Let W be an open set in RY. Let

S W)= [a € C®(W)| forall o € N : sup [8%a(x)| < oo},
xeW

Sphe(1; W) := {(a(n k))ker| for all @ € N,

forall x € Cg°(W): sup sup |[d%(xa(x,k))| < oo}
keRk>1xeW

For m € R, let
Sm(1) i= S (1 W) = {(a(, k))eer|(k™™a(-, k) € Sp.(1; W)}

Hencea(-, k) € Sloc(l; W) ifforall x € N(’)V and x € Cgo(W), there exists C, > 0,
independent of &, such that |9%(xa(-, k))| < Cuk™ on W.

Consider a sequence a; € S{Zg(l), J € No, where m; \( —o0, and let a €
%(1). We say that

loc
00

a( k)~ aj(.k) inSpd(1)
j=0
if for every £ € Ny, we have a — Z/ —oaj € SloéH (1). For a given sequence a; as
before, we can always find an asymptotic sum a, which is unique up to an element

in $,2°(1) = Sjee*(1: W) := N, St (D).
We say that a(-, k) € S;; (1) is a classical symbol on W of order m if

(0.¢]
a( k)~ K" a; in Sy, aj(x) € Sp(1), j=0.1,.... (2.5)
j=0
The set of all classical symbols on W of order m is denoted by Sl’gc ah) =
(15 W).

loc cl
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DEFINITION 2.2. Let W be an open set in RV . A semiclassical pseudodifferential
operator on W of order m with classical symbol is a k-dependent continuous
operator Ay : Ci°(W) — C°(W) such that the distribution kernel Ay (x,y) is
given by the oscillatory integral

N .
Ar(x,y) = W/e’“x—y%(x,y, n.k)dn+ 0Kk =),

a(x,y,n.k) € Spp. q(1; W x W x RY).

2.6)

We shall identify A with Ax(x, y). It is clear that A; has a unique continuous
extension Ay : &' (W) — 2'(W). It is well known (see [13, Chapter 7]) that there
is a symbol

a(x,n.k) € St (1, W x RY) =St (1; T*W) Q2.7)
unique up to an element in S;_>°(1) such that
N .
Ar(x,y) = —— / XYMy (x,n, k) dy + O (k™). (2.8)
@m)N

2.3. CR Manifolds with Circle Action

Let X be areal manifold, and let CT X denote its complexified tangent bundle. Let
F be a complex subbundle of CT X. We say that F is totally complex if F N F =
0, where the bar denotes complex conjugation in CT X, and 0 is the zero section
of CTX. We say that F is involutive if [C®(X, F), C*®(X, F)] C C®(X, F),
that is, if the space of smooth sections of F' is closed under Lie brackets.

A CR manifold of hypersurface type is a pair (X, T"°X), where X is a a
smooth real manifold of dimension 2n — 1, n > 2, and T19X is a subbundle of
rank n — 1 of the complexified tangent bundle CT X, which is totally complex and
involutive. The bundle T!-9X is called CR structure, and we set 701X = 71.0x.
Throughout this paper, we work only with CR manifolds of hypersurface type,
which we call simply CR manifolds.

We assume that X admits an S'-action S! x X — X, (¢'?, x) — ¢?x. The
global real vector field T € C*°(X, T X) induced by the S'-action is given by

) .
(Tu)(x) = a—e(u(E’QX))Iezo, u € C(X). 2.9

DEFINITION 2.3. We say that the S'-action ¢/? is CR if [T, C®(X, T10X)]
C®(X,T"9X) and the S'-action is transversal if for each x € X, CT (x) ®
TXI’O(X ) @ TXO’IX = CT, X. Moreover, we say that the S Laction is locally free
if T # 0 everywhere.

Denote by 7*1-0X and 7*0! X the dual bundles of 71-0X and 77! X, respectively.
Define the vector bundle of (0, ¢) forms by 7*%9 X = A9(T**!X). Let D C X be
an open subset. Let Q%4 (D) denote the space of smooth sections of 7*%-¢ X over

D, and let Qg’q(D) be the subspace of Q%4 (D) whose elements have compact
support in D. Similarly, if E is a vector bundle over D, then let Q0.a (D, E) denote
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the space of smooth sections of 709X @ E over D, and let Qg’q(D, E) denote
its subspace of elements with compact support in D.
Fix 6y €] — m, [ close to 0. Let

de'® : CT X — CT,ig,, X

denote the differential map of ¢ . X — X. Since the S'-action is CR, we can
check that
i . 71,0 1,0
de'® : TMOX > T3 X,
de'® 10 x - 19! X, (2.10)
"0 x

de'(T (x)) = T('%x).

Let (¢i%)* : A"(CT*X) — A"(CT*X) be the pull-back map of ¢%, r =
0,1,...,2n — 1. From ( ) we easily see that for every ¢ =0, 1, ...,n,

j 0 0,
() Th X — 17X, (2.11)
Let u € ©%9(X). Define (see also ( )
9 . .
Tu:= 8—9((e’6)*u(e’9x))|9:0 e Q%9(X). (2.12)

It is clear that for every u € C*°(X, A" (CT*X)), the Fourier expansion of u reads

1 g i0y\* i0 —imb
= — do. 2.13
=y > (@ ue e (2.13)
mez
Let 9p : Q%9(X) — Qo’q+1(X ) be the tangential Cauchy—Riemann operator.
Since the S!-action is CR, it is straightforward to see that (see also ( )

Top=03,T on Q> (X).

DEFINITION 2.4. Let D C U be an open set. We say that a function u € C*°(D)
is rigid if Tu = 0. We say that a function u € C ®(X) is Cauchy-Riemann (CR
for short) if d,u = 0. We say that u € C*°(X) is rigid CR if dpu =0 and Tu = 0.

In this paper we use the following notion of CR vector bundles.

DEFINITION 2.5. Let X be a CR manifold of hypersurface type. A smooth com-
plex vector bundle (F, , X) of rank r over X is called a CR vector bundle if F
has the structure of a smooth abstract CR manifold of hypersurface type, the map
m: F — X is a CR map, and for each point of X, there exist an open neighbor-
hood U and a smooth trivialization of F|y that is a CR diffeomorphism (that is,
the map and its inverse are CR). We define a smooth CR section of F over an open
subset D of X as a smooth section s : D — F that is a CR map. A CR frame of
F over an open subset U of X is a smooth frame {f!, f2,..., f"} of F|y where
each f¥ is a CR section.
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If F is a CR vector bundle, then each point has a neighborhood U with a CR frame
of F over U. Let (U;); be an open cover of X with CR frames {f.l, jz, e fj’}
of F over Uj, and let {g 1}« be the cocycle of transition matrices between these
frames. Then the entries of the matrices gjx : U; N Uy — GI(r, C) are CR func-
tions. Note that CR manifolds with transversal S!-action are locally embeddable
and there exist locally plenty of CR functions.

In CR geometry there is a more general notion of CR vector bundle [17; 38],
which does not require the CR local triviality (the definitions in [17] and [38] are
equivalent). There are indeed examples of CR vector bundles in the sense of [17;

] that are not locally CR trivializable (see e. g. [17, p. 279]). The goal of our
paper is to prove a Kodaira embedding theorem, so to work with very ample line
bundles, whose global CR sections give an embedding in the projective space.
Such bundles are locally CR trivializable, so here we restrict ourselves to the
notion introduced in Definition

DEFINITION 2.6. Let X be a CR manifold endowed with an S!-action, and let
(F,m, X) be a CR vector bundle of rank r over X. We say that the Sl action on
X can be lifted to F, that is, there exists an S! action on F still denoted by et?

such that

rr(eie ov(x)) = "% ox, v(x) € Fy,x € X.

A lifting is called a CR bundle lifting in F if for each ¢, the map ¢/? : F — F is
a CR bundle map. Such a bundle is called an S'-equivariant CR vector bundle.

ProprosITION 2.7. Let (F,m, X) be an S ! -equivariant vector bundle. Then in a
neighborhood of each point, there exists a rigid CR local frame of F . In particular,
there exist an open cover (Uj) j of X and trivializing frames (rh jz’ ey fj’} on
each U; such that the corresponding transition matrices are rigid CR.

Proof. To ease notation, we denote S! by G. Since X is a CR manifold of hy-
persurface type with transversal S!-action, by the slice theorem, for any x € X,
we have a diffeomorphism of a G = S'-neighborhood of x in X, U — G x¢, N,
where N =T, X/T(Gx) and Gy ={g € G: gx =x}, and g € G, acts on N as
dg:N— N.

Now 719X induces a subbundle T1°N of T(e x N) ® C by projection as
TX =T(Gx)®T (e x N). Since dim T (Gx) = 1, for a frame {w;} of T':ON, the
associated frame of 710X is

wi =wj+aj(g, yu forlg, yleG xg, BO,1), (2.14)

where B(0,€) C N is the ball of center 0 and radius €, w; does not depend on
g, and u € T(Gx) ® C is the vector field generated by 0 # K € Lie(S'). Thus
[wj, u] =0. By definition,
[wj+aj(g, y)u, wp + ar(g, y)ul
= [wj, wil + (wjar(g, »)u — (weaj(g, y)u e THOX, (2.15)
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and thus [w;, wi] € T'ON. This means that TN defines a complex structure
of N.
Let F be an S'-equivariant CR vector bundle on X. Then for

F=0*F witho:GxN—G x G, N the natural projection, (2.16)

Fisan S 1—equivariant CR vector bundle on G x B(0, 1) induced by the CR struc-
ture on G X, B(0, 1) as before. ~ B
Now the G-equivariant sections of F' induce a vector bundle Fg on N, and

C®(N, Fg)=C>®(G x N, F)%, (2.17)

where C*°(G x N, F )G denotes tlle space of G—invarignt sections of F on G x N.
Forw; e T'ON, s € C®(N, Fg) = C®(G x N, F)%, we define

afcs =0, S (2.18)

Then
@2 =0, (2.19)

which defines a holomorEhic structure on FG over B(0,1) € N. Now for a holo-
morphic frame {f;} of Fg over B(0,1) C N, we see by ( ) that the corre-
sponding lift f; € C*°(G x N, F)C fulfills the relations

3, fi=0,  Lgxfj=0 for0+K eLie(S"). (2.20)

Here KX denotes the vector field on X generated by K € Lie(S'). Now for this
choice of frames, the transition functions are CR, and they are annihilated by
LKX . ‘:l

If F is an S'-equivariant vector bundle, then we can define an operator 7 on
Q09(X, F).Indeed, every u € Q%9 (X, F) can be written on Ujasu=7y ug ®fjl

with u, € Q%4 (U), and we set

Tu=Y TuQ® f. 2.21)
Then Tu is well defined as an element of QO"/(X , F), since the entries of the
transition matrices between different frames { f, f jz, oo f ]’ } are annihilated by

T.

ExaMPLE 2.8. Let X be a compact CR manifold with a locally free transver-
sal CR S! action. Here we study the bundle 7!:°X by using the canonical BRT
coordinates [4, Theorem II.1, Proposition 1.2]. Let (D, (z, 0), ¢) be the BRT triv-
ialization defined in (1.2). Then on D,
ad
90’
0 ¢

Zi=— +i— i=1,...,n—1,
/ 9z IBZJ(ZZ)G / "

(2.22)
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where {Z;: j=1,...,n—1}is a frame of 719X over D. We always assume that
¢(0,0) =0. Let (D, (w, ), ¢) be another BRT trivialization. Then on D,
0
o ~ (2.23)
Z-=i—|—i%(ww)i ji=1 n—1
T w;  w; T o’ T ’

where {Zj :j=1,...,n— 1} is a frame of T1-9X over D. We have on D N [),

n—1
Zj:ch’ka, (2.24)
k=1
where cjx € C°(DN D) are smooth, and the matrix (¢ k) is invertible. Since
[Z2;, T]=0, [Z,,T]:O, jel{l,...,n—1}, (2.25)
we conclude from ( ) that
Tcjx=0, jkef{l,...,n—1}. (2.26)

On the other hand, using ( ), we obtain

(Zj. Zk1 = ;e ZiCkm)Zm — Y ekt (ZeCjm) Zm

l,m ,m
+ ) cjitimlZe. Zn). (2.27)
l,m
Note that
(Z;,Zx|eCT,  [Z;j,Z)eCT, jkel{l,...,n—1}, (2.28)
so we conclude from ( ) that
ZEk,z(Zij,m) =0 (2.29)
[
for all k,¢,m € {1,...,n — 1}. Since the matrix (¢ ¢) is invertible, we deduce
from ( ) that
Zicim=0, € jme{l,...,n—1}, (2.30)

thatis, cj ,, are CR functions. Therefore ( ) and ( ) show that ¢; j are rigid
CR functions on D N D for all j.ke{l,...,n—1}. Thus, arranging an atlas of
BRT trivializations, we see that {Z }’;% are rigid CR frames as in Proposition

Although we do not use them later, let us note the following relations. Write
z=z(w,w,n) and 8 = O(w, w, n) in the coordinates (w, w, n). Then dz/dn =
Tz=0z/08 =0. Since zx are CR functions, by ( ) we obtain

0 —

4:ijk20, j,ke{l,...,l’l—l},
Bwj

and hence z = z(w) = H (w), where H is a biholomorphic map. Since 96/0n =

1, we see that 0 = n + G(w,w), where G(w,w) is a real-valued smooth
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function. Thus the coordinate transformation from (w,7n) to (z,0) is given
by

z=H(w), 0=n+G(w,w). (2.31)
We write ¢y = cj(w,w) in the coordinates (w, w, ) (recall that c; x is inde-
pendent of 7 due to ( )). From ( ) and ( ) it follows that
dHy,
0,
In particular, the functions c; ; are holomorphic in w, which follows also from

( ). Thus we have a complete description of the change between two canonical
coordinate systems.

Cjk = (w), $(w, W) = ¢(H(w), Hw)). (2.32)

ExAMPLE 2.9. Let X be a compact CR manifold with a locally free transversal CR
S'-action. Then 71-X and the determinant bundle det T'-°X are S'-equivariant
CR bundles.

ExaMPpLE 2.10. Let M be a compact complex manifold of dim M = n, and let
(L,h) — M be a Hermitian line bundle. We denote by e the local holomorphic
trivializing section of L defined on a local holomorphic coordinate chart (U, z),
le|? = =2 Let (L*, h*) be the dual line bundle of (L, k), and let e* be the
dual frame of e. Let (z, t) be the local coordinates on L*. Then the boundary of the
Grauert tube with respect to (L, h) is givenby X = {v e L*: |v|ff1 = 1}, which
is a compact CR manifold with a natural CR structure 710X := T1.9L* NCT X.
A natural transversal CR S! action on X is given by e o (z,t) = (z, eiet) and
locally

] ] 9
T1’0X=SpanC{T +i8_¢-(z’2)8_9’j: 1,---771},
< < (2.33)
9
T 90

It is easy to check that the natural S'-action given on X is transversal and CR. Let
E be a holomorphic vector bundle over M. Then the restriction of the pull back
n*E|x on X is an S'-equivariant CR vector bundle over X.

From now on, let L be an S'-equivariant CR line bundle over X. We fix an open
covering (U;); and a family (s;); of rigid CR frames s; on U;. Let L* be the kth
tensor power of L. Then (s?k) j arerigid CR frames for L.

The tangential Cauchy—Riemann operator 9, : Q%9(X, LK) — Q%4+ (X, LK)
is well defined. Since L* is S'-equivariant, we can also define T'u for every u €
Q%4 (X, L¥), and we have

T3, =09,T on Q% (X,L"). (2.34)
For every m € Z, let
Q% (X, L%y = {u € QU9 (X, L*): Tu = imu). (2.35)
For ¢ =0, we write C2°(X, L*) := Q3°(X, LF).
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Let & be an S'-equivariant Hermitian metric on L. The local weight of 4 with
respect to a local rigid CR frame s of L over an open subset D C X is the function
® € C*°(D, R) for which

s}, =e 2@ xeD. (2.36)

We denote by @ ; the weight of 4 with respect to s;.

DEFINITION 2.11. Let L be an S'-equivariant CR line bundle, and let / be an
S!-equivariant Hermitian metric on L. The curvature of (L, A) is the Hermitian
quadratic form RY = R on T1.0X defined by

RE(U.V)=(d@y®; — 9®,)(p).UAV), U.VeT,’X,peU;. (2.37)

Due to [22, Proposition 4.2], RL is a well-defined global Hermitian form, since
the transition functions between different frames s; are annihilated by T'.

DEFINITION 2.12. We say that (L, h) is positive if the associated curvature RE is
positive definite at every x € X.

ExampLE 2.13. Let (E, h) Z M be a Hermitian line bundle over a projec-
tive manifold M, and let X = {v € E : h(v) = 1} be the circle bundle over M.
Let (L, k") be a positive line bundle over M. Then the restriction of the pull
back (7*L|x,7*h’) on X is a positive CR line bundle over X with curva-
ture 7% R(E-A") |71.0x - Thus all Grauert tubes over projective manifolds admit S'-
equivariant positive CR line bundles.

For the following result, we refer to [ 12, Theorem 2.10].

THEOREM 2.14. On every S'-equivariant vector bundle F over X, there exists an
S'-equivariant Hermitian metric (-|-) .

Since 719X is § 1—equivariant, Theorem shows that there is an S!-
equivariant Hermitian metric on 7'-°X. From now on, we take an S'-equivariant
Hermitian metric (-|-) on CT X such that 70X 1L 701X, 7 1L (T'0x @ 7O X),
(T'|T) = 1. The Hermitian metric (-|-) on CT X induces by duality a Hermit-
ian metric on CT*X and also on the bundles of (0,¢) forms T*O’qX,q =
0,1,...,n — 1. We will also denote all these induced metrics by (-|-). For ev-
ery v e T*%9 X, we write [v]? := (v|v).

The Hermitian metrics on 7*%9X and L induce Hermitian metrics on
794X @ L*, g =0,1,...,n. We will also denote these induced metrics
by (:|-)px. For f € Q%4 (X, L¥), we denote the pointwise norm |f(x)|ik =
(f(x)| f(x))«. Let dvy = dvx(x) be the volume form on X induced by the fixed
Hermitian metric (-|-) on CT X. Then we get natural global L? inner products (-|-)
on Q%9(X, L*) and Q%9(X), respectively. We denote by L2(X, T*9X @ L)
and L?(X, T*%4X) the completions of Q%4 (X, L*) and Q%4 (X) with respect to
C1)-
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Similarly, for each m € Z, we denote by L2 (X, T**9X ® L¥) and L2,(X,
709 X) the completions of 297(X, L¥) and ©%7(X) with respect to (-|-). We
extend (-|-) and (-|-) to L2(X, T*%9X ® L¥) and L3(X, T*>9X) in the standard
way. For f € Q%9(X, L¥) or f € Q%9(X), we denote || f||> := (f| f).

2.4. Expression of T and 3y in BRT Trivializations

In a BRT trivialization (D, (z, 6), ¢), we have a useful formula for the operator T
on §%9(X) defined by ( ). It is clear that

{dzjyn--Ndzj,, 1< ji<--<jg<n—1}
is a rigid frame of 7*%9 X on D, so for u € Q%9(X), we write
u= Z I/ljl...jqdzj'l/\-“/\dzj'q on D.

J1<+<lJq

Then we can check that

Tu= ) (Tuj..;)dZ; A---AdZj, onD. (2.38)

J1<<Jjq

Note that in terms of the BRT trivialization (D, (z, 8), ¢), we have

n—1
— ad ¢ d
p = dZjN | — —i—(z,2— | 2.39
b=2, 42 <azj "oz, ¢ %9) (239)
j=1
3. Szego Kernel Asymptotics
In this section, we prove Theorem 1.1. We first introduce some notations. Let
9, QY (X, L% - Q%(x, L5

be the formal adjoint of 3, with respect to (-|-). Since (-|-) and h are S'-
equivariant, we can check that

T3, =0,T onQ%(X,L*.,q=1,2,....n—1,

3y Q0 x b > QYY(x, L% forallm e Z. G-b
Put
) = 85,35, + 0,05 : Q9 (X, L*) — 9(X, LY). (3.2)
From ( )and (3.1) we have
TOW =0T on Q9(X, L5), g =0,1,....n— 1, .

O - (X, LY — @/ (X, L) forall m € Z.

Let IT; : L>(X) — Ker Dzol){ be the orthogonal projection (the Szegé projector).
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DEFINITION 3.1. Let Ay : L2(X, L*¥) — L?(X, L*) be a continuous operator. Let
D € X. We say that D1(7(,)l)c has O (k~"0) small spectral gap on D with respect to Ay
if for every D’ € D, there exist Cp > 0 and ng, p, ko € N such that for all k > kg
and u € Cg°(D’, LK), we have

1A = Tull < Cpk™ /(@) Pulu).

Fix A > 0 and let I <; be as in ( ).

DEeFINITION 3.2. Let Ay : L2(X , Lk) — LZ(X , Lk) be a continuous operator. We
say that I < is k-negligible away the diagonal with respect to Ay on D € X if
for any yx, x1 € C(C)’O(D) with x; = 1 on some neighborhood of Supp x, we have

(AL = )Tk, <2 (x Ak (1 = 1))* = O(k™>) on D,

where (x Ax(1 — x1))* : LA(X, L¥) — L2(X, L*) is the Hilbert-space adjoint of
x Ak (1 — x1) with respect to (-]).

Fix § > 0 and let Fy s be as in (1.9).

THEOREM 3.3 ([20, Theorem 1.13]). With the notations and assumptions used
before, let s be a local rigid CR frame of L on a canonical coordinate patch
D € X with canonical coordinates x = (z,0) = (x1, ..., Xon—1) and |s|ﬁ =e 2%,
Let § > 0 be a small constant such that R)IC‘ — 2tL, is positive definite for every
x € X and |t| <6. Let Fi 5 be as in (1.9), and let Fy 5 s be the localized operator
of Fy.s given by (2.4). Assume that:

@D D,(j?,){ has O (k—"0) small spectral gap on D with respect to Fys.
() Tk, <sk is k-negligible away the diagonal with respect to Fy s on D.
() Frss— Bx=0k"): Hcromp(D) — Hj (D) for all r € No, where

k2n—1

By =———
k (27.[)2n—1

/ M g (. Ky dy + O (k)

is a classical semiclassical pseudodifferential operator on D of order O with

o
ale, k)~ ajx. k™ in S).(1: T*D),
j=0
aj(x,n) € C®(T*D), j=0,1,...,

and for every (x,n) € T*D, a(x,n,k) =0 if |{(n]wo(x))| > §. Fix Dy € D.
Then

Prss(x,y) = / M D gy, 1, k)ydt + O(K™) on Do x Dy, (3.4)
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where p(x,y,t) € C®°(D x D x (=$§,9)) is as in ( ), and
glx,y, t,k) e S .(1; D x D x (=8,8) NCy°(D x D x (=8, 9)),

o
g,y 1, k)~ g,y K" in Sfi (1: D x D x (=8, 8))
j=0
isasin ( ), where Py s s is given by ( ).

In view of Theorem 3.3, we see that to prove Theorem 1.1, we only need to prove
that (I), (I), and (IIT) in Theorem hold if § > 0 is small enough. Until further
notice, we fix § > 0 small enough so that R)f — 25 L, is positive definite for every
x € X and |s| < 8. We first prove (I) in Theorem

3.1. Small Spectral Gap of the Kohn Laplacian

Form € Z, let
OV L2(X, T*X @ LK) — L2 (X, T X ® L¥) 3.5)

be the orthogonal projection with respect to (+|-). Let 75 € ch((—a, §)) be as in
(1.8). Similarly to (1.9), let F; k(qu) be the continuous operator given by
FY: 12X, "X @ LY — L2(X, T"X ® L),

Tl

meZz

Note that Fy s = F k((ZS)' It is not difficult to see that for every m € Z, we have

IT Qs = Wl Qyfhull forallu e LT IX @ LY.
IT FQul < k8| EGull forallu e L2(X, T**9X ® L), '

and
O - Q™ (X, LF) - @ (X, LY),

meZN[—ks,kd]
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Since the Hermitian metrics (-|-) and #* are all rigid, as in [19, Section 5], we
have:

quZQ<q> Q’(;I’)kmgfl)c on Q¥4 (X, LK) forallm € Z,
YLD = FO on b0 10,
3,0\, = 0 V3,
on Q% (X, LK forallme Z,q=0,1,...,n -2,
3 Fk(qa) _ F(q+1)5 on Q%(X, LK, g=0,1,...,n -2, e
abQ(q) _ Q(q by
on Qo’q(X,Lk) forallmeZ,q=1,...,n—1,

TED =F% VT, on QX L, g=1,....n—1.

By elementary Fourier analysis it is straightforward to see that for every u €
Q%4(X, LY,

lim Z Q(qku — u in C™ topology,

N—o00 “~
" (3.10)
Z 10 ul® < lul® forall N € No.
m=—N
Thus, for every u € L?(X, T*"4X ® L¥),
: (@) 12 *0 k
1 L*(X, T*X @ L"),
NI_IEIOO Z Qi —>u inL5( ® LY
N (3.11)
> 10 ul® < llul® forall N € No.
m=—N

We will use the following result.

THEOREM 3.4 ([20, Theorem 9.4]). With the previous assumptions and notations,
let g > 1.If 8 > 0 is small enough, then for every u € Q%9 (X, L¥), we have

||D(q)F(q)u||2 > k| F9u)?, (3.12)

where ¢ > 0 is a constant independent of k and u.
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Now we assume that § > 0 is small enough so that ( ) holds. For ¢ =
0,1,...,n—1, put

QU x, LY = @ anl(x, LY,

mez
|m|<ks

L,X. 7X@ Lh:= @ LLX. T Xx®Lh.

mez,
|m|<ké

(3.13)

We write C2,(X, L) := Q<k8(X LF) and L5(X, L% = LX5(X. TOX ®
Lk). It is clear that

O - 20 (X, 709X @ LK) — QX (X, T X ® L¥).

We denote by IZIb s the restriction of Déq,)( to the space sz‘i;js (X, L*). We extend
Oy 5 t0 L25(X, T*9X @ LF) by

( 0, k
O s : Dom O, o € L2,5(X, T X ® L¥)
— L3,(X, T*"X ® LY (3.14)

with DomD,(ka(S ={uel? 21 (X, 704X @ LF); D}(;Ilkgu c L2<k8(X 794X ®

L%}, where for any u € L2 ka(X 709X @ L¥), D;qqasu is defined in the sense
of distributions.

In general, the Kohn Laplacian may not be subelliptic. If the CR manifold
admits a transversal CR S!-action, then the Kohn Laplacian is in fact transversal
elliptic in the sense of Atiyah [3].

LEMMA 3.5. We have Dom O}/, = L2, (X, T*%9X ® LX) N H* (X, T**9X ®
LK.

Proof. It is clear that LZ,,(X,T*%1X @ LX) N H*(X,T*%1X @ L*) C
Dom Déq<k8 We only need to prove that Dom D[gq<k5 C L2<k5 X, 71X ® LK) N
H*(X, T*%9X@L"). Letu € Dom Oy . Putv = O su € L2, (X, T*9X ®
L¥). We have (07, s — THu = v — T?u € LA(X, T**9X @ L*) since || T%u| <
k282 ||u|. Since (O, — T?) is elliptic, we have u € HX(X, T*%9X ® L). The
lemma follows. B O

THEOREM 3.6. The operator Db s defined in ( ) is self-adjoint.

Proof. Let (O),5)* : Dom(@yL)* C L2k5(X T*04X ® L) — L% (X,

799X ® L*) be the Hilbert-space adjoint of Db Lis- Letv e Dom(D,qukS)*.
Then, by the definition of the Hilbert-space adjoint of qu ~xs We easily see that
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O v € L2 (X, T**4X ® L¥), and hence v € DomO.,; and Dl(,qlwv =
Oy )" v.
From Lemma we can check that

Oy 581 ) = IO, ) forallg, f € Dom7., ;. (3.15)

From (3.15) we deduce that DomD,(f)SkS c Dom(D,(f)Sk(S)* and Dl(f,[)gka"‘ =
(Dl(f)sk s)¥u, for all u € Dom Dl(f)s s~ The theorem follows. O

Let Spec DZ‘{L s C [0, oo[ denote the spectrum of Dl(;{><k6' For any A > 0, put

(q)
Hk,SkS,S

where E (fk) 5 denotes the spectral measure for DZ"L s+ We set

. (@) (q) . (q)
5 = EZ05((0, AD), L5 o = E 25 (Ix, 00D,
0 0
My, <ks, < == Hl(c,)gks,f)u Mg, <ks,>n 1= Hl(c,)§k8,>k'

THEOREM 3.7. Spec Dl(quks is a discrete subset of [0, oo[, for any v € Spec Dl(;qlka’

v is an eigenvalue of D;qlké, and the eigenspace
gq X Lk . D D(‘I) . D((I) —
<ks,v (X5 L7) i= {u € Dom Uy s Ly su = vu
is finite dimensional with Eika L (X, LM ¢ Q%,Zs (X, LF).

Proof. Fix L. > 0. We claim that Spec qulka N [0, A] is discrete. If not, then

we can find an orthonormal system {f; € Range Eglk)s([O, Al); j € N}, that is,
(fjlfe) =8, forall j, £ € N. Note that

IO s il < AflL j=1.2 (3.16)
From ( ) we have
IO s — TH < G+ 28D fill. j=1.2,.... (3.17)

Since ngi s T2 is a second-order elliptic operator, there is Cs > 0 independent
of j such that

Ifila<Cs, j=12,..., (3.18)

where || - |2 denotes the usual Sobolev norm of order 2. From ( ), we can
apply Rellich’s theorem and find a subsequence {f};2, such that f; — f in
L2§k5 (X, T*%9X ® L*). This is a contradiction to the fact that { f;; j € N} is or-

thonormal. Thus Spec D,(qu s N[0, A] is discrete, and therefore Spec D;(,qlka is a

discrete subset of [0, oo[.
Let r € Spec?) .. Since SpecI{) . is discrete, (\7) . — r has an L2

closed range. If Dl(yq)<k5 — r is injective, then Range(Dlquka —r) = L2<k(3 (X,



80 C.-Y. Hsiao, X. L1, & G. MARINESCU

7*04X @ LK), and
O s = L (X TX @ L) — L2,5(X, T X @ LY

is continuous. We get a contradiction. Hence r is an eigenvalue of Db ks

For any v € Spec Db,fk&? put
€245 (X, L) := {u e Dom Oy, s O su = wu).
We can repeat the argument before and conclude that €<k5 ,(X, E) is finite di-

mensional. Let u € 5st L (X, L*). Then Db <ka” =vu. For m € Z, put u,, =
Q’(Z’)ku e L2 (X, T*%9x ® L*). We have u = Zmez,\m|5ka ;. We can check that

D(bqkum =vu,, forallmeZ.
Hence
O = THum = v +m>uy,  forall m € Z. (3.19)
From ( ), we can apply some standard argument in partial differential op-
erator and deduce that u,, € Q9¢(X, L¥). Thus u € Q(;’ZB(X, L¥), and hence
Sika » (X, LK ¢ §2<k6 (X, L¥). The theorem follows. O

For every u € Spec Dh <,(3,1 et

Mi<ksp: L2(X, LK) — €95 (X, L)

<ké,n
be the orthogonal projection. For u =0, it is clear that ITy <xs5,0 = Ik, <ks, where
Iy, <ks is given by ( ). We have the following:

THEOREM 3.8. With the previous assumptions and notations, if €y > 0 is small
enough, then for every u € C*° (X, Lk), we have

FisTl <ksuu =0 forall ¢ € SpecTf 5.0 < 11 < keo, (3.20)
and
L oo
1Fes = g <ks)ull < o= NI, gl (3.21)
€0

Proof. Let €y > 0 be a small constant. For u € L2 Zrs (X, L¥), we have

(I — Iy, <ks)u = Z g, <ks,ptt + Mk, <ks,>keplt- (3.22)

0
JLeSpec EI}(”)S,“S
O<u<key

We claim that for every © € Spec Db <ks> 0 < u <keg,andevery u € C*°(X, Lk),
Fre sy, <ks, it =0 (3.23)

if g > 0 is small enough. Fix u € SpecDb <ks N (0, keg] and u € C*(X, LK.
From (3.9) and ( ) we have

1 D= 10y
105 E 0 Ty kst = 1k 1 F Y0 T < et 1%, (3.24)
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where ¢ > 0 is a constant independent of k and u. We easily see that
D (D7 Dy
D,ﬁ’,)cF,i,;aka,fkg,Mu = /LFk(’;akaékg,Mu.
Thus
) (7 DR
10y ) F Y00 Ty, <ks utt|* < K231l B e <o e | (3.25)
From ( ) and ( ) we conclude that if €y > 0 is small enough, then
= _
Fk(’a)abl_[k,fkg)uu = aka’gnk’SkS’Mu =0.
Hence

I _©
Fr sy, <ks, uu = ;DE)J)(F](’SHIC’SI(S’MM =0. (3.26)

From ( ) the claim ( ) follows. We get ( ).
Let Q(SOILS s LA(X, Lk) — L2§k5 (X, Lk) be the orthogonal projection. From
( ) and ( ), if €9 > 0 is small enough, then

1 Fis (I — T, <k |
0
= | Fis(I — Ty <k)(Q 5wl
0
= || Fi.s Tk, <ks.>keo (O s |

0
< Mk, <k5,2keo (@ 510

L0 ) ©)
= E||Db‘knk,§k8,>keo(Q§k6u)”

1 1
_ (0) 0 ) ©)
= keo ”Hk,§k8,>keODb,k(Q§k5M)” = k_é() ”Db,k”” (3.27)
for every u € C*° (X, Lk). From ( ), ( ) follows. O

THEOREM 3.9. Déoll has a O (k~"0) small spectral gap on X with respect to Fy s.

Proof. Letu € C®(X, L¥). We easily see that
Frs(I — iu = Fi s(1 — Mg <ks)u. (3.28)

From ( ) and ( ) the theorem follows. O

3.2. The Weighted Projector Fy s on a Canonical Coordinate Patch

Let D C X be a canonical coordinate patch, and let x = (x1, ..., x2,—1) be canon-
ical coordinates on D. We identify D with W x] — ¢, ¢[C R~ where W is an
open set in R2=2_ and ¢ > 0. Until further notice, we work with canonical coor-
dinates x = (xq,...,x2,—1). Letn = (11, ..., n2,—1) be the dual coordinates of x.
Let s be alocal rigid CR frame of L on D, |s|% =¢72® Let F; 5.5 be the localized
operator of F s constructed by (2.4). Put

k2n71 .
By = W / elk<x7y’n)775(’72n—l)d7l- (3.29)
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LEMMA 3.10. We have

Frss—Bi=0(k ) : Hl, (D) — H, (D) forallreN,.

comp

Proof. We also write y = (y1, ..., y2n—1) to denote the canonical coordinates x.
We claim that on D,

1 o T .
Fk,a,su(y)=gZfa(%>e””m'/ e"Muey)dr

meZ -
for all u € Cy°(D), (3.30)
where y' = (y1, ..., yan—2,0), and for convenience, we just write y' = (yi, ...,

yan—2) if there is no confusion. Note that if |¢| < &, then ¢y’ = (y/,1). Let u €
Cy°(D). By ( ) and the definition of Fj s ¢ we have

1 T .
u(y) = Z E/ e "™y(e'"y)dt onD,
meZ -

N (3.31)
(Frasm =Y t( %)= / e u(ely)dt on D.
’ k)2m J_,
meZ
Fixm e Z. Since T = Byd on D, we have
1 T . . .
e My y)ydt =™ 1y,,(y)) on D, (3.32)

21

where u,,(y") € C*°(D) is independent of y,_1. Taking yy,_1 =0 in ( ), we
get

] T

— e Myt y Y dt = um (). (3.33)
27 J_n
From ( ) and ( ) we have
T ) ) . 1 T ) .
— e "Mu(ey)dt = eV —/ e "™ye'yydt onD. (3.34)
27 J_, 2 J_,
From ( ) and ( ) we get the claim and also the formula
1 . T .
u(y) =— Z e'Myan—1 / e "™y(e'y')dt onD. (3.35)
2 meZ -

Fix D" € D and let x(y2,—1) € C5°(] — &, €[) such that x (y2,—1) =1 for every
(', y2n—1) € D'. Let R; : C§°(D') — C*°(D') be the continuous operator given
by
{20 —1=Y2n—1,M2n—1)Him(yan—1-1) ¢ (712n1>

k

Q)2 Ryu = Z/

<
mezZ ltl=7

x (1 — x(yan—1))u(e"' x")dt dnay—1 dysn—1. (3.36)
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By using integration by parts with respect to 12,—1 we easily see that the integral
(3.36) is well-defined. Moreover, we can integrate by parts with respect to 172,—1
and y,,_1 several times and conclude that

Ry =0(k"): Hcromp(D’) — H .(D") forallr eNj. (3.37)
Now we claim that
By + Ry = Fis,s on CSO(D/). (3.38)
Let u € C3°(D"). From ( ) and the Fourier inversion formula we have

2n—1
T / =3 g (1) dy di

k2n_1 : ’ / !
ZW/UMX y’")u(y/,yzn_l)dy’dn’>

Bru(x) =

% eik(Xanl_YZH—lsW)ra (N2n—1)dysn—1dn
k : _
=5 M2ty (' vy 1) T (120-1) dY2n—1 AT
1 i{X2n—1—Y2n—1.1) / 201
=—— | VTN (N you ) Ts| —— ) dy2m—1dn2a—1
21 k
1 : _
= E el Y- yz,l—l,rl)u(x” Y1) X Y2n—1)
N2n—1
X Ta( ’;( )dyzn—l dnon—1, (3.39)

where n' = (n1,...,n20-2), dn’ =dn1---dnyu_2, dy’ = dy1 ---dyz,—2. From
( ) and ( ) we get

Bu(x)
1 / (X1 —y
— e n—1 }Zn—l,772n—1>
(277)2% t|<m
Mn—1 1 ) — 1
XT5< ’;{ )X(yznl)e’m(”"“ Du(ex"ydt dnop—1 dysm—1.  (3.40)

From ( ) and ( ) we have

(By + Ri)u(x)
1 / i(x -y
— el Xan—1=Y2n—1,120-1)
(277)2 r% |t|<m
X Ts (%)eimm‘ e My x"ydt dnon—1 dym—1. (3.41)

Note that the following formula holds for every m € Z:

/ T dyy, g = 28y () (3.42)
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where the integral is defined as an oscillatory integral, and §,, is the Dirac measure
at m. Using ( ), ( ), and the Fourier inversion formula, ( ) becomes

(Br + Ri)u(x)

1 . .
= rg<ﬂ>elxz"“mf e My x)dt = Frssu(x). (3.43)
27‘[ k |l|<7T
meZ

From ( ) the claim ( ) follows. From ( ) and ( ) the lemma follows.
O

From Lemma we see that condition (III) in Theorem holds.

LeEMMA 3.11. Let D C X be a canonical coordinate patch of X. Then Ty <ks is
k-negligible away the diagonal with respect to Fy s on D.

Proof. Let x, x1 € C{°(D), x1 =1 on some neighborhood of Supp x. Let u €
Hg’ikS(X, LK) with [lul| = 1. By [2]. Theorem 2.4]) there exists C > 0 indepen-
dent of k and u such that

lu(x)|}x < Ck" forall x € X. (3.44)

Let x = (x1,...,%2—1) = (x’, x2,—1) be canonical coordinates on D. Put v =
(1 — x1)u. It is straightforward to see that on D,

Q)2 x Fie,s(1 — x1)u(x)

E f ot n—1=Ym—1120-1)
|t|<m

\m|<2k5
X X ()T (%)eim@w”v(e"’x’) dtdma_1dysm—1. (345
Let ¢ > 0 be a small constant so that for every (x1, ..., x2,—1) € Supp x, we have

(X1, .. X202, ym—1) € {x € D; x1(x) =1}
for all |yo,—1 — x2n—1] < &. (3.46)

Let € CP((—1,1)), ¥ = 1 on [—1, }]. Put

[O(x)=—21 5 Z / ot (X2n—1=Y2n—1,120— 1)(1_1/,<x2”_1 _y2”_1>>
@) ez mi<aks Y M=7 €

X x(x)Ts <_77221 )eim}'z"l

x e ™u(e""x")dt dnon—1dym-1. (3.47)

1 ; _ Xop—1 — Yon—1
I(x)= / el txan-1 y2nls772nl>¢<
(2m)? ngz = €

X x(x)Ts <—n2r];_l )eimyznl
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x e~"v(e" X" dt dnop—1 dyan—1., (3.48)
and
L(x)= —(21 72 Z / ei(X2n—17y2n71vn2n—1)1/f (x2”1 ; Yan—1 )
T ez >2ks I =T
x % ()13 <—”2’"1 )e"’"ml
k
x e My x") dt dnon—1 dyam—1. (3.49)

It is clear that on D,
X Frs(1 — xDu(x) = Io(x) + I1(x) — I (x). (3.50)

By using integration by parts with respect to 72,1 several times and (3.44) we
conclude that for all N > 0 and m € N, there is C ,, > 0 independent of # and k
such that

o) llempy < Cnmk Y. (3.51)

Similarly, by using integration by parts with respect to y»,— several times and
( ) we conclude that for all N > 0 and m € N, there is Cy ,, > 0 independent
of u and k such that

I2()llempy < Cnmk ™. (3.52)
Again, from ( ) we can check that

L (x)= i / ei<x2nly2n1v7)2nl)w<x2n_l — yz”_1>

&

x x(x)m("zz* )v(xd Yan—1)dnan—1 dym_1. (3.53)

From ( ) and ( ) we deduce that
Ii(x)=0 onD. (3.54)

From ( ), ( ), ( ), and ( ) we conclude that forall N > 0 and m € N,
there is Cn , > 0 independent of u and k such that

% Fie,s (1 = xD)u)lempy < Cn k™. (3.55)
From ( ) and ( ) it is not difficult to see that
di
D IxFis( = x) £l = 0(™>) on D, (3.56)
j=1
where {fi, ..., fq.} is an orthonormal basis for 7-[2 <5 (X Lk). From ( ) the
lemma follows. - U
From Theorem 3.9, Lemma , and Lemma we see that conditions (I), (II),

and (IIT) in Theorem 3.3 hold. The proof of Theorem 1.1 is completed.
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Proof of Corollary 1.2. We use the same notations as in Theorem [.1. On the
diagonal x =y, by ( ) we have ¢(x, x, 1) = 0. From ( ) we have

Pis(x) = Pig o1, ) = / G x.t.k)di +0G™) onDp.  (357)
R

Recall that g(x,x,t,k) = 0 if |¢f] > §, and hence ng(x,x,t,k)dt =

f_’sa g(x,x,1,k)dt. Combining with ( ), there exist b (x) € C°(Dy), j € Ny,
such that

o0
Pes(0) = Piss(x.) ~ ) K" bj(x) in Sp(1; Do) (3.58)
j=0
Let D; be another canonical coordinate neighborhood, and let s1 be another local
rigid CR frame of L on D;. Then from Theorem and the previous argument,
on D;, we have

o
Pes(0) = Prgs, (6, x) ~ Y K" hy(x) i Si, (1 Dy), (3.59)

j=0
where b;(x) € C®(Dy), j € Np. Since on D N Dy, we have Py s (x,x) =
Pi s, (x,x) = Py 5(x), (3.58) and (3.59) yield b;(x) = b, (x) on D N Dy for all
j € Ng.Hence b;(x) € C*°(X) forall j € Ny, and we get the conclusion of Corol-
lary 1.2. (]

3.3. Properties of the Phase Function

In this section, we collect some properties of the phase ¢ in Theorem |.1. We will
use the same notations as in Theorem

In view of ( ), we see that Im¢(x, y,7) > 0. Moreover, we can estimate
Imgp(x, y,t) in some local coordinates.

THEOREM 3.12. With the assumptions and notations used in Theorem 1.1, fix
p € D. We take the canonical coordinates x = (x1, ..., X2y—1) defined in a small
neighborhood of p so that x(p) =0, wo(p) = —dx2,—1 and TPI’OX ® TI(,)’IX =
{ZZ" lza] B ;aj €C,j=1,...,2n = 2}. If D is small enough, then there is
¢ > 0 such thatfor (x,y,t) e D x D x (=6, 9),

Ime(x,y,t) > clx’ — y/|2 forall (x,y,t) e D x D x (=6,96),
2 (3.60)

/

Img(x,y, 1)+ > c(|x2n-1 — yan1 12+ ¥ =y,

e
—(x, 5.t
at(xy)

2n—2

where x' = (x1,...,%001-2), ¥ = V1, ..., Yon—2), and |x' — y'|> = Z X —

yil?.

For the proof of Theorem , we refer the reader to the proof of Theorem 4.24

in [20].
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In Section 4.4 of [20] the first author determined the tangential Hessian of
@(x,y,t). We denote as usual x = (x1,...,x2,-1) = (2,0), zj = x2j_1 +ix2j,
j=1,...,n — 1, the canonical local coordinates of X. We also use y =
015 yoam—1), wj=y2j—1 +iyzj, j=1,...,n— L

THEOREM 3.13. With the assumptions and notations used in Theorem 1.1, fix

(p, p.to) € D x D x (=6, 9), and let 71,10, «oos Zy—1,4y be an orthonormal rigid
frame of TXI’OX varying smoothly with x in a neighborhood of p, for which the
Hermitian quadratic form R)% —2t0Ly is diagonal at p, that is,

RE(Z.10(P). Ziay(P)) = 200L p(Z .15 (P). Zitty (P))
=Arj(to)sjx, Jj.k=1,...,n—1,

where Aj(to) >0, j=1,...,n— 1. Let s be a local rigid CR frame of L defined
in some small neighborhood of p such that

x(p) =0, wo(p) = —dxon—1,

R
T Oxu 06
0 0 .
<87j(p)‘ﬁ(p)> =28k, Jjk=1,...,2n-2,
_ R =S )
Zin(p) =g i gq,m T Hou. a6
j=1,...,n—1,
1 n—1
D(x) 21,1<Z=1 Mk 1ZkZ1
n—1
+ Z (arxzizk +arxzize) + 01z,
1Lk=1
where Tj g, wjr,ajx €C, wjr = Rk, Jok=1,...,n — 1. Then there exists a

neighborhood of (p, p) such that

. n—1
i
p(x,y,t0) =to(—x2n-1 + Yon—1) — 3 Z (ar,j +aj)(zjz —wjwp)
ji=1
i n—1
+ 3 .12:1(514‘ +a;)(z;z—wjw)
]’ =

ity

n—1
+= Z (T1.j —Tj.0(zz — wjwy)

ji=1
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. n—1 . n—1
l _ _ l
~3 E )Lj(l())(ijj—ijj)-i-E E )\j(l‘())|Zj—wj|2
i=1 j=1

+ (=Xon-1 + YD) f(x. ¥, 10) + O (x, Y)I), (3.62)
where f is smooth in a neighborhood of (p, p, ty), and £ (0,0, 1) =0

3.4. Comparison with Other Szegd Kernel Expansions

Let us recall that the Szeg6 kernel I1(x, y) of the boundary X of a relatively com-
pact strictly pseudoconvex domain G is a Fourier integral operator with complex
phase by a result of Boutet de Monvel and Sjostrand [8]. Here IT : L2(X) —
HS(X ) is the orthogonal projection on the space of CR functions on X (Szegd
projector). In particular, IT(x, y) is smooth outside the diagonal x =y of X x X,
and there is a precise description of the singularity on the diagonal x = y, where
I1(x, y) has a certain asymptotic expansion. More precisely, let G = {p < 0} € G’
be a strictly pseudoconvex domain in an (n 4 1)-dimensional complex manifold
G’, where p € €°°(G’) is a defining function of G. Then, taking an almost ana-
lytic extension ¢ = @(x, y) : G' x G’ — C of p (see [8, (1.1)—=(1.3)], we have

OO .
M(x,y) = / e s (x,y, 1) dt + R(x, y), (3.63)
0

where s(x, y,t) € S"(X x X x R;), and R(x, y) is a smooth function. Assume
now that X is the strictly pseudoconvex CR manifold given by the boundary of
the unit disc bundle of E*, where E is a positive line bundle over a compact com-
plex manifold M. Then X admits a natural S' action, and we define as in (1.3)
and (1.4) the spaces of equivariant CR functions ’Hg’m(X) ={ueC®X);Tu=
imu, dpu = 0} for the trivial line bundle L over X. Then ’Hg’m(X ) is isomor-

phic to the space of holomorphic sections HO(M, E™) of E™ over M. By an
appropriate choice of metric data these spaces are also isometric for the cor-
responding L? inner products; see [39]. We have an orthogonal decomposition
Hg(X ) = @meNo Hg,m (X), and we decompose accordingly the Szeg6 pojector
I = ZmeNo I1,,, where I1,, : L>(X) — ”H,g’m(X) is the orthogonal projection.
We can thus see the analogies and differences between expressions ( ) of
the Szegd kernel IT(x, y) and ( ) of the Fourier—Szegd kernel Py ;5 (x,y).
In (3.63), we integrate over R, and this corresponds to the sum over all m € N,
whereas in ( ), we have an integral over (—4,§), which corresponds to the
sum only over m € Z, |m| < ké. Of course, in ( ), there is no semiclassical
parameter k as in ( ), since we work with the trivial line bundle.

Using (3.63) and the stationary phase formula, it is shown in [10; 39]
that TII,,(x,y) have an asymptotic expansion as m — o0o. Moreover, they
correspond to the Bergman kernels B,,(z, w) of H®(M,E™), which have
accordingly the form B, s(z,w) = MWz w. m), where b(z, w, m) ~
Z?’;Om”’l’fbj(z, w) in Sl’gl(l; D x D); see also [24; 27; 28]. Here D C M is
an open set over which we have a trivializing section s of E, and B, (z, w) is
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the corresponding localization of By, (z, w). In this respect, the form ( ) bears
resemblance to the expansion of the Bergman kernel on a complex manifold, but
we have to integrate since our space 7—[2’< s (X, L¥) consists of all the components
My, (X, L¥) with [m| < k8.

There is also an expansion of the Szegd kernel for a positive line bundle L over
an arbitrary Levi-flat CR manifold [25, Theorem 1.2]. The Szeg6 kernel I (x, y)
of the projector on the CR sections of L is close in the semiclassical limit to an
approximate Szegd projector Si, which has an asymptotic expansion in Sobolev
spaces, given locally by the operator Sy with kernel

Sk(x,y) = / RV W (x v u, k) du. (3.64)
R

The integral fR du in ( ) arises due to the transversal direction to the leaves of
the Levi foliation. This result implies the Kodaira embedding theorem for Levi-
flat CR manifolds [25]. In the presence of an S 1 action, we can refine this re-
sult and work with the Fourier—Szeg6 projector Py s with asymptotics ( ) and
( ) with leading term ( ).

Finally, we refer to [29] for the relation between heat kernels and Szeg6 kernels
for unnecessarily positive line bundles.

3.5. The Necessity of the Weighted Fourier—Szegd Operator Py s

We now give a simple example to show that the partial Szegé kernel of
H }2 <ks (X, L*) has no asymptotic expansion, and hence the need for the weighted
projector Fy s and weighted Fourier—Szegd operator Py s.

Let (L, h) be a positive holomorphic line bundle over a compact complex man-
ifold M of dimension n — 1. Then X := M x S! is a Levi-flat CR manifold of
dimension 2n — 1 with transversal CR S! action ¢'?, and the pull-back of (L, h)
by the projection M x S' — X is a positive CR line bundle over X, denoted

again (L, h). For k > 0, let gik), e g},]f) be an orthonormal basis of the space
HO(M, L*) of global holomorphic sections with values in L¥. By the asymptotic
expansion of the Bergman kernel of Lk [10; 37; 39] (see also [27; 28]), in any C ¢
topology on M, we have
Tk
S 18P R ~ K ho) + Kby () £, koo, (3.63)
j=1
For each m € Z, {f;ﬁ,)q (x,0) := ﬁg;k) (x)ei’”(’};":1 is an orthonormal basis of

HZ?,m (X, L¥). Hence {fj(kn)1 (x,0); m € Z, |m| < k8} is an orthonormal basis of the
space Hb0 <5 (X L*), whose cardinal is denoted by dj. Thus the Szeg6 kernel of
Hp _s(X, LX) is given by

1 k
®) ()12 ®) 12
D i@ = k813 185" (Ol (3.66)
1<j=<dy j=I1
|m|<ks
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where [kd] is the Gauss’ symbol denoting the integral part of k6. The difficulty
comes from the fact that the function § +— [k8] does not admit an asymptotic
expansion in k. To get asymptotic expansion, we consider

1 m\|? &
(k) 2 _ (k) 2
> Esi f) @l =53 Ta(k> > lg 0l 667
l<j<dy meZ j=1

|m|<ké

We need the following:

THEOREM 3.14. Let g € Cgo (R). Then there exists a sequence (b;) jeN, of com-
plex numbers such that for every N € N, there exists Cy > 0 with

1 m b1 b

— b

‘k2g<k) <°+ kT +kN>‘
mez

<Cyk~ MY foreveryk €N. (3.68)

Proof. Let by = fR g(x)dx. By Taylor expansion we have

i 2(x) - [ooe|- Z/Z”;/k( () -se0)e

mez mez
m/k 7
/g/(t)dtdx
(m—1)/k
m/k
Z/ g0ldi= [1wlar
meZ

We have proved that ( ) holds for N = 1. Assume that ( ) holds for N < Np,
No € N. We are going to prove that ( ) holds for N = Ny + 1. By Taylor
expansion we have

%Zg(%) - [emax

mez
m/k m
= Z/ (g(;) —g(x)) dx
meZ m—=1)/k
m/k N0+2 1 i
meZ (m— l)/k J
m/k m/k 1 No+2
/ 7<ﬂ_,> 2N () drdx.  (3.69)
mEZ (m 1)/k (N0+2)' k
We have

m/k prm/k 1 No+2
) / / (=, N0+ (1) dr dx
m—1 X (NO =+ 2)' k

mez
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m/k m No+2
——x 1g N+ (1) dr dx
(m—1)/k (No +2)!

k*(N0+3) n
< ot 2 /( 1g ™) (1) dt

m—1)/k
_ Y o)
- +3),/|g "0 di (3.70)

for every k e N. Let h € CSO(R). We claim that for every j =1,2,..., No + 2,
we have

Z/(——x) h(x)dx — (bj k™" +bjok™ + -+ bj yyr 1k~ MotD)

mez

< Cyyk~ Mo+ (3.71)

for every k € N, where Cy, > 0,b;,€C, j=1,...,No+2,5s=1,...,No+ 1,
are constants independent of k. We have

m/k m No+2
Z/ (——x> h(x)dx§k_(N°+2)/|h(x)|dx.
m-1)/k \ K

meZz

Hence ( ) holds for j = No + 2 with byy21 ="+ = bnyt2,Ny+1 = 0. As-
sume that ( ) holds for j > 59, so € N, 2 <s9 < Ny + 2. Let j =509 — 1. By
integration by parts we have

m/k m so—1
Z[H <?—x) h(x)dx

mezZ" "k

22;1(%—)(?) h(X)|(m 1)/k+Z/ _(__x) Oh/(x)dx

S S
mez, °0 mez ) m=1)/k 50

() Zh( ) Z/m/ki<——x)oh’(x>dx. (3.72)

By the induction assumption, ( ) holds for N < Ny, and we have

(7)) Tn() Rk 2k e )

mez
< éNOk*(NOH)fso < éNOk*(NoJrZ) (3.73)
for every k € N, where éNo >0,ds, €C,t=1,..., Ny, are constants indepen-
dent of k. By the induction assumption, ( ) holds for j > 59, and we have
m/k 1 S0
Zf 1 —<— —x> B (x)dx — (e k™" + egok ™24 -
mEZ m—
+ 5y N1k~ MDY < Cy ke Not2) (3.74)
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for every k € N, where 5N0 >0,e5,:,€C,t=1,..., No+ 1, are constants inde-
pendent of k. From ( ), ( ), and ( ) the claim ( ) holds for j = 59— 1.
Thus the claim ( ) follows by induction. From ( ), ( ), and ( ) we see
that ( ) holds for N = Ny + 1, which finishes the induction proof of ( ). O

Applying (3.68) for g = r52, we obtain the asymptotic expansion

(%)

mez
Combining ( ) with ( ), we obtain an asymptotic expansion of ( )in k.
This shows the necessity of introducing the weighted operators Fs ; and Ps .

2
~kf|r3(t)|2dt+ao+a_1k_l+--~, k—oco. (3.75)
R

4. Equivariant Kodaira Embedding
In this section, we prove Theorem 1.3. Let
fleH ) s(X. LN, ..., fu, € Hp) _5(X, LY
be an orthonormal basis of Hg,ska (X, L*) with respect to (+|-). On D, we write
Fisfi=s"®%;, g§,eC®(D), j=12,....d.

LEmMA 4.1. We have
di
Pessr.y) =) e MO @F e H0,

/=1 “.1)

di dy
Piss(x, ) =Y [g5(0Pe 0 =3 " |(Fis £1) (0 s
j=1 j=1
In particular, ( ) holds.

LemMA 4.2. Let § > 0 be a small constant. Then there exist Cy > 0 and ko € N
such that for all k > ko and x € X, we have

dy
D 1Fis £ ()5 = Cok”. (4.2)
j=1

Moreover, there are co > 0 and ko € N such that for all k > ko and x € X, there
exists jo € {1,2,...,dy} with
| Fis fjo )7k > co. 4.3)

Proof. Theorem immediately implies the first assertion. We only need to
prove the second. By [21, Theorem 1.4] we know that there exists C; > 0 such
that

dimH) _5(X, LY =di < C1k", “4.4)
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where C1 > 0 is a constant independent of k. From (4.4) and (4.2) for every x € X,
we have

C1K"supf{| Fis fj () 3: j = 1,2, ..., di)

> disup{| Frs (0 x; j = 1,2, di}
d
> | Fis fi ()5 = Cok”,
j=1
which yields (4.3). O

The (modified) Kodaira map &4 s : X — CP%~! introduced in ( ) is explicitly
defined as follows. For x¢ € X, let s be a local rigid CR frame of L on an open
neighborhood D C X of x such that |s(x)|? = e72®. On D, put Fy s f;(x) =
s¥ fi(x), fj(x) € C®(D), j=1,...,dy. Then

Dy 5(x0) = [ f1(x0), - - -, fa, (x0)] € CPUT, (4.5)

In view of (4.3), we see that &y s is well-defined as a smooth CR map from X to
CP%—!. We wish to prove that @ 5 is an embedding for k large enough. Since
X is compact, a smooth map is an embedding if and only if it is an injective
immersion.

THEOREM 4.3. The map Py s is an immersion for k large enough.

To prove Theorem 4.3, we need some preparations. Fix p € X and let s be a local

rigid CR frame of L on a canonical coordinate patch D, p € D, |s|i =29,

with canonical local coordinates x = (xy, ..., x2,—1) = (z, ). We take canonical
coordinates x and s so that (3.61) hold. We identify D with an open set in R¥" 1.
For r > 0, put

Dyi={xeR™ N |x;l<rj=1,2,...,20 - 1}.
For x = (x1, ..., x2,—1), we consider the rescaling map
X1 Xo2n—2 X2p—1
F*x::(—,..., , )
: Jk N

Note that we rescale with a factor ﬁ in the direction of the complex variables

z and by a factor % in the real direction 6. Such anisotropic rescaling was used
already in [22, Section 2.2]. The rescaling by ﬁ in the direction of the complex

variables is very natural and was used in [5; 27].
From ( ) we can check that
kl(p(o? F/j)’at)=ly2n71t+l(/’0(w,t)+rk()’at) on D]nga (46)

where 7 (y, 1) € C®(Diogk x (—8,8)) and go(w, 1) € CX(R>*~2 x (=8, 8)) in-
dependent of k. Moreover, for every o € N2'—1 we have

lim sup |3;‘rk(y, Hl=0, 4.7
k=00 (y,1)€Diggi X (—8.6)
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and there exists C > 0 such that
00(0,t) =0 forallz e (-34,4),

go(w, 1) = go(—w, 1) forall (w, 1) € R*2 x (=34, ), 48)

/e_lm‘”"(w”) dy|---dyym—2<C <oo forallze (=38,3J).

Take x € C((—1, 1)) with0 < x < 1, x(x) = L on [—4%, 4] and x () = x (1)

for every t € R. For € > 0, put x.(x) := e x(e™'x). Let go(x, y,1) € C®(D x
D x (=6,8)) be asin ( ). We can check that

lim [ e/ 0tDFiv2-11 600, 0, 1) xe (V1) - -+ Xe (Yan—2) dy dt

e—0

=/eiyz""tgo((),O,t)dtdyznfl/2

R=n—

. XD - x(an—2)dy1---dym—2
= (2m)g0(0,0,0) /Rz . XD - x(an—2)dyr - -dyyu—2 #0, 4.9)

lim [ e/ 0@ 0F2u-11660,0, )€ 2y 12 xe 1) - - Xe (Yan—1) dy dt

e—0

= / P21 g9(0, 0.1) drdyz—y f L WiPxOD - xGam2)dyr - dy
Ril—

= @m200.0.0) [ 13 Px00) 1G22y - dya 20,

j=1,2,....2n -2, (4.10)

and

lim [ ™00 DF2=11(ir)g(0,0, ) xe (V1) - - Xe (Y2n—1)Yan—1 dy dt

e—0

=feiyz”"t(—ifyzn—l)go((),0, tydtdyr,
Xf XD x(owm—2)dyr - -dym—2
R2n72

= (2m)g0(0,0,0) A@Hx(y1)-~~x(yzn72)dy1 cedy—2#0. (41D

From (4.9), ( ), and ( ) we deduce that there exists €y > 0 small enough
such that

f e PN 600, 0, 1) Xeo (V1) -+ - Xe (Van—2) dy dt =: Vo #0,

/ ei(/)O(IU,l)-H)’Zn—llgO(O’ 0’ t)|yj |2X€0 (yl) e (yzn_z) dy dt
=V;#0, j=12,...,2n-2, (4.12)

f MO DFIYI=1 T (irys 1)80(0,0,8) e (V1) - -+ Xeo (Van—2) dy dt
=V #0.
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Assume that p € Dy € D. We need the following:

LEMMA 4.4. With the previous notations, there is Ko > 0 independent of the point
p such that for all k > Ky, we can find

g,i N Hg,gks(xv LY, j=1,....n,

such that if we put Fk,gg,{ =sk§,{ onD,j=1,...,n,then
n .
> 1 g () =0,
j=1

1 B i
—3;, (") (0)| < &,

j=12,...,n,t=1,2,....n—1,

—

ﬁaz,(e_kq)gi)(o)‘ < &g, 4.13)
j:l,z,...,}’l,t:1’2’_..’n_1’j;ét’

1 7 ~. .
ﬁazj(e EHO)|=Co, j=1,....n—1,

1 _
Eaxbzfl (e k(bg’;(l)(o)

where Co > 0 is a constant independent of k and the point p, and €i is a sequence
independent of p with limg_, o € = 0.

> Co,

Proof. Let x € C3°(R) and €9 > 0 be as in ( ). Put

ug =Ty <ks Fr.s (ekq}(w)xeo(ﬁyl) e

k sk(w)
kyan— — Y- , 4.14
Xeo (Vky2n 2)X(1ogky2" 1) m(y)) (4.14)
where w = (wy, ..., wy—1), wj =y2j1+iyj, j=1,....,n—1,and m(y)dy =

dvx(y) on D. We put Fy suy = ski[k on D. In view of Theorem 1.1, we see that
on Dy,

e*k(b(Z)ﬁk(x) — /eik‘p(x’3’>t)g(x, Y1, k) Xeo (\/];yl) ..
k
X Xeo (VEy2n-2) X (@yzrw) dydt+0k™). (4.15)
From (4.6), (4.7), ( ), and ( ) we can check that

lim | ¢*OY06(0, y, 1, k) xeo (Vhy1)---

k— o0

k
X Xeg (\/EyZn—Z)X (@)’2,,4) dydt
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= lim [ e OF D600, Ffy, 1, k) xey(v1) - - -

k— 00

S Xeg(yZn 2)X (y ngkl > dtdy

= / e PO DFIY1T 00,0, 1) xeo (1) - - Xey (Van—2) dy dt = Vo #0. (4.16)

From (4.106), since X is compact, it is easy to see that there is kg > 0 independent
of the point p such that for all k > kg, we have

— < e **O70)] < Ay, (4.17)
Ap

where Ap > 1 is a constant independent of k£ and the point p. From now on we
assume that k > kq. From ( ) and ( ) we can check that

.1 kD~
lim %axw(e k®7(0)

k— o0

= / DT =1 (ir) g0(0, 0, 1) Xeo (V1) - - Xeo (V2n—2) dy dt
=0 (4.18)
andfor j=1,...,n—1,

1 —k<I>~
Jdim —d, (7T )

= / MO DFI 1 (N A (1) (2 -1 — 192))80(0, 0, 1) Xeo (V1) - - -

x xeo(yzn 2)dydr =0, (4.19)
Jim 783, (e %) (0) = (4.20)

From ( ), ( ), and ( ) we easily see that

1 e
2O, (€O O)] < 8,

1 —kd>~ .

ﬁaz_,.(e DO <&, Jj=1,....n—1, 4.21)
1 - ~ .

ﬁazjme TN <8, j=1.....n—1,

where J; is a sequence independent of the point p with limg_, o 8y = 0.
Put

v =g <ks Fr.s (ekq>(w)ky2n—l)(eo (Vkyr) -

k 1
X Xeo (x//;yzn—z)x <logky2"_1) my) ) (4.22)
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We put Fy sv) = skv,’j on D. In view of Theorem 1.1, we see that on D, we have

7k<1>(z)~n(x)

= / 0D e (x v, 1 k)kyan—1 xe (Vi) -+
k
X Xeo (VEy2n-2) X (@}Qn—l) dydt + O (k™). (4.23)

From (4.23) we easily see that there is Eg > 0 independent of k and the point p
such that

le kO (0)| < Eo. (4.24)

From ( ) and ( ) we can check that

1
lim —dy,, , (e *®3)(0)

k—o00 k
_ / SR (i Y600, 0, 1) e (V1) -+
X Xeoan2)dydt =V #0 4.25)

andfor j=1,...,n—1,

1
klim — 02, (e **T)(0)

oo /k
= / e 0D =1 (i) (1) (y2—1 — 192)Y2n—180(0, 0, ) Xeg (V1) - -+
X Xe()(y2n 2)dydt =0, (4.26)
Jim —& (e F*T)(0) = 4.27)
ook

From ( ), ( ), and ( ) we easily see that there is k1 > ko independent of
the point p such that for all £k > k;, we have

1 _
‘ Oxy, (€ k<I>~n)(0) > By,

00)
~

Il
J—
S

|
[—

‘ 3, e FPTHO)| < (4.28)

—k® A .
’ﬁ&zj(e O <&, j=1,...,n—1,
where By > 0 is a constant independent of k and the point p, and Srisa sequence

independent of the point p with limy_, ¢ = 0. From now on, we assume that
k> ky. Put

(e **T)(0)

—_— X, L5.
P AT

n._.n
gk -—Uk -
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Put Fy sg; = skg;g on D. From ( ), ( ), ( ), and ( ) we see that there
is a constant k; > 0 independent of k and the point p such that

(e ¥ (0)| =

L@ EDO) s@. t=1n -1,

=

(4.29)
‘ﬁaz,(ek“’“”)(m <e&, t=1,....n—1,

1 _
‘%amnl(e kPE(0)| > Co,

where Co > 0 is a constant independent of £ and the point p, and € is a sequence
independent of p with limy_, o, €x = 0.
Fix j e{l,2,...,n—1}. Put

v = Hk,gkéFk,B(ekd)(w)\/%()Qj—l + i)’Zj)Xeo(‘/z)’l) e

k 1
% Xeo(Vkyam—2) x <1ngy2n—l) m(y)).

k

We put F s v,{ =y T)',{ on D. In view of Theorem 1.1, we see that

kDY (x) = f MY D o (x 1 )V (y2j—1 4 iv2))

k
X Xeo (VA1) -+ Xeo (VEky2n-2) X (l gkyzn 1) dydt
+ O (k™ *)on Dy. (4.30)

From (4.30) it is easy to see that there is a constant £ > 0 independent of k and
the point p such that

e **OF/ 0)] < Ey. (4.31)
Moreover, from ( ), ( ), and ( ) we can repeat the proof of ( ) with

minor changes and deduce that there is ko >0 independent of the point p such
that for all £ > kg, we have

' Buay 1 (€ T*ETNH(O0)| < 51,

’ 8., (e**T)(0)| = By,
(4.32)
‘ﬁaz,(e—"q’”)(m <&, j.t=1,....n—1,j#t,

1
'ﬁf}z (€_k¢~])(0) <&, Jj,t=1,...,n—1,

t
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where By > 0 is a constant independent of k and the point p, and Srisa sequence
independent of the point p with limg_, o 6x = 0. Put

i @)
Jo__.J k 0 k
gk = Uk - muk € Hh,SkS(X’ L ) (433)

Put Fk,(;g,{ = skg,{ on D. From ( ), ( ), ( ), and ( ) we see that there
is a constant k; > 0 independent of k£ and the point p such that

e 5]y (0)| =
'ﬁamek“’)(m <&, t=1....n—1,
1 _ - .
‘ﬁam( kd J)(O) < &g, t:l,...,n—l,t;éj, (4.34)

%a@- @ *F)H )] = Co,

1 ko~
'%axhl @**ZDO)| <&,
where Co > 0 is a constant independent of £ and the point p, and € is a sequence
independent of p with limg_, o €x = 0.
From ( ) and ( ) the lemma follows. O

Proof of Theorem 4.3. We are going to prove that if k is large enough, then the
map

dde,(s(x) : TXX — Td)/(_a(x)(C]P)dkil i
is injective. Fix p € X and let s be a local rigid CR frame of L on a canonical
coordinate patch D, p € D, |s|%l = ¢ 2% with canonical local coordinates x =

(x1,...,X,—1) = (z,0). We take local coordinates x and s so that ( ) hold.
From Lemma 4.2 we may assume that

e F)(p)* = co, (4.35)
where F 5 fj = sk f; onD, j=1,...,d, and ¢ > 0 is a constant independent

of k and the point p. Let g,l, 8L E Hb <ka(X’ L¥) be as in Lemma 4.4. From
( ) it is not difficult to see that there is Ko > 0 independent of the point p such

that f7, g,i, ..., g are linearly independent over C. Put
o—ko%)
j_ S i _
Py = _kq’fl j=1,...,n,
; T ; (4.36)
pk—a,z] l—i—l()l/%j, O{,%] I—Repli,

:Imp,{,j:l,...,n—l,

where Fj 5gk =gk (g:,; onD, j=1,...,n. From( ) and ( ) it is not difficult
to see that there is Ko > 0 mdependent of the point p such that for all £k > Ko, we
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have
0, (P =civk, t=1,...,n—1, 0%y, PR (P)| = c1k, (4.37)
and
sup{|dx,,_, PR (P)|s 10z, PR (D)1, 10z, pR(P)is. e =1,...,n— 1,5 #1}
+sup{|pi ()| 19z, pp(P)lss=1,...,n—1,1=1,....,n} <&, (438)

where & is a sequence independent of the point p with limg_, o & = 0. From
( ), ( ), and some elementary linear algebra argument we conclude that
there is K1 > 0 independent of the point p such that for every k > K, the linear
map Ay : R~ — R?" represented by the matrix

a, e ) (p) @ PaD)(p) o B, (e FPa))(p)
@ Pa))(p) @ FPa))(p) o Oy, (€K Pa)(p)
e, € FPa2)(p) By, (e K2 (p) - By, (€K (p)

is injective. Hence the differential of the map
~1 ~n
X3x+— (g—i‘(x),..., g%‘(x)) eC”
Ji fi

at p is injective if kK > K. From this and some elementary linear algebra argu-
ments we conclude that the differential of the map

~

X35x+—> (Q(x),..., %(x)) € C%
1

1
at p is injective if k > K. Theorem follows. O

In the rest of this section, we prove that for k large enough, the map ®; s : X —
CP%—1 is injective. We need some preparations. Let (D, (z,60),¢) be a BRT
trivialization. We write x = (z,0) = (x1,...,Xu—1), X = (x1,...,X2,-2,0),
Zj=x2j—1+ixpj, j=1,...,n— 1. We need the following:

LEMMA 4.5. With the previous notations, for every uy € C*°(X, Lk), we have

(Fk,sur)(x)
1 i (X2n—1—Yon—1)M2n—1 2n—1
= 2 Z /e e | ——
(27[) mez k
x eM=1=im0 . (010 'Y 40dnsn_1 dysm_1 on D. (4.39)

Proof. Put 5 1 (n2,—1) :=Ts (%). By the Fourier inversion formula we have

1 i - Mn—1
E (X2n—1—Y2n—1)M2n—1 n
(2m)? /e TS( k
mez

x e"™m=1e= M0y (e X7y dOdnon—1 dym—1
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1
(2m)?

Z/'&S,k(}?rﬁl — x20-1)e"™ 1 e up (e x") dOd yr, 1
meZ

1 ) N . .
= )2 Z/Ta,k(yznfl)elm””"J”mxz”‘le "1y (e x") dBdy2n—1
meZ

1 . . .
= Z/t(;,k(m)e’mxz""e_’mgu(elex’) dé
T mez
1 / <m) —im6 . i6
= — Z 5| — )e u(e'”x)do
2m meZ k
= Fk,aukv (440)

where ;s ; denotes the Fourier transform of 75 ;. From ( ) the lemma follows.
O

LEMMA 4.6. With the previous notations, let uy € C*°(X, LK). Assume that there
are constants C > 0 and M > 0 independent of k such that |uy (x)|ik <CkM for

all x € X. If Suppuy N D =@ for every k, then Fy sur = O (k=) on D.

Proof. Assume that D = U x (—ep, €), where U is an open set in C"*~!, and
€0 > 0.Fix D" € D and let x (y2,—1) € C§°((—¢0, €0)) be such that x (y2,-1) =1
for every (', you—1) € D’. Let

1 j - M2n—1
R — {(X2n—1=Y2n-1)M2n—1 ¢
K= oy mzez /|e|5n ‘ "k

X (1 — x(yan—1))e™=1e7 M0y (9 x"y dOdny—1 dyon—1, (4.41)

where x € D’. Since x(y2,—1) = 1 for every (¥, yau—1) € D', we can integrate
by parts with respect to 17,—1 several times and deduce that

Riup(x) =0(k™>°) onD’. 4.42)
From ( ) and ( ) we have

(Fk,sur — Riup)(x)

1 i - M2n—1
_ (X2n—1—Y2n—1)M2n—1 n
= E e T,
(27)? meZ‘[9|<” 8( k

X X (yan—1)e™2=1e= M0y, (o1 X"y dOdnon—1 dyan—1

:L/\ei(XZn—l_yanl)UZn—lra N2n—1
(2m) X

X X Von—Duk (X1, ..., X2n—2, Yon—1) dnon—1dysn—1 =0 (4.43)

since Supp ur N D = @. From ( ) and ( ) the lemma follows. U

We need the following CR peak sections lemma.
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LEMMA 4.7. Let p # q be two points in X, and let {x;} and {y} be two sequences
in X with x; — p and yy — q. Then there exist v € Hg,gka (X, L*) such that for
k large enough, uy = Fy svi satisfies

1
el = 1 el < - (4.44)
Proof. Let (D, (z,0), ¢) be a BRT trivialization with p € D and g ¢ D. We may
assume that p = (0, 0). As before, let

freHy (X LY, L fa € My _s(X, L5)

be an orthonormal basis for ngk& (X, L*) with respect to (-|-). Let s be a local
rigid CR frame of L on an open_neighborhood D C X of p such that |s(x)|,% =
e 2 Let x € Co°(D) with x =1 on Dy, where Dy C D is an open neigh-
borhood of p. On D, put Frs f;(x) = s* f(x), f;(x) € C¥(D), j=1,...,dj.
Assume that {x;} € Dy. Let

di

V() =55 ® D x () (Fis ) (x) f (i)e ™) e C5°(D, LX)
j=1

C C®(X, L". (4.45)

In view of Theorem 1.1, we see that
T (x) = 5" (x) ® x (x) / I TRPW g (x xp, 1, k) dt + O (k™)
on D. (4.46)
Since [ e*¢xD g (x, xp,t,k)dt = O(k=>°) on D \ Dy and
mid <sk(x) ®/eik‘p(x’xk’l)+kq>(x)g(x,xk,t,k) dz) =0k ) onD,
we conclude that
O = 0(k™>) on D. (4.47)

Let vy = Ik <ksVk € Hg’ika(x, Lk), and let uy = Fy svx = Fi sk, <ksVk. From
( ) and ( ) we can check that

| Fie.s (I — Mg, <ks) 0k | = O (k™). (4.48)
From Kohn’s estimates or the arguments in the proof [1 |, Theorem 8.3.5] we see
that for every s € N, there is a constant Cs ; > 0 such that
0
letlls+1.4 < Con (105 pullsie + 1 Teells .k + lluelloe)
for all u € C*®(X, L¥), (4.49)

where | - ||s.x denotes the standard Sobolev norm of order s on the Sobolev space
H* (X, L*). There is condition Y (¢) in the assumption of [I |, Theorem 8.3.5] in
order that ||Tu||s,x can be controlled by ||D,g?,2ulls,k and |lullo,x. Moreover, the
constant Cs  can be bounded by the C Ps (X)-norm of the volume form on X, the
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Hermitian metric of L, and the coefficients of D;fi and T on X, where P, € N
only depends on s. Hence there is a constant C; > 0 independent of k and Ny € N
such that Cy x < Cyk™s for all k € N. From this observation and ( ) we deduce
that

| Fr,s (I — T, <ks) Uk 41,k
¢ 0 ~ ~
< CokM (103} Fr s (I = T, <) ls.k + 1T Fies (1 — T, <ks) L.k
+ || Fr,s (I — Tk, <k8) Uk llo,k)- (4.50)

We claim that for every s € N, there are N, s € Nand a > 0 independent of k such
that

S
~ ~ A 0) i ~
1Fies (I — T <) Vil < Csk™ (Z 1T Fies (I — nk,gks>vk||). 4.51)
j=0
Taking s = 0 in (4.50) and using the estimate
T Fie.s(I — Tk, <ks) V|| < k8| Fie,s(I — Mg, <k) k|l

we get the claim ( ) for s = 1. Assume that ( ) holds for all s € N such that
s < 5o for some sg € N. Hence

| Fre,s (I — Mg, <ks) Vk Nl 0.k
< Coyk™Mo (Z 1T Fres(l — nk,<ka>5k||>. (4.52)
=0
Taking s = sp in (4.50), we get
| Fre,s (1 — T, <k) Uk llsg+1.k
, 0 ~
< Cyok™o (105} Fies (I = T <k8) Vel so.k
+ 1T Fre,s (I — T, <) Vk llso.k + | Fi.s (T — T, <k8) Dk llo,k)- (4.53)
Substituting Dz(?,){ Fy s(I — g, <ks) v into ( ) and noting that
0 - 0 -
Frs(I — Hk,gks)(D;(,,;)ch,a(I — Ik, <ks)Vk) = D;(,J)ch,a(l — Ik, <ks) U,
we get

”Dg,)/)ch,a(I — Ik, <ks) Uk Il k
- so+1
- o ~
< CygkMo (Z ”(D;,I)c)] Fis(I — Hk,ské)UkH)- (4.54)
i=1

Substituting 7 Fy s (I — Hk’fk(g)ik =Fs( — Hkék(g)T?}'k into ( ), we get
I T Fie,s (I — Tk, <k5) Uk |l so.k

~ S0 .
< Cypk™o (Z 1T Fies (I = Ty <) Tk ||). (4.55)
j=0
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From ( ), ( ), and ( ), noting that
IO Fies (I = M <) T
< k8[ (T Fis(I — Ty <)%l for every j € No.

we get the claim ( ) for s = sg + 1. Tthe claim ( ) follows by induction.
From ( ), ( ), and ( ) we deduce that

Frs(I — g <)V = O (™), (4.56)
and thus
ur = Fi s + O (k™). 4.57)

Let ¥ € C°(D) with X (x;) =1 for each k and x =1 on Supp X. We can
repeat the proof of (3.56) with minor change and deduce that

di
D X Frs( = O Fes [0l = 0(™) on D (4.58)
j=1
and hence
d _ 2
| Pl ) e = | D (Fls [) (o) f o™ 0| 4+ 0)
j=1 "
:/eik‘p(xk’xk’t)g(xk,xk,t,k)dt+ Ok=>)
> Ck", (4.59)

where C > 0 is a constant independent of k. Note that Suppvx C D and g ¢ D.
From this observation and Lemma we deduce that

| Fr.s 0 i) 3 = O (k™). (4.60)
From ( ), ( ), and ( ) the lemma follows. O

THEOREM 4.8. The map Py s is injective for k large enough.

Proof. We assume that the claim of the theorem is not true. We can find xi;, yk; €
X, xk; # Yk, 0 < ki <ky < -+, limj,o0k; = 00, such that Py; s(xx;) =
@y, 5(yk;) for each j. We may suppose that there are xi, yx € X, xr # yk, such
that @ s5(xx) = Pk s(yx) for each k. We may assume that x; — p € X and
vk > g € X as k — oo. If p # g. By Lemma we can find ur = Fy s fx,
vk = Fr 58k, fx, 8k € H2,<k5 (X, Lk) such that for k large, we have

1
g (i) e > 1., ke (1) [ < > (4.61)
and
2 2 _ 1
ok YO e = 1, [k () e < 3 (4.62)

Now @y 5(xx) = Pr s (yr) implies that

2 2 2 2
loe (X [ = ricl e (Vi Lxe» lok ) e = riclvie i) e
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where ry € R, for each k. We deduce from ( ) that ry > 2 for k large. But
(4.62) implies that ry < % for k large. We get a contradiction. Thus we must have
pP=q.

Let {f; j{"zl be an orthonormal basis of Hg,gka(x’ LK), Let s be a local
rigid CR frame of L on a BRT trivialization (D, (z,0), ¢), p € D, |s|} = e~2?,
Frsfi= sk ® fj,j =1,...,dx. Since both x; and y; converge to p, we can
assume that x, yx € D for every k. Since &y s(xx) = Dk 5(k), there is A € C
such that e_k‘b(xk)f} (xx) = )»ke_k@(y’f)fj (yx) for each k, and we may assume that
|Ak] > 1 for each k, and hence

ek F () = e *PO0 Fi(y), M eC gl > 1. (4.63)

In fact, if |Agx| < 1 for some xg, yk, then we can replace x; by y; and y; by x.
This implies that

Pr.s,s (er, yi) = A Pross (ks yi), Ak € G, |ag > 1. (4.64)
We will show that ( ) is impossible. Write x; = (Z~, x’z‘nfl) = (x{‘, e x’z‘nfl),
=k yh =0k ... ¥5 ), and
F=Ch g, wi=f ek,

Let

limsupk|z* — w|> = M € [0, o0].
k—o00

By definition there is a subsequence (k) jen of N such that
lim k;|z% — whi > = limsup k|z* — wk|* = M.
Jj—> 00 k—00

Without loss of generality, we can assume that
lim k¥ —w*> =M, M €]0,oc0l.
k— 00
Case I: M € (0, oo]. First, we assume that M = co. From (3.4) we have

limsup k™" | Pi.s.5 (X yi)| < limsup / e KIMOChID | 00 (i, yi, 1)] dt. (4.65)
k—o00 k—00

Combining with ( ) and the fact Img(xy, yk, s) > clzk — wk|2

have

in ( ), we

limsupk™"| Py s s (xk, yi)| = 0.

k— o0
This is a contradiction with limg— 00 k™" Pr s.s (Vk, Yk) = fgo(p, p,t)dt #0 and
assumption ( ). Thus we have M < oo. From (3.4) we have

lim k| Pes.s (xes y)| < =M / go(p. p.1)di (4.66)
k—o00

for some positive constant c. On the other hand, lim_ o k™" | Pr.5.s (Vk, Yk)| =
f go(p, p,t)dt. This is a contradiction with ( ). Thus we have M =0, that is,

lim k|ZF — w*)? =0. (4.67)
k—o00
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n—l k k
Gy =~—1 [8¢(Z )(E’; — k) — 8¢(Z_ )(z’; - wlj)] eR. (4.68)
Recall that

n—1
9 9
wo(x) = —dxo_1 +iZ<aT‘é(z)dz,- - 8—‘?(z)dZJ), x=(z,0).
=1 NO% 2j
Let
limsupk|ys | —x5 | +a&@|=N€[0,00]

k— 00

There is a subsequence (k;) jen of N such that

. kj kj = . k k =
lim kjly,, | — Xy, + ;| =limsupk|yy, | —x5, |+l
j—o0 k=00

Without loss of generality, we assume that

lim k|y%, | — x5, +a&| =N €0, 0] (4.69)
k— 00
Case II:
lim k|25 — w2 =0; lim k[y%, | — x5 | +@G|I=Ne (0,00 (470
k— 00 k— 00

First, we assume that N = co. From (3.4) we have
k™" Pos s (i i) = k" / MPCRID g (y, yi, 1, k) di + 1, 4.71)

where |ri| = O (k~°°). By the second property in ( ) we have

(p(-xv y9 t) = [(yZn—l - x2n—1)

n—1
. a¢ _ P
+ti ;[g_j(z)(zj- —w;) — E(Z)(Zj — wj)}

n—1
ree . a0
+z;[£j<z)<z,~—w,-)—£j<z>(zj—w,-)}

+O0(x = y». (4.72)
Note that
klx = yil> S kI = wh P+ kly3, ) — x5, + @l
SkizF —wk P ks K are, (4.73)
where ¢, — 0. From ( ), ( ), and the assumption N = oo we have

d s Vi, t
lim & ©(Xk, Yk ):OO

4.74
k— 00 ot ( )
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Substituting ( ) into ( ), by ( ) and integrating by parts with respect to
t, we have

limsupk ™| Py 5.5 (xk, yk)| = 0. 4.75)

k—00
This is a contradiction with ( ) since liMi—oo k™" Prs.s(Vk, Yk) =
fgo(p, p,t)dt # 0. Second, we assume that N < co. Since limk_moklzk —
w2 =0 and limy—. oo k|y5, | —x%, | + &kl =N < o0, by (4.73) we have that
limg— o0 k| X% — yx|? = 0. Substituting (4.72) into (4.71), we have that
limsup k™" | Pr.s,s (Xk, Y&)

k— 00

<limsupk™
k—o00

/eiN’go(p,p,t)dt

. § _ = . 2
/ezk[t(mfl xau GO U =P g (1 vy 1. k) dt

=

. (4.76)

Since | [N go(p, p.t)dt| < [go(p, p.t)dt = limg_oo k™" Pis.s (ks Vi)
combining this with ( ) and ( ), we get a contradiction. Thus we have
N=0.

Case III:
lim k|z¥ — w> =0; lim kly§ | —xk  +&l=0. (4.77)
k—o00 k— o0
Denote

Ar(u) = | Prs.s uxg + (1= w)ye, yio)l?,
Bi(u) = Prs.suxr + (1 —u)yr, uxg + (1 —u)yr) - Pe.s.s Ok, Yi)-

Set Hy(u) = gz% By the Schwartz inequality we have 0 < Hy(u) < 1. Since

H;(0) = Hi(1) = 1, there exists ux € (0, 1) such that H,’(u) > 0. By direct cal-
culation we get
Al(up) A ) Bp(ug)  Ar(ui) By (ug)
Bewp) ~ BXwy)  Bw)
o Ak B (ur)
Bl

H (u) =
4.78)

Write g (u) = Pys s (uxy + (1 — u)yk, yx)- Then Ag(u) = lag )|, Aj(u) =
oy ()or (u) + e (u)ety (u), and

AR ) = o (i) err (ur) + 2oty (i) | + e (i) (ug ). 4.79)

By Theorem 3.3 we have

ay(u) = / etke a0y yeD o (uxy 4+ (1 — w)yk, yi, 1, k) dt + ye (), (4.80)
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where yc(u) = O(k=*°). Write Bi(u) = [ e eWat=yeyt ey, + (1 —
u) Yk, Yk, t, k) dt. Then
AL () =21 B i) 1> + B i) B + B (i) B (ure)
+ 2B (i) v (i) + 29 (i) By (ure)
+ BY () e (up) + Vk(uk)ﬂ (i) + B () vy (ui) + Br (uk)Vk (ug)
+ 9 v + Vi) y” e) + 21y () . (4.81)

Set
n—1
~ . a9 % —
k() =i Z[az |wk+u(zk—wk) ) (Z]; - wlj{)
j=1=

d¢
9z

By the mean value theorem we have

k-t (b (25— w];):|. (4.82)

k(X | —xK @) —kOE =k @)l

= klax — @ (up)| Skl — w2 (4.83)
Then ( ) and ( ) implies that
klir&k|y§n_1 — x5 @) =0. (4.84)

By direct calculation we have that

218y (i) 1> + By (ux) Brc () +l3 (i) Br (ur)
2
=2k2”+2[ —/go(p,p,t)tzdt-/go(p,p,t)dt}

X (Va1 — X1+ (up)?

3?Ime(p, p, 1)
_2k2n+1/|:z ax—app( _y])('xl -V ):|80(P7 p’t)dt
=1 I

+ ok O (k|ZF — wk > + K2k | —xE |+ @ wol?). (4.85)
By ( ) there exists ¢ > 0 such that for § sufficiently small,

/[2” 292 Ime(p, p,1)
e 0x;j0x;

/tgo(p, p,t)dt

o =YD =y )}go(p p,t)dt

> c|ZF — wh?. (4.86)

By Hoélder’s inequality, | [ 7go(p, p. 1) dt|> < [t?go(p, p,t)dt - [ go(p. p. 1) dt,
so by combining ( ) and ( ) there exists ¢; > 0 such that

limsup k™" [k|z* — w* |* + k* (35, — x5, + @)1

k— 00

x [21B (i) > + By (i) B () + B (wr) Br(wi)] < —c1 < 0. (4.87)
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By direct calculation we have that

limsupk 2" [k|z* — w* 2 + K25,y — x5 + @) 17 ' C =0,  (4.88)

k— 00

where

Cr = 2B (ur) v (ui) + 2y i) By (ui) + By () vie () + vi (ui) By (uk)

+ B ) vy () + Br () v ) + vy i) ve (ur) + v () y” (ug)
+ 20y ).

Combining ( ), ( ), and ( ), there exists ¢ > 0 such that

R A// u
lim sup[klzk — wkl2 + kz(ylz‘nfl — xé‘wl ~|—ozk(uk))2]_1 M
k—o00 By (ur)
< —c <0. (4.89)
It is straightforward to see that
limsuplk|zF — wh2 + K20k | —xk 4+ @)
k— 00
y {2|A;((’4k)| B i)l 1Ak i) - 1By (ug)| n 2IAk(uk)I B (up)| }
B} (ur) B} (ur) B} (ux)
=0. (4.90)

From ( ) and ( ) we have

limsuplk|z* — w*|? + k> (35, ) — x5, + Q@)1 H () <0.  (4.91)

k—o00
This is a contradiction with H;'(uy) > 0. O
Proof of Theorem 1.3. Since X is compact, Theorems and imply that

the modified Kodaira map ®; s defined in (4.5) is an embedding. For differ-
ent mi, my € Z, Hg’ml (X, L% L Hg’mz (X, L), and thus we can choose an or-

thonormal basis { f,}j’; p of H) _s(X, LK) such that f; € Hg’m_/ (X, L*) with
mj € Z and |m | < ké for each 1 < j < dy. Then Fy5f; € Hg,mj(X) for each
j. For any p € X, from the argument in the proof of [2], Lemma 1.20] we
can find a local trivialization W that is an S'-invariant neighborhood of P
and local trivializing rigid CR section s of L on W. Then Fysf; = sk ® fi
on W with f; € C®(W),1 < j <dj. Since Fysf; € Hgmf(X, Lk), we have
T]?} = imjfj. Then for any 6 € [0,27), we have fj(eiep) = ei’"f@]?j(p).
Thus
O3 p) = [f1€ ), fa (P = 1" fi(p), ..., ™4 fu (p)]
=" ®y 5(p).

so we get the conclusion of Theorem 1.3. (]
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Proof of Corollaries 1.4 and 1.5. They are immediate consequences of Theo-
rem 1.3. u

We close with an application of Corollary

ExAMPLE 4.9. Let (X, T"%X) be a compact CR manifold of dimension 3 with
a transversal CR locally free S!-action. Assume that X admits an S'-equivariant
positive CR line bundle L. For example, if X is strongly pseudoconvex, then there
is an S'-equivariant positive CR line bundle over X. Take Z € C*®(X, T'-0X)
such that Z, is a basis for TX1 0% for every x € X. Let & be a distribution on X
with Th =0 and Zh smooth (note that it is possible that there is a nonsmooth
function % such that Zh is smooth). Hence Zh € C*°(X). Consider 710X .=
span{Z + (Zh)T). Then (X, f‘l*OX) is a compact CR manifold of dimension 3
with a transversal CR locally free S!-action. Moreover, L is still an S!-equivariant
positive CR line bundle over (X, T19X). To see this, let s be a rigid CR frame
with respect to 719X and |s|? = e~2%. Then s is still a rigid CR frame with

respect to 710X Let 9, be the tangential Cauchy—Riemann operator with respect
to f:l'OX , and l§t dp be its conjugate. Then the curvature (3f L is given by RL =
25b5b¢. Since 3¢ = (Z + ZhT)¢ = Z¢pdz, we have 5);;5;,(]) =ZZ¢pdz AdZ =
pdpp > 0.

From Theorem we deduce that there exist smooth CR embeddings &y s of
(X, T1-0X) in CP%~! that are S'-equivariant with respect to weighted diagonal
actions.

ACKNOWLEDGMENT. We are grateful to Xiaonan Ma for useful discussions on
the topic of this paper.
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